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Frank and Jordan (1] proved an important min-max result on covering a crossing family of 
set-pairs. As an application, among others they can solve the unweighted node-connectivity 
augmentation problem for directed graphs in polynomial time. In this paper, we show how 
to solve the dual packing problem in polynomial time. To decompose a fractional dual 
optimum as a convex combination of integer vertices, besides the ellipsoid method, we use 
a polynomial-time algorithm for uncrossing a family of set-pairs. Our main result is this 
uncrossing algorithm. 

1. Introduction 

Let A and B be fixed finite sets. By a pair we mean an ordered pair (T, H) 
of sets, such that T ~A, H ~B. In accordance with Frank and Jordan [1], 
for a pair (T, H) we call T the tail and H the head of the pair. By a fam·ily of 
pairs we mean a function F: P(A) x P(B)---+<Q.+ where <IJ.+ := { x EQ: x ~ O}. 
If F(T, H) > 0 then we say that (T, H) E F, and the multiplicity of this pair 
is F(T,H). 

Our task is to determine from a given input F, another family of pairs 
F* which can be obtained from F by a sequence of elementary uncrossing 
steps. Family F* should be cross-free, that is, it cannot be changed any more 
by performing an elementary uncrossing step. In an elementary uncrossing 
step, we decrease Fon crossing pairs (T1,H1),(T2,H2) by c: and increase 
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it also bys on pairs (T1 nT2,H1UH2) and (T1UT2,H1nH2) where c := 
min{F(T1,H1),F(T2 ,H2 )}. Pairs (T1,H1) and (T2,H2) are crossing if T1 n 
TFJ.0f=.H1nH2 and the above two pairs (T1nT2,H1UH2) and (T1UT2,H1n 
H 2) differ from the original pairs (T1,H1) and (T2,H2). Pairs (T1,H1) and 
(T2 ,H2) are are half-disjoint if T1nT2=0 or H1nH2=0. We call the elements 
of Ax B edges, and we say that edge ab covers pair (T, H) if a ET and b EH. 
For subsets A' of A and B' of B let Ff,' (T, H) = F(T, H) if A' C T and 

B' c H else F!J.,' (T, H) = O; let F.~,' (T, H) = F(T, H) if A' n T = 0 = B' n H 

else :F!; (T, H) = O; and F~: (T, H) = F(T, H) if A' n T I 0 I B' n H else 
B' F"AJ(T,H)=O. 
-When it does not cause ambiguity, we might use only elements without 

brackets to denote a set, so F~ simply stands for Ff!~· On P(A) x P(B) 
we introduce a partial order. (T1,H1) :j (T2,H2) if T1 ~ T2 and H1 ~ H2. 
We may suppose that A = { ai : 1 :'.S i :'.S n}, B = {bi : 1 :'.S i :'.S n}, and let 
m=l{(T,H):(T,H)EF}I. If f,g:X-+IR are functions and Y~X3x then 
f(Y):=L,yEYf(y), fg(x):=f(x)·g(x) and f·g:=fg(X). 

The motivation for solving the above particular uncrossing problem is to 
give a polynomial-time algorithm for the dual problem of covering a crossing 
family of set-pairs. To describe this problem let us suppose we have a crossing 
bisupermodidardemand-function p: P(A)xP(B)--rl."il, i.e. if (T1, Hi), (T2, H2) 
are crossing pairs and p(T1,H1) ·p(T2,H2) f. 0 then p(T1,H1) +p(T2,H2) :S 
p(T1 n T2, H1 U H2) + p(T1 U T2, Hin H2). In this model we are instructed to 
choose some edges in such a way, that every pair is covered with at least 
as high multiplicity as its demand. That is, we are looking for a function 
z:AxB-+N such that z(TxH)?:.p(T,H) for every r/Jf=.T~A, r/JIH~B, or 
in other words, z covers p. We should also do it with the minimum number 
of edges, i.e. we would like to compute Tp := min{ z(A x B): z covers p }. 

In this model we might want to optimize the maximum demand of a 
subfamily F of P(A) x P(B) of pairwise half-disjoint pairs (a half-disjoint 
subfamily), i.e. we would like to compute Vp := max{p(F) : F ~ P(A) x 
P(B) is half-disjoint}. Theorem 2.3 in [1] of Frank and Jordan states the 
following: 

Theorem 1.1. (Frank and Jordan [1]) If A,B are finite sets and p:P(A) x 
P(B)-+N is a crossing bisupermodular function, then vp=Tp . I 

For the sake of applications of Theorem 1.1 (e.g. the directed node
connectivity augmentation, or an alternative (non-combinatorial) method 
to construct a minimum cardinality generator of a path-system), it would 
be handy to have an efficient algorithm that provides both a half-disjoint 
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family with maximum demand, and an optimal covering of p. The charac
teristi~ vector of a half-disjoint family of maximum demand is an optimum 
of the mteger counterpart of linear program 

(1) max{y · p: y 2:: 0, y(e):::; 1 for every edge e}, 

where Y: P(A) x P(B) _, IR and y(e) = 'L,{y(T,H): e covers (T,H)}. This 
program is just the dual of the one that solves the covering problem via an 
integer optimum z: 

(2) min{z(A x B): z 2:: 0, z(T x H) 2:: p(T, H) for every pair (T, H)}. 

Theorem 1.1 can be interpreted such that for a crossing bisupermodular 
function p, linear programs (1) and (2) have integer optima. The authors 
of [1] also indicate a possible way to find an integer optimum z* of (2) in 
polynomial time. What they do is that they compute a fractional primal 
optimum z using the ellipsoid method and with the help of this optimum 
they reduce the problem to another one where the bisupermodular func
tion p' is "small". In the small problem they can find "reducing" edges one 
by one, and this is sufficient for the efficient construction of some optimal 
covering z*. 

With our algorithm we can uncross the fractional dual optimum :F := y 

of ( 1) found by the ellipsoid method. As the size of :F is polynomial in the 
size of the original problem, by using our uncrossing algorithm, we can also 
obtain a cross-free optimum y* :=:F* in polynomial time. From y*, in poly

nomial time, we are able to compute a maximum p-weight -<-antichain of 
supp(y*) := { (T, H): y*(T, H) >0}, using the well-known bipartite matching 
algorithm for Dilworth's theorem. This provides an optimum half-disjoint fa
mily. Indeed, y* is a rational optimum solution of (1), as performing a single 
elementary uncrossing step on y results in another rational optimum. So 
there is a c EN such that cy* is integer. From cross-freeness, a -<-antichain of 
supp(y*) corresponds to a half-disjoint family, and by definition any -<-chain 
of supp(y*) has (cy*)-weight at most c. By the dual version of Dilworth's 
theorem there are c -<-antichains A1, ... , Ac such that each pair (T, H) is 
contained in at least cy* (T, H) of these -<-antichains. Hence the maximum 
p-weight of a -<-antichain of supp(y*) is certainly not less than ~cy*·p=y·p, 
which is the maximum demand of a half-disjoint family. (Note, that from 
the dual version of Dilworth's theorem it already follows that the set of 
-<-minima of supp(y*) corresponds to a half-disjoint family of maximum 

demand.) 
As a main application of Theorem 1.1 of [1], Frank and Jordan obtained 

a min-max formula for the unweighted directed node-connectivity augmen
tation problem. More precisely, they proved that the minimum number of 
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arcs one needs to augment a given directed graph to be k-node-connected 
equals the maximum total demand of a certain independent family. Here 
independent means that any edge can decrease the demand of at most one 
member of the family. By solving the above primal problem (2) for this case 
the authors can find an optimum augmentation. A dual optimum which can 
be constructed via our uncrossing algorithm provides a witnessing indepen
dent family. 

2. The algorithm 

In this section we describe our main result, the uncrossing algorithm for 
set-pairs. It is well known, that the uncrossing procedure is finite, as the 
nonnegative amount l:aEA l:bEB l:aETCA l:bEHCB F(T, H) is decreasing at 
every step with at least the reciprocal of the common denominator of the 
F-values. 

We begin with examining a cross-free family F*. If two pairs of F* are 
covered by the same edge, then they must be -<-comparable, as otherwise 
an elementary uncrossing step along them would change the family. On the 
other hand, if for every edge ab, family F! is a -<-chain (that is, the family 
of the heads and the family of the tails of these pairs are chains of increasing 
sets, and they are paired in an opposite way), then no elementary uncrossing 
step can change F anymore. 

The input of a routine step of our uncrossing algorithm is a family F 
and an edge ab. Its output is a family F[a,b], which is obtained from F 
by uncrossing its subfamily .rg. This can be done efficiently, because all 
the pairs emerging during the uncrossing process are covered by ab, thus 
the uncrossing procedure on F~ must result in a -<-chain. Moreover, for 
a' EA and b' E Ban elementary uncrossing step does not change l:Fb , := a,a 

b bb' bb' 
l:{Fa,a'(T,H):TcA,HcB} and l:Fa' :=l:{Fa' (T,H):TcA,HcB}. 
So after calculating all values l:Fg,x for x EA and all values l:F~,x for 
x E B we simply pair the level-sets in an opposite way with corresponding 
F[ a, b]-values. 

We remark, that here we only proved that if F is rational, then the 
level-set pairing is a quick way of uncrossing the subfamily F~. Although, at 
this point it is not clear whether for real F's there exist a finite uncrossing 
procedure that turns F! into the oppositely paired level-sets. Based on the 
algorithm described in [2] it is relatively easy to construct such a method, 
showing that our result can be extended to the real case. 

Unfortunately, in a routine step, we may ruin the previously ordered 
structure of the actual family along another edge. The key idea is, that 
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we can keep control of the damage done if we execute our routine steps in 
the lexicographic order of the edges. To prove the following observations, 
we assume that rather than using the above efficient level-set pairing, we 
execute each routine step as a sequence of elementary uncrossing steps. 

Lemma. 2.1. If .F~ is cross-free then (.F[a,b'])~ is cross-free. 

Proof. Family (.F[aY])~17 = F~,11 is cross-free by assumption family 
I l 

(.F[a, b'] )7z'b is cross-free because of the routine step. In the beginning every 

pair of .r:;Jl wa.s -<-less than any pair of .F~,b', and this property is preserved 
by an elementary uncrossing step along edge ab'. I 

For family .F and element a.i of A let .F[ai] denote the system that we get 
after executing the routine steps along all edges incident with ai (in order 
o.;b 1, aJJ2, ... , aibn). We call the execution of these routine steps the ith phase 
of our nlgorUhrn. Let A('i):={arl::;j::;i}. 
Lemma. 2.2. If fJ\(i--l) is cross-free then (F[ai])A(i) is cross-free. 

Proof. Lemma 2.1 implies that (F[ai])~., is cross-free for any bEB. We have 

to show that the same holds for (F[ai])~ whenever aEA(i-1) and bEB. By 
Lemnrn 2.1, both (F[ai])~,a, and (F[a.i])~,i'ii will be cross-free by themselves. 
vVc will show that during the ith phase for any intermediate family F', for 
any a E A ('i - 1) and any b E B 

( 1) any clement of .F'~,ai is -<-less than any element of F'~,ai . 

I3y ass11111pU011, property (1) is true for F. 
If, indirectly, this is not the e<tse at the end, then there is a first elementary 

1111<Tossing step that ruins property ( 1). Suppose that it is first violated 
for 11.IJ, <tfter an elementary uncrossing step is taken along aib' (b = b' is 

allmwd), with pairs (T1,Ili),(T2,H2) E F'~1 , for some intermediate family 

F'. Clearly, exactly one of the two pairs (say (T1, H1 )) belongs to F'~, that 
is, a, a, E T 1 awl b, l/ E H 1. The other pair (T2, H2) must be covered by aib' 
awl numot be covered by ab. If af/.T2 a.ud bf/.Jh, then property (1) remains 
tnw for (F'[a.;,h])~ as no new pair which is covered by ab can emerge. If 
a cl'/~ lmt. h (7. H2 then only (Tt U T2, H1 n H2) is covered by ab, and as 
(T1, I1 1) -< (T1 U72, H 1 nH2), property (1) remains true after the uncrossing. 

'I'li<: 011ly rnmt.rivial case is, when aE 7'2 and b ff. H2. 

Fron; (7'i, II 1 ) E .F'~, property ( 1) of F' implies that F'~,a; ::; F'~;, thus 

P'.',,r;; :SF'~',li~· So if (T,H) EF'~,i'ii then (7',H) E:;'~,ai· From pro?er~~ ~l) 
of .F' <dong al/ we get that (Ti U 7'2, H 1 n H2) -< (71, H 1) -< (T, H), JUst1fymg 

t.iw hcn~dity of property (1). I 
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Let ;::(o) := F and for 1::; i::; n let ;::(i) := ;::(i-l) [ai]. 

Theorem 2.3. The above described algorithm constructs a cross-free fa

mily F* :=Ff~ in time polynomial inn and m. 

Proof. By induction, using Lemma 2.2, F~{ is cross-free. To construct F*, 

we need n 2 routine steps. The time neededfur a routine step is linear in the 
size of the actual family. As new pairs, emerging from a routine step form 
a -<-chain, each routine step brings at most 2n new pairs into the family. 
Hence the size of the actual family is never more than m + 2n3 , thus the 
algorithm needs O(mn2 +n5) time. I 
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