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A Short Proof of Mader’'s .¥-Paths Theorem
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For an undirected graph G =(V, E) and a collection /' of disjoint subsets of V,
an Y-path is a path connecting different sets in .. We give a short proof of
Mader’s min-max theorem for the maximum number of disjoint “-paths. € 2001

Academic Press

Let G=(V, E) be an undirected graph and let % be a collection of disjoint
subsets of V. An .-path is a path connecting two different sets in . Mader
[4] gave the following min-max relation for the maximum number of (vertex-)
disjoint .-paths, where S:={J .7

MADER’S ' -PATHS THEOREM.  The maxinuum number of disjoint S -paths
is equal to the minimum value of

[Usl+ Y L5181, (1)

i=1

taken over all partitions Uy, ..., U, of V such that each & -path digjoint from
Uy traverses some edge spanned by some U,. Here B; denotes the set of
vertices in U, that belong to S or have a neighbour in V\(Uy L U,).

Lovasz [3] gave an alternative proof by deriving it from his matroid
matching theorem. Here we give a short proof of Mader’s theorem.

Let ;¢ be the minimum value obtained in (1). Trivially, the maximum
number of disjoint .&’-paths is at most x, since any -path disjoint from U,
and traversing an edge spanned by U, traverses at least two vertices in B;.

I First, the case where |T| =1 for each T'e ¥ was shown by G~all':1i

[2] by reduction to matching theory as follows: Let the graph G =(V, E)

arise from G by adding a disjoint copy G' of G—S and making the

copy 1’ of each re J\S adjacent to v and to all neighbours of v in G.
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We claim that G has a matching of size # + | V'\S|. Indeed, by the Tutte--
Berge formula [5. 1] it suffices to prove that for any Uy &V,

o

|Uol+z L%IUiIJZ/l-FIl"\SI, (
i=1
where U,. ... U, are the components of G — U,. Now if for some ve V\S
exactly one of v, v’ belongs to Uy, then we can delete it from U,, thereby
not increasing the left-hand side of (2). So we can assume that for each
re V\S. either v, v'e Uy or v, v' ¢ Uy. Let U, := U, n V for i=0, ..., n. Then
U,. ... U, are the components of G — U,,. and we have

W

(Dol + Y LT = 1Ugl+ Y L3IUASI I+ IV\S| =0+ | V\S] (3)

i=1 i=1
(since in this case B;= U, n S for i=1, ... n), showing (2).

So G has a matching M of size u+|V\S|. Let N be the matching
Lo fre V\SY in G. As M| =u+ |V\S| =x+ |N|, the union M U N has at
least i« components with more edges in M than in N. Each such component
is a path connecting two vertices in S. Then contracting the edges in N
yields g disjoint .-paths in G.

II.  We now consider the general case. Fixing V, choose a counter-
example E, ¥ minimizing

|El =t u} |t,ueV, 3T, Ue ¥ 1 te T,ue U, T+ U}|. (4)
By Part I, there exists a 7.9 with |T|>2. Then 7 is independent in G,
since any edge ¢ spanned by T can be deleted without changing the maxi-
mum and minimum value in Mader’s theorem (as any .¢¥-path traversing
¢ contains an .¥-path not traversing ¢ and as deleting ¢ does not change
any set B,), while decreasing (4).

Choose se T. Replacing . by 9" :=(S\{T})u{T\{s}, {s}} decreases
(4), but not the minimum in Mader’s theorem (as each .-path is an .’-path
and as | .9 = S). So there exists a collection .# of ¢ disjoint ."-paths. We can
assume that no path in .2 has any internal vertex in S.

Necessarily, there is a path P, € # connecting s with another vertex in 7,
all other paths in .2 being .&’-paths. Let u be an internal vertex of P,. Replac-
ing . by "= (S\{T})u{Tu{u}} decreases (4), but not the minimum
in Mader’s theorem (as each ¢-path is an .¢"-path and as |J " .5). So
there exists a collection 2 of i disjoint ¥”"-paths. Choose 2 such that no
internal vertex of any path in 2 belongs to Su {u} and such that 2 uses
a minimal number of edges not used by ~.

Necessarily, u is an end of some path Q, € 2, all other paths in 2 being
Y-paths. As || =|2| and as « is not an end of any path in .2, there exists
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an end v of some path Pe.# that is not an end of any path in 2. Now P
intersects at least one path in 2 (since otherwise P # Py, and (2\{Q,})u
{ P} would consist of # disjoint .#-paths). So when following P starting at
v, there is a first vertex w that is on some path in 2, say, on Qe 2.

For any end x of Q let Q* be the x— v part of Q. Let P” be the v—w
part of P and let U be the set in .%” containing v. Then for any end x of
QO we have that Q* is part of P or the other end of Q belongs to U, since
otherwise by rerouting part Q* of Q along P¥, Q remains an .%"-path
disjoint from the other paths in 2, while we decrease the number of edges
used by 2 and not by .2, contradicting the minimality assumption.

Let y, = be the ends of Q. We can assume that y ¢ U. Then QF is part of
P. hence Q7 is not a part of P (as Q is not a part of P, as otherwise 0= P,
and hence v is an end of Q), so ze U. As = is on P and also as v belongs
to U and is on P, we have P=P,. So U=Tu {u} and Q= 0, (since O°
is part of P, so z=u). But then rerouting part Q7 of Q along P’ gives
disjoint .%’-paths, contradicting our assumption.
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