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SEQUENTIAL BUCKLING: A VARIATIONAL ANALYSIS* 

MARK A. PELETIERt 

Abstract. We examine a variational problem from elastic stability theory: a thin elastic strut 
on an elastic foundation. The strut has infinite length, and its lateral deflection is represented by 
tL : lR -+ R Deformation takes place under conditions of prescribed total shortening, leading to the 
variational problem 

(0.1) 

Solutions of this minimization problem solve the Euler-Lagrange equation 

(0.2) u"" + pu" + F'(u) = 0, -00 < x < 00. 

The foundation has a nonlinear stress-strain relationship F', combining a destiffening character 
for small deformation with subsequent st·iffening for large deformation. We prove that for every value 
of the shortening >. > 0 the minimization problem has at least one solution. Iu the limit >. -+ oo 

these solutions converge on bounded intervals to a periodic profile that is characterized by a related 
variational problem. 

We also examine the relationship with a bifurcation branch of solutions of (0.2), and show 
numerically that all minimizers of (0.1) lie on this branch This information provides an interesting 
insight into the structure of the solution set of (0.1). 
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1. Introduction. 

1.1. Localized buckling. Long elastic structures that are loaded in the longi
tudinal direction can buckle in a localized manner. By this we mean that the lateral 
deflection is concentrated on a small section of the total length of the structure. 
A well-known example of this localization phenomenon is the axially loaded cylinder, 
which buckles in a localized diamond-like pattern [28, 14, 8]. Another example, one 
which will be the subject of this paper, is the strut on a foundation: a thin ela8tic 
layer confined laterally by a different elastic material. 

One area of application in which the model of a strut on a foundation has received 
extensive attention is that of structural geology. In this context the strut represents 
a thin layer of rock that is embedded in a different type of rock. and the longitudinal 
compression is the result, directly or indirectly, of tectonic plate movement. In the 
geological context the most common constitutive assumptions are those of viscOlrn, 
or visco-elastic:, materials; however, there is a case to be made for the importance 
of elastic effect8 in the deformation process [21, p. 302], and this is the situation we 
consider here. An introduction to this field can be found in [21, Chapters 10--15]. 
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Observed geological folds commonly display a certain degree of periodicity. Much 
of the initial work in this area, initiated by Biot in the late 1950's [1], centered 
on using the observed period to determine-by doing a parameter fit on the strut 
model-some of the material properties involved. In the 1970s, with the coming of 
powerful computational techniques, a consensus arose that folds can be formed in 
a sequential manner, as depicted by Figure 1.1 [5, 6]. The fold initiates around an 
imperfection, and as the applied shortening increases, the initial folds lock up and 
cease to grow, while new folds spawn at neighboring locations. At a given time the 
resulting profile shows a periodic section flanked by decaying tails; as the shortening 
increases the periodic section widens. Similar examples of localization followed by 
spreading are found in axially loaded cylinders [14, 8], in sandwich structures [9], 
and in kink banding in layered materials [10]. The survey paper [9] discusses these 
examples from a common perspective. 

periodic section 

~ ................ _~-" 11111ii._.m£ ... ,. .......... .. 

FIG. 1.1. Folds can form in a sequential manner, driven by increasing shortening (schematic). 

1.2. The modelling. In this paper we investigate the issues of localization and 
subsequent spreading of deformation for a model of an elastic strut confined by an 
elastic foundation. We will make a number of important simplifications, and therefore 
we now discuss the derivation of the equations in some detail. 

Our starting point is a thin Euler strut (a strut whose cross-sections remain planar 
and orthogonal to the center line) of infinite length. Throughout the paper we assume 
a two-dimensional setting. The independent variable x measures arc length, and we 
characterize the configuration of the strut by the center-line angle () = B(x). The 
strain energy associated with the bending of the strut is equal to (El /2) J B' 2 (x )dx. 
Eis Young's modulus and I is the moment of inertia of the cross-section. 

The strut is assumed to rest on a foundation of Winkler type, as shown in Fig
ure 1.2. The force response q of this foundation is a function of the local vertical 
displacement u(x) only, i.e., q(x) = f(u(x)). Because of the local character of this 
response, the strain energy associated with the foundation is equal to J F(u(x))dx, 
where F' = f, F(O) = 0. The vertical displacement u and the angle B are related by 
u'(x) = sinB(x). 

After nondimensionalization the total strain energy for the strut and its founda
tion is therefore given by 

1100 100 W(B) = 2 -oo B'2 (x) dx + -oo F(u(x)) dx, 

where it is understood that u' = sinB, u(-oo) = 0. We also define the shortening 
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x 
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FIG. 1.2. A strut on an elastic Winkler foundation. 

of the strut, the amount the end-points approach each other because of the deforma
tion ()(-): 

.:J(B) := £: (l-cosB(x))dx. 

In engineering it is common to differentiate between dead and rigid loading. In 
dead loading the external force acting on the structure (in Figure 1.2 the in-plane 
load p) is prescribed ("controlled" is the usual word, reflecting the possibility of a 
varying load). In rigid loading a load is applied, but the controlled parameter is the 
displacement (or some other measure of the deformation). Here the load plays the 
role of an implied quantity. The two forms of loading share the same equilibria, but 
the stability properties of these equilibria depend on the form of loading: as a general 
rule, localized buckles are unstable under dead loading, and stable under rigid loading. 
(An example of dead loading from daily life is a human being standing on a beer can. 
As soon as the buckle appears the can collapses completely, showing the instability 
of the localized buckle under dead loading. However, under rigid loading conditions 
a variety of localized buckles are witnessed [28]). 

With this in mind, we minimize the strain energy W under a prescribed value 
.>.. of the total shortening, i.e., under the condition .:J = ).. . While this is a well
posed problem, and one that we intend to return to in subsequent publications, the 
nonlinearities present render the analysis difficult. We therefore consider a partial 
linearization of this problem instead, by assuming that u' is small and replacing 

(1.1) 
u" 

u" ()' = by 
J1 - u'2 

and 

(1.2) 1 - cos()= 1 - Vl - u'2 by 
1 ,2 
-u 
2 

(Note that in doing so we eliminate nonlinearities of a geometrical nature, but retain 
the nonlinearity in the function F, which is more of a material kind. We discuss this 
issue further in section 7.) The resulting problem, the central problem in this paper, 
is 

Find a function u E H 2 (1R.) that solves the minimization problem 

(1.3a) inf{W( u) : J(u) = )..}, 



SEQUENTIAL BUCKLING: A VARIATIONAL ANALYSIS 1145 

where the stm'in energy W and total shortening J are g'iven by 

( 1.3b) W(u) = ~ / u" 2 + / F(u) and l / 2 J(u) = 2 u' . 

A solution u satisfies the Euler-Lagrange equation 

(1.4) W'(u) - pJ'(u) = 0, 

for some p E ][{, where primes denote Frechet derivatives, which is equivalent to 

(1.5) u"" + pv/' + f(u) = 0 on ][{. 

The Lagrange multiplier p is physically interpreted as the in-plane load that is re
quired to enforce the prescribed amount of shortening. Without this load, i.e., when 
minimizing VV without constraint, the sole minimizer would be the trivial state 'U ::= 0. 

Equatiou ( 1.5), for various forms of the nonlinearity f, has a history too lengthy to 
discuss in detail here. Suffice it to mention that it is known, among other names, as the 
stationary Swift- Hohenberg equation or the stationary extended Fisher- Kolmogorov 
equation, and that it appears in a host of different applications. We refer the interested 
reader to the survey articles [2, 3, 18]. 

1.3. The nonlinearity F. The results of this paper depend in a very sensi
tive manner on the properties of F. In order to describe this we introduce some 
terminology. Recall that F itself is the potential energy associated with the founda
tion springs, F' (u) = f (u) is the force associated with a deflection u, and F" is the 
marginal stiffness. 

In the engineering literature destiffening refers to a decrease in marginal stiffness, 
or in everyday language, a weakening of the material. For this model, destiffening 
refers to a decrease of F" (u) as u moves away from zero (in either positive or negative 
direction). 

The opposite of destiffening is stiffening, which applies to an increase in marginal 
stiffness as juj moves away from zero. Although we briefly dwell on such functions 
in the next section, a more interesting property is what we call de/restiffening, or 
restiff ening for short: F" ( u) decreases for small I u I and becomes increasing for large 
juj. Throughout this paper we assume a fixed function of restiffening type: 

(1.6) 
1 

a>-. - 4 

Besides the restiffening property this function also has some other desirable qualities, 
such as 

• Fis even; 
• F(u) >Oifu::;fO; 
• uF'('IL) 2:: 0. 

We will return to these issues in section 7, where we discuss in some detail the rela
tionship between the results and the function F. 

1.4. Results. In this paper we bring together a number of results concerning 

the minimization problem (1.3), (1.6). 
The existence of solutions of the minimization problem (1.3) is not immediate, 

since the domain is unbounded and therefore minimizing sequences need not be com
pact. The nonlinearity F is crucial to this issue. To illustrate this, we mention that 
in the next section we show that a stiffening function F leads to nonexistence: 
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if 2F(u)/u2 > F"(O) for all u =f. 0, then minimizing sequences are never 
compact, and the infimum is not achieved. 

In the parlance of the beginning of this paper, minimizing sequences delocalize and 
spread out. In section 2 we show how the restiffening property of (1.6) guarantees the 
existence of a minimizer. 

The role of .A in problem (1.3) is that of a pure parameter: properties of prob
lem (1.3) for one value of,\ are completely decoupled from those for a different value. 
In addition, minimizers need not be unique. If we choose a minimizer for each value 
of .A, and denote it by U>., then these observations imply that the map .A r--> U>. may 
have no continuity properties whatsoever. 

In fact, however, the situation is different. The numerical results in section 5 in
dicate that there is a strong evolutionary aspect, in that the map A r--> U>. is "mostly" 
continuous. In addition, we prove in section 3 that the evolution suggested by Fig
ure 1.1 is essentially correct: 

THEOREM. For any sequence An -+ oo, a subsequence 'U>.,,, converges, after an 
appropriate translation, to a periodic function u#. This convergence is uniform on 
bounded sets. 

The periodic function u# solves a related variational problem (see section 3). In 
section 4 we discuss some symmetry properties of this function. 

In section 5 we introduce a numerical method to search for minimizers of (1.3), 
based on a constrained gradient flow. Figure 1.3 shows some of the results of this cal
culation. While the form of this curve is unusual at first sight, in section 6 we present 
an interpretation of this curve in terms of a bifurcation diagram of a related problem 
( ( 1.5) for prescribed p). This interpretation, while nonrigorous, gives a satisfactory 
explanation and raises a few interesting questions as well. We conclude, in section 7, 
with some comments on the choice of the nonlinearity F. 

2.0 .\ 

v 

/////// 
1.1 ~---~---~-----' 

0 7.5 

Fra. 1.3. Plot of the load P>. assoc'iated with a minimizer against>.. 

2. Existence of minimizers. The existence of minimizers of problem (1.3) is 
a nontrivial problem because of the potential lack of compactness on the unbounded 
domain JR. To illustrate this we consider the case of a completely stiffening function 
F, one for which F"(u) > F"(O) if 'U =f. 0, or slightly more generally, one for which 
2F(u)lu2 > F"(O) if ·u f. 0. We then have for any u E H 2 (JR), 

(2.1) W(u) = ~ j u112 + j F(u) > ~ f u"2 + ~ j u2 2 2J(u), 
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where the final inequality follows from the observation that 

J 12 ;· II 1 ;· Ii') 1 ;· 2 u =- uu:; 2. u-+ 2 u. 

We infer that for any,\> 0, we have inf{Tr(u) : .J(u) = ,\} :2: 2,\, and for any given 
u this i11equality is strict: TV(u) > 2J(u). 

\Ve now construct an explicit minimizing sequence Un of problem (1.3) for this 
potential F. Set 

(2.2) ( ) -;;;2 /n . 
1/,n x = ane s1n:i:, :i: E JR?., 

where a,, E lR?. is chosen so that J(un) = ,\. Note that an -+ 0 as n -+ ex;. An explicit 
calculation t>hows that TV(un) -+ 2,\: therefore. with the remarkt> made above in mind. 
we conclude that inf{H'(u): J(u) = ,\} = 2,\ and that the infirnum it> not attained. 

Contained in the argument above it> a snippet of information that we will use 
several times in the proof-; that follow. For easy reference we make it a lemma. 

LEMMA 2.1. Let IC lR be an interval. bmmded or otherwise, and let u E H 2 (!) 
be 8'1LCh that UU1 = () on of. Then 

2f u'2 < ;,·u"2 + f u2. -
I I . I 

As above, the proof follows by partial integration. 
The theorem hdow shows that, in contrast to the example above, the infimum 

is attained if F is not of completely c;tiffening type, but has a <lestiffening character 
for small u (i.e., F 11 (u) < F"(O) for small u :f- 0). \Ve can interpret the situation 
in the following way. A destiffening quality (F" < F 11 (0)) favors localized defonna
tion, therefore causing minimizing sequences to be compact, resulting in the existence 
of minimizers on unbounded domains. A stiffening potential favors delocalization, 
spreading, of the deformation, as illustrated by the minimizing c;equenc:e (2.2). If the 
two characters are combined, as in the potential ( l.G). then the clestiffe11ing charac
ter for small u is sufficient to guarantee the existence of minimizern, regardless of 
the behavior for large u. On the other hand, the restiffening character in F be
comes noticeable for larger values of ,\, in which an equilibrium between localizing 
and spreading effects creates a periodic structure. vVe will return to this issue in the 
next section. 

Note that on a bounded intervaL given appropriate boundary conditions, a mini
mizer always exists. One 1night wonder whether the problem would not be simplified 
by working on a bounded interval instead of on JR?.. In fact, we expect a strong cor
respondence between the (non-)existence of minimizers on lR?. and the form of the 
minimizers on large but bounded intervals: if existence holds on JR?., then minimizers 
on intervals will be localized and largely independent of the size of the interval; but if 
there is nonexistenc:e on lR, then minimizers on the interval will be spread out, with 
a small amplitude, similar to the sequence lln above. (See [7] for a discussion of the 
purely stiffening uonlinearity on a hounded interval). From the point of view of the 
developments later in this paper, the current probkm, with a restiffening foundation, 
is fundamentally different from the purely stiffening case. In addition, we will use the 
unbounded domain in the convergence result of Theorem 3.1 and in the comparison 
with a bifurcation diagram on lR in section 6. vVith this in mind we choose to consider 
the problem on the m1bounded domain JR?.. 
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Throughout this paper we define 

W>. = inf W(u), 
uEC>. 

THEOREM 2.2. Let F be as given in (1.6). Then for each A > 0 there exists 
u EC>. that minimizes (1.3). 

Before we prove this theorem we derive some auxiliary properties. 
LEMMA 2.3. For all A > 0, 

1. W>. < 2>.. 
2. If Un E C>. is a minimizing sequence of W, then 

limsup J!unllL""(!R) :S MA 
n->OO 

for some constant M. 
Proof. Define the explicit sequence 

Ue:(x) = aec1/ 2 sech(cx) cosx, 

where ae is chosen such that J(u,,) =A (note that a,,= 0(1) as c--+ 0). This sequence 
satisfies W(u.,) __, 2.X, implying W>. :::; 2>.. For the strict inequality we compute 

A= ~ j u~(x) 2 dx 

= ~a~ { c j sech2(cx) sin2 x dx - 2c2 j sech(cx) sech' (ex) cos x sin x dx 

(2.3) +c:3 f(sech'(c:x)) 2 cos2 xdx}. 

Note that 

j sech(c:x) sech' (ex) cosxsinx dx 

= 41€ j (sech2 (cx))' sin2x dx = 2~ j sech2 (cx) cos 2x dx 

1 fir~ (2) = €2 y 2 (sech ) ~ , 

where 0 denotes the Fourier transform 

1 1 . v(w) = ;;.;-:::_ v(x)e-iwxdx. 
v 27r lR 

Since sech2 ES, the set of smooth rapidly decreasing functions, we have (~) ES, 
and therefore 

j sech(c:x)sech'(cx)cosxsinxdx = o(c:k) for all k EN. 

Using the same ideas to estimate the first and third terms in (2.3) we find 

j sech2 (cx) sin2 xdx = ~ j sech2(cx) dx + o(ck), 

j (sech' (c:x) )2 cos2 x dx = ~ j (sech' ( c:x) )2 dx + o(c:k) 
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for all k E N. Consequently (2.3) implies 

Using this we compute 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

1 ;· '.2 u;=,\(l+O(c:2 )), 

ju!= c1c:(l + O(c:2 )), 

ju~= c2c:2 (1 + O(c:2 )), 

~ Ju~2 = ,\(1 +O(c:2)) 

1149 

for 8ome constants c1 , c2 > 0. For the last equality above we apply the same argument 
as for Ju~ 2 to eliminate the cro;;s-product terms. Uniting these estirnate8 we conclude 
that 

and hence 

inf W(u) < 2,\. 
Ci. 

For part 2 we first note that since o: > 3/16, there exists (3 > 0 such that 

(2.8) for u E !R. 

By part 1 we can re8trict our attention to minimizing sequences that satisfy W(u,,) :::; 
2,\; we have 

[[un[[~'"'(ffi'.):.:; C [[un[[~1(ffi'.):.:; 2Crnax{l, 1/,8} W(un):::; 4C,\max{l, l/,B}. D 

Remark 2.1. The proof of pa.rt 1 of the lemma above uses the relative importance 
of the de8tiffening quartic term: the destiffening is of order E, while the "noise" 
associated with the nonconstant amplitude in Un is of order E2 (as shown by the 
estimates (2.4) and (2.7)). It follows that for a destiffening character of higher order, 
e.g., a function F of the type u2 /2 - u 8 /8 + au10 /10, this method of proof does not 
apply, since the destiffening will be dwarfed by the noise. However, numerical tests 
have shown that for such functions F the minimization problem still admits solutions, 
and that the assertion of the lemma still holds. 

COROLLARY 2.4. Let u,, be a minim'izing sequence for problem (1.3). Then 

liminf[[u,,[[L=(IR) = m(,\) > 0. 
n-+oo 

Proof. If [[un[[ 1,cx•(ffi'.)---> 0, then 

(2.9) 
I J 1!2 1 J 2 2 Un +;; Un 

W(u,j ___, 1 as n-+ oo. 
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Since 

\ I I 2 / " 1 / "2 1 I 2 2/\ = 'Un = - , 'Un Un :S 2 . 'Un + 2 Un' 

we infer from (2.9) that liminfW(un) 2 2..\, which contradicts part 1 of Lemma 

2.3. 0 
In addition, we need an a priori result on minimizers, which is proved in the 

appendix, as shown below. 
LEMMA 2.5. Let ·u E H 2 (!R) be a solution of (1.3). Then p < 2. 

We now continue with the proof of the main theorem of this section. 

Proof of Theorem 2.2. The proof follows quite closely the outline of the examples 

given in [12, 13]. Let Un be a minimizing sequence, and consider Pn = ·u~, 2 /2, so that 

Pn 2 0 and J Pn = 1. Of the three possibilities for this sequence, vanishing, dichotomy, 

and compactness, we show that neither vanishing nor dichotomy can occur, leaving 

compactness as the only possibility. 
Vanishing cannot occur. Suppose that 

/
·x+R 

2 
sup u;, ---+ 0 

x . x-R 
for all R > 0. 

We can choose x = 0 as the location of a maximum of each lun I, and by Corollary 2.4 

we then have ·un(O) 2 m(..\) > 0 (changing 'Un into -·un if necessary). Consequently 

lim inf ( F(un) 2 lim inf ~ JR u;, 2 (3m(..\) 2 R, 
n-+oo }IR n~oo 2 -R 

which is unbounded as R __, oo. This contradicts limsup W(un) < 2A. 

Dichotomy cannot occur. For any given )., > 0, dichotomy is contradicted, proving 

compactness of the minimizing sequence and therefore existence of a minimizer, if 

(2.10) 

for all B E (0, 1) (see [12, 13]). We shall show that (2.10) holds for all ).. > O and 

() E (0, 1). 
Define 

A= {11 > 0: (1.3) has a solution for all 0 <)..::; p}. 

First we show that A is nonempty. There exist ii., 15 > 0 such that 2F(1L)-uf(u) 2 r5u4 

for all lul :S u. Choose Ao small enough to ensure that 2M).. :S fJ. for all 0 < ,\ < Ao, 
and pick 0 < A < Ao. Let Vn be a minimizing sequence such that J( vn) = A; without 

loss of generality we suppose that llvn llL= (IR) :S u. Then 

d W(µvn)! 1 1 1 

d J( ) = -J( )2 (J(vn)W (v.,,)vn - W(v.,,)J (vn)vn) 
µ µvn µ=l Vn 

= J(~n) (/ v.,,f(vn) - 2 J F(vn)) 

(2.11) < -~ ;,,4 
- ).. "n· 
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Since llv~lli2(JR) = 2A is bounded and llvnllv=(JR) > m(A), the last term above is 

bounded away from zero as n -t oo. Therefore l!V,i,/ >..is a strictly decreasing function 
of A for 0 <A< Ao; this shows that (ll >..0 ) CA, since we have for any() E (0, 1) 

w =Aw>- < >.. (e We>- + (1 - e) w(l-e)>-) 
>- >.. O>.. (l - O)>.. 

=We>-+ W(l-e)>-· 

To show that A is open, suppose that there exists a sequence An + en tf. A, 
An +En l A, A E A, and en -t 0, such that 

Since lim inf vv€" I En 

implies 
2---by an argument similar to that of Corollary 2.4-this 

(2.12) 

However, since>.. EA, there exists u EC>- with iF(u) = W>-, and by Lemma 2.5 the 
associated load satisfies p < 2. Then 

dd W(µu)I = W'(u)u = pJ'(u)u = p: J(µu)I . 
µ µ=l ,, µ=l 

Consequently 

limsup ~(H\+0 - VV>-)::; p < 2, 
c~o E 

contradicting (2.12). 
Finally, we show that A is closed by the following claim: If u and v are minimizers 

of VV at the respective values of >.., then 

(2.13) inf{W(z): J(z) = J(u) + J(v)} < W(u) + W(v). 

This proves that A is clo:,;ed by the following argument. Suppose A ~ (0, >..0 ); for 
all () E (0, 1) we have functions u and v that minimize W under the constraints 
J(u) = BAo and J(v) = (1 - B)>..o. Inequality (2.13) then reduces to (2.10), implying 
that problem (1.3) also has a solution for A= >..o. 

To prove (2.1:3) we choose two sequences Xn 2: 0, y,,::; 0, with Xn -too and Yn -t 

-oo with certain properties detailed below. We introduce a notation for integrals over 
a part of JR.: 

W1a,bJ (n) = ~ lb u" 2 + {b F (u) 
2 a la 

and 11b 12 
J[a,bj(u) =? n · 

~ a 

Setting p = max{pu, Pv} (the maximum of the two values of the load associated with 
"ll and v) we require of the sequences :en, Yn that there exists an E > 0 such that 

< . [,r:,,,oo) (-oc,y,, { W (u) W I (v)} 
p nun , . - r:: 

- J[xn,oc)(u) J(-oo,ynJ(v) 
for all n. 



1152 MARK A. PELETIER 

This is possible since u and v are small at infinity, and therefore 

In addition we assume that ("u, u')(xn) = (v, v1)(yn) for all n. This is also possible 
since for large K the set {(u, u1)(x) : x > K} C IR2 is a spiral around the origin. The 
Rame is true for {(v, v1)(x) : x < -K} but for v the spiral rotates in the opposite 
direction. It follows that there is a countably infinite set of intersections of the two 
spirals, corresponding to pairs (xn, Yn) with Xn _, oo, Yn _, -oo. 

Now pick u, f! E H 2 (R.) such that suppu C (-oo,O) and suppfJ c (0, oo) and that 

in addition J' ( u )u = J 1 ( v )fJ = l. Define 

{
·u(xn + x) + "fn'u(xn + x) for x < 0, 

Zn(x) = 
v(yn + x) + 1nfi(Yn + x) for J.'. > 0. 

Here 1n is fixed by the requirement J ( Zn) = J (u) + J ( v): 

1 rn 12 !Xn I •I "(~ !Xn ,12 
J(zn) = 2 .}_00 U + 'Yn -oo v. U + 2 -oo U 

1 100 100 2 ;,·2'0 + 12 + I 'I + "fn ,12 ? V "'(11 V V 2 V . 
_, Yn Yn Yn 

Since supp ii n [xn, oo) = 0, 

I ..... , I,.,., I A Jx,. Joo 
'Yn -= 1l U = 'Yn -oo 'U U = 'YnJ (u)u = "'(n, 

so that 

1 f Xn 12 1 100 12 2 
J(zn) = 2 U + 2 V + 21n + C1n 

-oo Yn 

= J('u) + J(v) - J[xn,oo)(u) - J(-oo,ynJ(v) + 21n + C1~, 

where C = (1/2) j'(u12 +v1\ It follows that "In satisfies 

1 1 c 2 
"In= 2Jlxn,oo)(u) + 2J(-oo,ynJ(v) - 2rn 

as n _, oo. Note that 1n __, 0. 
Putting it all together, 

W(zn) = Wc-oo,xnJ(u+'Ynu) + W[Yn,oo)(v +rnv) 

= W('u + 1nu) + W(v + 1nfi) - Wlxn,oo)(u + "fnu) - W(-oo,y.,,J(v + 'Ynv) 

= W(u) + W(v) + rn(W1(u)u + W 1(v)v) + O('Y;_) - W[x,,,.:xJ)(u) 

- w(-oo,ynJ(v) 

= W(u) + W(v) + 'Yn(Pu + Pv) + O('Y~) - W[xn,oo) ('u) - Wc-oo,yn] (v) 

:S W(u) + W(v) + 2'YnP- (p + c:)(J[x,,,oo)(u) + Jc-oo,y,,J(v)) + O(I;,) 

:S W("u) + W(v) - 2qn + 0(1;,). 

This last inequality proves the claim (2.13) and therefore Theorem 2.2. D 
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. T?e definition of W >. provides no explicit continuity properties with respect to 
vanat10n of A. However, the variational character can be exploited to derive an 
interesting semiconvexity property. 

LEMMA 2.6. There exists C > O such that 

d2 c 
dA2 W.x ::::; >: for all A> 0, 

in the sense of distributions. 

Proof Note that u2 f'(u) - uf(u) ::::; 24F(u) for all u E JR. Choose,\> O, and let 
u achieve W>.. Setting vh = uJl + h/A, we have J(vh) =,\+hand 

d2 I 1 
dh2 W(vh) h=O = 4A2 {W"(u) · u · u - W'(u). u} 

= 4~2 /(u2 J'(u) - uf(u)) 

< 6W('u) < 12 
- A2 - A. 

This implies the result. D 
Lemma 2.6 implies that the left and right derivatives of W>. with respect to ,\ 

are well defined. Note that the Euler-Lagrange equation (1.4) implies that if W>. is 
achieved at A= Ao by U>.0 , with loadp>.0 , then 8W>./OA(Ao-) 2 P>.o 2 aW>./OA(Ao+). 
It follows that any jumps in P>. must be downward (for increasing A). 

3. Appearance of a periodic section. In the introduction we mentioned the 
locking-up and spreading of the deformation as the shortening increases. If this process 
is continued, we expect a periodic section to build up, flanked by spreading tails. The 
following theorem makes this precise for the model considered in this paper. 

THEOREM 3.1. For any sequence An --+ oo, a subsequence U>. , converges, after 
an appropriate translation, to a periodic function u#. This conver!Jence is in Ck(K) 
for all k 2 0 and for all compact sets K C JR. The periodic function ·u# solves the 
minimization problem 

(3.1) M# = inf { ~(~; : u E H1~c(JR) periodic}. 

In addition, as An'--+ oo, P>.n' --+ M#. 
In the formulation of this theorem, as in the rest of this paper, the functionals W 

and J will be defined on periodic functions u E Hfoc(JR) by restricting the integrals to 
a period and normalizing, i.e., if u has period T, then 

W(u) = ~ { u"2 +_TI {T F(u). 
2T lo lo 

Before entering the details of the proof, we should briefly comment on the appear
ance of the new minimization problem (3.1). If u minimizes W/J among all periodic 
functions, then by choosing periodic test functions ef; E H~c(JR) with the same _Period 
and considering the perturbations u + ccp we derive the Euler-Lagrange equat10n 

1 { W(u) 1 } 
0= J(u) W'(u)·ef;- J(u) J(u)·ef; . 
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Comparison with (1.4) shows that u solves the same ODE as U>., and the load is 
numerically equal to the optimal quotient W(u)/J(u) = M#. 

We conjecture that the solution of (3.1) is unique for the function F that we 
consider in this paper. However, it is not difficult to construct a different function 
F for which uniqueness does not hold. (One could construct a function F which is 
identical to (1.6) over the range of u#, but is different for (much) larger values of 
Jui. Then u# remains a local minimum for the minimization problem (3.1), but an 
additional minimum may exist with a much larger amplitude. By adjusting F this 
function can be given the same value of the ratio W/ J as u#)· 

Proof. The proof falls apart in five steps. 
Step 1. lim sup>.-+cxi W>./ ,\ :::; M#. Indeed, if vis a periodic function, then V>. (x) = 

ri(lxl - µ)v(x) belongs to C>. for someµ=µ(,\). Here rt is a smooth cut-off function 
satisfying 

( ) {
1 x ~ 0, 

1) x = 
0 x 2 1. 

Then W(v>.)/,\ = W(v>.)/J(v>.)-+ W(v)/J(v) as,\-+ oo; therefore 

. W>. . W(v>.) W(v) 
hmsup ~ :::; hmsup-\- = -J( ) , 

A-+cxi A >.-+oo A V 

from which it follows that lim sup >.__,co W-'/ ,\ ~ M#. 
Step 2. Translation of U>. and construction of a periodic function W)... 

We first note that by the assumption a 2 1/4 the nonlinearity Fis increasing in 
lul. This implies that p 2 0 by the equation (obtained by multiplying (1.5) by u and 
integrating) 

(3.2) 

As a result the origin is a saddle-focus for (1.5) (when viewed as a dynamical system 
in :r), and orbits in the stable and unstable manifold oscillate around zero. 

For a given ,\ we divide lR into intervals [xi, xi+1 ) delimited by the stationary 
points x; of U)... Note that the oscillation mentioned above implies that none of the 
intervals [xi, :.vi+ 1) is unbounded. We calculate the ratio r; of the local values of W 
and J for each of these intervals, 

l rx;+1 u"2 + 1·x.,+1 F(u ) 
2 Jx; A X; ).. 

7'; = 

For large JxJ, F(u>-.) ""uV2, and therefore liminf;-<±00 r; 2 2. Since W(u>.)/,\ is 
a convex combination of {ri}, 

and since W(u>.)/,\ < 2, there exists i E Z such that r; is minimal among all r;, and 
for this ·i we have r; < 2. Fixing i we translate U>. such that the interval [x;, x;+1) 

becomes [O, T/2). The periodic function W)I, with period T, is now defined to be equal 
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to 'U>. on [O, T/2), and to be even around 0 and around T/2, as shown in Figure 3.1. 
Note that by the choice of i we have 

(3.3) 
W(w>.) VV(<t>.) 
J(w>.) = T; < --,\-. 

Remark also that thi;; inequality implies that any localized function has a ratio W / J 
that is strictly larger than AI#. To indicate the dependence of Ton ,\we write T>.. 

F1.G. :J.l. A section between two stationnry po'in,ts is repl'icaled. 

Step :3. lim>.-;= t'V(w>.)/J(w>.) = M#. This follows from the sequence of inequal
ities 

W(w>.) TV(w>.) 
M#::; liminf J( ) ::=; limsup J( ) 

,\-;oc 'W\ ).-;oc 'W>. 

lV ('1t>.) 
S limsup --,·- ::=; 1\1#. 

A->OG /\ 

Str,p 4. The sequence {u>.} is bounded in Hiic(lR), and the ;;equencc {w>.} is 
bounded in H1~",(lR), This result depends crucially on the destiffening-restiffening 
character of F via the lemma below. 

LEMMA 3.2. Fi:c K ER Therr, exists Al> 0 such that if p S K and u E U'0 (JR) 
solves (1.5), then [la[IL""(IR) SM. 

Note that the order of the quantifiers is important: the lemma states that if u is 
bounded, then it is bounded by a constant independent of u and p (imbject top ::=; K). 
\Ve defer the proof of this lemma to the end of this section. 

Since the functions ·u>. satisfy (1.5) and P>. < 2, the sequence {u>.} is bounded in 
L00 (1R). Standard elliptic estimates (e.g. [23. Theorem 11.1]) then give the bounded
ness of {u>.} in H 1 on compact sets. Since the cut-and-paste operation by which W>. 

is constructed does not com;erve H 4-regularity, the functions 11'>. only enjoy the same 
regularity properties up to H 2-regularity. 

Ao a consequence of the H 4-bou11dedness, ll~, u~, and u~' are all bounded in 
1=(1R) independently of,\; additionally T;x. is bounded from below, since if T>, -+ 

0, then by the bound on 'tL~, liu>-llL""(O,T.>.) = llw>-llL""(~) ~ 0, so that we have 
liminf W(w>.)/J(w>.) ::'.:: 2. This contradicts (3.3). 

Step 5. Convergence. Since W>. is bounded in H1~c uniformly in>.., we can choose 
a sequence that converges weakly in H1~c(1R) to a limit function ·w00 . 

1. If T>. is bounded along this sequence, then-possibly after extracting a subse
quence-·-T>. and J(w>.) converge, and Wx is periodic with a finite period. The weak 
convergence implies that W (woe) ::=; lim inf W ( w >.), so that 'Woo is a solution of the 
minimization problem (3.1). 

2. If T>. is unbounded, then note that 'W>. and "tl.>. have the same weak limit w00 • 

We choose a subsequence such that P>., which is bounded between 0 and 2, converges. 
The weak convergence of 'll>. in H1~c implies that ·w;x. satisfies (1.5) with limit load 
p00 . This load lies necessarily between 0 and 2; this implies, as above, that solutions 
tending to zero oscillate around zero, contradicting the monotonicity of 'W\. 
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We conclude that case 2 does not occur. 
If we pick 6 > 0 such that (0, 6) is included in (0, T;../2) for all ,\, and </> E 

C;'.'°((O, 6)), then 

by the weak convergence of w;... By the remark made before the beginning of the 
proof, the fact that w00 minimizes the ratio W / J among all periodic functions implies 
that w 00 also satisfies (1.5) with p = M#. Therefore p;.. -> M#. 

Step 6. Conclusion. The functions u;.. and w00 solve the same differential equa
tion (1.5) for loa,ds p;.. and M# that satisfy p;..-> M#. We have 'u;.. ~ w 00 in H 2 (0, 6); 
using standard elliptic theory it follows that u;.. converges to w 00 in Ck(O, 6) for all 
k E N. The classical result of continuous dependence on initial data then extends this 
to any compact set K. This concludes the proof of the theorem. D 

We end this section with the proof of Lemma 3.2. 

Proof We first prove the lemma under the condition IPI :::; K. Suppose that 

Pn E [-K, K] and Un satisfy (1.5), with llunllux'(IR) -> oo. Set In = llunll~~(IR)' so 
that /n -> 0, and define 

Then 

Since Vn is uniformly bounded, classical elliptic estimates (e.g., [23]) imply that 'Vn ~ 

v00 in H1~JlR), after extraction of a subsequence. The limit v= therefore satisfies the 
equation 

(3.4) /Ill+ 'V5 = 0 v= a = on JR, 

which has no nonzero bounded solution (see, e.g., (19]). This contradicts the fact that 

llvnllL""(IR) = 1. 
If we release the lower bound on p, and assume that Pn-> -oo, then we define in 

addition 

and 

Since v 1111 and pv" are both positive operators if p < 0, the unboundedness of p is 
irrelevant for the elliptic estimates. The limit equation is 

on JR, 

where -;y, 6 E [O, 1] and"!+ 8 # 0. For none of the possible combinations of ;=y and 8 
does this equation have a bounded nonzero solution. D 
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4. The periodic function u#. In the previous section we showed that there 
exists a solution u# to the variational problem 

M . f{W(u) 2 } # = m J(u) : u E H 10c(JR) periodic 

and that it is the limit, on compact sets, of solutions u.x of problem (1.3). In this 
section we discuss a number of issues concerning this periodic function u#. 

4.1. Critical buckling load. Going back to the model of an a..xiallv loaded 
strut, let us briefly examine the behavior under dead loading, rather than rigid loading: 
i.e., we fix the load p and seek an associated response. The appropriate energy for 
this loading situation is [24, p. 50] 

(4.1) .C(u) = W(u) - pJ(u), 

which is often called the total potential or the Lagrangian. Note that equilibria of C 
again satisfy (1.4); both dead and rigid loading lead to the same equilibria. but the 
stability properties differ. 

For small values of p, .C is a positive definite function of u, and the trivial response, 
u = 0, is the unique global minimizer. When p passes a threshold value there will be 
profiles with a negative Lagrangian, so that the zero response is no longer optimal, 
and can be improved upon by a nonzero deflection. Thus we can define a critical load 
Pc, such that 

inf L:(u) = 0 
uEH 2 (IR) 

inf .C(u) < 0 
uEH2 (JR) 

if p <Pc, 

if p >Pc· 

Note that if inf £( u) < 0, then in fact inf .C(u) = -oo, by replication of an appropriate 
function u. 

An alternative, but equivalent, way of representing the statements above is 

- inf W(u) 
Pc - uEH2 (JR) J(u) . 

Here the connection with the previous section becomes clear. 

4.2. Symmetry of the minimizer. Variational problems very similar to that 
of inf C arise in the study of polymeric materials under tension [11, 16]. It is interesting 
to note that the concept of a critical load (Pc), that has its origin in a mechanical 
viewpoint, is mirrored very closely by the ideas presented in [11], notably Theorem 6.1. 

While the settings of [11, 16] are slightly different from the current one, some of 
the proofs carry over immediately. By adapting Lemmas 3.3 and 3.6 of [16] we find 
the following. 

LEMMA 4.1 (see [16]). 
1. u# is even about any critical point; 
2. if u# has a zero, then it is odd about this zero. 

As for the condition that u# have zeros, this is easily proved as follows. 
LEMMA 4.2. u# has a zero. 
Proof. Suppose that u# > 0 on R Forµ> 1, define Vµ = maxu#-µ((maxu#)-

u#)· Then J vi2 = µ2 Ju';/, J v~ 2 = µ 2 Ju# 2 , and J F(vµ) :::; J F(u#) provided 
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v1, ::'.': 0 (recall that F'(u) ::'.': 0 if u 2: 0). Therefore 

vV(v1,) < if Ju';/+ J F(u#) 
J(vµ) - e:;. Ju# 2 

which contradicts the minimality of 1l#. D 
In summary. u# is both odd and even. 

5. Numerical computation of minimizers. 

5.1. Procedure. The computation of global minimizers in a nonconvex setting 
suffers from the potential existence of a large number of local minimizers. The problem 
at hand that of minimizing W for prescribed values of J-- appears to be particularly 
demanding from this point of view, since the associated Euler--Lagrange equation ( 1. 5) 
is expected to have a large number of homoclinic solutions. Clrnmpncys and Toland [4] 
showed the existence of a multitude of hornoclinic orbits bifurcating from p = -2 for 
a related problem (a = CJ), which they numerically tracked into the p > 0 domain. 
These orbits are "multimodal," "repeated" versions of a primary orbit. In addition 
the existence of many "multibump" homoclinics has been shown, whi<.;h consist of N 
copies of a given homoclinic, separated by large distances. 

However, there is evidence that many of these homoclinic orbits arc not con
strained minimizers. There is a folk theorem, which received some backup in [22], 
that local stability under rigid loading is related to the change of J along an equilib
rium path: if J decreases, then the solution is stable, and it is unstable otherwise. 
This would disqualify many equilibria off-hand. For the multibump homoc:linics an 
additional argument suggests that they can never be stable (see again [22]). Based 
on this circumstantial evidence, we conjecture that the number of constrained local 
minimizers is in fact very limited. The numerical evidence of this section supports 
this conjecture, and we shall return to a further discussion of the issue in section 6. 

We therefore adopt the following procedure to seek a global rninimi~er of prob
lem (1.3) for given..\. Starting from quasi-random initial data (satisfying J = ..\) we 
solve the constrained gradient flow problem 

( 5.1) 

(5.2) 

1lt = -·u,xxxx - P1lxx - .f(u), 
J(u(-, t)) = ..\, 

x E JR'., t > 0. 

t >CJ. 

Here p = p( t) is a priori unknown, and is determined as part of the solution. This 
problem has a strictly decreasing Lyapunov function (the functional U'), and con
verges rapidly to a stationary solution, which we assume to be a local minimizer. By 
repeating this process for a "large" number of different random initial data we collect. 
a number of local minimizers. We select the solution with the lowest value of W as 
the global minimizer of W under the condition J = ..\. 

For the computation of solutions of the constrained dynamical system (5.1) (5.2) 
we restrict the problem to a finite domain (-L, L), with L suitably large, and im
pose the boundary conditions of a simply supported beam (u(±L) = 'Uxx(±L) = 0). 
An equivalent variational formulation follows by multiplying the equation by a test 
function v with v(±L) = 0 and integrating: 

j ·L JL /L JL (5.3) 'Utvdx+ UxxV~:xd:r-p Ux'Uxd:z:+ J('u)vdx=O. 
-L -L . -L -L 
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We now determine an approximation to u(x, t) by using the finite-element method 
to give a semidiscretization of (5.3) [25]. To do this we approximate u(x, t) by the 
function Uh(x, t) = L Ui(t)</>i(x) + L Ux;(t)'lj;;(x). Here </>i and 7./Ji are piecewise cubic 
functions defined on a uniform mesh of spacing h : = 2£ / N so that 

rPi ( - L + j h) = ·ijJ; ( - L + j h) = 8iJ and 'I/Ji ( -L + j h) = </>' ( - L + j h) = 0 

for ·i, j = 0, ... , N. 

The space Sh is the span of the functions</>; ('i = 1, ... , N -1) and 'I/Ji (i = 0, ... , N) 
(such that the imposed boundary condition u = 0 is incorporated into the solution 
space). We set U E JR2N equal to U = U(t) = (U1 , ... ,UN-1,Uxo, ... ,UxN)· Now 
we require that Uh should satisfy (5.3) for all functions V E Sh· Setting V = </>; or 
V ='I/Ji leads to the following system of ODEs for U and P: 

(5.4) AUt + EU - PCU + D = 0, 

where the 2N x 2N matrices A, B, and Care given by 

A;J = j </>;</>J, 

B;J = J <P:'</>'j, 

cij = j <1>;</>j, 

l:::'.i,j:SN-1, 

l:::'.i,j:SN-1, 

1 :S i, j :'.'::'. N - 1, 

with similar entries for other ranges of i and j. The components Di of the zero-order 
term D in (5.4) are numerical approximations, using Simpson's rule, of the integral 

J f(Uh)</>i, 1 :S i :S N - 1, 

J f(Uh)'i/Ji-N, N :'.'::'. i :S 2N. 

The in-plane load p(t) is determined as part of the solution and the necessary and 
sufficient condition comes from the integral constraint (5.2), which reads in discretized 
form 

(5.5) ~urcu = >-. 
2 

The system (5.4)-(5.5) is then an index-2 differential-algebraic equation. Differenti
ating (5.5) with respect to time we find 

(5.6) 

We solved (5.4) and (5.6) using DDASSL, a backward-difference form differential
algebraic equation solver [20]. We choose to replace the constraint (5.5) by (5.6) since 
the latter provides a DAE system of index one, which DDASSL is designed to handle. 
It is verified after calculation that the deviation from (5.5) due to accumulation of 
numerical error is acceptably small (relative error less than 0.01). 
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Frc. 5.l. Results of the rmmerical minimization (a= 0.3). 

5.2. Results. Figure 5.1 shows a plot of the load P>- as a function of >.. The 
initial data sample size is 25. 

A number of features of this graph merit special mention. 
1. The graph decomposes into a collection of continuous curve1:J. The apparent 

discontinuities in this figure are actual discontinuities; the change iu >. cau1:Jes local 
minirna to move relative to each other, and at these discontinuities the global minimum 
jumps from one local minimum to another. Also, it appears that the continuous curves 
are projections of continua of solutions in state space (note that comparison is not 
trivial because of the interference of the discretization; also, we do not want to impose 
any symmetry). 

2. Theorem 3.1 states that for any sequence An _. oo, P>-,, -+ A1#. In Figure 5.1 
we recogniz:e this convergence in the decrease of the vertical extent of the graph as >. 
increase:;. 

3. On the continuous parts of the curve, the solution has either odd or even 
:;ymmetry. At the jumps the solution switches from one to the other. 

4. The load is not a continuous function of >.; but all jumps are downward. 
Compare this to Lemma 2.6. 

In the next section we give an interpretation of the form of Figure 5.1. 

6. Correspondence with the bifurcation diagram. In this section we briefly 
change our perspective: instead of problem (1.3) we consider the ODE (1.5), 

( l.5) 'U1111 + Ji'U11 + f ('U) = 0 Oll JR, 

where p is a prescribed parameter. A solution of (1.3) also solves (1.5), but the 
opposite is not true. As we mentioned in the previous section, there are many solutions 
of ( 1.5) that are strongly suspected of not even being local constrained minimizers. 

Figure 6.1 shows a bifurcation plot of (1.5). At p = 2, at zero J, a Hamiltonian
Hopf bifurcation creates four homoclinic orbits. Two of these are even, and each the 
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FIG. G.l. Bifurcation diagram for (1.5) showing curves of even (continuous line) and odd 

(dashed line) solutions bifurcating from p = 2. Here°'= 0.3. 

opposite of the other ( u2 = -u1 ); the other two are odd, and again each other's 
opposite. In Figure 6.1 we identify the two even and the two odd solutions and thus 
draw two curves in total. 

The initial part of the figure, near p = 2, is typical for a destiffening nonlinearity. 
The oscillating behavior for larger values of J, however, is related to the competing 
destiffening and re8tiffening qualities. It is shown in [19] how the restiffening nature 
(more specifically, the fact that F(it) > F(O) for u. f. 0) implies that along the curve 
p must be bounded from below. Woods [26] and ·woods and Champney8 [27] show 
that the snaking behavior can be explained as the result of a collision of the unstable 
manifold of zero with the stable manifold of a family of periodic orbits parametrized 

by p. When p = M#, this periodic orbit is exactly the function u# of Theorem 3.1. 
When we combine this figure and Figure 5.1 into one diagram (Figure 6.2) there 

is a strong suggestion that all minimizers lie on the bifurcation curve. If we elevate 
this numerical suggestion to the status of hypothesis, that is, if we suppose that all 
minimizers of problem (1.3) lie on this bifurcation diagram, then the jumps from one 
curve to the other result from a simple energy argument. In a graph of load against 
deflection, strain energy is represented by area under the graph. More precisely, if we 
have a continuum of solutions Vs of (1.4), parametrized bys, with associated load p 8 , 

then 

with a slight abuse of notation in the last integral. 
To explain the jumps, let us assume, to start with, that for some interval of 
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2.0 

'J 
111--'---.J._____J_ _ __.__J__c _ __._ _ _L__.L.___ 

10 

FIG. 6.2. Combination of Figures 5.1 and 6.1. 

values of,\ all minimizers lie on a given continuum of solutions V 8 . This is shown 
schematically in Figure 6.3. At the critical value Ac the two areas E1 and E2 are 
equal, implying that the strain energies at A and B are equal. As ,\ passes through 
the critical value, the minimum in the strain energy jumps from the top to the bottom 
curve. 

p A 

:B 
Ac A 

FIG. 6.3. The thick line indicates the rn'inimizer under conslru·ined >.. 

In the case of the problem as stated in ( 1.3), the numerical results clearly indicate 
that both the branches of solutions in Figure 6.1 contain minimizers. We therefore 
need to take both curves into account when searching for jumps. As an example, 
Figure 6.4 shows a blow-up of the first jump in Figure 5.1, where the minimum passes 
from the even to the odd branch. Again the jump corresponds to an equal-area 
condition. The other jumps arise in the same manner. 

In summary, if we make the assumption that all global minimizers of (1.3) lie on 
the bifurcation diagram of Figure 6.1, then the form of Figure 5.1 follows readily from 
energy comparison. 

The assumption that all global minimizers lie on the bifurcation diagram is a 
strong one. As of yet there is no conclusive argument why this might be the case. 
For some specific classes of solutions of (1.5) it has been shown that they are or are 
not locally minimal (see above) but these results depend in a critical manner on the 
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i.1~~~~--'-~~~~--'-~~~~~ 

0 

1.1 
2.5 

J 1.5 

FIG. 6.4. 

0 0 

1163 

FIG. 6.5. Every circle represents a "local minimizer" that was found numerically (see text). 

structure of the solutions involved. A complete classification of all solutions of (1.5) 
is still a distant goal, and therefore doing an exhaustive search is not an option. 

To complicate matters, the numerical results suggest that local optimality does 
not guarantee membership of the bifurcation diagram in Figure 6.1. As mentioned 
before, the algorithm used for finding the global minimizer runs a constrained gradient 
flow algorithm starting from random initial data; the function that the algorithm 
stabilizes at for large time is assumed to represent a local minimum. This procedure 
is repeated a number of times, and the local minimum with least strain energy is 
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tagged as the global minimum. This is the solution that appears in Figures 5.1 
and 6.2. 

In Figure 6.5 we show an excerpt of Figure 6.2, but this time we plot not only 
the global minimum but all of the local minima that were found along the way. In 
addition to the solutions that we would expect, those that lie on the two bifurcation 
curves, other solutions appear with a different structure. Of course, "local optimality" 
has been established in a crude manner, so this could well be a numerical artifact. The 
question of the relationship between the minimization problem (1.3) and Figure 6.1 
remains an interesting one, however, that merits being studied in more detail. 

7. The nonlinearity F. In this paper we concentrate entirely on functions 
F of the form (1.6). Of course the class of functions for which one can derive the 
same results is much larger, and in this section we give some indication as to which 
properties of F enter into play. In addition, the existence result (Theorem 2.2) and 
the convergence result (Theorem 3.1) differ in their requirements, ancl we shall also 
comment on this issue. 

The term destiffening was defined in the introduction as a decrease in the marginal 
stiffness F" ( u) as u moves away from zero. The actual property used in the proofs, 
however, is the combination "F"'(O) = 0 and F'111 (0) < O" (in Lemma 2.:~, part 1). 
The function (1.6) satisfies both of these formulations of the destiffening character, 
but the function F(n) = u2 /2 - u6 /6 + m/3 /8, for instance, satisfies only the first 
of the two. As remarked on page 1149, the proof of lemma 2.3 does not apply to 
this latter function, but numerical results suggest that the assertion of the Lemma 
(W;, < 2J\) holds nonetheless. At this stage we must conclude that there i8 a grey 
area between these two formulations of "destiffening.'' 

If we tolerate this lack of accuracy for the moment, we can assert that the destiff
ening nature is crucial for the existence proof, via the same property vV;, < 2J\ and the 
estimate (2.11). However, destiffening alone is not sufficient to guarantee existence 
for all J\ > 0. If F takes negative values (assuming F(O) = 0), say F(u) < 0, then 
for sufficiently large values of A we can create admissible profiles with large negative 
strain energy. As an example, consider 

11k:(:x:) = ur1(lxl - k), 

where r/ is a smooth cut-off function such that 1) = 1 011 ( - oo, -1] and ''7 = 0 on 
[l, oo). If k > 1, then J(u1o) is independent of k, but W(uk) takes arbitrarily large 
negative values as k ---+ oo. Since we therefore have infc" W = -oo, the exi8tence 
question is absurd. In order to avoid this degeneracy, we need to assume F (u) ~ 0 
(the possibility F(u) = 0, u "I 0 leads to noncompactness of minimizing sequences; 
however, such sequences can be adapted to regain compactness, so that the existence 
of a minimizer is not compromised). 

To summarize, the main characteristics of F that lead to existence are the destiff
ening nature and this positivity property. The function (1.6) meets these constraints 
if and only if a ;:: 3/16. 

Turning to the convergence of minimizers as the end-shortening A tends to in
finity (Theorem 3.1), simple positivity of F is not sufficient. One can construct 
counter-examples where F('u) is small, but positive, for large l'ul; minimizers for such 
nonlinearities are unbounded in the L 00 -norm and therefore do not converge. Some 
form of stiffening for larger u is necessary to prevent this runaway. As before, no sharp 
condition is known, but Lemma 3.2, which provides the all-important L 00 bound, can 
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be proved for all F with 

F'(s),...., sq-I as jsj-+ oo, with q > 2, 

without any change in the proof. For such functions F the statement of Theorem 3.1 
should hold unchanged. 

In addition, for the convergence result we assume that a 2 1/4, so that p 2 O 
(see (3.2)), and solutions necessarily oscillate at infinity. This property is used twice 
in the proof of Theorem 3.1. We conjecture that a 2 1/4 is unnecessarily restrictive, 
however, and that a 2 3/16 should suffice for both existence of minimizers and the 
convergence for large A.. 

While dwelling on the subject of the nonlinearity F, we might also comment on 
the requirement of restiffening itself, i.e., the fact that we assume a relatively complex 
structure in the response of the elastic foundation. It is true that the combination 
of initial destiffening and subsequent stiffening appears artificial. However, there 
is good reason to assume that both the destiffening and the subsequent stiffening 
characters are present in actual examples of elastic struts on foundations--not in the 
foundation response, but in other elements in the model. For instance, in linearizing 
the higher-order terms in the equation-that is, by replacing Wand .:J by Wand J
a destiffening property that is present in the original formulation has been discarded. 
Miihlhaus [17] gives a heuristic argument for this fact, and it can be verified by doing 
a small-amplitude development of the appropriate nonlinear terms. 

Similarly, a foundation that does not have the local response of the Winkler foun
dation that we consider here, but "feels" the proximity of the layer at adjoining sites, 
has a strongly stiffening character for large deformations. This is illustrated by Fig
ure 7.1, where the material indicated by the hashing, being squashed by the bends 
in the strut, will exert a large force on the strut in the opposite direction. This is 
an inherently nonlocal effect that cannot be captured with a Winkler foundation. In 
summary, the various simplifying assumptions that we have made during the mod
elling process have removed the destiffening and subsequent stiffening characteristics 
from the formulation, forcing us to reintroduce them via the foundation response. 

With these arguments in mind we chose to consider a mathematical model that 
has the nature, if not the exact form, of the mechanical problem. We hope that the 
ideas of this paper will be amenable to future extension. 

FIG. 7.1. Squashed material exerts a nonlocal force on the strut. 

Appendix. Proof of Lemma 2.5. It is relatively simple to prove that for any 
minimizer u the load necessarily satisfies p::; 2. If u minimizes W at constant J, with 
associated load p, then u is a stationary point of the functional 

.C(u) = W(u) - pJ(u). 
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Since the constraint is one-dimensional, the second derivative of C at u cannot have 
more than one unstable eigenmode. 

On the other hand, suppose that p > 2 and let !/l E C~(JR) satisfy 

If lxl is sufficiently large, then F"(u(x))::::; 1 and therefore, setting 'l/JK(x) = !fl(x-K), 

C"(u) · !flK · !/lK = j (!fl'K2 - p!jl~ 2 + F"(u)!flK 2 ) < 0, 

both for large and for small K. It follows that C has at least two unstable directions, 
and this contradicts the assumption that u is a minimum. 

When we write (1.5), for p = 2, as a four-dimensional dynamical (Hamiltonian) 
system, then the linear part of this system is given by a matrix which is not diago
nizable. Using normal form theory, for every k EN we can transform the system to 
a system given by the Hamiltonian 

(A.l) H = ~ \pl 2 + IJJ, Jq) + P(\ql 2 , (p, Jq)) + O(lp\2"', lql2"') 

(see, e.g., [15, Chapter VII]). Here P is a polynomial in its two arguments, whose 
lowest-order terms are quadratic. For our purposes the only important term in P( u, v) 
is au2 , or equivalently a \ql 4 • The calculations done by Woods [26] show that a > 0. 

By hypothesis, the orbit represented by (p(t), q(t)) converges to the origin as 
t --+ oo. Since the system is linear in the limit of small amplitude, it follows that 
(p, q) must converge to solutions of the linear problem. More accurately, if we choose 
tn --+ oo, and rescale by setting 

then the functions (Pn, qn) converge on compact subsets to bounded solutions of the 
linear problem. Since all such solutions satisfy p = 0, it follows that p = o(\ql) as 
t--+ 00. 

We next transform (p, q) to polar coordinates ( r, R, B, 8), given by 

q1 = r cos B, q2 = rsinO, 

P1 = RcosO- (~) sinO, P2 = RsinB + (~) cosO. 

The Hamiltonian then takes the form 

H(r, R, 0, 8) = ~ ( R2 + ( ~) 2) - e + P(r2 , 8) + o ( \ R 2 + ( ~) 2 
\"' + r2"') . 

The result p = o(lql) translates to R/r, 8 /r2 --+ 0, which implies, together with H = 0, 
that 
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We can then calculate an estimate of the rate of decay of 8: 

It follows that for k :?': 4 the rate of decay of e is too small to be compatible with the 
condition that u E H 2 (JR), or 

since 

for :some c > 0, in the limit t -+ oo. 
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