
doi: 10.1098/rsta.2012.0091
, 371 2013 Phil. Trans. R. Soc. A

 
Paul M. B. Vitányi
 
Similarity and denoising
 
 

References
91.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/371/1984/201200

 This article cites 31 articles, 2 of which can be accessed free

Subject collections

 (5 articles)pattern recognition   �
 (13 articles)bioinformatics   �

 (2 articles)algorithmic information theory   �
 
collections
Articles on similar topics can be found in the following

Email alerting service  herein the box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. ATo subscribe to 

 on January 2, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/content/371/1984/20120091.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/cgi/collection/algorithmic_information_theory
http://rsta.royalsocietypublishing.org/cgi/collection/bioinformatics
http://rsta.royalsocietypublishing.org/cgi/collection/pattern_recognition
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;371/1984/20120091&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/371/1984/20120091.full.pdf?keytype=ref&ijkey=xzKcGfNczpnMl9Q
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


rsta.royalsocietypublishing.org

Research
Cite this article: Vitányi PMB. 2013 Similarity
and denoising. Phil Trans R Soc A 371: 20120091.
http://dx.doi.org/10.1098/rsta.2012.0091

One contribution of 17 to a Discussion Meeting
Issue ‘Signal processing and inference for the
physical sciences’.

Subject Areas:
algorithmic information theory,
bioinformatics, pattern recognition

Keywords:
similarity, denoising, individual data,
Kolmogorov complexity, information distance,
lossy compression

Author for correspondence:
Paul M. B. Vitányi
e-mail: paul.vitanyi@cwi.nl

Similarity and denoising
Paul M. B. Vitányi

National Research Center for Mathematics and Computer Science in
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We can discover the effective similarity among pairs
of finite objects and denoise a finite object using
the Kolmogorov complexity of these objects. The
drawback is that the Kolmogorov complexity is not
computable. If we approximate it, using a good real-
world compressor, then it turns out that on natural
data the processes give adequate results in practice.
The methodology is parameter-free, alignment-free
and works on individual data. We illustrate both
methods with examples.

1. Introduction
In recent studies [1–3], we and others have developed
theoretical approaches to (i) similarity of finite objects,
and (ii) denoising of the same. We proved that
these theories based on Kolmogorov complexity are
perfect. By approximating the Kolmogorov complexities
involved by real-world compressors, we transformed
these theoretical notions into applications that work
better than we could expect [4,5]. The purpose of this
study is to review these results and give some possible
reasons why they are so good.

(a) Similarity
In pattern recognition, learning and data mining, one
obtains information from information-carrying objects.
The notion of Kolmogorov complexity [6] is an
objective measure for the information in a single object,
and information distance measures the information
between a pair of objects [1]; see appendix A.3. The
information distance (in normalized form) can be used
to find the similarity between a pair of objects. We
give a computable approximation using real-world
compressors. In many situations, this approximation is
argued below to be sufficient in the case of natural data
and good compressors. The resulting similarity measure

c© 2012 The Author(s) Published by the Royal Society. All rights reserved.
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is a parameter-free and alignment-free method.1 One of the advantages of this method is that it is
very fast and also works for noisy objects [7].

(b) Denoising
If, in observations or signal analysis, one wants to get rid of the noise in the observed object

or in the signal, then we use a denoising method. We show a method based on Kolmogorov
complexity. Again, we approximate the Kolmogorov complexities involved by a real-world
compressor. A disadvantage of the method is that it is currently slow.

(c) Natural data and Kolmogorov complexity
The Kolmogorov complexity (appendix A.2) of a file is a lower bound on the length of

the ultimate compressed version of that file. In both cases mentioned earlier, we approximate
the Kolmogorov complexities involved by a real-world compressor. Because the Kolmogorov
complexity is incomputable, in the approximation we never know how close we are to it.
However, we assume that the natural data we are dealing with contain no complicated
mathematical constructs such as π = 3.1415 . . . or universal Turing machines. In fact, we assume
that the natural data we are dealing with contain mostly effective regularities that a good
compressor finds. Under those assumptions, the Kolmogorov complexity of the object is not much
smaller than the length of the compressed version of the object.

Remark 1.1. As an aside, in many applications we are interested in shared information between
certain objects instead of just a pair of objects. For example, in customer reviews of gadgets,
in blogs about public happenings, in newspaper articles about the same occurrence, we are
interested in the most comprehensive one or the most specialized one. Thus, we want to extend
the information distance measure from pairs to multiples. This approach was introduced in Li
et al. [8], whereas much of the theory is developed in Vitányi [9].

2. Similarity
In many situations, one is interested in how much a pair of data is alike, and whether one pair of
data is more alike than another pair. In the following, we give a method to quantify this alikeness
(or similarity) of a pair of data in terms of a distance between them. This distance is a quantity
between 0 (identical) and 1 (completely dissimilar). To visualize the n2 pairwise distances between
n data, we make use of the following technique: a hierarchical clustering in a dendrogram (a tree
where each internal node has three edges incident on it). To construct this dendrogram, we use
the so-called quartet method from computational biology. We developed a new fast heuristic for
the quartet method [10]. There is nothing prescribed (such as the number of clusters); we let the
data decide for themselves.

The method takes the n × n distance matrix as input, and yields a dendrogram with the n
objects as leaves (so the dendrogram contains n external nodes or leaves and n − 2 internal nodes
such as in the figures below). We assume n ≥ 4. The resulting dendrogram models the distance
matrix as well as possible qualitatively. If the distance between object o1 and object o2 is smaller
than that between o1 and o3, then the shortest path in the dendrogram between o1 and o2 has at
most as many edges as the shortest path between o1 and o3 (equal if o2 and o3 are sibling nodes).
Thus, the edges themselves have no length, and the dendrogram represents the partial order
induced by the distance matrix. For details, see the cited reference [10]. The method is available
as an open-source software tool [11].

1In bioinformatics, the computation of the similarity between genetic strings commonly involves the so-called ‘alignment
method’. This method has high or even forbidding computational costs. See the comments in the example of phylogeny
in §2b. For certain problems, biologists look for alignment-free methods.
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Commonly, the data are of a certain type: music files, transaction records of ATMs, credit
card applications, genomic data. In these data, there are common features that can be quantified
by giving a number to each data item. Such methods use feature-based similarities. For example,
from genomic data, one can extract letter or block frequencies (the blocks are over the four-letter
alphabet); from music files, one can extract various specific numerical features, related to pitch,
rhythm, harmony and so on. Examples are given in [12–16]. However, these methods require
specific and detailed knowledge of the problem area, because one needs to know what features
to look for.

By contrast, we aim at non-feature-based similarity. That is, capturing, in a single similarity
metric, every effective distance: effective versions of Hamming distance, Euclidean distance, edit
distances, alignment distance, Lempel–Ziv distance and so on. The metric should be so general
that it works in every domain, music, text, literature, programs, genomes, executables, natural
language determination, equally and simultaneously. It should be able to simultaneously detect
all similarities between pieces that other effective distances can detect separately. Such a metric
that we called the normalized information distance (NID) was exhibited in Li et al. [2]. A brief formal
introduction is given in appendix A.3.

Let us give an intuitive explanation. Two objects are deemed close if we can significantly
‘compress’ one given the information in the other, the intuition being that, if two pieces are more
similar, then we can more succinctly describe one given the other. The NID discovers all effective
similarities in the sense that if two objects are close according to some effective similarity then they
are also close according to the NID (appendix A.3).

Put differently, the NID represents similarity according to the dominating shared feature
between the two objects being compared. In comparisons of more than two objects, different
pairs may have different dominating features. For every two objects, this NID zooms in on
the dominant similarity between those two objects out of a wide class of admissible similarity
features. It may be called ‘the’ similarity metric. For the original theoretical derivation, see [1,2],
and for a comprehensive review, see Vitányi et al. [17].

(a) Normalized compression distance
Unfortunately, the universality of the NID comes at the price of incomputability. In fact, it is
not even semi-computable (this is weaker than computable, appendix A.1) and there is no semi-
computable function at a computable distance from it [18].

We shall use real data-compression programs to approximate the Kolmogorov complexity.
The length of the compressed version of a finite object is obviously computable. Usually, the
computation process is fast. For the natural data we are dealing with, we assume that the length
of the compressed version is not too far from its Kolmogorov complexity (see the discussion in
§1). We substitute the Kolmogorov complexity in the NID, appendix A.3, by its approximation. If
Z is a compressor and we use Z(x) to denote the length of the compressed version of a string x,
then we arrive at the normalized compression distance (NCD):

NCDZ(x, y) = Z(xy) − min(Z(x), Z(y))

max(Z(x), Z(y))
, (2.1)

where we have replaced the pair (x, y) in the formula by the concatenation xy (file y appended
to file x) and we ignore logarithmic terms in the numerator and denominator; see Cilibrasi &
Vitányi [4].2 Examples of the use of the NCD are given in [19–21], among others.

Remark 2.1. In reference [4], we propose axioms to capture the real-world setting, and show
that (2.1) approximates optimality. Actually, the NCD is a family of compression functions
parametrized by the given data compressor Z. As compressors we used gzip (a Lempel–Ziv
compressor with small window size of 32 kB), bzip2 (a block-sorting compressor based on the
Burrows–Wheeler transform with a larger window size of 256 kB) and PPMZ (prediction by

2Here and elsewhere in this study ‘logarithm’ or ‘log’ refers to the binary logarithm.
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Figure 1. The evolutionary tree built from complete mammalian mtDNA sequences. S(T) = 0.996.

partial matching (PPM) is an adaptive statistical data compression technique based on context
modelling and prediction [22]; PPM models use a set of previous symbols in the uncompressed
symbol stream to predict the next symbol in the stream; it has infinite window size; we used
variant Z). The objects being compared for similarity must fit in, say, one-half the window size.
By far the poorest compressor is gzip, whereas PPMZ is the best (although slowest) in this line-up.
For example, the ideal compressor Z takes care that NCDZ(x, x) equals 0. With Z = gzip, usually it
is between 1

2 and 1 (very bad). With Z = bzip2, it is lower but nowhere near 0, and NCDPPMZ(x, x)

in the genomic experiment of figure 1 was between 0.002 and 0.006. For more experimental
evidence, see Cebrian et al. [23]. So when one obtains poor results in NCD experiments using
gzip, it pays to use a better compressor such as one from the PPM family. Because it is not our
intention here to give a data compression course, we refer the interested reader to Wikipedia for
more details.

Remark 2.2. Because of the normalization it does not matter for the NCD whether the length
of dataset x is different from the length of y. In practice, this difference should not be too great.

Remark 2.3. The S(T) value states how well the quartet tree represents the underlying n × n
distance matrix. It is defined in recent studies [4,10]. See appendix B for an explanation. The
examples of the use of the NCD are from Cilibrasi & Vitányi [4].

(b) Phylogeny
A DNA sequence is a finite string over a four-letter alphabet {A, C, G, T}. We used the
mitochondrial genomes (mtDNA) of 24 mammals, each of at most 18 000 base pairs, obtained
from the GenBank Database on the Internet. Hence, the mtDNA of every species involved is a
string of at most 36 000 bits. Because we use the entire mtDNA of every species involved, we do
‘whole-genome’ phylogeny.

Whole-genome phylogeny is usually feasible only with alignment-free methods, such as the
NCD method. This type of phylogeny is often computationally forbidding for the usual alignment
methods used in bioinformatics. Moreover, gene areas move easily over the genome to other
places again, making the use of these methods impossible or hard. Hence, it is more usual in
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bioinformatics to select a particular gene from the genome of each species. This particular gene
should not evolve too fast, such as the gene coding for insulin. Mutations here are usually fatal
for the individual concerned. Thus, biologists feel that comparing these genes of species gives
trustworthy information about the evolution of species. This may be called ‘gene tree phylogeny’;
see Rannalal & Yang [24]. However, using different genes may result in different trees [25]. But
using the whole genome gives a single tree.

We use the common carp (Cyprinus carpio) as the ‘outgroup’. The outgroup is used in biology
because we want a directed tree with a root. The outgroup is a species so far removed from the
other species investigated (according to biology and common sense) that where the branch of the
outgroup joins the tree is where the root is. That is, the outgroup species split off earliest. For the
other 23 species used, we do not give the Latin names; they can be found in Cilibrasi & Vitányi [4].

The first question we test is a hypothesis about the Eutherian orders, which is viewed as
the most important question of mammalian evolution. It has been hotly debated in biology
which two of the three main placental mammalian groups, primates, ferungulates and rodents,
are more closely related. One cause of the debate is that in the analysis of the genomics the
standard maximum-likelihood method, which depends on the multiple alignment of sequences
corresponding to an individual protein, gives (rodents, (ferungulates, primates)) for half of the
proteins in the mitochondrial genome, and (ferungulates, (primates, rodents)) for the other half.

The second question we test is related to the extant monophyletic divisions of the class
Mammalia: the Prototheria (monotremes: mammals that procreate using eggs), the Metatheria
(marsupials: mammals that procreate using pouches) and the Eutheria (placental mammals:
mammals that procreate using placentas). The sister relationships between these groups is
viewed as the most fundamental question in mammalian evolution [24]. Phylogenetic comparison
by either anatomy or mitochondrial genome has resulted in two conflicting hypotheses: the
gene-isolation-supported Marsupionta hypothesis ((Prototheria, Metatheria), Eutheria) versus
the morphology-supported Theria hypothesis (Prototheria, (Methateria, Eutheria)).

In recent years, as a result of more sophisticated methods, together with biological evidence,
with respect to our first question it is believed that (rodents, (ferungulates, primates)) reflects
the true evolutionary history. With respect to our second question, we find support for the
Marsupionta hypothesis.

For every pair of mitochondrial genome sequences x and y, we evaluated the formula in
equation (2.1) using a good compressor such as PPMZ. The resulting distances are the entries
in an n × n distance matrix. Constructing a phylogeny tree from the distance matrix, using our
quartet tree method [10] as tree-reconstruction software, gives the tree in figure 1. The resulting
phylogeny, with an almost maximal S(T) score (see appendix B) of 0.996, supports anew the
currently accepted grouping (rodents, (primates, ferungulates)) of the Eutherian orders, and
additionally the Marsupionta hypothesis ((Prototheria, Metatheria), Eutheria) (figure 1). That is,
our whole-mitochondrial NCD analysis supports the following hypothesis.

Mammalia︷ ︸︸ ︷
((primates, ferungulates)(rodents︸ ︷︷ ︸

Eutheria

, (Metatheria, Prototheria)))

This indicates that the rodents, and the branch leading to the Metatheria and Prototheria, split off
early from the branch that led to the primates and ferungulates. This tree confirms the accepted
hypothesis of (rodents, (primates, ferungulates)), and every single branch of the tree agrees with
the current biological classification.

(c) Hierarchical clustering
In the following, we test gross classification of files based on heterogeneous data of markedly
different file types: (i) four mitochondrial gene sequences, from a black bear, polar bear, fox and
rat obtained from the GenBank Database on the Internet; (ii) four excerpts from the novel The
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Figure 2. Clustering of heterogeneous file types. S(T) = 0.984.

Zeppelin’s Passenger by E. Phillips Oppenheim, obtained from the Project Gutenberg edition on
the Internet; (iii) four MIDI files without further processing, two works by Jimi Hendrix and two
movements from Debussy’s ‘Suite Bergamasque’, downloaded from various repositories on the
Internet; (iv) two Linux x86 ELF executables (the cp and rm commands), copied directly from
the RedHat 9.0 Linux distribution; and (v) two compiled Java class files, generated directly. The
program correctly classifies each of the different types of files together with like near like. The
result is reported in figure 2. This experiment shows the power and universality of the method:
no features of any specific domain of application are used. We believe that there is no other
method known that can cluster data that are so heterogeneous this reliably. Researchers from the
data-mining community noticed that this methodology is in fact a parameter-free, feature-free,
data-mining tool. They have experimentally tested a closely related distance on a large variety
of sequence benchmarks. Comparing the compression-based method with 51 major parameter-
loaded methods found in the eight major data-mining conferences (SIGKDD, SIGMOD, ICDM,
ICDE, SSDB, VLDB, PKDD and PAKDD) in 1994–2004, on every database of time sequences
used, ranging from heartbeat signals to stock market curves, they established clear superiority
of the compression-based method for clustering heterogeneous data and for anomaly detection
and competitiveness in clustering domain data [26].
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Figure 3. SARS virus among other viruses. S(T) = 0.988.3

(d) SARS virus
We clustered the SARS virus directly after its sequenced genome was made publicly available, in
relation to potential similar viruses. The 15 virus genomes were downloaded from The Universal
Virus Database of the International Committee on Taxonomy of Viruses, available on the Internet.
The SARS virus was downloaded from Canada’s Michael Smith Genome Sciences Centre, which
had the first public SARS coronavirus draft whole-genome assembly available for download
(SARS TOR2 draft genome assembly 120403). The NCD distance matrix was computed using
the compressor bzip2. The entire computation took only a couple of minutes. The relations in
figure 3 are very similar to the definitive tree based on medical–macrobio–genomics analysis,
appearing later in the New England Journal of Medicine [27]. We depicted the figure in the ternary
tree style, rather than the genomics–dendrogram style, because the former is more precise for
visual inspection of proximity relations.3

3Legend for figure 3: AvianAdeno1CELO.inp: fowl adenovirus 1; AvianIB1.inp: avian infectious bronchitis virus
(strain Beaudette US); AvianIB2.inp: avian infectious bronchitis virus (strain Beaudette CK); BovineAdeno3.inp: bovine
adenovirus 3; DuckAdeno1.inp: duck adenovirus 1; HumanAdeno40.inp: human adenovirus type 40; HumanCorona1.inp:
human coronavirus 229E; MeaslesMora.inp: measles virus strain Moraten; MeaslesSch.inp: measles virus strain Schwarz;
MurineHep11.inp: murine hepatitis virus strain ML-11; MurineHep2.inp: murine hepatitis virus strain 2; PRD1.inp:
enterobacteria phage PRD1; RatSialCorona.inp: rat sialodacryoadenitis coronavirus; SARS.inp: SARS TOR2v120403;
SIRV1.inp: Sulfolobus virus SIRV-1; SIRV2.inp: Sulfolobus virus SIRV-2.
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(e) Foetal heart rhythm
Another, even more clinical, experiment is reported in Costa Santos et al. [28]. Foetal heart rate
(FHR) monitoring is widely used with the aim of detecting foetuses in danger of death or
damage. The features determining these fates are poorly understood. The compression method is
exploratory in the sense that the compressor determines similarity but does not give the grounds
for this similarity. That burden may fall on the experts scrutinizing the objects to find the cause
for this similarity or lack of it. Thirty-one FHR tracings acquired in the antepartum period were
clustered using the NCD in order to identify the abnormal ones. At the highest level, the FHR
tracings were clustered according to the technology used in signal acquisition (different machines,
sampling at different rates and so on). At the lower levels, all tracings with abnormal or suspicious
patterns were clustered together, independently of the technology used. The figure has a high
S(T) value of 0.944; however, it is too large to display here; interested readers are referred to the
cited reference [28].

(f) Astronomy
In reference [29], observations of the microquasar GRS 1915 + 105 made with the Rossi X-ray
Timing Explorer were analysed. The interest in this microquasar stems from the fact that it was the
first Galactic object to show a certain behaviour (superluminal expansion in radio observations).
Photonometric observation data from X-ray telescopes were divided into short time segments
(usually of the order of 1 min), and these segments were classified into 15 different modes after
considerable effort in Belloni et al. [29]. Briefly, spectrum hardness ratios (roughly, ‘colour’) and
photon count sequences were used to classify a given interval into categories of variability modes.
From this analysis, the extremely complex variability of this source was reduced to transitions
between three basic states, which, interpreted in astronomical terms, gives rise to an explanation
of this peculiar source in standard black-hole theory. The data we used in this experiment were
made available to us by M. Klein-Wolt (co-author of the above paper) and T. Maccarone, at
the time both researchers at the Astronomical Institute ‘Anton Pannekoek’ of the University of
Amsterdam.

The observations are essentially time series. The task was to see whether the clustering would
agree with the classification earlier. The NCD matrix was computed, using the compressor PPMZ.
The results are in figure 4. In the figure, the initial capital letter indicates the class corresponding
to Greek lower-case letters in Belloni et al. [29]. The remaining letters and digits identify the
particular observation interval in terms of finer features and identity. The T-cluster is top left,
the P-cluster is bottom left, the G-cluster is to the right and the D-cluster in the middle. This
tree almost exactly represents the underlying NCD distance matrix: S(T) = 0.994. We clustered
12 objects, consisting of three intervals from four different categories denoted as δ, γ , φ, θ in
table 1 of Belloni et al. [29]. In figure 4, we denote the categories by the corresponding roman
letters D, G, P and T, respectively. The resulting tree groups these different modes together in
a way that is consistent with the classification by experts for these observations. The oblivious
compression clustering corresponds precisely with the laborious feature-driven classification in
Belloni et al. [29].

(g) Classification
For the experimental physical scientist who has lots of datasets and who wants to find ideas
about the relations between them, the approach by hierarchical clustering through a dendrogram
may not be useful. The sheer number of datasets may preclude a visual representation in a
dendrogram. What is required is classification. (If necessary, one can vary the number of classes.)
One can use the NCD distances as an oblivious, feature extraction technique to convert generic
objects into finite-dimensional vectors. We have used this technique in reference [4] to train
a support vector machine (SVM)-based optical character recognition (OCR) system to classify

 on January 2, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


9

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120091

......................................................

Dab1

n11

Dab4

n2

Dab2

n10

n1
n0

Dab3

Gab1

n6
Gab3

Gab2

n3
Gab4

Pb1

n13

n9

Pb2
Pb3

n8

Pb4

Tac1

n12

n7

Tac2

Tac3

n5

n4

Tac4

Figure 4. Sixteen observation intervals of GRS 1915+ 105 from four classes. S(T) = 0.994.

handwritten digits by extracting 80 distinct, ordered NCD features from each input image, in the
manner explained below; see also [30]. For SVMs, see for example [31]. We achieved a handwritten
single-decimal-digit recognition accuracy of 87 per cent. The current state of the art for this
problem, after half a century of interactive feature-driven classification research, is in the upper
90 per cent level [32]. These experiments were benchmarked on the standard National Institute of
Standards and Technology (NIST) Special Database 19.

We explain the method by a small binary classification problem. We require a list of at least,
say, 40 training examples, consisting of at least 20 positive examples and 20 negative examples, to
illustrate the contemplated concept class. We also provide, say, six anchor examples a1, . . . , a6,
of which half are in some way related to the concept under consideration. Then, we use the
anchors to convert each of the 40 training examples w1, . . . , w40 to six-dimensional training vectors
v1, . . . , v40. The entry vj,i of vj = (vj,1, . . . , vj,6) is defined as vj,i = NCDZ(wj, ai) (1 ≤ j ≤ 40, 1 ≤ i ≤ 6,
where Z is the used compressor). The training vectors are then used to train an SVM to learn
the concept. The test words are classified, using the same anchors and trained SVM model. The
LIBSVM software was used for all SVM experiments [31].

3. Denoising
Commonly, the data in the computer that represent real objects are distorted, because the
observation apparatus, the process of observing and other factors introduce additional errors.
These errors are called noise. Eliminating the noise to obtain the pristine object is called denoising.
We present a method of denoising of individual objects based on Kolmogorov complexity as in
appendix A.2.

Rate–distortion theory analyses communication over a channel under a constraint on the
number of transmitted bits, the ‘rate’. It currently serves as the theoretical underpinning for lossy
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compression and denoising. (As an aside, more than half of all files transmitted over the Internet
consist of lossy compressed objects. The methods of lossy compression can be MP3, JPEG, MPEG.)

Rate–distortion theory was introduced by Shannon [33,34]. Classically, it is concerned with
the trade-off between the rate and the achievable fidelity of the transmitted representation of an
object under some distortion function in expectation under some source distribution (i.e. a random
variable).

For large and complex objects, one instead relies on structural properties of the individual
objects. A rate–distortion theory that allows analysis of individual objects has been developed [35]
within the framework of Kolmogorov complexity (appendix A.2). The rate–distortion function is
defined not with respect to some elusive source distribution, but with respect to an individual
source word. Every source word thus obtains its own associated rate–distortion function.
However, Kolmogorov complexity is not computable. We therefore, as before, approximate the
Kolmogorov complexity by a real–world compressor. The theory hinted at is from reference [35]
and the example is from reference [5].

(a) Algorithmic rate–distortion
Suppose we want to communicate objects x from a set of source words X (|X | > 2r) using at most
r bits per object. We call r the rate. We locate a good representation of x within a finite set Y , which
may be different from X in general (but we use X =Y). The lack of fidelity of a representation y
is quantified by a distortion function d : X × Y →R+, where R+ denotes the set of non-negative
real numbers.

We can transmit a representation y of x that has K(y) ≤ r. Such a representation may induce a
distortion d(x, y), but the receiver can run the program to obtain y and is thus able to reconstruct
x up to distortion d(x, y).

Let Q denote the rational numbers. The rate–distortion function rx : Q→N is the minimum
number of bits in a representation y of x to obtain a distortion of at most δ defined by

rx(δ) = min
y∈Y

{K(y) : d(x, y) ≤ δ}.

The ‘inverse’ of the above function is the distortion–rate function dx : N →R and is defined by

dx(r) = min
y∈Y

{d(x, y) : K(y) ≤ r}.

A representation y is said to witness the rate–distortion function of x if rx(d(x, y)) = K(y). These
definitions are illustrated in figure 5. Algorithmic rate–distortion theory is developed and treated
in much more detail in Vereshchagin & Vitányi [35]. It is a generalization of Kolmogorov’s
structure function theory [3].

(i) The noisy cross

In the example of the noisy cross, we used Hamming distortion. This function is a metric and
X =Y . (In other experiments, we also used Euclidean distortion and edit distortion [36].)

Hamming distortion is perhaps the simplest distortion function that could be used. Let x and
y be two objects of equal length n. The Hamming distortion d(x, y) is equal to the number of
symbols in x that do not match those in the corresponding positions in y.

The search space is very large: for an object of n bits, there are 2n candidate representations of
the same size, and objects that are typically subjected to lossy compression are often millions or
billions of bits long. An exhaustive search is infeasible and a greedy search is likely to get stuck in
a local optimum far from the global optimum. Because the structure of the search landscape is at
present poorly understood and we do not want to make any unjustifiable assumptions, we use a
genetic search algorithm, which performs well enough that interesting results can be obtained.

The Kolmogorov complexity is not computable and can be approximated by a computable
process from above but not from below, whereas a real compressor is computable. Therefore, the
approximation of the Kolmogorov complexity by a real compressor involves for some arguments

 on January 2, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


11

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120091

......................................................

di
st

or
tio

n

rate (bits)0 K(x)

so
m

e 
ar

bi
tr

ar
y 

re
pr

es
en

ta
tio

ns

representations that witness the rate–distortion function

representation
rate–distortion profile

distortion–rate function

Figure 5. Rate–distortion profile and distortion–rate function.

errors that can be high and are in principle unknowable. Despite all these caveats, it turns out that
the practical analogue of the theoretical method works surprisingly well in all the experiments
we tried.

We approximated the distortion–rate function of a noiseless cross called the target. It consists of
a monochrome image of 1188 black pixels together with 2908 surrounding white pixels, forming
a plane of 64 × 64 black or white pixels. Added are 377 pixels of artificial noise inverting 109
black pixels and 268 white pixels. This way we obtain a noisy cross called the input. The input
is in effect a pixelwise exclusive OR of the target and noise. The distortion used is Hamming
distortion. At every rate r (0 ≤ r ≤ 3500), we compute a set M(r) of candidates. Every candidate
consists of the 64 × 64 pixel plane divided into black pixels and white pixels. Every candidate
approximates the input in a certain sense and a compressed version requires at most r bits. For
every (uncompressed) candidate in M(r), the distortion to the input is computed. The candidate
in M(r) that minimizes the distortion is called the ‘best’ candidate at rate r.

Figure 6 shows two graphs. The first graph hits the horizontal axis at about 3178 bits. On
the horizontal axis, it gives the rate, and on the vertical axis, it denotes the distortion to the
input of the best candidate at every rate. The line hits zero distortion at rate about 3178, when
the input is retrieved as the best candidate (attached to this point). The second graph hits
the horizontal axis at about 260 bits. The horizontal axis denotes again the rate, but now the
vertical axis denotes the distortion between the best candidate and the target. The line hits
almost zero distortion (three bits flipped) at rate about 260. There an image that is almost the
target is retrieved as the best candidate (attached to this point). The three wrong bits are two
at the bottom left corner and one in the upper right armpit. The hitting of the horizontal axis
by the second graph coincides with a sharp slowing of the rate of decrease of the first graph.
Subsequently, the second graph rises again, because the best candidate at that rate starts to model
more of the noise present in the input. Thus, the second graph shows us the denoising of the
input, underfitting left of the point of contact with the horizontal axis, and overfitting right of
that point.

However, in denoising an object, we do not know the target (in this case the noiseless cross),
but only the input (in this case the noisy cross) and the first graph. The point of best denoising
can be deduced from the first graph, where it is the point where the distortion–rate curve sharply
levels off. Because this point has distortion of only 3 to the target, the distortion–rate function
separates structure and noise very well in this example.
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Appendix A. Computability, Kolmogorov complexity and information distance

A.1. Computability
Turing [37] defined the hypothetical ‘Turing machine’ whose computations are intended to give
an operational and formal definition of the intuitive notion of computability in the discrete
domain. These Turing machines compute integer functions, the computable functions. By using
pairs of integers for the arguments and values, we can extend computable functions to functions
with rational arguments and/or values. The notion of computability can be further extended
[38]: a function f with rational arguments and real values is upper semi-computable if there is a
computable function φ(x, k) with x a rational number and k a non-negative integer such that
φ(x, k + 1) ≤ φ(x, k) for every k and limk→∞ φ(x, k) = f (x). This means that f can be computably
approximated from above. A function f is lower semi-computable if −f is upper semi-computable.
A function is called semi-computable if it is either upper semi-computable or lower semi-
computable or both. If a function f is both upper semi-computable and lower semi-computable,
then f is computable. A countable set S is computably (or recursively) enumerable if there is a Turing
machine T that outputs all and only the elements of S in some order and does not halt. A countable
set S is decidable (or recursive) if there is a Turing machine T that decides for every candidate a
whether a ∈ S and halts.

An example of a computable function is f (n) defined as the nth prime number; an example
of a function that is upper semi-computable but not computable is the Kolmogorov complexity
function K in appendix A.2. An example of a recursive set is the set of prime numbers; an example
of a recursively enumerable set that is not recursive is {x ∈N : K(x) < |x|}.

A.2. Kolmogorov complexity
For details, see reference [38]. Informally, the Kolmogorov complexity of a string is the length of
the shortest string from which the original string can be losslessly reconstructed by an effective
general-purpose computer such as a particular universal Turing machine U. Hence, it constitutes
a lower bound on how far a lossless compression program can compress. In this study, we require
that the set of programs of U is prefix-free (no program is a proper prefix of another program), that
is, we deal with the prefix Kolmogorov complexity. (But for the results in this study, it does not matter
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whether we use the plain Kolmogorov complexity or the prefix Kolmogorov complexity.) We call
U the reference universal prefix machine. Formally, the conditional prefix Kolmogorov complexity K(x | y)

is the length of the shortest input z such that the reference universal prefix machine U on input
z with auxiliary information y outputs x. The unconditional prefix Kolmogorov complexity K(x) is
defined by K(x | ε). The functions K(·) and K(· | ·), though defined in terms of a particular machine
model, are machine-independent up to an additive constant and acquire an asymptotically
universal and absolute character through Church’s thesis, and from the ability of universal
machines to simulate one another and execute any effective process.

The Kolmogorov complexity of an individual finite object was introduced by Kolmogorov [6]
as an absolute and objective quantification of the amount of information in it. The information
theory of Shannon [33], on the other hand, deals with average information to communicate objects
produced by a random source. They are quite different.

Because the former theory is much more precise, it is surprising that analogues of theorems
in information theory hold for Kolmogorov complexity, be it in somewhat weaker form. An
interesting similarity is the following: I(X; Y) = H(Y) − H(Y | X) is the (probabilistic) information
in random variable X about random variable Y. Here, H(Y | X) is the conditional entropy of Y given
X. Because I(X; Y) = I(Y; X), we call this symmetric quantity the mutual (probabilistic) information.
The (algorithmic) information in x about y is I(x : y) = K(y) − K(y | x), where x, y are finite objects such
as finite strings or finite sets of finite strings. Remarkably, I(x : y) = I(y : x) up to an additive term
logarithmic in K(x) + K(y). Namely

K(x, y) = K(x) + K(y | x) + O(log(K(x) + K(y)))

= K(y) + K(x | y) + O(log(K(x) + K(y))). (A 1)

A.3. Information distance
The information distance D(x, y) between strings x and y is defined as

D(x, y) = min
p

{|p| : U(p, x) = y ∧ U(p, y) = x},

where U is the reference universal prefix machine above. Like the Kolmogorov complexity K, the
distance function D is upper semi-computable. Define

E(x, y) = max{K(x | y), K(y | x)}.

In reference [1], it is shown that the function E is upper semi-computable, D(x, y) = E(x, y) +
O(log E(x, y)), that the function E is a metric (more precisely, it satisfies the metric (in)equalities up
to a constant), and that E is minimal (up to a constant) among all upper semi-computable distance
functions D′ satisfying the normalization conditions

∑
y:y
=x 2−D′(x,y) ≤ 1 and

∑
x:x
=y 2−D′(x,y) ≤ 1

(to exclude bogus distances, which state, for example, that every y is within distance 1
2 of a

given x). We call this metric E universal.
Thus, for every pair of finite files x, y, we have that E(x, y) is at least as small as the smallest

D′(x, y). That is to say, E(x, y) is at least as small as the distance engendered by the dominant
feature shared between x and y. The NID is defined by

NID(x, y) = E(x, y)

max{K(x), K(y)} . (A 2)

It is straightforward that 0 ≤ NID(x, y) ≤ 1 (up to an O(1/ max{K(x), K(y)}) additive term). It is a
metric [2] (and so is the NCD of (2.1), see [4]). (A non-optimal precursor was given in Li et al. [39].)
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Rewriting the NID using (A 1) yields

NID(x, y) = K(x, y) − min{K(x), K(y)}
max{K(x), K(y)} , (A 3)

up to some terms that we ignore. See reference [38] or [17] for reviews.

Appendix B. The normalized tree benefit score
The S(T) value of a tree T is computed as follows. There are

(n
4
)

choices of four elements out
of n. These are the quartets. Every quartet u, v, w, x can form three different quartet topologies:
uv | wx, uw | vx and ux | vw. Each such topology is a dendrogram. For example, uv | wx is a
dendrogram with two unlabelled internal nodes and u, v, w, x external nodes with u a sibling
of v and w a sibling of x. Each topology has a cost. For example, the cost of uv | wx is C(uv | wx).
(We set this cost usually at C(uv | wx) = d(u, v) + d(w, x), where d(u, v) is the distance between
u and v. For us, usually d(u, w) = NCD(u, w).) The total cost CT of a tree T with a set N of
leaves (external nodes of degree 1) is defined as CT = ∑

{u,v,w,x}⊆N{Cuv|wx : T is consistent with
uv | wx}—the sum of the costs of all its consistent quartet topologies. First, we generate a list
of all possible quartet topologies for all four-tuples of labels under consideration. For each
group of three possible quartet topologies for a given set of four labels u, v, w, x, calculate a best
(minimal) cost m(u, v, w, x) = min{Cuv|wx, Cuw|vx, Cux|vw} and a worst (maximal) cost M(u, v, w, x) =
max{Cuv|wx, Cuw|vx, Cux|vw}. Summing all best quartet topologies yields the best (minimal) cost
m = ∑

{u,v,w,x}⊆N m(u, v, w, x). Conversely, summing all worst quartet topologies yields the worst
(maximal) cost M = ∑

{u,v,w,x}⊆N M(u, v, w, x). For some distance matrices, these minimal and
maximal values cannot be attained by actual trees; however, the score CT of every tree T will
lie between these two values. In order to be able to compare tree scores in a more uniform way,
we now rescale the score linearly such that the worst score maps to 0, and the best score maps
to 1, and term this the normalized tree benefit score S(T) = (M − CT)/(M − m). Our goal is to find
a full tree with a maximum value of S(T), which is to say the lowest total cost. The S(T) value
states how well the quartet tree represents the underlying n × n distance matrix [4,10]. The range
is 0 ≤ S(T) ≤ 1, with 1 the best value. A random quartet tree has expected S(T) = 1

3 .
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