Journal of Combinatorial Theory, Series B 82, 319–321 (2001) doi:10.1006/jctb.2000.2029, available online at http://www.idealibrary.com on IDE & L®

NOTE

A Short Proof of Mader's *S*-Paths Theorem

Alexander Schrijver

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; and Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Received April 19, 2000

For an undirected graph G = (V, E) and a collection \mathscr{S} of disjoint subsets of V, an \mathscr{S} -path is a path connecting different sets in \mathscr{S} . We give a short proof of Mader's min-max theorem for the maximum number of disjoint \mathscr{S} -paths. © 2001 Academic Press

Let G = (V, E) be an undirected graph and let \mathscr{S} be a collection of disjoint subsets of V. An \mathscr{S} -path is a path connecting two different sets in \mathscr{S} . Mader [4] gave the following min-max relation for the maximum number of (vertex-) disjoint \mathscr{S} -paths, where $S := \bigcup \mathscr{S}$.

MADER'S \mathscr{S} -PATHS THEOREM. The maximum number of disjoint \mathscr{S} -paths is equal to the minimum value of

$$|U_0| + \sum_{i=1}^n \lfloor \frac{1}{2} |B_i| \rfloor, \tag{1}$$

taken over all partitions $U_0, ..., U_n$ of V such that each \mathscr{S} -path disjoint from U_0 traverses some edge spanned by some U_i . Here B_i denotes the set of vertices in U_i that belong to S or have a neighbour in $V \setminus (U_0 \cup U_i)$.

Lovász [3] gave an alternative proof by deriving it from his matroid matching theorem. Here we give a short proof of Mader's theorem.

Let μ be the minimum value obtained in (1). Trivially, the maximum number of disjoint \mathscr{S} -paths is at most μ , since any \mathscr{S} -path disjoint from U_0 and traversing an edge spanned by U_i traverses at least two vertices in B_i .

I. First, the case where |T| = 1 for each $T \in \mathscr{S}$ was shown by Gallai [2] by reduction to matching theory as follows: Let the graph $\tilde{G} = (\tilde{V}, \tilde{E})$ arise from G by adding a disjoint copy G' of G-S and making the copy v' of each $v \in V \setminus S$ adjacent to v and to all neighbours of v in G.

0095-8956/01 \$35.00 Copyright © 2001 by Academic Press All rights of reproduction in any form reserved. We claim that \tilde{G} has a matching of size $\mu + |V \setminus S|$. Indeed, by the Tutte Berge formula [5, 1] it suffices to prove that for any $\tilde{U}_0 \subseteq \tilde{V}$,

NOTE

$$|\tilde{U}_0| + \sum_{i=1}^n \lfloor \frac{1}{2} |\tilde{U}_i| \rfloor \ge \mu + |V \backslash S|,$$
(2)

where $\tilde{U}_1, ..., \tilde{U}_n$ are the components of $\tilde{G} - \tilde{U}_0$. Now if for some $v \in V \setminus S$ exactly one of v, v' belongs to \tilde{U}_0 , then we can delete it from \tilde{U}_0 , thereby not increasing the left-hand side of (2). So we can assume that for each $v \in V \setminus S$, either $v, v' \in \tilde{U}_0$ or $v, v' \notin \tilde{U}_0$. Let $U_i := \tilde{U}_i \cap V$ for i = 0, ..., n. Then $U_1, ..., U_n$ are the components of $G - U_0$, and we have

$$|\tilde{U}_0| + \sum_{i=1}^n \lfloor \frac{1}{2} |\tilde{U}_i| \rfloor = |U_0| + \sum_{i=1}^n \lfloor \frac{1}{2} |U_i \cap S| \rfloor + |V \setminus S| \ge \mu + |V \setminus S|$$
(3)

(since in this case $B_i = U_i \cap S$ for i = 1, ..., n), showing (2).

So \tilde{G} has a matching M of size $\mu + |V \setminus S|$. Let N be the matching $\{vv' \mid v \in V \setminus S\}$ in \tilde{G} . As $|M| = \mu + |V \setminus S| = \mu + |N|$, the union $M \cup N$ has at least μ components with more edges in M than in N. Each such component is a path connecting two vertices in S. Then contracting the edges in N yields μ disjoint \mathscr{S} -paths in G.

II. We now consider the general case. Fixing V, choose a counterexample E, \mathscr{S} minimizing

$$|E| - |\{\{t, u\} \mid t, u \in V, \exists T, U \in \mathscr{S} : t \in T, u \in U, T \neq U\}|.$$

$$(4)$$

By Part I, there exists a $T \in \mathscr{S}$ with $|T| \ge 2$. Then T is independent in G, since any edge e spanned by T can be deleted without changing the maximum and minimum value in Mader's theorem (as any \mathscr{S} -path traversing e contains an \mathscr{S} -path not traversing e and as deleting e does not change any set B_i), while decreasing (4).

Choose $s \in T$. Replacing \mathscr{S} by $\mathscr{S}' := (\mathscr{S} \setminus \{T\}) \cup \{T \setminus \{s\}, \{s\}\}$ decreases (4), but not the minimum in Mader's theorem (as each \mathscr{S} -path is an \mathscr{S}' -path and as $\bigcup \mathscr{S}' = S$). So there exists a collection \mathscr{P} of μ disjoint \mathscr{S}' -paths. We can assume that no path in \mathscr{P} has any internal vertex in S.

Necessarily, there is a path $P_0 \in \mathscr{P}$ connecting *s* with another vertex in *T*, all other paths in \mathscr{P} being \mathscr{G} -paths. Let *u* be an internal vertex of P_0 . Replacing \mathscr{G} by $\mathscr{G}'' := (\mathscr{G} \setminus \{T\}) \cup \{T \cup \{u\}\}$ decreases (4), but not the minimum in Mader's theorem (as each \mathscr{G} -path is an \mathscr{G}'' -path and as $\bigcup \mathscr{G}'' \supset S$). So there exists a collection \mathscr{Q} of μ disjoint \mathscr{G}'' -paths. Choose \mathscr{Q} such that no internal vertex of any path in \mathscr{Q} belongs to $S \cup \{u\}$ and such that \mathscr{Q} uses a minimal number of edges not used by \mathscr{P} .

Necessarily, u is an end of some path $Q_0 \in \mathcal{Q}$, all other paths in \mathcal{Q} being \mathscr{S} -paths. As $|\mathscr{P}| = |\mathcal{Q}|$ and as u is not an end of any path in \mathscr{P} , there exists

320

an end v of some path $P \in \mathcal{P}$ that is not an end of any path in \mathcal{Z} . Now P intersects at least one path in \mathcal{Z} (since otherwise $P \neq P_0$, and $(\mathcal{Z} \setminus \{Q_0\}) \cup \{P\}$ would consist of μ disjoint \mathcal{S} -paths). So when following P starting at v, there is a first vertex w that is on some path in \mathcal{Z} , say, on $Q \in \mathcal{Z}$.

For any end x of Q let Q^x be the x - w part of Q. Let P^v be the v - wpart of P and let U be the set in \mathscr{S}'' containing v. Then for any end x of Q we have that Q^x is part of P or the other end of Q belongs to U, since otherwise by rerouting part Q^x of Q along P^v , Q remains an \mathscr{S}'' -path disjoint from the other paths in \mathscr{Z} , while we decrease the number of edges used by \mathscr{Z} and not by \mathscr{P} , contradicting the minimality assumption.

Let y, z be the ends of Q. We can assume that $y \notin U$. Then Q^z is part of P, hence Q^y is not a part of P (as Q is not a part of P, as otherwise Q = P, and hence v is an end of Q), so $z \in U$. As z is on P and also as v belongs to U and is on P, we have $P = P_0$. So $U = T \cup \{u\}$ and $Q = Q_0$ (since Q^z is part of P, so z = u). But then rerouting part Q^z of Q along P^v gives μ disjoint \mathscr{S} -paths, contradicting our assumption.

REFERENCES

- C. Berge, Sur le couplage maximum d'un graphe, Compt. Rend. Hebdomadaires des Séances Acad. Sci. (Paris) 247 (1958), 258–259.
- T. Gallai, Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen, Acta Math. Acad. Sci. Hungaricae 12 (1961), 131-173.
- 3. L. Lovász, Matroid matching and some applications, J. Combin. Theory Ser. B 28 (1980), 208-236.
- W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Archiv Math. (Basel) 31 (1978), 387-402.
- 5. W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947), 107-111.

NOTE

321