THE SIZE OF 3-CROSS-FREE FAMILIES*

TAMÁS FLEINER

Received July 1, 1998

We give a short and simple proof for the theorem that the size of a 3-cross-free family is linear in the size of the groundset. A family is 3 -cross-free if it has no 3 pairwise crossing members.

1. Introduction

We shall prove that if $\mathcal{F} \subset 2^{V}$ is a 3 -cross-free family then $|\mathcal{F}| \leq 10|V|$. We call $\mathcal{F} \subset 2^{V}$ to be k-cross-free if \mathcal{F} has no k pairwise crossing members. Sets $A, B \subset V$ are crossing if none of $A \cap B, A \backslash B, B \backslash A$ and $V \backslash(A \cup B)$ is empty.

It was conjectured by Karzanov and Lomonosov that $|\mathcal{F}|=O(k n)$ if \mathcal{F} is k-cross-free and $|V|=n$. For $k=2$, this is trivial from the well-known tree representation of laminar families. In [7], Pevzner gave a quite complicated and lengthy proof for the case $k=3$. In Section 2, we present a direct and easy proof for this result. Actually, we prove a slightly more general theorem than the one indicated above. We call a family $\mathcal{F} \subset 2^{V}$ weakly k-cross-free with respect to $a \in V$, if for every $b \in V \backslash\{a\}$ there are no k pairwise crossing members of \mathcal{F} separating a from b. We say that X separates a from b if it contains exactly one of them. We call a family weakly k-cross-free if it is weakly k-cross-free with respect to some element a of V. In Section 2, we will show that the size of a weakly 3 -cross-free family is at most $10 n$.

[^0]As far as we know, the conjecture of Karzanov and Lomonosov is still open for $k>3$ and the best known bound is $|\mathcal{F}|=O(k n \log n)$ due to Lomonosov. However, recently there has been some new results obtained by Dress et al. [2,1], where all maximum-size 3 -cross-free families are described and the conjecture is proved for so-called cyclic 4 -cross-free families. There, cyclic means that there is a cyclic order on V such that any element of \mathcal{F} is an interval in it. They also show that contrary to some naive expectations, maximum-size k-cross-free families are not cyclic for $k=4$.

The background of the investigation of 3 -cross-free families is the so called locking theorem of Karzanov and Lomonosov [4,5] (see also [3]): a family $\mathcal{F} \subset 2^{V}$ is lockable if and only if \mathcal{F} is 3 -cross-free. Family \mathcal{F} is called lockable if whenever $G=(W, E)$ is an undirected graph with $V \subset W$ then there exists a fractional path-packing (i.e. a multiflow) f in G such that every $X \in \mathcal{F}$ is locked in G by f. Subset X of V is locked in G by f if the total f-value of paths between X and $V \backslash X$ equals the minimum size of the edge-cuts of G separating X from $V \backslash X$. The following stronger version was also proved in [4,5] (for a shorter proof see [6]): \mathcal{F} is 3-cross-free if and only if for any $G=(W, E)$ inner Eulerian graph (that is, $V \subseteq W$ and the degrees of all vertices of $W \backslash V$ are even) there is a collection \mathcal{P} of edge-disjoint paths of G in such a way that for any $X \in \mathcal{F}, \mathcal{P}$ contains maximum number of paths connecting X to $V \backslash X$.

2. Weakly 3-cross-free families

In this section we prove our result. Throughout we use the following notation:

$$
\begin{aligned}
\mathcal{F} / v & :=\{X \backslash\{v\}: X \in \mathcal{F}\} \\
\mathcal{F}(v) & :=\{X: v \in X \in \mathcal{F} \ni X \backslash\{v\}\}
\end{aligned}
$$

Theorem 1. Let $|V|=n \in \mathbb{N}$ and let $\mathcal{F} \subset 2^{V}$ be a weakly 3-cross-free family. Then $|\mathcal{F}| \leq 10 n$.
Proof. Assume to the contrary that \mathcal{F} is a counterexample with $|V|$ minimal, that is, $|\mathcal{F}|>10 n$ and \mathcal{F} is weakly 3 -cross-free with respect to a. Let us define $\mathcal{F}^{\prime}:=\{X \in \mathcal{F}: a \notin X\} \cup\{V \backslash X: a \in X \in \mathcal{F}\}$. Clearly, $\left|\mathcal{F}^{\prime}\right|>5 n$ with the property that
(1) if $X, Y, Z \in \mathcal{F}^{\prime}$ with $X \cap Y \cap Z \neq \emptyset$ then X, Y, Z cannot pairwise cross.

Next we prove:
(2) For each $x \in V \backslash a$, there exist $A_{x}, B_{x} \in \mathcal{F}^{\prime}(x)$ such that $B_{x} \neq A_{x} \subset B_{x}$ and $\left|A_{x}\right| \geq 3$.

If $\{x\} \neq P \subset Q \subset R$ is a chain of three different elements from $\mathcal{F}^{\prime}(x)$, then $A_{x}=Q, B_{x}=R$ suffices. Otherwise each element of $\mathcal{F}^{\prime}(x) \backslash\{x\}$ is either inclusionwise minimal or maximal. By (1), we see that $\mathcal{F}^{\prime}(x) \backslash\{x\}$ contains
at most two maxima and at most two minima, hence altogether $\left|\mathcal{F}^{\prime}(x)\right| \leq 5$. As $|\mathcal{F}(x)| \leq 2\left|\mathcal{F}^{\prime}(x)\right|$, we get that $|\mathcal{F} / x|=|\mathcal{F}|-|\mathcal{F}(x)|>10|V|-2\left|\mathcal{F}^{\prime}(x)\right| \geq$ $10|V \backslash\{x\}|$. This contradicts to the minimality assumption as \mathcal{F} / x is also a weakly 3 -cross-free family with respect to a. This proves (2).

Choose $x \in V \backslash a$, such that $\left|B_{x}\right|$ is as small as possible. Let $y, z \in A_{x} \backslash\{x\}$ be different elements. Observe that $y \in A_{x} \cap\left(B_{x} \backslash\{x\}\right) \cap B_{y}$ and that A_{x} crosses $B_{x} \backslash\{x\}$. By the choice of $x,\left|B_{y}\right| \geq\left|B_{x}\right|$, hence B_{y} must contain A_{x} or $B_{x} \backslash\{x\}$ by (1). In particular, $z \in A_{x} \backslash\{x\} \subset B_{y}$ holds. Then $z \in A_{x} \cap\left(B_{x} \backslash\{x\}\right) \cap\left(B_{y} \backslash\{y\}\right)$, and these three sets of \mathcal{F}^{\prime} pairwise cross, contradicting (1).

3. Conclusions

As indicated, Karzanov's conjecture about the linear size of k-cross-free families is still open for $k>3$. However Lomonosov's argument is also valid in our weakly k-cross-free setting. Indeed, let $\mathcal{F}^{i}:=\left\{X \in \mathcal{F}^{\prime}:|X|=i\right\}$ for $i=0,1, \ldots, n$, where \mathcal{F}^{\prime} is defined as in the proof of Theorem 1. Clearly, for every $v \in V \backslash a$ there are less than k sets in \mathcal{F}^{i} covering v, hence $|\mathcal{F}| \leq 2\left|\mathcal{F}^{\prime}\right|=$ $2 \sum_{i=0}^{n}\left|\mathcal{F}^{i}\right|<2\left(1+\sum_{i=1}^{n} \frac{k n}{i}\right)=O(k n \log n)$.

Pevzner published a paper about the linear size of 3-cross-free families [7], in which he explores important properties of k-cross-free and 3 -cross-free families. Although the proof is not easy to read, he had some interesting remarks that are worth citing. In our terminology his question is the following:

Is it true that any k-cross-free family on n elements can be decomposed into r ($k-1$)-cross-free families (r is independent of $n, k>3$)?
He also observes:
It is possible to show that for $k=3$ the answer to the above problem is negative (an example of an r-indecomposable 3 -cross-free family is a family of stars in a graph without triangles with a chromatic number exceeding r).
It is interesting to see that the answer to Pevzner's question is negative even for all k if we ask it for families that are weakly k-cross-free with respect to a fixed point of the groundset: Let $[n]:=\{i \in \mathbb{N}: 1 \leq i \leq n\} ;\binom{[n]}{k}:=$ $\{X \subset[n]:|X|=k\}$ and define $\mathcal{F}([n], k):=\left\{\left\{X \in\binom{[n]}{k}: i \in X\right\}: i \in[n]\right\} \subset 2^{\binom{[n]}{k}}$. Although for $k \geq 2, n \geq 4$ and $X \in\binom{[n]}{k}$ family $\mathcal{F}([n], k)_{X}:=\{F \in \mathcal{F}([n], k)$: $X \notin F\}$ consists of pairwise crossing sets, it is already weakly $(k+1)$-crossfree with respect to X. Moreover, any k elements of $\mathcal{F}([n], k)_{X}$ separate X from another element Y of $\binom{[n]}{k}$, hence for $n \geq(c+1) \cdot k$ it is not possible to partition $\mathcal{F}([n], k)_{X}$ into c families that are all weakly k-cross-free with respect to X.

Our last remark is that Theorem 1 is not very far from the best possible bound: notice that $\mathcal{F}[n, k]:=\{i+[j],[i]+j,[n] \backslash(i+[j]),[n] \backslash([i]+j)$: $i+1 \in[k], j \in[n-i]\} \subset 2^{[n]}$ (where $a+[b]:=[a+b] \backslash[a]$) is a k-cross-free family with roughly $4(k-1) n$ members. In particular, there is a 3 -cross-free family $\mathcal{F}[n, 3]$ with roughly $8 n$ members.
Acknowledgment. I am grateful to Lex Schrijver for asking me about the conjecture of Karzanov and Lomonosov and to Bert Gerards for his remarks that simplified the proof.

References

[1] A. Dress, J. Koolen, V. Moulton: $4 n-10$, preprint(1999), submitted.
[2] A. Dress, M. Klucznik, J. Koolen, V. Moulton: $2 n k-\binom{k+1}{2}$, preprint(1999), submitted.
[3] A.V. Karzanov: A generalized MFMC property and multicommodity cut problems, in: Finite and Infinite Sets II. [Proceedings of the Sixth Hungarian Combinatorial Colloquium, held at Eger in 1981], (A. Hajnal, L. Lovász, V.T. Sós, eds.) [Colloquia Mathematica Societatis János Bolyai, 37], North-Holland, Amsterdam-Oxford-New York, 1984, 443-486.
[4] A. V. Karzanov, M. V. Lomonosov: Flow systems in undirected networks, in: Mathematical Programming, (O. I. Larichev, ed.) Institute for System Studies, Moscow, 1978, 59-66 (in Russian).
[5] Michael V. Lomonosov: Combinatorial approaches to multiflow problems, Discrete Appl. Math., 11(1) (1985), 1-93.
[6] A. Frank, A. V. Karzanov, A. Sebő: On integer multiflow maximization, SIAM Journal on Discrete Mathematics, 10 (1997), 158-170.
[7] P. A. Pevzner: Lineĭnost' moshchnosti 3-nezatseplennykh semeistv mnozhestv [Linearity of the cardinality of 3 -cross-free families of sets], in: Zadachi Diskretno乞̆ Optimizatsii i Metody ikh Resheniya [Problems of Discrete Optimization and Methods for their Solution], (A. A. Fridman, ed.), Moscow, 1987, 136-142; [English translation: Non-3-crossing families and multicommodity flows, in: Selected Topics in Discrete Mathematics [Proceedings of the Moscow Discrete Mathematics Seminar 1972-1990] (A. K. Kelmans, ed.), [American Mathematical Society Translations Series 2 Volume 158], 201-206].

Tamás Fleiner

CWI, Postbus 94079, 1090 GB, Amsterdam, The Netherlands
and
Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
H-1364, P.O.Box 127, Hungary
fleiner@renyi.hu

[^0]: Mathematics Subject Classification (2000): 05D05, 06A07

 * Research supported by the Netherlands Organization for Scientific Research (NWO) and the OTKA T 029772 project.

