NOTE

A Short Proof of Mader's \mathscr{S}-Paths Theorem

Alexander Schrijver
CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands; and Department of Mathematics, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands

Received April 19. 2000

Abstract

For an undirected graph $G=(V, E)$ and a collection \mathscr{F} of disjoint subsets of V an $\mathscr{F}-\mathscr{F}^{\prime \prime} h_{h}$ is a path connecting different sets in \mathscr{F}. We give a short proof of Mader's min-max theorem for the maximum number of disjoint \mathscr{Y}-paths. 2001 Academic Press

Let $G=(V, E)$ be an undirected graph and let \mathscr{P} be a collection of disjoint subsets of V. An \mathscr{Y}-path is a path connecting two different sets in $\mathscr{\mathscr { S }}$. Mader [4] gave the following min-max relation for the maximum number of (vertex-) disjoint \mathscr{F} 'paths, where $S:=\bigcup \mathscr{F}$.

Mader's. \mathscr{Y}-Paths Theorem. The maximum number of disjoint \mathscr{S}-paths is equal to the minimum value of

$$
\begin{equation*}
\left|U_{0}\right|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|B_{i}\right|\right\rfloor, \tag{1}
\end{equation*}
$$

taken over all partitions U_{0}, \ldots, U_{n} of V such that each \mathscr{S}-path disjoint from U_{0} traverses some edge spanned by some U_{i}. Here B_{i} denotes the set of vertices in U_{i} that belong to S or have a neighbour in $V \backslash\left(U_{0} \cup U_{i}\right)$.

Lovász [3] gave an alternative proof by deriving it from his matroid matching theorem. Here we give a short proof of Mader's theorem.

Let μ be the minimum value obtained in (1). Trivially, the maximum number of disjoint \mathscr{F}-paths is at most μ, since any \mathscr{H}-path disjoint from U_{0} and traversing an edge spanned by U_{i} traverses at least two vertices in B_{i}.
I. First, the case where $|T|=1$ for each $T \in \mathscr{H}$ was shown by Gallai [2] by reduction to matching theory as follows: Let the graph $\widetilde{G}=(\widetilde{V}, \widetilde{E})$ arise from G by adding a disjoint copy G^{\prime} of $G-S$ and making the copy v^{\prime} of each $v \in V \backslash S$ adjacent to v and to all neighbours of v in G.

We claim that \widetilde{G} has a matching of size $\mu+|V \backslash S|$. Indeed, by the Tutte Berge formula [5,1] it suffices to prove that for any $\widetilde{U}_{0} \subseteq \widetilde{V}$,

$$
\begin{equation*}
\left|\tilde{U}_{0}\right|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|\tilde{U}_{i}\right|\right\lrcorner \geqslant \mu+|V \backslash S| . \tag{2}
\end{equation*}
$$

where $\tilde{U}_{1}, \ldots, \tilde{U}_{n}$ are the components of $\widetilde{G}-\tilde{U}_{0}$. Now if for some $v \in V \backslash S$ exactly one of c, v^{\prime} belongs to \widetilde{U}_{0}, then we can delete it from \widetilde{U}_{0}, thereby not increasing the left-hand side of (2). So we can assume that for each $v \in V \backslash S$, either $v, v^{\prime} \in \widetilde{U}_{0}$ or $v, v^{\prime} \notin \widetilde{U}_{0}$. Let $U_{i}:=\widetilde{U}_{i} \cap V$ for $i=0, \ldots, n$. Then U_{1}, \ldots, U_{n} are the components of $G-U_{0}$, and we have

$$
\begin{equation*}
\left|\tilde{U}_{0}\right|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|\widetilde{U}_{i}\right|\right\rfloor=\left|U_{0}\right|+\sum_{i=1}^{n}\left\lfloor\frac{1}{2}\left|U_{i} \cap S\right|\right\rfloor+|V \backslash S| \geqslant \mu+|V \backslash S| \tag{3}
\end{equation*}
$$

(since in this case $B_{i}=U_{i} \cap S$ for $i=1, \ldots, n$), showing (2).
So \widetilde{G} has a matching M of size $\mu+|V \backslash S|$. Let N be the matching $\left\{v v^{\prime} \mid v \in V \backslash S\right\}$ in \widetilde{G}. As $|M|=\mu+|V \backslash S|=\mu+|N|$, the union $M \cup N$ has at least μ components with more edges in M than in N. Each such component is a path connecting two vertices in S. Then contracting the edges in N yields μ disjoint $\mathscr{\mathscr { F }}$-paths in G.
II. We now consider the general case. Fixing V, choose a counterexample E, \mathscr{F} minimizing

$$
\begin{equation*}
|E|-|\{\{t, u\} \mid t, u \in V, \exists T, U \in \mathscr{S}: t \in T, u \in U, T \neq U\}| . \tag{4}
\end{equation*}
$$

By Part I, there exists a $T \in \mathscr{Y}$ with $|T| \geqslant 2$. Then T is independent in G, since any edge e spanned by T can be deleted without changing the maximum and minimum value in Mader's theorem (as any \mathscr{S}-path traversing e contains an $\mathscr{\mathscr { H }}$-path not traversing e and as deleting e does not change any set B_{i}), while decreasing (4).
 (4), but not the minimum in Mader's theorem (as each \mathscr{S}^{\prime}-path is an $\mathscr{S}^{\prime \prime}$-path and as $\cup \mathscr{Y}^{\prime}=S$). So there exists a collection \mathscr{P} of μ disjoint \mathscr{Y}^{\prime}-paths. We can assume that no path in \mathscr{P} has any internal vertex in S.

Necessarily, there is a path $P_{0} \in \mathscr{P}$ connecting s with another vertex in T, all other paths in $\mathscr{\mathscr { P }}$ being \mathscr{S}^{\prime}-paths. Let u be an internal vertex of P_{0}. Replacing $\mathscr{\mathscr { F }}$ by $\mathscr{\mathscr { S }}^{\prime \prime \prime}:=(\mathscr{\mathscr { S }} \backslash\{T\}) \cup\{T \cup\{u\}\}$ decreases (4), but not the minimum in Mader's theorem (as each $\mathscr{\mathscr { G }}$-path is an $\mathscr{S}^{\prime \prime \prime}$-path and as $\cup \mathscr{\mathscr { S } ^ { \prime \prime }} \supset S$). So there exists a collection \geqslant of μ disjoint $\mathscr{F}^{\prime \prime \prime}$-paths. Choose \downarrow such that no internal vertex of any path in \geqslant belongs to $S \cup\{u\}$ and such that \geqslant uses a minimal number of edges not used by \mathscr{P}^{p}.

Necessarily, u is an end of some path $Q_{0} \in 2$, all other paths in 2 being \mathscr{T}-paths. As $|\mathscr{P}|=|, 2|$ and as u is not an end of any path in \mathscr{P}, there exists
an end v of some path $P \in \mathscr{P}$ that is not an end of any path in 2. Now P intersects at least one path in 2 (since otherwise $P \neq P_{0}$, and $\left(\mathcal{2} \backslash\left\{Q_{0}\right\}\right) \cup$ $\{P\}$ would consist of μ disjoint \mathscr{F}-paths). So when following P starting at v, there is a first vertex w that is on some path in ℓ, say, on $Q \in \mathcal{Z}$.

For any end x of Q let Q^{x} be the $x-w$ part of Q. Let P^{v} be the $v-w$ part of P and let U be the set in $\mathscr{P}^{\prime \prime}$ containing v. Then for any end x of Q we have that Q^{x} is part of P or the other end of Q belongs to U, since otherwise by rerouting part Q^{x} of Q along P^{v}, Q remains an $\mathscr{S}^{\prime \prime}$-path disjoint from the other paths in 2 , while we decrease the number of edges used by \geqslant and not by \mathscr{P}, contradicting the minimality assumption.

Let y, z be the ends of Q. We can assume that $y \notin U$. Then Q^{z} is part of P, hence Q^{y} is not a part of P (as Q is not a part of P, as otherwise $Q=P$, and hence v is an end of Q), so $z \in U$. As z is on P and also as v belongs to U and is on P, we have $P=P_{0}$. So $U=T \cup\{u\}$ and $Q=Q_{0}$ (since Q^{z} is part of P, so $z=u$). But then rerouting part Q^{z} of Q along P^{v} gives μ disjoint \mathscr{F}-paths, contradicting our assumption.

REFERENCES

1. C. Berge, Sur le couplage maximum d'un graphe, Compt. Rend. Hebdomadaires des Séances Acud. Sci. (Paris) 247 (1958), 258-259.
2. T. Gallai, Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen, Acta Math. Accud. Sci. Hunguricue 12 (1961), 131-173.
3. L. Lovász, Matroid matching and some applications, J. Combin. Theory Ser. B 28 (1980), $208-236$.
4. W. Mader, Über die Maximalzahl kreuzungsfreier H-Wege, Archir Math. (Basel) 31 (1978), 387402.
5. W. T. Tutte, The factorization of linear graphs, J. London Math. Soc. 22 (1947), 107-111.
