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Abstract. Let Z denote the Leibniz-Hopf algebra, which also turns up as the 
Solomon descent algebra, and the algebra of noncommutative symmetric 
functions. As an algebra Z = Z < Z1 ,Z2 ,. • • >, the free associative algebra over 
the integers in countably many indeterminates. The co-algebra structure 

is given by µ(Zll) = I'.'=0 Z; ® zn-i , Zo = 1. Let .M. be the graded dual 
of Z. This is the algebra of quasi-symmetric functions. The Ditters 
conjecture (1972), says that this algebra is a free commutative algebra 
over the integers. This was proved in [13]. In this paper I give an 
outline of the proof and discuss a number of consequences and related 
matters. 

1 The Algebra of Quasi-Symmetric Functions 

Quasi-symmetric functions have been around since at least 1972: the algebra of 
quasi-symmetric functions is the graded dual of the Leibniz-Hopf algebra Z, see 
below in section 3. However, they were recognized as a useful and natural generalization 
of the symmetric functions and given their name much more recently in connection 
with algebraic-combinatorical questions some 15 years ago to deal with the 
combinatorics of P-partitions and the counting of permutations with given descent 
sets, [6, 7], see also (22]. 

Here is the definition of quasi-symmetric functions. Let X be a finite or infinite 
set (of variables) and consider the ring of polynomials, R[X], and the ring of power 
series, R[[X]], over a commutative ring R with unit element in the commuting variables 
from X. A polynomial, or a power series, f(X) E R[[X]] is called symmetric if for 
any two finite sequences of indeterminates X1, X2 , • • ·, X,, and r;, y;, · · ·, Y,, from X 
and any sequence of exponents ii'i2 ,·."in EN, the coefficients in /(X) of x:· X~' ... x;;· 
and Y;;, Y;' · · · Y,;" are the same. 

The quasi-symmetric formal power series are a generalization introduced by Gessel, 
[6], in connection with the combinatorics of P-partitions. This time one takes a totally 
ordered set of indeterminates, e.g. V = {'\!;, V2 , ··},with the ordering that of the natural 

numbers, and the condition is that the coefficients of x:· X~' · · · x;;· and r;;1 Y~' ... Y,;" 
are equal for all totally ordered sets of indeterminates X1 < X2 < · .. < X11 and 

Y; < Y2 <-·-< Y". Thus, for example, X1Xi + X2Xi + X1Xi is a quasi-symmetric 
polynomial in three variables that is not symmetric. 
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Products and sums of quasi-symmetric polynomials and power series are again 

quasi-symmetric (obviously), and thus one has, for example, the ring of quasi-symmetric 

power series Qsymz(X)' in countably many commuting variables over the integers 

and its subring Qsymz(X) of quasi-symmetric polynomials in finite of countably 

many indeterminates, which are the quasi-symmetric power series of bounded degree. 

Given a word w = [a" a2 ,. ·.,a"] over N, also called a composition in this context, 

consider the quasi-monomial function 

(1.1) 

defined by w. These, clearly, form a basis over the integers of Qsymz (X). Below we 

shall usualy simply write w instead of Mw. 

To see how these basis elements multiply consider the following construction for 

obtaining new words (compositions) from two words w = [a"a2 ,. ··,am] and 

v = [bl'b2 , .. -,bm]. Take a 'sofar empty' word with n + m - r slots where r is an 

integer between 0 and min{m,n}, 0:::; r:::; min{m,n}. 

Choose n of the available n + m - r slots and place in it the natural numbers from 

w in their original order; choose r of the now filled places; together with the remaining 

n + m - r - n = m - r places these form m slots; in these place the entires from v in 

their orginal order; finally, for those slots which have two entries, add them. The 

product of two words w and vis the sum (with multiplicities) of all words that can be 

so obtained. So, for instance 

[a,b ][c,d] = [a,b,c ,d] + [a,c, b,d] + [a,c ,d,b] + [c,a,b,d] + [c,a,d,b) + 

+[c,d,a,b] +[a+ c,b,d] +[a+ c,d,b] + [c,a + d,b) + 

+[a,b + c,d] + [a,c,b + d] + [c,a,b + d] +[a+ c,b + d] 

(1.2) 

and [ 1][1] [ l ]=6[ 1,1,1]+3[1,2]+3(2, l ]+[3). It is easy to see that the recipe given above 

gives precisely the multiplication of (the corresponding basis) quasi-symmetric 

functions. If v = [b1 ,b2 ,. • -,b,,,), then the shuffles of a 1,. ·-,a,, ;b1 ,-·-,b,,, correspond to 

the products of the monomials in M. and M, that have no X1 in common; the other 

terms arise when one or more of the X@ in the monomials making up M, and M,. 

do coincide. In example ( 1.2) the first six terms are the shuffles; the other terms are 

'overlapping shuffles'. The term shuffle comes from the familiar rifle shuffle of 

cardplaying; an overlapping shuffle occurs when one or more cards from each deck 

don't slide along each other but stick edgewise together; then their values are added. 

Oviously this construction makes sense for any (not necessarily commutative) 

semigroup. Even for the simplest semigroup, consisting of just the identity, an interesting 

(Hopf) algebra arises, [ 11, 14]. 

The algebra of quasi-symmetric functions also arises in the study of multiple 

harmonic series (zeta-values), [13], 
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(1.3) 

For instance (;(l}S(2, I)= ((3, 1) + s(2,2) + s(l,2,1) + 2s(2, l, l). In [15] the algebra of 
quasi-symmetric functions is realized as a subalgebra of Q(x,y) with a new 
commutative and associative multiplication that is very different from concatenation 
and this is used to study (algebraic) relations between zeta-values. 

Further, as already mentioned, the algebra of quasi-symmetric functions is dual to 
the Leibniz-Hopf algebra, also known as the algebra of noncommutative symmetric 
functions, see below, or, equivalently to the Solomon descent algebra, more precisely 
to the direct sum !ll = $ D(S") of the Solomon descent algebras D(S") of the symmetric 

n 

groups, with a new multiplication over which the direct sum of the original 
multiplications is distributive. See [5, 17]. 

2 The Ditters Conjecture 

Lettheweightofaword w=[a1 ,-··,a11 ], a; eN overtheintegersbe jwj=a1 +···+a,,. 

Then 

2.1 Theorem. The algebra of quasi-symmetric functions over the integers is the 
free graded commutative polynomial algebra over Z with {3,, generators of weight 
n where 

(2.1) 

with µ(d) the Mobius function. 

For an outline of the proof of this theorem, see below. Full details are in [ 13]. The 
important part of the statement is that this holds over the integers, not just over the 
rationals. 

The first statement of the Ditters conjecture dates from 1972, [2], where it was 
formulated as proposition 2.2. It states that the dual algebra over the integers of the 
Leibniz Hopf algebra, i.e. the algebra of quasi-symmetric functions, is a free 
commutative algebra over the integers. At that time quasi-symmetric functions had 
not yet been invented, nor the Solomon descent algebra. 

Shortly after the publication of [2] it was remarked and acknowledged, see [3], 
Ch. II, §5, p. 29, that the proof of proposition 2.2, i.e. what is now called the Ditters 
conjecture, had gaps. Since then there have been quite a few purported proofs of the 
statement, published and unpublished. All have errors. For detailed remarks on the 
error in the proofs in [20, 21] see [ 14]. The latest alleged proof in [ 4] has at least three 
major errors; the worst one is more or less the same as the one in [20, 21]. 

The fact that his dual algebra. is free polynomial over the integers is crucial for a 
part of the theory of noncommutative formal groups, including a noncommutative 
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version of p-typification, developed by Diners and his students, see [2, 3, 21] and the 

references cited therein. Some remarks on these applications can be found below in 

sections 5 and 6. 

Perhaps even more importantly, the Leibniz-Hopf algebra is precisely the same as 

the algebra of noncommutative symmetric functions as defined in [5] and further 

developed in a slew of subsequent papers. The fact that the symmetric functions 

constitute a free algebra in the elementary symmetric functions is rather important. 

Thus the fact that the algebra of quasi-symmetric functions is free over the integers is 

likely to be of some significance. The name 'Ditters conjecture' for the statement I 

coined myself a few years back. In [I OJ, I referred to the statement as the Ditters

Scholtens theorem. This was when I still believed the proof in [20, 21] to be correct. 

3 Outline of the Proof of the Ditters Conjecture 

The Leibniz Hopf algebra over the integers is the free associative algebra 

Z = Z( Z1 , Z2 , • ·-) over Z in countably many generators with the comultiplication 

(3 .I) 

Its graded dual over the integers is denoted .M. It is not difficult to see that this dual 

is precisely the algebra of quasi~symmetric functions over the integers. Indeed, for 

any composition c = (ii' ... , i,,) 'define me by the dual basis formula < me' zd > = of.J 
where zd = ZJ, zh ... zj,.. for a composition d = U1 ' ... , jm) . It is now a simple exercise 

to check that the m, multiply exactly as the quasi-symmetric monomials M,, defined 

above in section I . 

Over the rationals the Leibniz-Hopf algebra is isomorphic to the Lie Hopf algebra 

(3.2) 

For this consider the expression I+ Z1t + Z2t 2 + Z/ + · · ·::: exp(U1t + U/ + U/ + ··-) 

which gives an expression for each Z, in terms of the U1, • • ·, U, with rational coefficients, 

and hence defines an algebra homomorphism {3: Z ® Q -1 'U ® Q, which can be (rather 

easily) seen to be an isomorphism of Hopf algebras; see [8] for details. 

Let the elements of N', i.e. the words over N, be ordered lexicographically, 

where any symbol is larger than nothing. Thus [a 1,a2 ,-··,a,,]>[bpb2 ,-··bm] if and 

only if there is an i such that a 1 = b1 ,-·-,a,. 1 = b,_1 ,a, > b, (with, necessarily, 

I :Si :S min{m,n} ), or n > m and a1 = bl' .. ·a,,, = b,,,. 

A proper tail of a word [a1 ,. ··a,,] is a word of the form [a,,.·· a,,] with I < i :Sn. 

(The empty word and one symbol words have no proper tails.) 

A word is Lyndon if all its proper tails are larger than the word itself. For example 

the words [!, 1,3], [I, 2,1,3], [2,2,3,2,4] are all Lyndon and the words [2, l], [1,2, I, 1,2], 

[1,3,1,3] are not Lyndon. The set of Lyndon words is denoted LYN. 
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3.1 Theorem (Chen-Fox-Lyndon factorization, [I, 12]). Every word w in 1' 
factors uniquely into a decreasing concatenation product of Lyndon words 

(3.3 

For example: [2,3,l,3,l,4,1,3, 1,1] = [2,3) * [l,3,1,4] * [1,3] * [1] * [l]. 
Let .N.. be the graded dual of 'U over the integers. This is the socalled shuffle algebrt 
An important theorem, for example in the theory of free Lie algebras, states that th 
algebra .N.. ®z Q is commutative free polynomial in the Lyndon words, see e.g. [19 
It is not true that .N.. is free polynomial over the integers. The Ditters conjecture state 
that the algebra .M, on the contrary, is free polynomial commutative over the integen 
This makes it a rather more beautiful version of .N.. , in the sense that .M is a Z - ( 
form of .N.. (i.e . .M ®z Q "".N.. ®z Q) with the property that .M is a free polynomi~ 
algebra while .N.. is not. 

It is straightforward to adapt the proof that .N.. ®z Q is free polynomial over th 
rationals to a proof that .M ®z Q is free polynomial in the Lyndon words, see [14] o 
[15] or [17]. (This does not follow from the isomorphism .M®z Q :::.N..®z Q .) 

A word w = [ a1 , a2 , ···,a.] e N* is called elementary if the greatest common divisc 
of its symbols is l, gcd{a"a2 , .. ·,a.}=l. A concatenation power of w (or sta 

power) is a word of the form w*m = w * w * · · · * w (m factors). Let ESL denote the se 
of words which are star powers of elementary Lyndon words. For instance, the word 
[l,l,l,l], [l,2,1,2], [l,2,1,4] are in ESL (but the first two are not Lyndon), and th 
words [4], [2,4] are not in ESLbut are in LYN. 

The strong Ditters conjecture now states that the elements of ESL form a fre1 
(communicating) generating set for the overlapping shuffle algebra .M over the integen 

There is a p-adic analogue of the strong Ditters conjecture, and the first step i1 
establishing the Ditters conjecture is to prove these local versions for all prime number 
p. 

Let us start with the formulation. A word w = [a"···,a.] on N is p-elementaT) 
where p is a prime number, if the gcd of the a" ... ,a11 is not divisible by p. J. 

p-star-power of a word is a word of the form w = v * v * · · · * v ( p' factors). The se 
ESli,p) is the set of words which are p-star-powers of p-elementary Lyndon words. 

3.2 Theorem (p-adic analogue of the strong Ditters conjecture). 

I.e . .M ® Z<P> is the free commutative algebra on ESL(p) over Z<P>. 

To prove this theorem two preliminary lemmas are used. 
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3.3 Lemma (cardinality of the sets ESL(p) ). The number of elements in ESL(p) 
of weight n is /3n, i.e. it is the same as that in LYN,,, the set of Lyndon words of 
weight n. 

Proof Let w = [al'a2 ,. ·-,a,,,] be a Lyndon word of weight n. Let pr be the 
largest power of the prime number p that divides the greatest common divisor 
gcd(al' .. ·,a111 ). Now assign tow the word v*v*···*v (p' factors), where 
v = [p-r al' p-r a2 ,. • ·, p-r a,,.]. This sets up a bijective correspondence between LYN,, 
and ESL(p),,,thesetofwordsin ESL(p) ofweight n. 

3.4 Lemma. Let n=a0 +a1p+···+akpk, a; e{O,l,-·-,p-1} be the p-adic 
expansion of a natural number n. Then the multinomial coefficient 

[ n l k k k-1 k-1 p ... p p ... p ... LJ 
~~ a1i1nes 

a~ 11mej aA-t t1111es o 

(3.5) 

is nonzero modulo p. 

Proof of the p-adic Ditters conjecture. We use the following ordering of words: 
length first and then lexicographic ordering on words of equal length. So e.g. 
[1, 1, 1, ll > [l, 2, lJ > [1, 1,2] > [ 4]. Let SL(p) be the set of all p-star powers of Lyndon 
words; i.e. words of the form w = v' r' , v E LYN . The first step is to prove that all 
words can be written as polynomials in the elements of SL(p). Let w be a word over 
N. With induction we can assume that all smaller words can be written as polynomials 
in SL(p), and by induction on weight that all nontrivial products can be so written. 
Let 

w = v~"' *v;"2 *···v,:,",.,, V; E Lyn, v1 > v2 > ··· > v,,, (3.6) 

be its Chen-Fox-Lyndon factorization. Consider products of the form 

(3.7) 

where the products are overlapping shuffle products and where n;1 +···nu, = n;, 

i = 1,. · -,m. The largest word occurring in such a product (in the ordering we are 
using) will be the word w, independent of how the various star-powers are broken up. 
However, the coefficient of w will depend on how the star-powers of the vj are 

broken up. Indeed, the coefficient will be a product of multinomial coefficients: 
For instance if one takes nu = 1 for all i, j (which is what is done to prove 
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.At© Q = Q[Lyn]), the coefficient is n1 !n2 !···nm!; and if one takes the other extreme, 
k1 = k2 =···=km = 1, the coefficient is l. Here, for our present purposes, we break up 
each nj according to its p-adic expansion. The resulting coeeficient is then a product 

of expressions of the form (3.5) and hence nonzero modulo p by lemma 3.4, and, 
hence invertible in z This proves that also w can be written as a polynomial in 

' (p)' 

Slip). 

Now, for a given weight n, let wl' w2' .. ·wm be all the words of that weight that 

are in SL(p) but are not p-elementary. So, if W; = [a;i,. · · ,aik, ], p I gcd{a;i,. ··,au,}· 

Let b = p-1a .. , v. = [b.I ,. .. ,b.k]. Now consider the overlapping shuffle powers vr. It 
l) lj I I I •1 

is easy to see that these are of the form 

vf = W; + p(something Of weight n) (3.8) 

By what has been proved, each of these somethings of weight n can be written as 
polynomials in the SL(p). Do so. Now calculate modulo nontrivial products and the 
elements of ESL(p). The result will be m congruence relations: 

(3.9) 

where the matrix A= (au) has the property A= Im mod p. This means that the 

determinant of the matrix A is invertible in Z!p)' SO that the Wp" ·,Wm can be eliminated. 

This proves that the elements from ESL(p) suffice to generate all of .M. © Z<PI over 

Z(p)' Using lemma 3.5 above on the cardinality of ESL(p), a counting argument 

finishes the proof. In more detail, let A be the free graded algebra over Z(p) with {311 

generators of weight n. Let y,, be the rank of the free ZP module of elements of 

weight n. The y 11 are of course recursively determined by the fJ,,, but the precise 
formula is not important here. The algebra Z<PJESL(p)] viewed as the free commutative 

algebra over Z1P 1 generated by the symbols from ESL(p) is of course the same 

thing as A. By what has been proved the natural homomorphism 
z,,,JESL(p)]~ .M. © Z 1Pl that sends a symbol from ESL(p) to the corresponding 

element from M ® Z 1pi is surjective. Both algebras are torsion free, and after tensoring 

with the rationals the dimensions of their homogeneous parts of weight n are equal 
by the lemma above and the isomorphism between the overlapping shuffle algebra 
and the shuffle algebra. It follows that a is an isomorphism because surjective 
homomorphisms between free Z!pl modules of equal rank are necessarily isomorphisms. 

Proof of the main theorem 2.1. Using the p-adic theorem one can now prove the 
main theorem 2.1 as follows. 

Let M 11 be the graded part of weight n of .M.. By the fact that .At,, is a free 
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Abelian group and the fact that .IV, ®z Q = M ®z Q, we know that Mn is a free 
Abelian group of rank Yn . Let G,, be defined by the short exact sequence 

n-1 

EJ;l(MJ ®M,,_)~M" ~G,, ~o (3.10) 
j=I 

where the first arrow is given by multiplication. Each G" is a finitely generated 
Abelian group. Tensoring with Z<PI (which is right exact) gives the corresponding 

exact sequence for M ® Z<PI and it follows from the p-adic version of the Ditters 

conjecture proved above that G,, ®z Z<pl is a free Z<pi module of rank /3" for each 

prime number p. This implies that G" is a free Abelian group of rank /3" and 
proves that the algebra of symmetric functions can be generated by a set of homogeneous 
elements Y,,_ 1,yn.2 ,··-,y,,.fJ,.' n=l,2,-·-, giving a homogenous surjective ring 

homomorphism Z[Y]~M where Z[Y] is the graded ring generated by symbols 
Y,u., , n = 1, 2, · · ·; i" = 1, · · ·, /3n of weight n. However, the homogenous parts of weight 

n of Z[Y] and ..M both are free Abelian groups of rank n. It follows immediately that 
the homogeneous components, an: Z[Y],, ~Mn of a are isomorphisms and hence 
that a itself is an isomorphism. 

4 Divided Power Sequences and Endomorphisms of Z 

Let H be a Hopf algebra with unit element 1 EH . A primitive element in H is an 
element d such that µ(d) = 1@ d + d ® l. The primitive elements in H form a Lie 
algebra under the commutator bracket [ d, d'] = dd' - d 'd denoted L( H) . Let .f.. = L( Z) . 

A divided power sequence (of infinite length) in H (over d) is a sequence of 
elements 

d0 = 1.di = d,d2 A,.·· such that µ(d,,) = L d, © dJ for all n = 0, 1,2,-· · (4.1) 
i+j=n 

A divided power series of length k is a sequence d0 = l,d1 =d,d2 ,d3 ,-·-,d1 such 
that ( 4. l) holds for all n up to and including k. 

A divided power series of infinite length in His the same thing as a homomorphism 
of Hopf algebras Z ~ H, the homomorphism corresponding to 1, d1 ,d2 ,. • • being 
given by Z; f.--? d,. 

Examples of primitive elements in Z are the 'power sums' 

(4.2) 

Because of the Hopf algebra isomorphism Z ®z Q = U ®z Q, .f.. ®z Q is the free 
Hopf algebra on countably many generators over the rationals. And in fact the p,, of 
(4.2) above form a free generating set. 
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It is definitely not true that £ is a free Lie algebra over Z; it is a much m 
complicated object that is still imperfectly understood. 

It is an immediate consequence of theorem 2.1 that 

4.1 Theorem. Every primitive element of Z extends to an (infinite length) divi 
power series. More generally, every finite length divided power series can be ex ten 
to an infinite length one. 

To see this we use the construction of certain free co-algebras. Let B be a · 
graded module over the integers Z(or over any ring R) whose homogenous summa 
are of finite rank, and let B* be its graded dual. The.free graded co.free algebra c 
the integers, CoF(B), determined by B is the graded dual of the free associa 
graded algebra, Fr(B*), over the integers generated by B*. It can be characterizec 
a universal property that is dual to that of free associative algebras as follows (tho 
that is not important here). It comes with a canonical map ;rr:CoF(B) ~ B, the gra 
dual of the canonical map B* ~ Fr(B'), and satisfies the following property: 
every graded map of a graded coalgebra C to the module B, C ~ B, there 
unique morphism of graded coalgebras C ~ CoF(B) such that 1Ct/f = <p. 

The cofree coalgebra CoF(B) can be explicitly described as follows. Take 
tensor module 

T(B) = Z ffi B ffi B®2 ffi B®3 ffi .. · 

There are natural isomorphisms <fJ;.1:B®; ® B®1 ----?B®(i+J>; i,j = 0,1,2,· ... U 

these, the comultiplication on T(B) is defined by 

µ(b1 ® b2 ® ... ® bn) = f <P;~,'.-;(b1 ® b2 ® ... ® b,,) 
i=O 

The cofree coalgebra CoF(B) has a unique group like element, viz 1 E Z (which i 
dual of the augmentation of Fr(B') ). The primitives of CoF(B), are the elemen 
B c T(B). In CoF(B) every primitive element b can be extended to a divided p1 
sequence of infinite length. Indeed one such sequence is 

b, b®b, b®b®b, ... 

It is also true that any divided power sequence of length n can be extended to o: 
length infinity. This follows easily by induction because if 81'82 , .. .,on and 81'82 ,. 

are two different divided power sequences that agree up to degree n -1, the 
difference of the last terms, on -s:. 'is a primitive. 

The free cocommutative graded coalgebra, CCoF(B), over B, is the subcoal: 
of CoF(B) of symmetric tensors. It is the graded dual of the commutative free ali 
generated by B* as the maximal commutative quotient of Fr(B'). 
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Now as the graded dual of the free graded algebra .M., Z is cofree graded and 
theorem 4.1 follows by the remarks above. (Note that the elements of (4.5) are 
symmetric tensors.) 

4.2 Corollary. The set of Hopf algebra endomorphisms of Z is very large being 
in bijective correspondence with the set of all infinite sequences q1 ,q2 ,q3 ,. • • ,q1 E£. 

See also section 5 below for more on the Hopf algebra endomorphisms of Z. 

Remark. The free commutative coalgebra over B, which satisfies the same universal 
property for not necessarily graded coalgebras and morphisms is not CoF(B), but a 
certain recursive completion; see (12] for details. 

5 Formal Groups I: Curves and Classification 

Ann-dimensional formal group over a commutative ring A with unit element is an 
n-tuple 

F;(X, Y) E A[[X1 ,X2 ,.. • X,,; l;, t; ,. . ., Y,,]] = A[[X; Y]], i = J,.. · ,n (5.1) 

of formal power series in 2n (commuting) variables X1 , X2 , • · • X,,; I;, Y2 , • • • Y,, such that 

F;(X,Y) = X1 +f;mod(degree2), F(X,F(Y,Z)) = F(F(X,Y),Z) (5.2) 

in A[[X; Y;Z]]. I.e. a formal group is given by a co-associative comultiplication 

R(F)-t R(F) <ii R(F), where R(F) = A[[X]] and ~is the completed tensor product 
of power series rings, for which £: R(F) -t A, X1 H 0, i = I,··· ,n is a co-unit. The 

existence of an antipode is then automatic. R(F) is called the contravariant bi-algebra 
of the formal group. Its continuous linear dual 

U(F) =Hom A (R(F),A) (5.3) 

is a Hopf algebra in the usual sense of the word and is called the covariant bi-algebra 
of the formal group. A formal group is the algebraic counterpart of (the infinitesimal 
part) of an (analytic) Lie group near the identity. Their interest lies in the fact that 
they can be considered over any commutative ring with unit element. The theory of 
formal groups has many applications (in number theory, in algebraic topology, in 
algebraic geometry, ... ); see [8] for some of them. 

A curve y(t) = (y1(t),-·-,y,,(t)) in a formal group is an n-tuple of formal power 

series in one variable t with coefficients in A without constant terms. Two curves can 
be multiplied by the formula y(t)o(t) = F(y(t),o(t)) and this turns the set of curves 

into a group, denoted e(F; A). There are natural subgroups, e'" (F;A) consisting of 
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the curves that are congruent zero modulo (degree m), and the group of curves is 
complete with respect to the topology defined by these subgroups. 

There are a number of obvious operators defined on the group of curves: the 
homothety operators (a) and Verschiebungs operators V,, defined by 

Vmy(t) = y(tm), m = 1,2,-·· ; (a)y(t) = y(at), a EA (5.4) 

For commutative formal groups there are in addition the socalled Frobenius operators, 
which are defined as follows. For a curve y(t) consider the expression 

(5.6) 

with coefficients in A[x1 ,. •• ,xm] where the X; are additional (commuting) 

indeterminates. Because the formal group is commutative, the coefficients in (5.6) are 
symmetric polynomials in the X; which can therefore be written in terms of the 

elementary symmetric functions e1, ···,em . Do so, and now substitute e1 = · · · = em-I = 0 , 

e,,, = (-1r-1 • The result is a an n-tuple of power series in t , not just t 11 "', and this is 

by definition the curve f"'y(t). Combining all these operators turns the commutative 

group into module over a quite large ring denoted Cart(A) and as such the groups of 
curves are classifying for commutative formal groups. 

The functorial group (with operators; i.e. module) e(F; A) is also representable. 

The representing object is the infinite dimensional formal group W of the Witt 

vectors of which the covariant bi-algebra U(W) is the Witt vector Hopf algebra 

Z[Xi' x2 ,·. ·J. µ(X,,) = :z: x, ® x1, t:(X,,) = o (5.7) 
i+ J=->fl 

where X0 = 1, the commutative analogue of the Leibniz Hopf algebra. It also turns 

out that the Hopf algebra endomorphisms over A of U(W) identify with Cart( A). 
For all this see [8]. 

Now let's turn to not necessarily commutative formal groups. For these the definition 
of Frobenius operators as above for the commutative case does not work. It is clear 
(from the commutative case) that if the group of curves is to contain a great deal of 
information on the formal group from which it comes, then that group should have a 
large collection of operators defined on it. As we shall see, the freeness of the dual 
.M of the Leibniz Hopf algebra Z implies that there is indeed a very large number of 
functorial operators on curves including a large number of 'Frobenius type' ones. 

To do this we first reinterprete the notion of curves in a formal group Fin terms 
of its covariant bi-algebra. A curve y(t) Ee(F; A) is simply a continuous algebra 

homomorphism R(F) = A[[X)] ~ A[[t]], the components of y(t) being the images 

of the X;. Taking continuous linear duals we find a co-algebra homomorphism 

CFA ~ U(F), where CFA is the co-algebra 
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CFA = A Et! AX1 Et! AX2 Et! ... 

µ(X,,)= l:X;®Xi' X0 =1; .e(X;)=O, it:O, .e(X0 )=1 (5.8) 

Now consider the images of the X; (which completely determine the co-algebra 
morphism). This gives a sequence of elements 

d0 = l.Ji A,.··, d; E U(F) with the property µ(d,,) = 'f_ d; ® d1 (5.9) 
i+ )=n 

i.e. a divided power series in the Hopf algebra U(F). Thus a curve in a formal group 
F is the same thing as a divided power series in its covariant Hopf algebra. Let 
ZA = Z ®z A. Then it immediately follows that 

(5.10) 

Now the graded linear dual of Z is a free polynomial algebra; it follows that the 
(non-graded) dual of 2 4 is a power series algebra and so (5.10) says that also in the 
noncommutative case the functor of curves is representable by a formal group; as it is 
in the commutative case. Writing a divided power series d0 =IA ,d2 ,.. • as a power 
series I+ dJ + d2t 2 + · · · with coefficients in the (as a rule noncommutative) covariant 
bialgebra U(F), multiplication of curves corresponds to multiplication of power series. 
All this is well known and already in [2], see also [8]. 

The next bit is new and is only the beginning of something that needs to be 
explored in great detail and much deeper. Take an additional set of commuting 
indeterminates x1 ,x2 ,··· (which also commute with the Z1 ) and consider the ordered 
product 

(5 .11) 

5. I Proposition. The expression (5 .11) is equal to 

(5.12) 

where the sum is over all nonempty words w == [a 1 ,a2 ,. ··,a,], a, e{l,2,. ·}over the 
natural numbers, I w I= a 1 +···+a, is the weight of w and Z"' = Za, Z0 , • • • Z01 , and 
M"'(xl'x2 , .. ·) is the quasi-symmetric function defined by the word w (see (1.4) 
above. 

The proof is straightforward. 

Now take any algebra homomorphism <p: ..M ~ A. This gives a new divided 
power series in Z, viz 



42 

d0 = l.Ji ,d2 ,. • ., di= 2:9J(M.,)Z .. (5. 
lwl=J 

and hence a Hopf algebra endomorphism of ZA given by Zi I-) di, and, by 

representability of e(F; A) by ZA, functorial operations on the groups of cur 

Because M is free polynomial there are very many such operations. An algt 

homomorphism from M to Z is a certain kind of element in the completion 'li o; 
For suitable divided power series (not all yield convergent series), .,,, 

g = 1 + d1 + d2 + d3 + ·· · E 'i. Then g is group-like: µ(g) = g ® g and hence quali 

Indeed, we then have (g,ab)=(µ(g),a®b) =(g,a)(g,b). This brings us bac 

divided power series again (which is of little use if one does not already know 
there are very many of them). 

In addition there are all kind of 'Frobenius like' operations (and of course stil 
Verschiebung and homothety operations). These 'Frobenius like' operations are deJ 
as follows. In (5.11) replace t by t 11'". Instead of (5.12) one then finds the s 

expression but with i""11 m instead of t 1 .. 1 • Now take a homorphism qJ that is zero o 

the free polynomial generators of weight not a multiple of m. Then the resulting s 

will be in t instead of just t 11 m (easy to see) and we obtain a new divided powers 
and new operations. Again, because M is free graded, there are very many of the 

It remains to be investigated what one can do with all these operatiom 
instance, in the context of p-typification (see the section below). And also wha 
be said about the collection of Hopf endomorphisms of Z . This set is a noncommu1 
group (each endomorphism corresponds uniquely to a divided power series in ~ 

these can be multiplied); in addition there is composition of endomorphisms an 
is both left and right distributive over the multiplication. Thus we have a kind o 
whose underlying group is noncommutative. 

The same point of view can be taken in the commutative case. Her 

endomorphisms of U(W) form the ring Cart(Z) which has an explicit descripti 
terms of Frobenius, Verschiebung, and homothety operators, see [8]. It will be inter 
to sort out how the endomorphisms that come from algebra homomorphisms fro 

graded dual of U(W) to Z fit in. Note that the graded dual of U(W) is the alge 
symmetric functions. (The Witt vector Hopf algebra is selfdual.) 

6 Formal Groups II: p-typification 

For the moment, till the last paragraph in this section, all formal groups v 
commutative. One tool that is of considerable usefulness in the study of commt 
formal groups is p-typification. In a sense they can be treated 'one prime at a 
For instance two commutative formal groups over the the integers are isomor 
and only of they are isomorphic over the localizations Z(pJ, the ring of all n 

numbers with denominators prime top, for all prime numbers p. Let me descril 
some of p-typification theory in the commutative case. 
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For the moment, let F be a formal group over an integral domain A; let Q(A) be 
its quotient field. Then there exist a unique n-tuple of power series /(X) E Q(A)[[X]], 

f(X) = X mod (degree 2), such that F(X,Y) = r'<J(X)+ /(Y)),called the logarithm 
of F. (i.e. over the ring of fractions F is (strictly) isomorphic to the additive formal 
group). Such a formal group is p-typical if its logarithm is of the form 

~ 

f(X) = Lm;XP' (6.1) 
i=O 

where xp' is short for the column vector with entries Xj' and the m; are matrices 

with coefficients in the field of fractions. Over a Z<P>-algebra every formal group is 

isomorphic to a p-typical one. The notion can also be defined for formals groups over 
rings that are not necessarily integral domains and the same result holds. 

A curve y(t) in a commutative formal group over an integral domain (not necessarily 
p-typical) is a p-typical curve if /(y(t)) is of the form 

t<r<rn = La;ip' (6.2) 

for suitable vectors a;. This is equivalent to the property that fq y(t) = O for all 

Frobenius operators fq , q a prime different from p. For formal groups and curves 

over arbitrary rings A, this property is the definition. These are, therefore, see (6.2), 
very economical curves (to borrow a term from [21]), depending on few parameters. 
They also suffice to describe all curves in the sense that every curve is a unique 
shifted (=apply a Verschiebung operator) product(= sum in the present commutative 
case) ofp-typical curves. See [8] for much more. 

Now let F be a not necessarily commutative formal group. The question arises 
whether there is a suitable generalization of all this in that case. Whether there still 
exist a suitable substitute for Frobenius operators in the noncommutative case is 
unclear at best. So something else has to be found. This provided much of the orginal 
motivation for the study of Z: and its graded dual .M.. A quite elaborate (and complicated) 
theory has been developed, starting with [3} and, so far, finishing with [21], The 
principal tool is theorem 4.3 on the possibility of extending any finite length curve(= 
finite length divided power series) in Z: to an infinite length one. 

7 The MPR Hopf algebra 

The Hopf algebra Z (i.e. the Leibniz Hopf algebra = algebra of noncommutative 
symmetric functions= Solomon descent algebra) is a magnificent object. And so is its 
dual, the algebra of quasi-symmetric functions .M. Both deserve still far more study 
than the already considerable attention they have had. They have one blemish compared 
to their (co)commutative analogues, the Witt vector Hopf algebra(= Hopf algebra of 

symmetric functions) .X = Z[X1 ,X2 , .. ·] = U(W), which is selfdual. 
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There exists, however, a selfdual noncocommutative, noncommutative Hopf algebra 
9l, invented by Malvenuto, Poirier and Reutenauer, see [ 17, 18], that contains Z and 
covers AC both in a very natural way. This is a possibly even more beautiful and 
rewarding object and has so far been little studied. 
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