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We study the sojourn times of customers in an M/M/I queue with the processor sharing 

service discipline and a server that is subject to breakdowns. The lengths of the break

downs have a general distribution, whereas the "on-periods" are exponentially distributed. 

A branching process approach leads to a decomposition of the sojourn time, in which the 

components are independent of each other and can be investigated separately. We derive the 

Laplace-Stieltjes transform of the sojourn-time distribution in steady state, and show that 

the expected sojourn time is not proportional to the service requirement. In the heavy-traffic 

limit, the sojourn time conditioned on the service requirement and scaled by the traffic 

load is shown to be exponentially distributed. The results can be used for the performance 

analysis of elastic traffic in communication networks, in particular, the ABR service class 

in ATM networks, and best-effort services in IP networks. 

Keywords: processor sharing, service interruptions, sojourn time, elastic traffic, available 

bit rate services, best-effort traffic 

1. Introduction 

We consider a processor sharing queue with a single server which is subject to 
breakdowns. For this model we study the sojourn time distribution of customers in the 

system, that is the time that elapses between the arrival of a customer and his departure 
from the system. In the (egalitarian) processor sharing service discipline, when there 

are n > 0 customers in the system, all these customers simultaneously get an equal 

share of the service capacity, i.e., each customer gets a fraction 1 /n of the capacity. 
The processor sharing service discipline became of interest as the idealisation of time

sharing queueing models that arose with the introduction of time-sharing computing in 
the sixties. Today, processor sharing models have many other applications, for instance 
in the performance analysis of telecommunication networks. The present study was 

motivated by the Available Bit Rate (ABR) service class in Asynchronous Transfer 
Mode (ATM) networks. The ABR service class is primarily designed for carrying 

data-connections with a "low priority", in contrast with "higher priority" Constant Bit 
Rate (CBR) and Variable Bit Rate (VBR) services. Because of the priority structure, 
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ABR connections will typically receive a varying service capacity. In this paper we 
consider the extreme case where the service capacity available to the ABR traffic 
alternates between a positive value and zero, as a first step towards analysing the 
case where, for instance, the server alternates between two (or more) positive service 
speeds. The definition of the ABR service class [31] requires that the available capacity 
is fairly shared among users. This explains the relevance of processor sharing models 
for the performance analysis of ABR connections. The results in this paper are also of 
interest for best-effort services in Internet Protocol (IP) networks. Similar to the_ ABR 
traffic in ATM networks, best-effort traffic streams in IP networks have to share the 
capacity on the communication links of the network, see, for instance, Roberts [23]. 

Processor sharing queues have been studied extensively in the literature. Already 
in 1969 Sakata et al. [24] showed that the steady-state queue length distribution of the 
M/G/1 queue with processor sharing was geometric, and insensitive to the service 
time distribution except from its first moment. This result was extended by Cohen [3] 
to a general class of networks, in which the rate at which the customers at a certain 
node are served is a function of the node and of the number of customers at that 
node (there called generalised processor sharing). Cohen [3] also gives results for 
mean sojourn times. However, determining the sojourn time distribution in processor. 
sharing queues turned out to be a very difficult problem. 

For the M/M/ 1 queue with processor sharing, a closed-form expression for the 
Laplace-Stieltjes transform (LST) of the distribution of the sojourn times - conditional 
on the amount of service required and the number of customers seen upon arrival - was 
first derived by Coffman et al. [2]. Sengupta and Jagerman [28] found an alternative 
expression for the LST of the distribution of the sojourn time conditioned only on the 
number of customers seen upon arrival. In particular they found that the kth moment 
of the conditional sojourn time is a polynomial of degree k in the number of customers 
upon arrival. The distribution function of the sojourn times, conditioned on the amount 
of service required, was studied by Morrison [18]. 

The sojourn time distribution in the M/G/1 processor sharing queue was first 
analysed by Yashkov [36]. Schassberger [25] considered the M/G/1 processor sharing 
queue as the limit of the round robin discipline. Ott [21] found the joint LST and 
generating function of the distribution of the sojourn time and the number of customers 
left behind. Van den Berg and Boxma [32] exploit~d the product form structure of an 
M/M/1 queue with general feedback for an alternative derivation of the sojourn time 
distribution in the M/G/1 processor sharing queue. Rege and Sengupta (22] gave a 
decomposition theorem for the sojourn time distribution for the M/G/1 with K classes 
of customers and discriminatory processor sharing. Grishechkin [ 12, 13] described the 
M/G/1 queue with batch arrivals and a generalised processor sharing discipline by 
means of Crump-Mode-Jagers branching processes. For a more extensive overview 
of the literature on processor sharing queueing models we refer to Yashkov's survey 
papers [38,39], and references therein. 

In the present study we analyse the sojourn times of customers in the M/M/1 
processor sharing queue with a server which alternates between an on-state and an off-
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state (breakdown). When the server is in the off-state there is no service. We assume 
that the on-periods and the off-periods form an alternating renewal process. We require 
that the on-periods have an exponentially distributed duration, but make no assumption 
on the distribution of the duration of the off-periods other than finiteness of moments 
involved in the analysis, in particular the mean duration of the off-periods. 

The assumption of exponentially distributed service requirements may be relaxed 
for some parts of our analysis. For instance, the decomposition result in section 3 
may be obtained similarly for generally distributed service requirements. Also, the 
results of sections 4 and 5 may be generalised for that case by use of the Laplace 
transform method for solving differential equations. Nevertheless, the results for the 
exponential services are presented for two reasons. Firstly, the fundamental ideas are 
the same as for general service requirements, but the presentation is more transparent. 
Secondly, under the exponentiality assumption for service requirements we get more 
explicit results, and at some points we are able to carry the analysis further. This may 
be important for future attempts at analysing models with a more general process for 
variations in the server availability, for instance a server which alternates between two 
positive service speeds. The latter case does not lend itself (yet) for a similar detailed 
mathematical analysis, see for instance Nufiez-Queija [20]. 

Queueing models with a First Come First Served (FCFS) discipline and servers 
that are subject to breakdowns have received much attention in the literature. The first 
ones to consider queueing models with interruptions (and their connection with priority 
models) were White and Christie [34]. Gaver [ 11] obtained the steady-state queue 
length distribution of the Mx /G/1 queue with exponentially distributed on-times and 
general off-times. We further mention the early work of Mitrani and Avi-Itzhak [17] on 
a queueing model with multiple servers which are subject to breakdowns, and the work 
of Neuts [19, chapter 6] concerned with queues in a random environment. Bounds and 
approximations for queue lengths and sojourn times when the on-times have a general 
distribution as well are studied by Federgruen and Green [6,7] and Sengupta [26]. 
Recent publications on queues with server breakdowns are, for instance, Takine and 
Sengupta [29], Li et al. [16], and Lee [15]. For an extensive overview of the literature 
on queueing models with service interruptions we refer to Federgruen and Green [6,7]. 
More recent references can be found in Takine and Sengupta [29]. To the author's 
knowledge, there are no previous publications on queues with server breakdowns and 
processor sharing discipline. 

The paper is organised as follows. We define the model in section 2, and give the 
joint steady-state distribution of the state of the server and the number of customers 
in the system. In section 3 we represent the sojourn time of a customer conditional 
on his service requirement, by a branching process. In section 4 we characterise 
the distributions of two fundamental random variables in the branching process by 
deriving differential equations for the LSTs of their distributions and then solving 
these in terms of a single integral equation. We derive the first two moments of the 
two fundamental random variables of section 5, and give the general form of higher 
moments. In section 6 we use these results to obtain an explicit expression for the first 
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two moments of the sojourn time of a customer conditioned on his service requirement, 
the state of the server upon arrival and the number of other customers in the system 
upon arrival. In particular we extend a result of Sengupta and Jagerman [28] to our 
model with server breakdowns, proving that the kth moment of the conditional sojourn 
time is a polynomial of degree k in the number of customers upon arrival. In section 7 
we give the LST of the distribution of the sojourn time distribution of a customer 
conditioned only on his own work requirement, assuming that he arrives to the system 
in steady state. In particular, we see that - unlike the case without server breakdowns 
- the mean sojourn time of a customer is not a linear function of the amount of work 
required by that customer. The next two sections are then devoted to an asymptotic 
analysis of the model. In section 8 we study sojourn times of customers with large 
service requirements (tending to infinity), and in section 9 we consider the heavy-traffic 
case. We conclude in section 10 with some final remarks. 

2. Model description 

We consider a server which alternates between an on-state and an off-state. The 
on-periods are assumed to be exponentially distributed with mean 1 / v, independent 
of everything else. The off-periods are i.i.d. random variables (generically denoted by 
T 0 ff) having probability distribution F(t) := P{Toff ::;;; t}, t ~ 0. The LST of this 
distribution will be denoted by 

</>(s) := 100 e-st dF(t), Re(s) ~ 0, 
t=O 

and the kth moment of F(t) by 

mk := 1: tk dF(t). 

Throughout this paper we assume that m 1 < oo. 
Customers arrive to the server according to a Poisson process with rate ,\, requir

ing an exponentially distributed amount of service with mean 1 / µ. There is room for 
infinitely many customers at the server. When the server is on, all customers present 
are simultaneously served according to the (egalitarian) processor sharing discipline, 
i.e., when there are n > 0 customers present, each of them receives service at rate 
1 / n. Thus, because of the exponentially distributed service requirements, the service 
of any of the customers is completed within the next !'!,.t time units with probability 
(Ijn)ft!'!,.t + o(!'!,.t). During off-periods the service of all customers is interrupted until 
the server becomes active again. 

We define the random variable X(t) to be the number of customers at the server 
at time t ~ 0. The random variable Y(t) is equal to 1 if at time t ~ 0 the server is 
on, and Y(t) is equal to 0, otherwise. Under the ergodicity condition, 

,\ 
-<--
µ I+ vm1' 

(2.1) 
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the pair (X(t), Y(t)) has a nontrivial limiting distribution. The left-hand side of con

dition. (2.1) is th~ av~rage amount of work that arrives to the system per unit of time. 

The ngh~-hand ~1de is the average service capacity per unit of time, which is equal to 
the fraction of time that the server is available. 

Below we determine the limiting distribution of (X(t), Y(t)), under condi

tion (2.1). Let (X, Y) be distributed according to this distribution, then 

P{Y = 1} = 1 - P{Y = O} = --
1 + vm1' 

and for lzl :::;; 1, 

E[zx I y = l] = µ - ,\(1 + vm1) 

µ-,\z - vz(1 - <f>(,\(1- z)))/(1- z)' (2·2) 

E[zx I y = o] = 1 -q)(,\(1- z)) E[zX I y = l]. (2.3) 
m1,\(1 - z) 

For later use, we give the means of these conditional distributions: 

E[X I y = l] = ,\(1 + vm1) + v,\2m2/2 
µ - ,\(1 + vm 1) ' 

(2.4) 

E[X I y =OJ=,\ m2 + ,\(1 + vm1) + v,\2m2/2. 
2m1 µ - ,\(1 + vm1) 

(2.5) 

By averaging expressions (2.2) and (2.3) over P{Y = O} and P{Y = 1} we find the 

probability generating function (p.g.f.) of the marginal distribution of X: 

E[zX] = 1 (i + v 1 - q)(,\(l - z))) 
1 + vm1 ,\(1 - z) 

µ- ,\(1 + vm1) 

x µ - ,\z - vz(l - </J(,\(1 - z)))/(1 - z) · 
(2.6) 

In the remainder of this section we give an informal discussion of the derivation of 

expressions (2.2) and (2.3). In particular, in remark 2.1 we discuss the equivalence of 

the queue length process in our model with the queue length process of two queueing 

models with the FCFS queue discipline. Expression (2.2) can be found by considering 

the queue length process only during on-periods. For this, we "delete" all off-periods 

and interpret the arrivals during an off-period as a batch arrival. In the resulting 

transformed model there are three types of events: 

(i) departures of customers at rate µ when there is at least one customer present, 

(ii) single arrivals according to a Poisson process with rate ,\, and 

(iii) batch arrivals according to a Poisson process with rate v and batch sizes having 

p.g.f. <j>(,\(1 - z)), which is the p.g.f. of the number of arrivals during an off

period. 
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Note that batches are "empty" with probability </>(>..). To avoid this, we may con
sider only non-empty batches which arrive with rate v(l - cjJ(>..)), having p.g.f. 
(efJ(>..(1 - z)) - </>(>..))/(1 - cjJ(>.)). The balance equations for this transformed model 
readily lead to equation (2.2). 

The factor (1 - 4J(>.(1 - z)))/(m1>..(l - z)) in equation (2.3) is the p.g.f. of the 
number of customers that arrive during the backward recurrence time of an off-period. 
This can be explained as follows. At an arbitrary time instant at which the server is 
off, the number of customers in the system is the sum of the customers that were at the 
server when the server turned off and the number of customers that have arrived since 
that time. The elapsed time since the server turned off is distributed as the backward 
recurrence time of an off-period. Moreover, because of the exponentially distributed 
on-periods, we may use the Poisson Arrivals See Time Averages (PASTA) property -
see Wolff [35] - to show that the number of customers present when the server turns 
off has the same distribution as X given that Y = 1. 

Remark 2.1. Because of the exponentially distributed services, the queue length 
process remains unchanged if we replace the processor sharing service discipline by 
the FCFS discipline. Expression (2.6) can, therefore, be obtained from Gaver [11, 
formula 8.4], where the p.g.f. of the number of customers in the system at arbitrary 
points in time is given for the case of a general service time distribution. The analysis 
is based on completion times of customers, see Gaver [11, section 4.2]. In our case 
the distribution of the completion times has LST 

{J(s) = µ , Re(s) ;:: 0. 
µ + s + v(l - ef>(s)) 

(2.7) 

These "enlarged" service times are the sum of the actual time it takes to serve a cus
tomer (exponentially distributed with mean 1 / µ) and all off-periods that occur during 
such a service. It can be shown that the first customer in a busy period has to wait 
before his service begins (this corresponds to the server being in the off-state in the orig
inal model with breakdowns) with probability p = (1.1(1 - </>(>..)))/(>.. + v(l - </>(>..))), 
in which case the distribution of the residual off-period has LST 

r(s) - ).. ef>(s) - </>(>.) R ( ) '- 0 u e s ,.-:; . 
1 - </>(>..) ).. - s ~ 

Expression (2.6) can also be verified using the LST of the queue-length distribution 
in an M/G/1 queue with exceptional first service, see Welch [33, theorem 2]. In that 
queue the distribution of the regular services has LST /](s) and that of the exceptional 
first services has LST (1 - p + p8(s))(3(s). 

Remark 2.2. If the breakdowns (off-periods) are exponentially distributed too, i.e., 
<fJ(s) = 1/(1 + m1s), the probabilities P{X = i, Y = O} and P{X = i, Y = l}, 
i = 0, 1, ... , are explicitly given by Neuts [19, theorem 6.3.1]. 
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Remark 2.3. Note that our model does not fit into the framework of Fuhrmann and 
Cooper [10]. Even if we assume a FCFS queue discipline - as in remark 2.1 - their 
assumption 4 is not satisfied. Nevertheless, it can be seen from expression (2.6) that 
for the queue-length distribution a similar decomposition as in [10] holds. 

3. A branching process representation 

We show how the sojourn time of a customer (that is the total time spent in 
the system) can be studied by means of a branching process. For this purpose we 
will observe the process on a transformed time scale. The first to use this time
transformation method for the analysis of processor sharing queues apparently was 
Yashkov [37]. A closely related method, but without transformation of time, was al
ready used in Yashkov [36]. Foley and Klutke [9] use the transformed process to 
study the case where the total service capacity may depend on the number of cus

tomers in the system. Grishechkin [12, 13] used the time-transformation method to 
study queues with a general class of service disciplines - including processor sharing 

- by means of Crump-Mode-Jagers branching processes. For more references on the 

time-transformation method and its use in the analysis of processor sharing queues we 
refer to Yashkov [39, section 2.4]. 

We present a direct use of the time-transformation technique to analyse sojourn 
times in the processor sharing queue with service interruptions presented in section 2. 
However, the same approach is applicable to more general models, for instance those 
in Grishechkin [12,13]. In remark 3.7 we illustrate how the analysis in this section may 
be extended to the case with generally distributed service requirements. Restricting 

ourself to the model of section 2 makes the presentation more transparent, while the 
fundamental ideas are the same as in the more general cases. Furthermore, we are 

able to carry the analysis further, and in particular in sections 6 and 7 we obtain more 

explicit results. 
In our presentation we first assume there is a permanent customer which never 

leaves the system. For this customer we study the accumulation of received service. 

All other ("nonpermanent") customers (that arrive with rate ,\) have an exponentially 
distributed service requirement with mean 1 / µ. Let Z(t) be the number of customers 
at the server at time t ~ 0, excluding the permanent customer. As before, Y(t) is 1 if 
the server is on at time t and 0, otherwise. Then, at time t, the permanent customer 

receives service at rate 
Y(t) 

1 + Z(t) 

Let the random variable R(t) be the amount of service received by the permanent 

customer during the time interval [O, t]: 

l t Y(u) 
R(t) := du. 

u=O 1 + Z(u) 
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R(t) 
t+-~~~~~~~~~~~~~~~~~~~~===-..,-~ 

V(t) 

Figure 1. R(t) and V(r). 

We define, for T ~ 0, 

V(r) := inf{ t ~ 0: R(t) ~ T }. 

Thus, V(r) is the moment that the amount of service received by the permanent 
customer reaches the level r. In figure 1 a typical realisation of R(t) and V(r) is 
depicted. 

In this example, at time to = 0 there are two other customers in the system 
along with the permanent customer, therefore, R(t) increases at rate 1/3 immediately 
after time t0. At time t 1 one of the customers leaves and the rate increases to 1 /2. 
From t2 until t3 the server is off, and during this period 3 customers arrive, leading to 
a rate 1/5 immediately after t3. At time t4 another customer arrives, etc. V(r) is the 
moment that the service received by the permanent customer reaches the level T. 

Now, if the permanent customer is replaced by a customer requiring an amount 
of service 7", then V(r) is the time at which this customer leaves the system, i.e., V(r) 
is the sojourn time of that customer. Our goal is to determine the distribution of the 
random variable V(r) for an arbitrary r > 0. 

We distinguish between the cases where Y(O) = 1 (start with a working server) 
and Y(O) = 0 (start with a server in the off-state). For i E {O, 1}, we denote by 
Vi(r) the process V(r) conditional on Y(O) = i, or equivalently: Vi(r) := V(r) I 
{Y(O) = i}. Similarly we define Zi(t) := Z(t) I {Y(O) = i} and Yi(t) := Y(t) I 
{ Y (0) = i}. We, first, concentrate on V1 ( T ), the conditional sojourn time of a customer 
which arrives when the server is working, and at the end of this section derive the 
results for VQ(r), the conditional sojourn time of a customer which arrives during an 
off-period. 

In the sequel we use the notation x(y+) := limuly x(u) and x(y-) := limuiy x(u) 
for any function x(y) for which these limits exist. 

Observation 3.1. For arbitrary n E N, given Z1(0) = n (and Y(O) = 1), it holds 
with probability 1 that V1 (0+) = 0. This follows immediately from the fact that, for 
small T, V1(r) is equal to (n + l)r with probability 

1 - (>- + _n_ µ + v)(n + l)r + o(r). 
n+l 
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Note that this is not true for Vo(r), because in that case the server must first become 
active again. 

Denote the number of times that the server turned off during the period (0, t) 
by the random variable N(t), and the length of the ith off-period started after time O 
by Di, i E { 1, 2, ... } . Note that { D1, D2, ... } is an i.i.d. sequence with distribution 
F(t). Further, for r > 0, define 

N'(r) := N(Vi. (r)). 

The random variable N' ( r) is well defined because Vi ( r) - also a random variable - is 
strictly increasing in r (with probability 1). Note that N'(r+)-N'(T) = 1 if and only 
ijat time t = Vj(r) the server turns into the off-state. Otherwise, N'(T+)-N'(T) = 0. 

Similar to N'(r), we define for r > 0 the processes Z((r) := Z1(Vi.(r)) and 
Y{(r) := Y1(V1(r)+). 

Lemma 3.2. With probability 1, the process Vi ( T) is related to the processes z; ( T ), 

N'(r), and Di, through the equation 

T N'(T) 

Vi(r) = 1=o [1 + Z((a)]dO" + ~ Di, (3.1) 

with the empty sum being equal to zero (when N'(r) = 0). 

Proof Consider any realisation of the arrival process, the sequence of required ser
vices, and the availability of the server. In figure 1 a particular realisation is depicted. 
We observe that if N'(r+) - N'(r) = 0, then 

d~;r) = 1 +Z((r), 

and if N'(r+) - N'(r) = 1, then Vi.(r+) - V1(r) = DN'(r+)· D 

With the aid of figure 1, we make the following observation: 

Observation 3.3. The transformed process cz; (r), N'(r)) is Markovian, with transition 
rates given in the following table for n, k and j E No: 

from state 
(n,k) 
(n,k) 
(n,k) 

to state transition rate 
(n+ l,k) (n+ !)>. 
(n-1,k) nµ 

(n+j,k+I) (n+l)vpj 

Here, Pi is the probability that during an off-period, j new customers arrive: 

00 

L zipj = <P(>.(l - z)). 
j=O 
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In words, the transformation from the process (Z1 (t), N(t), Y1 (t)) to the process 
(Z; (r), N'(r)) consists in (i) shrinking the time scale by a factor n+ I when Z1 (t) = n 
and Y1 (t) = 1, and (ii) replacing off-periods by batch arrivals of customers. 

In equation (3.1), Vi(r) also depends on D1, ... , DN'(T)· We emphasise that if 
N'(r)- N'(r-) = 1 then Z((T)- z;cr-) and DN'(T) are not independent: DN'(T) is 
the length Of an Off-period in the original process and z; ( T) - z; ( T-) is the number 
of customers that arrived during that period: 

E[e-sDN 1(1»zz;(T)-z;cT-) I N'(T) - N'(r-) = l] = </J(s + A.(l - z)). 

To study the distribution of Vi ( r), we construct a branching process that is equiva
lent to cz; (T), N' ( r); D1' ... ' DN'(T)), and impose areward structure on this branching 
process that will turn out to be useful. Consider a population P of elements which 
evolves in the following way: the lifetime of an element of the population has an 
exponential distribution with mean duration 1 / µ. During its lifetime an element re
ceives a reward at rate 1 (per time unit). An element generates children in two ways, 
independent of all other living elements. According to a Poisson process with rate >.. 
an element gives birth to children, one at a time. In addition, according to another 
(independent) Poisson process with rate v, an element generates nests of children (pos
sibly empty nests), and receives an immediate reward which depends on the number 
of children in the nest in a stochastic way. The simultaneous distribution of A children 
in the nest and the immediate reward D is given by 

Finally, there is a permanent element in the population that generates children - and 
receives rewards - in the same way as the other elements (but never dies). 

Observation 3.4. Denote the number of nonpermanent elements in the population 
at time T by Z('(r), the number of nest-births between time 0 and time r by 
N"(r), and the reward of the ith nest by n;'. By comparing the transition rates 
of both processes it is seen that the processes (Z;(r),N'(T);DJ,. .. ,DN'(T)) and 
(Z;'(r), N"(T); D~', ... , DN"(T)) are equivalent. Also, V1 (r) is distributed as the reward 
of the population from time 0 until time T. 

In the next theorem we formulate the main result of this section. For this, we 
need to introduce the random variables Ci(T), i E {O,l,2, ... }. Co(T) is the reward 
for the permanent element and his offspring between time instants 0 and r. Similarly, 
Ci(T), i = 1, 2, ... , z;'(O), is the reward for the ith nonpermanent individual, who 
was present at time 0, plus the reward for his offspring between time instants 0 and r. 
Note that all Ci(T), i ~ 1, have the same distribution. 

The decomposition of sojourn times given in the theorem was established by 
Yashkov [36, expression (3.4)] for the ordinary M/G/1 processor sharing queue, and 
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by Rege and Sengupta [22, theorem 6] for the M/G/1 queue with discriminatory 
processor sharing. 

Theorem 3.5. The conditional sojourn time Vi(r) of a customer who finds the server 
working upon arrival can be decomposed as 

Z1(0) 

Vi(r) 4: Co(r) + L Ci(r), 
i=l 

where 4: means equality in distribution. All random variables involved in the right
hand side are mutually independent. In particular, Co( r) is distributed as Vi ( r) condi
tional on Z1 (0) = 0. 

Proof Using the reward-interpretation of Vi(r) given in observation 3.4, we can split 
Vi (r) into the individual rewards of all elements. By construction, the elements of the 
population P behave independently of each other. Therefore, the Ci(T) - including 
Co(r) - form an independent sequence. Finally, by definition, z; (0) = Z1 (0), which 
concludes the proof. 0 

In section 4, we characterise the LSTs of the distributions of C0(r) and C1(r) by 
a set of differential equations, which we solve in terms of an integral equation. 

We now turn to V0(r), that is the sojourn time of a customer with r work and 
starting with a server in the off-state. Let Do be the residual off-period at time zero 
and Ao be the number of arrivals during Do. Let c/>o(s) be the LST of the distribution 
of D0 . By conditioning on the length of Do and the number of arrivals Ao: 

Vo(r) I { Zo(O) = n, Do= do, Ao= k} 4: do+ Vi(r) I { Z1(0) = n + k }. (3.2) 

Corollary 3.6. V0(r), the conditional sojourn time of a customer who finds the server 
in the off-state upon arrival, can be written as 

Zu(O)+Ao 
Vo(r) ~Do+ Co(r) + L Ci(r). 

i=l 

All random variables on the right-hand side are mutually independent, except for the 
pair (Do, Ao) which has the joint distribution, 

E[e-sDozA0J = r/Jo(s + ,\(1- z)), Re(s)? 0, lzl ~ 1. 

Proof The corollary follows from theorem 3.5 and relation (3.2). D 

We define the LSTs of the distributions of Co( T) and ci ( T ), i E { 1, 2, ... } , by 

go(r; s) and 91 (r; s): for Re(s) ? 0, 

go(r;s):=E[e-sCo(TlJ, g1(r;s):=E[e-sC;(Tl], i=l,2, .... 
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From theorem 3.5 and corollary 3.6 we have, for Re(s) ) 0, 

E[e-sV(TJ I Y(O) = l, Z(O) = n] =go(T;s){g1(T;s)r, (3.3) 

E[e-sV(T) I Y(O) = O, Z(O) = n] =go(T;s){g1(T;s)r<Po(s + >.(1 - g1(T;s))). (3.4) 

In section 4 we characterise go( T; s) and g1 ( T; s) by means of a set of differential 
equations, in order to detennine the LST of the distribution of V(T). 

We conclude this section with the following remark, which indicates how the 
representation of the sojourn time by a branching process can be extended to the case 
of general service time distributions. 

Remark 3. 7. The generalisation of this representation by branching processes for gen
eral service time distributions, B(x), x ) 0, can be obtained by using the method 
of supplementary variables. We extend the state space representation with the vector 
(x 1, x2, •.. , Xn) when there are n customers in the system. We again assume that a 
newly arrived customer with service requirement T finds the server available, and we 
further condition on the number of customers in the system upon arrival (n) and the 
residual service requirement of each of those customers (xi, i = 1, 2, ... , n). If we 
call the conditional sojourn time of the new customer Vi (T; n; x 1, ... , Xn) then 

n 

Vi(T;n;x1, ... ,x7J ,g, Co(T) + L Ci(T;Xi), 

i=l 

where the Co(T) and Ci(T;Xi), i = 1,2, ... , are the analogues of the earlier Co(T) 
and Ci(T) for the population model with lifetime distribution B(x). Thus, Ci(T; Xi) 

is the reward for a family until time T, starting with one individual with a remaining 
lifetime Xi· We omit the details of this generalisation and refer to Yashkov [36] for a 
related analysis of the case without service interruptions. 

4. Characterisation of go(T; s) and g1(T; s) 

We derive a set of differential equations which uniquely determine g0(T; s) and 
g1(T; s), the LSTs of the distributions of Co(T) and C1(T). We then express g0(T; s) in 
terms of g1 ( T; s ), and - for real s > 0 - derive a useful integral equation for g 1 ( T; s ). 

Lemma 4.1. For Re(s) ) 0 and T ~ 0, go(T; s) and g1 (T; s) are uniquely determined 
by the following set of differential equations, 

a { 2 
87 g1(T;s)=-(s+>.+1J,+v)g1(T;s)+>. g1(T;s)} +!" 

+vg1(T;s)</J(s+>.(l-g1(T;s))), (4.1) 

a 
87 9o(T; s) = -(s + ,\ + v)go(T; s) + >.go(T; s)g1 (T; s) 

+ vgo(T;s)<fJ(s +>.(I - g1(T;s))), (4.2) 



R. NzHiez-Queija I A processor sharing queue with service interruptions 363 

and initial conditions, 

90(0; s) = 91 (0; s) = 1. 

Proof: See the appendix. 

Theorem 4.2. go(T; s) can be expressed in terms of 91(T; s) as 

9o(T;s) = 91(r;s)exp{µ(r-1:
0

g1(u;s)- 1 du)}· 

(4.3) 

D 

(4.4) 

Proof: From equations (4.2) and (4.3) we can immediately express 9o(T; s) in terms 
of 91 (T; s): 

9o(T; s) = exp{-(s+ A+ v)T+ 1:
0 

[ >-91 (u; s)+vq)( s + >-(1- 91 (u; s))) ]du}. (4.5) 

If we also use ( 4.1) we may rewrite this as 

(.) {1T (8/8u)91(u;s)-µ(l-g 1(u;s))d} 
9or,s =exp u, 

·u=O 91(u;s) 

which leads to relation ( 4.4 ). D 

The remainder of this section is devoted to finding the solution of ( 4.1) for real 
s > 0. We first define the clearing period of the model of section 2 as the time it takes 
for the system to become empty, starting with one customer and a working server. If 
there were no off-periods, the clearing period would be equal to the busy period. We 
generically denote the clearing period by the random variable C P and the LST of its 
distribution by r 1 (s) = E[e-sCP]. 

Lemma 4.3. The clearing period has the same distribution as the busy period of an 
ordinary M/G / 1 queue with arrival rate >. and LST of the service time distribution 
/30 given by expression (2.7). 

As a consequence, for Re(s) ;?: 0, x = r1 (s) is the unique root - inside (or on) 
the unit circle in the complex plane - of the equation 

(s + >. + [L + v)x = >.x2 + µ + vxq?(s + >.(1 - x)). (4.6) 

Proof: Note that for the model with the FCFS queue discipline - described in re
mark 2.1 - we may define the clearing period as we did above for the model of 
section 2. Moreover, the clearing periods of both models have the same distribution. 
It is easily seen that the clearing period of the model in remark 2.1 has the same 
distribution as the busy period of an ordinary M/G /1 queue with arrival rate A and 
LST of the service time distribution /3(·). This proves the first statement of the lemma. 
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Furthermore, we immediately have that for Re(s) ~ 0, r1(s) is equal to the (unique) 
root inside (or on) the unit circle of the equation, 

x = f3(s + >.(l - x)), 

see, for instance, Cohen [4, p. 250]. This equation readily leads to (4.6). 0 

Observation 4.4. Let s > 0 be fixed. C1 (T) is nondecreasing in T with probability 1, 
and so 91 (T; s) is non-increasing in T. Therefore, the right-hand side of (4.1) is negative 
for r ~ 0. Indeed, for r = 0 this is easily verified because 91(0; s) = 1. Now it must 
be that, for r ~ 0, 

r1(s)::::;; g1(r; s). 

Otherwise, the right-hand side of (4.1) would be positive for some r > 0, because the 
zero r1 (s) is of multiplicity 1. 

Theorem 4.5. For real s > 0, the solution to (4.1) satisfying (4.3) is obtained from 

191(r;s) I 
---------~------- dx = r. 

x=L µ - (s + >. + µ + v)x + >.x2 + vx<f>(s + >. - >.x) 
(4.7) 

Proof The integral in relation (4.7) is well defined, because the denominator of the 
integrand has no zeros in (r1(s), I) for s > 0, see lemma 4.3. The integral is taken 
for x from I to g1(r;s) so that the initial condition (4.3) is satisfied. By differentiating 
with respect to r, it is readily seen that ( 4.1) is also satisfied. 0 

In section 8 we use relation ( 4. 7) to study the asymptotics of 91 ( r; s) as r --+ oo. 
This, in turn, enables us to prove the convergence in probability of Co(r)/r and (more 
importantly) V(r)/r for r--+ oo. 

Relation (4.7) is not very practical for determining moments of C1 (r) (and Go(r)). 
In section 5 we study these moments directly. 

Computational issues 

Although our primary focus is on analytical derivations, it is worth pointing out 
how our results may potentially be used for numerical calculations. We show how the 
distribution of G 1 (r) can be computed in the case that the distribution of the off-periods 
has a rational LST. We also discuss some difficulties regarding the computation of the 
distribution of Go(r). 

Suppose for the moment that - for real (and positive) values of s - g1 (r; s) 
can be evaluated from relation (4.7). Then we use the Gaver-Stehfest algorithm, see 
Abate and Whitt [I, pp. 52-55], to compute the distribution function of C1 (r). To 
evaluate the nth Gaver-Stehfest approximant, one typically needs 2n-digit precision 
in the calculations. In general, taking n = 15 gives good results - relative errors are 
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typically less than 3% for tail probabilities of the order 10-3 - and comparison with 
the results using n = 20 provides a useful accuracy check. 

To illustrate how 91 ( r; s) can be evaluated, let us first consider the case that 
the off-periods have a hyperexponential distribution. In that case the LST of the 
distribution of the off-periods is of the form 

k w<i) 

<P<s) = I: (i) • 
i==l 1 + m1 s 

with w<i) > 0, :E~=l w<i) = 1.' m\1) > m\2) > · · · > mik) > 0, and Re(s) > -1/m\1). 

Note that m1 = :E~=l w<i)m\i). After multiplying the numerator and the denominator 
of the integrand in relation (4.7) by 

k 

IT {1 + mii)(s + >.(1 - x)) }, 
i=l 

it becomes a rational function in x with the degree of the denominator equal to k + 2, 
and that of the numerator equal to k. It. can be seen that the denominator is positive 
for x = 0 and for x = (s + >. + 1/mii))/ >. when i is odd, and the denominator is 

negative for x = 1 and for x = (s + >. + 1/mii))/ >. when i is even. Moreover, if 
x ---+ oo then the denominator tends to +oo when k is even, and to -oo when k is 
odd. Therefore, for s > 0 and i = 1, 2, ... , k + 2, the roots ri(s) of the denominator 
satisfy 

s + >. + 1/m(l) s +). + 1/m(k) 
. O<r1(s)<l<r2(s)< >. 1 <r3(s)< ··· < >. 1 <rk+2(s). 

This relation enables an efficient computation of the roots, for instance using the 
Newton-Raphson method (combined with the bisection method) on each of the above 
intervals containing exactly one root. By partial fraction expansion, relation (4.7) can 
now be written as 

1gi(r;s) ~ ai(s) ~ (ri(s) - 91 (r; s)) 
r = L..t dx = - L..Jai(s)In . 

x=l i=I ri(S) - x i=l Ti(S) - 1 
(4.8) 

The functions ai(s) are given by 

TIJ=1(1 + m?){s + >.(1 - ri(s))}) 
ai(s) = k (j) . 

>.k+l Tij=l ml TI#i(rj(S) - ri(s)) 

Note that, for s > 0, r1(s) < 91(s;r) < 1 and a1(s) > 0, whereas ri(s) > 1 and 
ai(s) < 0, i E {2, 3, ... , k + 2}. After computing the roots ri(s) and the coefficients 
ai(s), 91 (T; s) can be found from expression (4.8), again using the Newton-Raphson 
method. 
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We tested the above procedure to compute the distribution function of C1 ( r) for 
the case of no service interruptions, and for the case of exponentially distributed off
periods. In the first case an explicit expression for 91 ( r; s) can be found in Coffman 
et al. [2, equation (16)]. Using this expression, the Euler algorithm - see Abate and 
Whitt [I, section 7] - gives a reliable alternative to compare the results. In general, 
the outcomes of both methods agreed up to a relative difference of at most 3% for 
tail probabilities of the order 10-3. In the case of exponentially distributed off-periods 
we compared our results to those generated by simulation, and again found that the 
relative differences were at most 3%. -

We saw above that for hyperexponential off-periods the roots ri(s) are all real 
and positive, and we found disjoint intervals on the positive real line, each containing 
exactly one root. When the distribution of the off-periods has a rational LST, but is not 
a hyperexponential distribution, the analysis proceeds along the same lines. However, 
in general some of the roots may be complex. This is, for instance, the case when the 
off-periods have an Erlang distribution. 

Serious complications arise when the distribution of the off-periods does not 
have a rational LST. In principle, the left-hand side of relation ( 4.7) can be computed 
using, for instance, Simpson's rule (or a higher order Newton-Cotes method) for 
numerical integration. However, like any other inversion method, the Gaver-Stehfest· 
algorithm is highly sensitive to small errors in the computation of the LST that is to be 
inverted. Therefore, computation of the integral in relation (4.7) requires exceedingly 
long computation times due to the usual accuracy problems with numerical integration. 

The same difficulties are encountered in the computation of g0(r; s) using equa
tion (4.4). Even if 91 (r; s) has been computed accurately, for instance using the above 
procedure for the case that the distribution of the off-periods has a rational LST, evalu
ating the right-hand side of equation (4.4) requires an additional numerical integration 
leading to prohibitively long computation times (poor results were obtained even after 
2 hours on a Sun Spare 4 station). 

5. Moments of C0(r) and C1(r) 

In section 4 we saw that go( T; s) and 91 ( r; s ), the LSTs of the distributions of 
Co(r) and C1 (r), are determined by a set of diffei:ential equations. The solution for 
these differential equations is given by ( 4.4) and ( 4.7). However, this solution is not 
very practical for determining moments of Co(r) and C1(r). In this section we show 
how the moments of Co and C1 can be found by directly solving an alternative system 
of differential equations. Yashkov [36] also remarks that, in the M/G /I processor 
sharing queue, such an approach leads to a more tractable derivation of moments. 
First, we state the following theorem which is a consequence of a result of De Meyer 
and Teugels [5, lemma 3]. 

Theorem 5.1. If the kth moment of the off-periods, mb exists, then also the kth 
moments of C1(T) and Co(r) exist. 
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Proof See the appendix. D 

We start by illustrating the derivation of the first and second moments of C 1 ( T) 
and Co(T). We then formulate and prove theorem 5.2 which reveals the structure of 
the higher moments, as a function of T. 

By differentiating (4.1) and (4.2) with respect to sand then settings= 0 we get 

a 
BT E [C1(T)] = l + vm1 - {µ - ,\(1 + vm1) }E [ C1(T)], (5.1) 

a 
OT E[Co(T)] = 1 + vm1 + ,\(1 + vmi)E[C1(T)]. (5.2) 

Formally, it should first be verified that interchanging the order of differentiation is 
allowed. However, in our case, we can also get (5.1) and (5.2) by directly applying 
the argument of conditioning on the events in a time interval of length Ll to E[Co(r)] 
and E[C1 (r)], and then letting Ll l 0. Using the initial conditions Co(O) = C1 (0) = 0, 
we find 

E[C1(T)] = 1 + vmi (I - e-{µ->.(l+vmi)}T), (5.3) 
µ - ,\(1 + vm1) 

E[Co(T)]=µ 1+1/m1 T-,\( l+vm1 )2(1-e-{µ->.(l+vm1)lT).(5.4) 
µ,-,\(I+vm1) µ-,\(1+vm1) 

If m 2 < oo, we can repeat this procedure to find E[Co(T)2] and E[C1(T)2]. Differen
tiating ( 4.1) and ( 4.2) twice with respect to s and then setting s = 0 (or by a direct 
conditioning argument) we find 

o 
OT E [ C1 (r)2] = -{µ - ,\(1 + vrn1) }E [C1 (r)2] + 2(1 + vm1)E[ C1 (T)] 

+ 2,\(1 + vm1)E[C1(r)] 2 + vm2{l + ,\E[C1(T)] }2, (5.5) 
o 

OT E[Co(T)2] = 2(1+vm1)E[Co(r)]+2,\(1+11m1)E[Co(r)]E[C1(T)] 

+ ,\(1 + vmi)E[C1(r)2] + vm2{l + ,\E[C1(T)]}2 . (5.6) 

We can solve this using (5.3) and (5.4): 

E[C1(T)2] = -(a1+2a2)Te-(µ->.(l+//mtllr 

+ a1 + vm2 (I _ e-{µ->.(I+vm 1)}r) 
fL - ,\(1 + vm1) 

+ a2 (I_ e-2{µ-,\(l+vm 1)}T), (5.7) 
J), - ,\(1 + vm1) 

E[Co(T)2] = b1T + b2T2 + b3Te-{,i->.(I+//m,)}T 

- b4(1 - e-{µ-.\(l+vm1l\T) - bs(l - e-2{µ->.(l+l/m1))T), (5.8) 
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where 

1 + vm1 
a 1 =2(1 + vm1 + vm2>.) >.(l ) ' 

µ- +vm1 

a2 = >.(2(1 + vm1) + vm2>.) ( \+ vmi ))
2
, 

µ - (1 + vm1 

bi = vm2 ( µ ) 
3

, 
µ->.(l+vm1) 

" b2 _ µ2 ( 1 + vm1 )~ 
- µ - >.(I + vm1) ' 

b3 =2>.( l+vmi )
3

(2µ+>.(l+vm1)+>.vm2 µ ). 
µ - >.(1 + vm1) 1 + vm1 

b 2 \( 1 + vm1 ) 4 (2µ->.(l + vm1) 1 3µ2 ->.2(1 + vm1)2) 
4 = /\ + -vm2 , 

µ - >.(l + vm1) 1 + vm1 2 (1 + vm1)3 

b \ 2( l+vm1 ) 4 ( 2 1 2>.(l+vm1)-µ) s = /\ + - vm2 . 
- µ - >.(l + vm1) 2 (1 + vm1)2 

The same approach can be applied to determine higher moments. In theorem 5.2 this 
is done to reveal the structure of these moments. 

Theorem 5.2. For k ~ 1, provided that mk < oo, and thus E[C1 (r)k] < oo and 
E[Co(r)k] < oo, 

k k-m 

E[C1(r)k] =a~k) + L e-m{µ,->.(l+vm1)}T L a~'.nrn, (5.9) 
m=I n=O 

k k-m 

E[Co(r)k] = L e-m{µ->.(l+vmJ)}T L J3~!nrn, (5.10) 
m=O n=O 

where the a~), a~'.n and /3~:n are coefficients that are independent of T. 

Proof See the appendix. 0 

6. Moments of the conditional sojourn time 

In this section we study the moments of the sojourn time of a customer condi
tioned on the service requirement, the state of the server upon arrival, and the number 
of other customers in the system. We give these moments in terms of the moments 
of C1(T) and Co(T). In particular, using the expressions for the first two moments 
of C1(r) and Co(r) found in section 5, we find explicit expressions for the first two 
moments of the conditional sojourn time. 
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For compactness, we use the following notation: 

En[Vi(T)k] :=E[V(r)k I {Y(O) = 1,Z(O) = n}], 

En[Vo(T)k] :=E[V(r)k I {Y(O) = 0, Z(O) = n }]. 

Observation 6.1. From theorem 3.5, we have, fork, n EN, 

En [Vi(T)k] =E[(Co(r) + · · · + Cn(r))k] 

= ~ C) E[Cn(7)k-j]E[(Co(7) + · · · + Cn-1M)j] 

k 

=I:(~) E[C1(T)k-j]En-I [Vi(T)J], 
j=O J 

Ea [Vi (T)k] = E [ Co(T)k]. 

Moreover, combining theorem 3.5 and corollary 3.6, we find 

(6.1) 

(6.2) 

We remind the reader that Do is the residual off-period at time zero, with LST </>o( · ), 
and that Ao is the number of arrivals during Do. We find 

[( 
Ao )J] aJ 

E Do+I:Ci(T) =(-l)j~1>o(s+>-.-.A.g1(T;s))I. 
usJ s=O 

i=l 

These derivatives can be found by using [5, lemma 1] to expand </>o(s + >-.- .A.g1(T; s)) 
in a Taylor series, analogous to equation (A.7) below. 

From (6.1) and (6.2) we can compute the conditional moments En[Vi(T)k] recur
sively, once we have the moments of Co(T) and C1(r). The moments of Vo(T) are then 
found from (6.3). In particular, we have for k = 1, see also equations (3.3) and (3.4), 

En[Vi(T)] =E[Co(T)) +nE[C1(r)], (6.4) 

En [Vo(T)] = E[Do] + E[Co(r)] + (n + .A.E[DoJ)E[C1(r)], (6.5) 

and fork= 2, 

En [Vi(T)2] = E[Co(T)2] + nE[C1(r)2] + 2nE[Co(T)]E[C1(T)) 

+ n(n - l)E[C1(T)]2, (6.6) 

En [Vo(r)2] = E [DB] + 2E [Do] (E [ Co(T)] + nE [ C1(T)]) 

+ 2.A.E[DB]E[C1(T)] + E[Co(T)2] 

+ 2(n + .A.E[DoJ)E[Co(T))E[C1(T)] 
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+ (n + ,\E[DoJ)E[C1(T)2] 

+ (n(n -1) + (2n -1).\E[Do] + >.2E(D6])E[C1(T)] 2 . (6.7) 

Using (5.3), (5.4), (5.7) and (5.8) we have explicit formulas for these first and second 
moments. 

Theorem 6.2. For fixed k E N, if mk < oo and E[D~] < oo, then En[V1(Ti] and 
En[Vo(r)k] are polynomials in n of degree k: 

k 

En [Vi(r)k] = I>~!1(r)n1 , i E {O, 1}. (6.8) 
l=O 

The coefficients ck1,)(T) are recursively defined by 

{ k (') (I) 1 "" i-l i (1) 
ck,l+1(T) = l + 1 .L...,(-1) l ck,i(r) 

i=l+2 

k-1 j ( ') (k) } + t;f;(-l)i-l ~ ; E[C1(r)k-jJcY1(r) , (6.9) 

ck16(r) = E [ Co(Tl], 

with k EN, and l = 0, 1, ... , k - 1. The empty sum (when l + 2 = k + 1) is equal to 
zero. 

Fork EN, and l = 0, 1, ... , k, the ck0~(T) are given by 

k ( ) [ ( Ao ) k-jl ck~l(r) = t; ~ cj'.j(r)E Do+~ Ci(r) . (6.10) 

Hence, for i E {O, 1}, k E N, and l E {O, 1, ... , k}, the functions c~!z(r) are of the 

same form as E[C0(r)k] in theorem 5.2. 

Proof Expression (6.8), for i = 1, can be proved by arguing that (6.1) and (6.2) 
uniquely determine the En[V1(T)k] for k, n E N, and that (6.8), for ·i = 1, with the 
ck1 )( r) defined by (6.9), satisfies (6.1) and (6.2). Then, (6.8), for i = 0, and (6.10), 
foilow from relation (6.3). 

The last statement follows from the fact that a product of two functions of the 
class defined by relation (5.10), one with k = l1, and the other with k = Z2, gives a 
function of the same class, with k = li + [z. 0 

Sengupta and Jagerman [28, theorem I] proved that, in the M/M/l processor 
sharing queue without server breakdowns, the kth moment of the sojourn time con
ditional on n competing customers is a polynomial in n of degree k. As a corollary 
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of theorem 6.2 we have that the result of Sengupta and Jagerman is also true for the 
M/M/1 processor sharing queue with generally distributed saver breakdowns. 

Corollary 6.3. If mk < oo and E[D~] < oo, then 

i E {O, 1 }. 

Proof Obviously, from the last statement of theorem 6.2, fr':o c~!1 (r)µ e-w dr < oo, 
for i E {O, 1 }. The corollary then follows from expression (6.8). O 

7. Sojourn times in steady state 

We study the sojourn time distribution of a customer with an amount of work r, 
arriving to the system in steady state. If the number of competing customers in the 
system at the beginning of the sojourn time is (as before) denoted by Z(O) and the 
state of the server by Y (0), then 

(Z(O), Y(O)) 4: (X, Y), 

and the distribution of (X, Y) is given by (2.2) and (2.3). 

Theorem 7.1. For Re(s) ~ 0, the LST of the distribution of V(r) is given by 

E[e-sV(r) I Y(O) = 1] 

µ - >.(I + vm1) (7 l) 
=go(r;s) / , . 

µ- >.g1(r;s)-vg1(r;s)(l -(,il(>.(l -g1(T;s)))) (1- gi(r;s)) 

E[e-sV(T) I Y(O) = o] 
= E(e-sV(r) I Y(O) = l] 1 - </J(s + >.- .Ag1(r; s)) 1 - rp(>. - >.g1(r; s)). (7_2) 

m1 (s + >. - .Ag1 (r; s)) m1.A(l - 91 (T; s)) 

Proof Equation (7.1) is found from (2.2) and (3.3). To find the sojourn times starting 
with an off-period, we remark that the residual length of that off-period is distributed 
as the forward recurrence time of the off-periods, i.e., </Jo(s) = (1 - (,il(s))/(m1s). Then 
using (2.3) and (3.4) we get (7.2). 0 

Corollary 7.2. The mean sojourn time is given by 

r vm2/2 
E[V(r)] = 1/(1 + vm1)- >./µ + 1 + vm1 

1 ,\ 2µ - >.(l + vm1) (l -{µ->.(l+vm 1)}r) 
+ 2v m2 {µ->.(1 +vm1)}2 -e . (7.3) 
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Proof From theorem 7.1, by differentiating with respect to s and putting s = 0, we 
find 

T 

E [V(T) I Y(O) = 1] = l/(l + vmi) _ >../ µ 

+ (1 - e-lµ-A(l+vm1))T) v>..2m2(1 + vm1)/2 
{µ- >..(l + vm1)}2 ' 

E[V(T) I Y(O) = o] = m2 + T + (1 - e-{µ-A(l+vm1)}T) 
2m1 1/(1 + vm1)- >../µ 

x l + vm1 {>.. m2 + v>..2m2/2 } 
µ - >..(1 + vm1) m1 µ - >..(l + vmi) · 

Alternatively, we may find E[V(T) I Y(O) = 1] more directly by substituting expres
sion (2.4) for n in (6.4), and using expressions (5.3) and (5.4). Similarly, we can 
find E[V(T) I Y(O) = O] by substituting expression (2.5) for n in (6.5), and using 
E[Do] = m2/(2m1). 

By averaging over P{Y = 1} = 1/(1 + vm1) and P{Y = O} = vm1/(l + vm1) 
we get E[V(T)]. 0 

It is well known that in "standard" processor sharing queues the conditional 
mean sojourn time, E[V(T)], is proportional to the amount of work T. For the M/M/1 
processor sharing queue this was first observed by Sakata et al. [24], and for the 
M/G/1 processor sharing queue by Kitayev and Yashkov [14]. From expression (7.3) 
we conclude that this is not the case with an unreliable server. If we replace the 
unreliable server by one that works with constant capacity c = 1 / (1 + vm 1 ), i.e., the 
average service capacity of the unreliable server, E[V(T)] will be equal to T /(c - >../ µ). 
This corresponds to the linear term in expression (7.3). Note that for fixed T, >.., /J,, 
and average capacity c, expression (7.3) is fully determined by m2/(2m 1), the mean 
backward recurrence time of the off-periods. E[V(T)] is the smallest for deterministic 
off-periods, i.e., when m2 = (m1)2, and can become arbitrarily large for increasing 
m2/(2m1). 

We conclude this section with two remarks, discussing two cases in which the 
conditional mean sojourn time is approximately linear in T. 

Remark 7.3. E[V(T)] is "almost linear" in r when the on- and off-periods alternate 
rapidly. Formally, construct a new sequence of on- and off-periods by multiplying each 
on- and off-period by a factor a E (0, oo ). So in the new sequence, the on-periods are 
exponentially distributed with mean a./ v, and the distribution of the new off-periods, 
which are generically denoted by T~~), has LST 

[ r<c<l E e-s orr] = tj>(a.s). 
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In particular, the first two moments of T~~) are mia.) = am1 and m~a.) = a 2m 2. 

Obviously, (v / a.)mia.) = vm1 is independent of a, and so is the probability that the 
server is on (with the new sequence of on- and off-periods). Therefore, the ergodicity 
condition remains unchanged. If vcal(T) is the sojourn time of a customer with T 

work under the new on- and off-periods, then 

limE[v<a.\T)] = T . 
a.lO 1/(1 + vm1) - A/µ 

This limiting case (o: l 0) corresponds to the case where the server is always available 
and works at the constant speed 1 / ( 1 + vm 1) instead of 1. 

On the other hand, when the server alternates very slowly, the expected sojourn 
time can become arbitrarily large (irrespective of the amount of work the customer 
carries with him): lima.__.00 E[V(a.)(T)] = oo. 

Remark 7.4. From expression (7.3) we also conclude that E[V(T)] is approximately 
linear for large T. This can intuitively be explained by noting that if T is large, then 
also the sojourn time will be large. Over a long period of time, the fluctuations in 
the server availability average out, and for large r an additional amount of work f:..T 
requires f:..T/(1/(1 + vmi) - >../µ)time units. The term 1/(1 + vm1) - >../µcan be 
seen as the average speed at which the permanent customer receives service, when the 
system with the permanent customer is in steady state: The average service capacity 
is 1/(1 + vm1) per time unit, and on average an amount of capacity>../µ per time unit 
is required to serve other customers (since the system with a permanent customer is 
ergodic, all nonpermanent customers eventually leave the system). In the next section 
we study the case with T -+ oo in greater detail. 

8. Asymptotic analysis for T -+ oo. 

We study the behaviour of g1 ( T; s) as T -+ oo. Then we use these asymptotics 
to show the convergence of V(T)jT for T-+ oo. 

Our starting point is relation (4.7). By partial fraction expansion, 

k1 (s) 
2 = --(-) + k2(x; s), 

µ - (s + ,\ + /l + v)x + ,\x + vxcp(s +A. - >..x) x - r1 s 
(8.1) 

where 

. x-r1(s) 
k1(s) := hm , (8 2) 

x-->r 1(s) /l - (s + ,\ + µ + v)x + .\x2 + vx<jJ(s +A - >..x) · 

exists and the function k2(x; s) is analytic in x, for lxl :s; I and Re(s) ~ 0. Using (8.1) 
in (4.7) we get, for s > 0, 

1g1(T;s) 

k1(s) · ln(g1(T; s) - r1(s)) + x=l k2(x; s)dx = k1(s) · ln(l - r1(s)) + T. (8.3) 
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If we let T -t oo in (8.3), we may conclude that 

Jim g1(T;s)=r1(s), s>O. (8.4) 
T->00 

This is an immediate consequence of the analyticity of k2(x; s) in x and the bound
edness of 91 ( T; s ), which imply that the second term on the left-hand side of (8.3) 
is bounded. In remark 8.1 we discuss how this limiting property can be obtained 
probabilistically in our model. 

Remark 8.1. If we concentrate on a non-permanent element of the population model 
of section 3 and his offspring (we call this a family), then under the ergodicity condi
tion (2.1 ), this family dies out with probability l. Consider the reward that this family 
generates until its extinction. This reward is equal to the sum of the !if etimes of all 
the members of this family plus the reward of all nests in this family. By assigning 
the reward of a nest to the individual that generated it, and concatenating the lifetimes 
of all family members, it can be seen that the total reward of this family is distributed 
as a clearing period of the model of section 2: 

lim C1 (r) 4: GP. 
T-tOO 

This corresponds to (8.4 ). 

Further exploiting (8.3), we can carry our asymptotic analysis one step further: 
Fors> 0, 

lim {k1 (s) · ln ( 91 (r; s) - ri (s)) - T} = -1r,(s) kz(x; s) dx. 
r-+oo I-r1(s) x=I 

(8.5) 

Using (8.5) we can prove the following lemma: 

Lemma 8.2. Fors> 0, 

lim 1r (91 (u; ~) - r1 (~))du = 0, 
T-tOO u=O T T 

and, consequently, 

Proof See the appendix. 0 

Theorem 8.3. For s ~ 0, 

lim 90 (r; ~) = e-s1i(l+vmi)/(µ-.\(l+vmi))' 
T->00 T 
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and, hence, 

Co(r) P 1 + vm1 1 
-- --t µ = --;-------.,--

T µ - ).(1 + vm1) 1/(1 + vm1) - >.../ µ' 

as r -+ oo. Here __!'.._., denotes convergence in probability. 

Proof Using the first part of lemma 8.2 we can write, for s ~ 0, 

lim r (i -91 (u; :.))du= lim r(1- r1 (:.)) = s 1 + vmi ' 
T->oo}u=O T T->oo r µ-A(I+vm 1) 

where we use that limsio(l - r1(s))/s = E[CP]. We can find E[CP] = (1 + vm1)/ 
(µ - ,\(1 + vm1)) from relation (4.6). Similarly, using the second part of lemma 8.2 
we have, again for s ;;;:: 0, 

)~~ 1:0 ( 1 - ~ ( !; +A - Ag1 ( u; ~)))du=)~~ r ( 1 - ~ ( !; +). - .\r1 ( ~))) 
=sm1 µ 

µ - .\(1+11m1) 

Using this in relation (4.5) gives the convergence in distribution by the continuity 
theorem for LSTs of probability distributions, see Feller (8, theorem 2, p. 408]. The 
convergence in probability then follows immediately, because the limit is a constant. 0 

Using formulas (3.3) and (3.4), theorem 8.3 immediately gives the following 
corollary. The result is in agreement with remark 7.4. 

Corollary 8.4. The sojourn time V ( r) of a customer with an amount of work r satisfies 

V(r) p 1 
-- --t ---,.------

T 1 / (1 + vm 1) - A/µ' 

as r-+ oo. 

Remark 8.5. Using the Renewal Reward Theorem, see, for instance, Tijms [30, theo
rem 1.3.l], it can be shown that the convergence of V(r)/r, and C0(r)/r, is in fact 
convergence with probability 1. To see this, note that N"(r), the process counting the 
number of elements in the population P at time r, is regenerative. The regeneration 
points can be taken to be the times at which the permanent element becomes the only 
element of the population. It can then be shown that the lengths of the regeneration 
cycles have a finite expectation. 

Remark 8.6. In addition to theorem 8.3 and corollary 8.4, it can be shown that 

V(r) - Co(r) ~ O, 
~ T-+ 00. 

T 

This is a consequence of theorem 3.5, corollary 3.6, and remark 8.1. 



376 R. Nz1iiez-Queija I A processor sharing queue with service interruptions 

9. Heavy traffic 

We now analyse the behaviour of the conditional sojourn time in heavy traffic. 
The main result of this section is stated in the next theorem. 

Theorem 9.1. Provided that the second moment of the off-periods, m2, is finite, 

1. E [ -(I -p)s V(r)] _ 1 im e - / , Re(s);::O, 
Pll 1 + (1 + vm1 + v>.m2 2)sT 

where the traffic load p is defined by 

>.(l + vm1) 
p:=---

µ 

This result is also known for the ordinary M/G /1 queue (without service interrup
tions), see Sengupta [27] and Yashkov [40]. Thus, in heavy traffic, the distribution of 
(1- p) V(T) converges to the exponential distribution with mean (1 + vm1 + v >.m2 /2)T. 
Note that the limiting mean is linear in T. To prove the theorem we use the following 
lemma: 

Lemma 9.2. For Re(s):;::: 0, 

(i) limpTl 91 (T; (1 - p)s) = 1, and limpTl go(T; (1 - p)s) = 1, 

(ii) limpTJ (1 - g1 (T; (1 - p)s))/(1 - p) = (1 + vm1 )sT. 

Proof See the appendix. 0 

Note that (ii) of lemma 9.2 can be rewritten in terms of the LST of the distribution 
of the backward (or forward) recurrence time of C t ( r) as follows: 

1. 1 - 91(T; (1 - p)s) l 
lffi = 

PTI E[C1(T)](l - p)s ' 

see formula (5.3). 
Using lemma 9.2, theorem 9.1 can be proved by substituting (1- p)s for s in (7.1) 

and (7.2), and letting p r 1. 

10. Final remarks 

We studied the sojourn time of a customer in the M/M/l queue with processor 
sharing service discipline, and the server alternating between exponentially distributed 
on-periods and generally distributed off-periods. This model is of interest for the 
performance analysis of the ABR service in ATM networks, and best-effort services 
in IP networks. By using a time-scale transformation, we formulated the problem in 
terms of a branching process with a reward structure on it. We indicated how the same 
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transformation can be applied for general service times, but for the sake of simplicity 
and notational convenience, we restricted the analysis to the case of exponentially 
distributed service requirements. The explicit form of the results may be valuable in 
future research when studying M/M/1 processor sharing models with a more general 
varying service process, see, for instance, Nufiez-Queija [20]. 

The sojourn time V(T) of a customer, conditional on his service requirement r, 
was decomposed into a sum of independent random variables, thus generalising the 
result known for the standard M/G/1 queue with processor sharing. The LSTs of 
the distributions of these "fundamental" random variables composing V(T) were char
acterised through an integral equation. We computed the first two moments of the 
fundamental random variables, and identified the structure of higher moments. We 
used these to find the moments of V(r), conditional on the number of competing cus
tomers, and generalised a result of Sengupta and Jagerman [28, theorem 1]. We gave 
an explicit expression for the LST of the sojourn time distribution in steady state, in 
terms of the LSTs of the distributions of the fundamental random variables. The mean 
of the steady-state sojourn times was found in terms of the input parameters. 

We further studied asymptotics of the queueing model. First, we analysed the 
case for r --t oo, proving that V(r)/r converges (with probability 1) to a constant. 
Then we proved under heavy-traffic conditions, that is for the traffic load p i 1, that 
(1- p)V(r) converges to an exponential distribution, of which the mean is linear in r. 

In particular, we found that E[V(r)] is not linear in r, unlike in processor sharing 
queues without service interruptions. We saw that E[V(r)] is approximately (asymp
totically) linear in three cases: (i) when the on- and off-periods alternate rapidly, 
(ii) when r is large, and (iii) in heavy traffic. An intuitive explanation for this linearity 
in all three cases is that the sojourn times are large compared to the lengths of the on
and off-periods, so that fluctuations in the service availability average out. 
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Appendix: Technical proofs 

A.l. Proof of lemma 4.1 

By conditioning on the number of "single" children and the number of nests 
that a nonpermanent element in the population model generates in a time interval of 
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length Li, as well as on the survival probability of the element itself in that interval, 
we get 

i ll 00 (At)m ( 11t ) m 91(T+Li;s)= µe-µte-stLe->.t __ ' - g1(T+u;s)du 
t=O 0 m. t u=O m= 

00 (11tr(11t )n x l:e-vt - 1 - <P(s + >.(1 - g1(T + u; s)) )du dt 
n. t u=O 

n=O 

Here we use the fact that "Poisson arrivals occur homogeneously in time", see, for 
instance, Tijms [30, theorem 1.2.5]. Note that </>(s + >.(1 - 91 (T; s))) is the LST of the 
distribution of the reward of a nest plus the rewards of all children in that nest and 
their off springs, until time T. 

Equivalently we may write 

91(T+Li;s)= f!l µexp{-µt-st->.(t-1t 91(T+u;s)du) 
lt=O u=O 

-v(t-1:0 4>(s+>.(1-91(T+u;s)))du) }dt 
+ 91 (T; s)exp{-µLi - s.11 - >-(Li -1:0 91(T + u; s)du) 

- v 0- 1:0 <P(s +>.(I - 91 (T + u; s)) )du)}· (A.I) 

By similar arguments we also find 

90(7 +Li; s) = 9o(r; s) exp{-s.11 - >. (Li -1:0 91 (T + u; s) du) 
-11(.11-1:0 </>(s+>.(l-g1(T+u;s)))du)}· (A.2) 

From (A. I) and (A.2) we can show that, for Li l 0, 

91 (T +Li; s) = (1 - (s + >. + µ + v)Li)g1 (T; s) + >.Li{g1(T; s)} 2 +µLi 

+ 11Lig1 (T; s)<f>( s + >.(I - 91 (T; s))) + o(.11), (A.3) 

go(T +Li; s) = (I - (s + >. + v)L1)9o(T; s) + >.Ligo(T; s)g1 (T; s) 
+vLigo(T;s)<f>(s+ >.(l -91(T;s))) +o(Li). (A.4) 
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With (A.3) and (A.4) it is immediate that 91 (r; s) and go(r; s) are continuous from the 
right in T. If we replace r in (A.3) and (A.4) by T - .6., the continuity from the left in 
T also easily follows. Subsequently it can be shown that, for i E { 0, 1 } , 

I. 9i(T + .6.; s) - 9i(r; s) 1. 9i(r; s) - 9i(T - .6.; s) 
Im = Im--------
~ .6. ~ .6. ' 

so that (8/8r)g1(r;s) and (8/8r)go(r;s) exist and satisfy equations (4.1) and (4.2). 
Condition ( 4.3) follows from C0(0) = C1 (0) = 0. 

A.2. Proof of theorem 5.1 

It is known for the M/G/1 queue that the kth moment of the busy period exists 
if and only if the kth moment of the service time exists, see De Meyer and Teugels [5, 
lemma 3]. With lemma 4.3, this implies that the kth moment of the clearing period 
exists, if and only if mk < oo. Since C1(r) is nondecreasing in r with probability 1, 
and C1(r) converges to the clearing period GP, as r ~ oo, it must be that 

(C1(r) is stochastically smaller than GP), and hence the kth moment of C1(r) exists 
when mk < oo. 

To prove the result for Co(r), we first write the following identity: 

N<>.)(r) NM(r) N<>.l(Dj) 

Co(r) = L Ci(T -TF')) + L Dj + L Cj,n(T -TY)). 
i=I j=I n=I 

Here, N<>..\r) is the number of "regular" children that the permanent element, in the 
population P, generates (at rate .A) over a time span of length r. Ji(>..) is the time at 
which the ith regular child is born, and Ci(r - TF')) is the reward of this child and 
his offspring until time T. Similarly, N(v)( r) is the number of batches of children of 
the permanent element (generated at rate v) until time r. Dj is the direct reward of 
the jth batch, N<>-l(Dj) is the number of children in the jth batch, ryl is the time at 
which the jth batch is generated, and Cj,n(r - ryl) is the reward of the nth child in 
the jth batch and his offspring, until time r. The above identity was given in terms 
of LSTs in relation ( 4.5). 

If we replace each of the rewards until time r associated with a child of the 
permanent customer and his offspring by the reward of the family of that child over a 
total time-span of length r, we clearly have an upper bound for Co(T): 

N<>-l(r) NM(r) N(>.)(Dj) 

Co(r) ~ Co(r) := L Ci(r) + L Dj + L Cj,n(r). 
i=I j=I n=I 
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For Re(s) > 0, the LST of the distribution of Co(r) is given by 

E[e-sGo(r)J =exp{-r(s+>.(l-g1(r;s)) +v[l -<P(B+>.->.g,(r;s))])}. (A.5) 

If mk < oo and, hence, by the first part of the theorem E[C1(r)k] < oo, we can write, 
for s l 0, 

k . 
(-S)I 

r,i>(s) =I+ L mi-.-, + o(sk), 
i. 

i=l 

k ( y 
g1(r;s)=l+ 2.::E[C1(r)j] -.-: +o(sk), 

j=I J· 

see De Meyer and Teugels [5, lemma l]. Combining these, we get 

r,t>(s + >. - >.gi(r; s)) 

(A.6) 

{-- (-s+>.I:J= 1E[C1(r)j](-s)j/j!)i ( k) 
= 1 +~mi .1 + o 8 . (A.7) 

i. 
i=l 

From equation (A.5) it is now straightforward to see that the LST of the distribution 
of Co(r) has a finite kth derivative ins= 0. Therefore, the kth moment of Co(T) and, 
hence, the k:th moment of Co(T), exists. 

A.3. Proof of theorem 5.2 

Let 1~rr be as before and N(Toff) be the number of Poisson arrivals (with rate ,\) 
during the period 1~ff· If C1(T), C2(T), ... is an i.i.d. sequence with LST of its distri
bution g1(T; s), then using equations (A.6) and (A.7), 

E [ e-s(7;,n+C1 (T)+··+C1+N(Torr)(T))] 

= g1(T; s)</J(s + ,\ - .\g1(T;s)) 

We write out the terms in the summation as 
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k 

= 2:)-s)n L 
n=O io+i1 +i2 + .. ·+ik=i 

io+i1 +2i2+·+kik=n 

Note that there are combinations of k, i, n EN, for which 

{ 
k k } · · · k+I. · · · · · (io,i1, ... ,ik)EN0 . ::Z::::ij=i, io+l:Jij=n =0. 

j=O j=I 

We now prove the theorem by induction on k. From (A.8) and (A.9) we can show 
that if E[C1(T)j] has the form of (5.9) for j = 1,2,. .. ,k- 1, then 

E[(T~ff + C1(T) + · · · + C1+N('J:,rr)(T))k] 

k k-m 

=(Ami+ l)E[C1(T)k] + l'bk) + L e-m\µ-.\(l+vmJ))T I: l'~:nTn. 
m=l n=O 

This can be verified by noting that the only contribution of E[C1(T)k] to the coefficient 

of (-s)k in (A.8) is through the term with i = 1. All other contributions to the 

coefficient of (-s)k are either zero, or come from products of the E[C1(r)l], for 

j = 1, 2, ... , k - 1. Apart from a constant in T, they all consist of terms of the form 
e-m{µ-.\(l+vmJ)} 7 7n, with m): 1, n): 0 and m + n ( k. Writing out the terms, it 

is seen that l'ikk_ 1 = 0. This is a consequence of the fact that for l 1, l2 = 1, 2, ... , 

the product E[C1(T)11 ] x E[C1(T)12 ] is of the same form as E[C1(T)11 +l2 ] in (5.9), 
. except for the terms containing e-{µ-.\(l+vmill 7 r 11 , with n): max(Z1,Z2), which do 

not appear. The other coefficients l'~!n can be found from the a<Ji~n for j < k, by use 

of (A.8) and (A.9). 
As before, we can derive a differential equation for E[C1(T)k]: 

:T E[C1(rl] =-(A+µ+ v)E[C1(T)k] + >.E[(C1(T) + C2(T))k] 

k I [ ) k] + kE[C1(T) - ] + vE (Toff + C1(T) + · · · + C1+N(T;,11 )(T) 

= -{/.t - :\(1 + vm1) }E[C1(r)k] + kE[C1(r)k-IJ 

k-1 k 
+AL ( l) E[C1(T)1]E[C1(T)k-l] 

l=l 
k-2 

+ v16k) + ve-{µ->.(l+vmi))T L l'\~Tn 
n=O 

k k-m 

+I./ L e-m{µ-.\(l+vmi)}T L l'~'.nTn. 
m.=2 n=O 
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Note that in the right-hand side of this differential equation, no term with 
e-{µ->..(l+vmi)}TTk-I appears. Solving for E[C1(r)k] indeed leads to the form of 
relation (5.9). The coefficients a6k) and a~~n are recursively dete1mined by the o:~l 

(j) . 
and D:m,n for J < k. 

To prove the second part of the theorem we use the differential equation for 
E[Co(r)k]: 

:T E[Co(r)k] = -(,\ + v)E[Co(r)k] + kE(Co(r)k-lJ + ,\E((Co(T) + C1(T))k] 

[ ( 
N(T0rr) ) kl + vE Toff + Co(r) + ~ Ci(T) 

k-1 (k) = kE[Co(T)k-IJ + ,\ ~ l E[Co(r)1]E[C1(r)k-lJ 

+ v ~ C) E[Co(T)1]E [ ( T,ff + N~) C;(T)) k-']. 
By similar arguments as before, we find relation (5.10). 

A.4. Proof of lemma 8.2 

Using relation (8.3) we may write 

It is clear from (8.2) that k1(s) < 0, for s > 0: for x = 0 the numerator on the 
right-hand side of (8.2) is negative and the denominator is positive, and as x j r 1 (s) 
neither the numerator, nor the denominator changes sign. 

Fors> 0, let Jvl(s) E [r1(s), 1] be such that J~\sl k2(x;s)dx is maximal. Then 
we may write 

(A.10) 
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Now, if we taker__., oo then r1(s/r) and lvl(s/r) go to 1, k2(.r,; s/r) remains bounded 
for r1(s/r) ~ x ~ 1 and 

-I 
limk1(s) = -----
slO µ - ..\(1 + vm1) 

Thus, if we let r __., oo in (A.10) then the upper bound goes to 0. 

The second part of the lemma follows from the first part by noting that </>(s) is a 
decreasing and convex function for s ;;::: 0, and (d/ds)ci>(s)ls=O = -m1. Therefore, it 
holds that </>(s1) - ci>(s2) ~ m1(s2 - s1), whenever 0 ~ s1 ~ s2. 

A.5. Proof of lemma 9.2 

Part (i). Substitute (1 - p )s for s in equations (A.1) and (A.2), and let p j I. 
Assuming that h1 (r; s) := limpTJ 91 (r; (1 - p)s) and ho(r; s) := limpTI go(r; (1 - p)s) 
exist we find (using the Dominated Convergence Theorem for the interchange of limit 
and integrals) 

h1(r+A;s)= ff> µexp{-µt-..\(t-1t h1(r+u;s)du) 
lt=O u=O 

- l/ ( t - 1:0 cP (A ( 1 - h [ ( T + U; S))) d U) } dt 

+hi(r;s)exp{-µA->..(A-1: 0 h1(r+u;s)du) 

- v( A- .l:o </>(>..(1 - h1(r + u; s)))du) }• 

ho(r+A;s)=ho(r;s)exp{->..(A-1:
0 

h1(r+u;s)ct-u) 

-v(A-1:0 4>(>..(1-h1(r+u;s)))du) }· 

From this we can (as in section 4) derive the following differential equations: 

a ar h1 ( r; s) = µ + hi (r; s){ >..h1 (r; s) - (,\ + l/ + µ) + vci>( ,\ ( 1 - h1 (r; s)))}' 

a 
[h ho( r; s) = ho(r; s) { >..h1 (r; s) - (,\ + v) + v</> ( >.. ( 1 - h 1 (r; s)))}. 

Together with the boundary conditions h1 (O; s) = ho(O; s) = 1, these differential 
equations uniquely determine h1 (r; s) and ho(r; s). Part (i) is now proved by noting 

that h 1 ( r; s) = 1 and ho( r; s) = 1 satisfy these equations. A comment should, however, 
be made about the assumption on the existence of h1(r; s) and ho(r; s): Since, for any 
Re(s) ~ 0, 191 (r; s)\ ~ 1, we can find a sequence (Pk)kEN in the interval [O, 1] such 
that limk->ooPk =I and h1(r;s) := Iimk_.00 g1(r;(I -pk)s) exists. For h1(r;s) we 
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can formulate the differential equations, leading to h1(T; s) = 1. Since the limit is the 
same for all convergent sequences, h1 (T; s) exists. In the same way it can be argued 
that ho( T; s) exists. 

Part (ii). The proof proceeds along the same lines as for part (i). We assume the 
existence of 

l ( . ) ·- l' l -g1(T;(l - p)s) 
! T,S .- Im . 

pjl 1 - p 

Again this existence can be shown by following the subsequent steps for the limit of a 
convergent sequence (1 - g1 (T; (1 - Pk)s))/(1 - Pk)· Such a sequence exists because 
(1 - 91 (T; w))/w ::::; E[C1 (T)] for any Re(w) ;;:: 0, and E[C1 (T)] is bounded in p E [O, 1], 
see formula (5.3). 

Substitute (1- p)s for sin (A.I), subtract both sides of this equation from 1, and 
use 

lim -1 1 (1 - exp{-(1 - p)sx - >. lx (1 - 91 (r + u; (1 - p)s) )du 
pjl - p u=O 

- v 1:0 ( 1 - cf> ( ( 1 - p )s + >. ( 1 - 91 ( T + u; ( 1 - p )s) ) ) ) du}) 

= sx + ,\ 1:0 l1(T + u; s)du + v 1:0 m1 (s + ..\l1(T + u; s))du, 

(again with the Dominated Convergence Theorem to interchange limit and integrals) 
to find 

l1 (T +A; s) = f'i µ e-µt ((1 + vm1)st + >.(1 + vm1) lt 11 (T + u; s)du) dt 
lt=O u=O 

+ e-µ!:. (11 (T; s) + (1 + vm1)sA + ,\(1+vm1)1:
0 

Z1 (T + u; s) du). 

For A 1 0 we may now write 

l1 (T + Ll; s) = l1 (r; s) - Aµlr (T; s) + A(l + vm1)s + A..\(l + vm1)l1 (T; s) + o(A) 

= l1(T; s) + A(l + vm1)s + o(A), 

where for the last equality we have used that µ = >.(l + vmt) when p = I. Using the 
boundary condition l1 (O; s) = 0 we readily find l1(T; s) = (1 + vm 1)sT. 
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