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Abstract. In this paper we consider various blends of implicit and explicit time integration 
schemes, based on the well-known BDF2 met.hod, applied to convection-diffusion problems with 
dominating convection. A fully implicit treatment of convection terms is often not very efficient. 
We shall deal with second order schemes that are implicit in the convection terms only locally in 
space, without introducing the internal inconsistencies that are common with many time-splitting 
methods. Along with implementation aspects of the implicit relations, we shall discuss accuracy of 
the schemes, positivity and monotonicity properties. 
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1. Introduction. When adopting the method of lines approach, space discretiza­
tion of multidimensional, time-dependent partial differential equations (PD Es) results 
in large system~ of ordinary differential equations (ODEs) which are to be integrated 
in time by an appropriate time stepping scheme. Frequently in such applications one 
is confronted with problems having both stiff and nonstiff parts. Diffusion, for exam­
ple, leads to stiff terms that need implicit treatment. Convection terms can usually 
be taken explicitly, but if we have locally large convective velocities an explicit treat­
ment is unfavorable due to the CFL restrictions on stability, whereas a fully implicit 
approach leads to systems of algebraic equations that are rather difficult to solve nu­
merically. Here we shall deal with partial implicit treatment of convective terms in 
such a way that the resulting scheme is fully implicit only in those spatial regions 
where the solution is smooth and the convective velocities are large. 

The focus in this paper is on convection dominated equations. First, consider the 
convection equation without any diffusion, 

(1.1) Ut + V' · (q(:r, t)f('u)) == 0, x En, t 2 0, 

on a spatial domain n c JRd with appropriate initial and boundary conditions. Here 
q(x, t) E JRd is a given velocity and f is a scalar flux function. Discretization of the 
spatial derivatives leads to a large system of OD Es, the so-called semidiscrete system, 

(1.2) w'(t) = F(t,w(t)), t 2 0, 

where F contains the discretized convective terms, and an initial value Wo = w(O) is 
given. We consider numerical time integration schemes with step size T > 0, yielding 
approximations Wn ;::::; w ( tn) at the time levels tn = rrr. For spatial discretization we 
shall deal with limited second order finite volume or finite difference formulas. The 
dimension of the sernidiscrcte system is proportional to the number of grid points, 
and components wi(tn) of w(t11 ) refer to approximations at the grid point x,; or to an 
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average value on a cell ni around Xi· With multidimensional problems i will denote 
a multi-index. 

One of the most popular implicit methods for solving (1.2) is the second order 
BDF2 method 

(1.3) 

with n;::: 2; see [9]. Along with wo, this two-step method needs w 1 as starting value. It 
can be computed by a one-step method, for instance, implicit Euler. The popularity 
of this BDF2 method is due to its stability and damping properties; see [10], for 
instance. These are crucial properties for efficient solution of diffusion equations. 

Convection equations, on the other hand, are often treated more efficiently by an 
explicit method. Here we consider the related second order scheme 

(1.4) ~Wn - 2Wn-l + ~Wn-2 = rF(tn,"Wn), where Wn = 2Wn-1 - Wn-2, 

to which we shall refer as the explicit BDF2 method. Note that Wn = 2wn-l - Wn-2 
is just an explicit prediction by linear extrapolation. As with any standard explicit 
method, we now have a CFL condition for stability. Therefore, if we deal with large 
velocities or fine spatial grids, very small time steps have to be taken. 

As we shall see, the fully implicit method also gives us difficulties when applied 
to large Courant numbers. This is due to slow convergence of the Newton iterations 
for the implicit relations but also due to loss of monotonicity. In this paper we 
therefore consider a partially implicit convection treatment, where only those parts 
in the domain with little spatial variation in the solution are treated implicitly. The 
resulting formula is 

(1.5) 

where e is a diagonal matrix with entries ei = 0 if the convection term is taken 
explicitly at the grid point Xi, and Bi E (0, 1] otherwise. The actual choice for the Bi 

is discussed in section 4. 
With convection-diffusion problems, 

(1.6) Ut + V' · (q(x, t)f(u)) = V' · (D(x, t, u) · \i'u), 

the resulting semidiscrete system will be of the form 

(1. 7) w'(t) = F(t, w(t)) + G(t, w(t)), t 2: 0, 

where F contains the convective terms and G denotes discretized diffusion. The above 
formula (1.5) for the convection part can be well combined with implicit treatment of 
the diffusion term by considering 

(1.8) !wn - 2wn-l + ~Wn-2 = rF(tn, ewn +(I - G)wn) + rG(tn, Wn), 

so that we obtain a formula that benefits from the damping properties of the fully 
implicit BDF2 scheme for the diffusion part. 

If e = 0 this is an implicit-explicit method of the type that was introduced by 
Crouzeix [5) and Varah [21]. Stability results can be found in [1, 5, 8, 21], for example, 
and a practical application in the field of air pollution was discussed in [22]. In general, 
the stability of this method is completely determined by the CFL restriction for the 
explicit convection part. 
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Note that all of the above methods are different from the usual time-splitting tech­
niques, where different subproblems, such as v'(t) = F(t, v(t)) and v'(t) = G(t, v(t)), 
are solved subHequently on small time intervals. This leads to intermediate results 
which have little physical meaning, since they are not consistent with the total equa­
tion. Boundary conditions or interface conditions are usually lacking for these inter­
mediate results. With the above BDF2-type methods we use only fully consistent 
approximations Wn and no intermediate results. 

Further we note that if e = ()J the above formula (1.5) is a two-step extension of 
the more familiar {}-method 

(1.9) 

with the explicit Euler method, B = 0, and the implicit Euler method, fJ = 1, as 
boundary cases. We shall not consider these methods here since both the implicit 
and explicit Euler methods are not well suited for convection problems. The implicit 
Euler method is much too diffusive, whereas the explicit Euler method is uru;table 
for the spatial convection discretizations cousidered in this paper. Actually, in a 
method of lines :;et.ting, the explicit Euler method is unstable for all well-known :;patial 
convection discretizations except for the (diffusive) first order upwind discreti:;mtion. 

A related method has been formulated by Blunt and Rubin [4] for one-dimensional 
(ID) problems, where the implicit Euler scheme was combined with an explicit, direct 
space-time scheme (Lax Wendroff-type) with limiting. However, for multidimensional 
problems this combined scheme needs dimen:;ional Hplitting since the formulation of 
such a direct space-time Hcheme for multidimensional problems is different than with 
the implicit Euler scheme; see also [13]. Moreover, due to the use of implicit Euler, 
the order is 1 at most. 

In this paper we shall consider the second order BDF2 blends (1.5) mainly for 
purely convective problems. If diffusion is added as in (1.8), the method becomes 
implicit over the whole spatial domain, but in those regions where the entries (Ji are 
zero the implicit relations have a uice symmetric, diagonally dominant structure, so 
that standard linear :;olvers, such as conjugate gradients, will be very efficient. 

Spatial di:;cretization of the convective terms will be done by limiting in order 
to avoid oscillations and negative solution values. In section 2 we discuss by means 
of lD examples implementation issues and qualitative behavior. As we shall see, the 
standard implicit BDF2 met.hod (1.3) becomes rather expensive, and, more impor­
tantly, the retmlts are also rather disappointing with re:;pect to qualitative behavior 
and accuracy. This is due to the poor monotonicity properties of the :;tandard implicit 
BDF2 method. 

In Hection 3 we consider formula (1.5) with e = f)J, with the aim of selecting values 
of() with better monotonicity propertie:; than (I = 1. To obtain theoretical results we 
shall concentrate on positivity for linear systems. The results in this section can be 
regarded as an extension of the positivity theory of Bolley and Crouzeix [2]. 

In section 4 we consider implementations of (1.5) with variable entries 8;. The ac­
tual choices will be motivated by the preceding resultH. We shall diHcuss the accuracy 
of the schemes with variable entries in some detail in section 5, since the standard 
local truncation error no longer gives proper information about the accuracy of these 
schemes. This i:; similar to the situation for :;tiff ODEs as considered in Hundsdor­
fer and Steininger [12]. Numerical results will be presented in section 6 for a test 
example from reservoir simulation, where we have locally large convective velocities 
q near injection and production wells and moderate or small velocities elsewhere in 
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the spatial region. It will be seen that the locally implicit schemes can be much more 
efficient than the fully implicit counterparts such as (1.3), whereas this locally implicit 
approach allows step sizes much larger than with explicit schemes such as (1.4). 

2. One-dimensional examples. In this paper we shall deal with convection­
diffusion discretizations for lD or two-dimensional (2D) problems. For ease of pre­
sentation we first consider the lD convection problem 

(2.1) Ut + (q(x, t)f(u))x = 0, 

on r2 = [O, 1], with monotonically increasing flux function f. Further, it is assumed 
that an initial profile u(x, 0) and appropriate boundary conditions are given. In 
this section we shall discuss the advantages and disadvantages of the implicit BDF2 
method (1.3) compared to its explicit counterpart (1.4). 

2.1. The spatial discretizations. For the spatial derivative in (2.1) we con­
sider discrctizations in flux form on a uniform mesh, 

(2.2) 

with grid points x; = ih and qi±l/2 = q(xi ± ~h, t). Here w; = w.;(t) stands for a 
sernidiscrete approximation to the average value of u(x, t) over the cell fl; = [x; -
~h,:r; + ~h]. The choice for the cell boundary values wi± 1; 2 determines the actual 
discretization. 

It is well known that the first order upwind approximation wi+ 1; 2 = w;, for 
q > 0, gives very inaccurate and diffusive results. On the other hand, higher order 
linear discretizations, such as second order central wi+ 1 ; 2 = ~ (w; + w;+l) or second 
order upwind W;+ 1; 2 = ~(-w;_ 1 + 3w;), give results that are very oscillatory. For 
that reason. discrctizations with limiters have become increasingly popular. 

In the following, let 

,a - W; - Wi-l 
"U'l - • 

Wi+l - W; 

In (2.2) we shall deal with limited approximations for the cell boundary values of the 
form 

(2.3) if qi+~ 2 0, 

if <Ii+~ < 0, 

where 1/' is the limiter function. For this limiter function two choices are considered, 

(2.4) 

(2.5) ~1(fJ) = rnax ( 0, min ( 2, ~ + ~{), 2{))). 

The first limiter is due to van Leer [16], the second to Koren [14]. The limiters 
provide a suitable balance between the monotone first order upwind flux and higher 
order fluxes. Formal statements on accuracy are difficult, due to the built-in switches, 
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but simple numerical tests for smooth solutions show that the spatial discretizations 
are approximately second order in the L2-norm. With both limiters we have w(t) :::: 0 
whenever w(O) ::'.'.: 0, together with monotonicity properties such as the total variation 
diminishing (TVD) property; see, for instance, [15, 17] for more details. 

For points adjacent to the boundaries, some of the Wj values that are needed in 
(2.3) might be missing, and for those, constant extrapolation is used, which means 
that we switch locally to first order upwind. The above discretizations extend easily 
to more dimensions on Cartesian meshes. 

We observed that the explicit BDF2 method (1.4) is stable with these spatial 
discretizations up to Courant number 1/2, approximately. This is an experimental 
bound; precise results can be obtained for the corresponding linear nonlirnited dis­
cretizations; see [8, 22]. 

2.2. Implementation. For test purposes we consider the linear lD convection 
problem, (2.1), with 

(2.6) .f (u) = u, q = 1. 

Note that even for this linear problem the resulting semidiscrete system will be non­
linear, due to the limiter. Therefore, with implicit time integration, some form of 
Newton iteration is required, which in turn needs an approximation to the Jacobian 
matrix A~ 8°,,,F(t,w). Within the Newton iteration for (1.3) the matrix ~I -TA is 
used. The first choice to be considered is the first order upwind approximation 

A = A1 =::.: * [ 1 -1 0 ] 

in stencil notation. The resulting iteration scheme is related to the defect correction 
approach used in [6, 18], for instance. Other choices for the Jacobian approximation 
can be obtained by realizing that the above flux formulas are nonlinear counterparts 
of formulas obtained by linearizing around 19 = 1 (replacement of '!j;(O) in (2.3) by 
1/J(l) + '!j;'(l)(O - 1)). For the van Leer limiter (2.4) this leads to 

A= A2 = .!!._ [ -1 4 -1 -2 0 ] 
4h 

corresponding to the linear Fromm scheme. For the Koren limiter (2.5) we get 

- q [ A= A3 = - -1 
6h 

6 -3 -2 0 l ' 
which corresponds to the well-known linear third order upwind-biased scheme. Finally, 
we also consider the choice A= 0, which gives standard functional iteration. 

In Table 2.1 the average number of Newton iterations per step are listed for the 
implicit BDF2 method (1.3) with these various choices and several Courant numbers 
v = T /h. As starting procedure to calculate w 1 , the implicit Euler method was taken. 
The solutions were calculated on the spatial interval [0,1] with periodicity. The results 
are given here for an initial block-profile 

{ 0 for 0 < x < ~, 
u(x, O) = 1 otherwise, 

and for a smooth initial profile 

u(x, 0) = sin2 ( ?TX). 
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In this test, the mesh width has been chosen as h = 1/100 and output time is T = 
~- The convergence criterion for the Newton iteration is that the max-norm of the 
residual should be less than 10-6 . This is rather strict, but accurate solution of the 
implicit relations is necessary to maintain the monotonicity of the limiting procedure. 
The maximum number of Newton iterations per step is set to 100. If convergence is 
still not reached, then the calculations are aborted and ** is used for the corresponding 
entry in Table 2.1. Actually, with A = 0, v = 1 this means genuine divergence, with 
the other cases in the table extremely slow convergence. 

TABLE 2.1 
Linear con·uection test (2.1), (2.6) with implicit BDF2 method. The entries are the average 

number of Newton iterations per step with block-profile and sin2 -profile, respectively. 

Limiter I A v=l v = 1/2 v = 1/4 

(2.4) A1 10.8 - 8.0 8.6 - 6.6 6.9 - 4.5 
(2.-i) A2 13.9 - 11.0 9.3 - 6.5 6.8 - 4.::i 
(2.4) 0 * * - * * 23.7 - ** 7.9 - 5.7 

(2.5) Ai 14.7-11.0 13.5 - 7.5 8.4 - 4.9 
(2.5) A:i * * - * * 24.6 - 12.2 9.5 - 5.3 
(2.5) 0 * * - * * * * - * * 9.1 - 6.8 

The first observation from Table 2.1 is that the choices A = A2 and A = A3 do 
not perform well. Especially with (2.5) and A = A3 we get a convergence behavior 
that is hardly better than with functional iteration. The only choice that does per­
form reasonably here is A = A1 . Moreover, we see that the algebraic: relations with 
limiter (2.4) are easier to solve than with (2.5). It should be noted that the latter 
gives :slightly better results with respect to accuracy, with somewhat less numerical 
diffusion, but the differences are small. Even with explicit methods the limiter (2.5) 
is more expensive than (2.4), due to the max-min calculations. 

Therefore we consider in the following only the limiter (2.4) with first order up­
wind approximation for the Jacobian. This implementation seems quite robust. For 
example, in the above test, if only one time step is performed, T = T, v = 25, the 
Newton process still converges (with 16 iterations for both profiles). Moreover, with 
first order upwind approximations for the Jacobian the resulting linear system is di­
agonally dominant, which is of importance in more space dimensions in connection 
with iterative linear solvers. 

However, even with this choice a rather large number of Newton iterations is 
needed per step. Note that in the above test, the explicit version of the BDF2 method 
could be u:sed up to Courant number v = 1/2, and with this explicit method the CPU 
time per step is much smaller than with the implicit scheme. Therefore, we can 
conclude that accurately solving the implicit relations with limiting is expensive in 
terms of CPU time. Some gain could be achieved by setting the tolerance in the 
convergence criterion to less strict values, but it was observed that even with small 
Courant numbers negative values arise that are of the same order of magnitude as 
this tolerance. Numerical tests in lD with Burgers and Buckley-Leverett equations 
gave mmlts comparable to those in Table 2.1. 

With multidimensional problems we shall adopt the same implementation as 
above. The Jacobian required in the Newton iteration is approximated by the Ja­
cobian that corresponds to first order upwind spatial discretization. 
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2.3. Qualitative behavior. The advantage of an implicit time stepping method 
is the possibility of taking large step sizes without introducing instabilities. However, 
in several numerical tests we observed that the quality of the implicit solutions are 
rather poor with large, or even moderately large, Courant numbers if the solution has 
steep gradients. As an example, consider the lD Buckley-Leverett equation given by 
(2.1) with 

(2.7) . 3u2 

f (u) = 3u2 + (1 - u.)2 q= l. 

and initial block-profile 

u(x,O) = { ~ for 0 < :r < ~. 
otherwise. -

At the inflow the boundary condition is u(O, t) = l. For the mesh width we take 
h = 1 /100 and the endpoint in time is T = ±. In the following figures the numerical 
solutions are plotted with solid lines. Dashed lines are used to indicate the reference 
solution that uses the same mesh width h but computed with a very small time step; 
this corresponds to the exact solution of the sernidiscrete system. In Figure 2.1 the 
implicit (1.3) and explicit (1.4) numerical solutions are plotted as function of :r with 
100 time steps, T = 1/ 400. There is little difference between the two solutions and 
they are close to the reference solution . 

.. ~ 1_J: 
, - -- _'._ .. · .. L_;__ 

; 
-o 5 o 0.1 02 o.3 \l4 o.~ 06 

FIG. 2.1. Numer-ical solnt'ions at: T = ± w·ith Bnck:ley,,Leverctt equation, h = l~CP T = 460 . 

Left picture: explicit method (1.4), r·ight picture.· implicit BDF2 method (1.3). 

If the number of time steps is decreased to 50, T = 1/200, we see from Figure 2.2 
that now the explicit solution becomes unstable. but at the same time the implicit 
solution becomes very inaccurate. Both the shock speed and the shock height are no 
longer correct. 

With linear convection f ('u) = 'U, the same phenomenon was observed: if the solu­
tion has steep gradients, then the implicit method gives poor results whenever the step 
sizes are significantly larger than those that can be taken with the explicit method. 
As we shall see in the following section, this disappointing qualitative behavior of the 
implicit BDF2 method is due to loss of monotonicity for large step sizes. Although 
this can be somewhat improved with variants of the implicit BDF2 method (see next 
section), tests with other implicit schemer:; of Runge-Xutta or linear multistep-type 
consistently showed a similar behavior. This means that implicit methods can be 
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FIG. 2.2. Numerical solutions at T = ~ with Huckley-Leverett equation, h = 160 , r = 2~0 . 
Left p·icture: expl·icit method (1.4), ri.ght picture: implicit BDF2 method (1.3). 

used well only with large Courant numbers if the solution has little temporal or spa­
tial variation. In case this is valid, an implicit treatment will be more efficient than 
an explicit one. 

In the following sections we shall consider combinations of the implicit and explicit 
BDF2 methods with the aim of combining the favorable aspects of these two methods. 

3. The 8-BDF2 methods. As a first step to combine the implicit and explicit 
methods we consider the following class of methods, with parameter 8 E [O, l]: 

(3.1) ~'Wn - 2Wn-l + ~'Wn-2 = rF(tn,Bw11 + (1 - B)wn), 

where as before Wn = 2wn-I - Wn-2· Clearly, for 8 = 0 and () = 1 we reobtain 
the methods ( 1. 3), (1.4), respectively. A8 we 8hall see later 011, the above methods 
have order 2 for any choice of 8. Moreover, the methods are A-stable for () 2:: ~ and 
consequently we then have unconditional stability for convectiou-diffu8iou problem8. 
In fact, if() = ~ the stability region consists preci8ely of the left half complex plane. 
With this value of 8 the method has no inherent damping. For diffusion problems 
the fully implicit BDF2 method with () = 1 is therefore preferred. For convection. 
on the other hand, damping is not necessarily a favorable property and we shall see 
that 8 = ~ has better monotonicity properties, and consequently it gives a better 
qualitative behavior for convection problems. 

3.1. Positivity properties. We shall consider monotonicity and positivity prop­
erties of the 8-BDF2 method (3.1) for linear Pquations 

(3.2) w'(t) = Aw(t) + g(t). 

In the following we shall write v 2:: 0 for a vector v if all its components are nonneg­
ative. It will be assumed that the matrix A = ( aij) E Rm x"' has no real positive 
eigenvalues and 

(3.3) aij 2:: 0 (for i =I- j), aii 2: -a (for all i), 

with a > 0. The class of matrices satisfying this condition is denoted by Ma· By a 
continuity argument (on r > 0) it can be shown that for any A E Ma 

(3.4) (I - rA)- 1 2 0 for all T > 0. 
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Further we consider g(t) 2 0 for all t 2 0 in (3.2). Under these assumptions it holds 
that 

(3.5) w(t) 2 0 whenever t 2 0 and w(O) 2 0, 

irrespective of the value of a E IR; see [2]. We note that for linear systems w'(t) = 
Aw(t) with the property that Ae = 0 fore= (1, 1, ... , lf, it easily follows that the 
solution will also satisfy a maximum principle 

minwi(O) :S wj(t) :S maxwi(O). 
i z 

A rational function t.p is said to be absolutely monotonic on the interval [-1, OJ if 
t.p and all its derivatives are nonnegative on this interval. It was shown by Bolley and 
Crouzeix [2] that 

t.p(rA) 2 0 for all A E M 0 iff 'P is absolutely monotonic on [-ra,OJ. 

This result gives necessary and sufficient conditions for having 

Wn 20,n=1,2, ... whenever w0 2 0 

with one-step time discretizations, such as Runge-Kutta methods. The condition 
of absolute monotonicity is already necessary for A = h- 1(E - I) E IRmxm with 
backward shift operator EE IRmxm, a= m = h-1 , provided that the dimension m 
is sufficiently large. Note that this is simply the semidiscrete system obtained from 
Ut + Ux = 0 with first order upwind discretization in space and homogeneous Dirichlet 
condition at the inflow boundary. In particular, for the one-step 8-method (1.9), we 
get the condition on the step size 

1 
ra <--. -1-e 

Therefore, with the implicit Euler method there is no step size restriction for positivity. 
With all other well-known methods we do get a restriction on the allowable step sizes, 
since unconditional positivity implies that the order of the method is at most l; see 
[2]. 

Application of method (3.1) to the linear system (3.2) gives the recursion 

(3.6) 

with rational functions 

(3.7) •1, ( ) = 4(1+(1-8)z) .i. ( ) = -(1+2(1 - B)z) ( ) = 2 
"'1 z 3 - 28z ' "'2 z 3 - 2ez ' 'P z 3 - 20z 

Positivity results with arbitrary nonnegative starting values wo, W1 were derived by 
Balley and Crouzeix [2] for a class of linear multistep methods (see also Spijker [19] 
and Shu [20] for related results). These results, however, require that 1/!1 (r A), 1/J2(r A), 
t.p( r A) 2 0, and therefore they are not applicable to the BDF schemes. Due to the 
fact that 'l,b2 (0) = -~ one never has w2 2 0 for arbitrary starting values wo, W1 2 0. 

We shall derive positivity results for the B-BDF2 methods (3.1) under the assump­
tion that w1 is obtained by a suitable starting procedure from wo, for instance, by 
Euler's method. The derivation of these results is partly based on discussions with M. 
van Loon (1996, private communications). Results of this type for general multistep 
methods seem unknown. 
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3.2. The threshold function. The positivity rer:mlts will lw obtairwd by con­

sidering the above recursion (3.6) with suitable linear combinations w" - n1·,, 1. In 
this subsection some technical results will be derived. The fiual n~sul1 is gin~n in 

Theorem 3.1. In the following we denote 

C(z) = ( 
?jJ1 (z) 'l/J2 ( z) ), V=( 1 -f )· 1 0 0 

Then 

VC(z)v-1 = ( 1.P1{z) 'P2 ( z) ) E 

with 

We shall determine E > 0 such that the entries of VC(z)\l- 1 arc ahsol11t1·ly rnu11oto11k 

on the interval [-1, 0] with I as large as possible. Siuce tlw 'r".1 an· fractiorial lirwar 
(i.e., rational with linear denominator and numerator), it follows 1 hat this is f•q11ivalP11t 

to ipj(O) :'.'.'. 0and1Pj(z) 2:: 0 for z E [-1,0], j = 1,2. 
It is straightforward to verify that 'Pj (0) :'.'.'. 0 and yJ~ (0) ? () for j I. '.2 itr 

(3.8) (
1 :3 -· 2()) 

with Eo = max ~-. ----~ . 
;3'()--2{} 

Further we want 'PJ(z) 2:: 0. As we consider z ~ 0. this is S(•c•11 to IH· <·qnivali·nt with 

(3.9) lzl ~ r(i:), 

where 

p(i:) = (1- E)(3E - 1), q(c) = 2fh2 + 4(1 ""0)< '.2( I ii). 

The optimal choice for E will depend 011 the location uf tlH· lan!1·st ZP!'<, 

~h~ ' 

Note that r(c) is monotonically decreasing in<, and to satisfv 1.:1 · r(1) f£Jr ;; ; ~ .. ol 

with I as large as possible, we Rhould take f E [<ri, 1] a:.; srnali w-; pos:-.ilill'. !nit of i·omsr·· 
within the second constraint of (3.9). 

First, assume that >.2 :'.'.'. ~, that is, () :::; ~. Then q( f) < () for 1 [ .\, A;i , awl t lrns 
the second constraint in (3.9) will be automatically satisfied for t r!f;s1· ;·. T! 11 ·n·fon· we 
can choose E =co, yielding the restriction I::;: r(l'o). Tims tlw optimal-, 1,,, hv 

(3.10) 8 - 15 - 28 
I ( ) - 24 - 26() + 4(12 ' () < '.! ... ! . 

For the second case >.2 < k, that is,();:::: }, we get thr! c<Jllditiull 
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By some tedious calculations it can be shown that the second constraint is now the 
dominating one and that the above condition is least restrictive with f.= [(3 - W) + 
./( 48 - 3) ]/ ( 6 - 28). This leads to the optimal I given by 

(3.11) (8)- 3+28-3~ 
1 - 2(6-58)+2Bv48-3' 

The threshold function 1(8) from (3.10), (3.11) is plotted in Figure 3.1. In the 
next subsections the relevance of this function is discussed. 

Fie. 3.1. Positivity threshold function -y(e) versus() E [O, l] according to (3.10), (3.11). 

3.3. Results for linear systems. From the calculations in section 3.2 it is 
easy to obtain positivity results for linear systems. In the following, 1(8) refers to the 
threshold function given by (3.10), (3.11) and E = c(8) stands for the optimal value 
such that VC(z)v- 1 :::::: 0 for all z E [-1(8),0]. 

THEOREM 3.1. Consider the linear semidiscrete system (3.2) with A E Ma and 
g(t) 2:: 0. Then Wn 2:: 0 whenever ro:::; 1(8), wo 2:: 0, and Wi - EWo 2: 0. 

Proof. Denote 

Wn = ( Wn ) , 
Wn-l 

Recursion (3.6) can be written as 

We consider 

Then 
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From the results in section 3.2 it follows that the entries of the block matrix VC(TA)v- 1 

are nonnegative provided that TO: ::::; 'Y( B). Further we have Gn 2: 0 and Uo 2: 0. There­
fore Un 2: O for all n, and consequently the same holds for the 

H'n· 0 
Whether the condition w1 - two 2: 0 is satisfied will of course depend on the 

starting procedure used to calculate w1 . It will hold if w1 is calculated from one 
implicit Euler step. However, if() = 0 it is more natural to use an explicit Euler step. 
Since t = ! if() = 0, we then get 

W1 - two= W1 - ~wo = !wo + TAwo + Tg(O), 

and this is guaranteed to be nonnegative only if Ta. ::::; ~. This condition is slightly 
more restrictive than with the threshold value "f(O) = ~ for the explicit BDF2 method 
itself. This extra time step restriction due to the explicit Euler start can be easily 
avoided by calculating w1 by another starting procedure; for example, 

in which case it is seen that w1 - !wo = !w2 2: 0 whenever Ta. $ 1. 

3.4. Test with the van Leer limiter. The above theoretical results give suffi­
cient conditions for nonnegative solutions with linear problems. To test the relevance 
with the nonlinear semidiscrete systems obtained with limited spatial discretization 
(2.2)-(2.4), we consider once more the ID test equation Ut + Ux = 0, 0 :::; t :::; ~ with a 
block-function as initial profile and h = 160 . In Table 3.1 we have listed the minimal 
number of steps N(r) needed to obtain numerical solutions with minimum larger than 
-10-" with r = 3, 4. As before, the convergence criterion in the Newton iteration 
was that the max-norm of the residual should be less than 10-6 (same results with 
smaller tolerances), and the starting value w1 was computed with the implicit Euler 
method. 

TABLE 3.1 
Linear convection test (2.1 ), (2.6) w'ith B-BDF2 methods. Number of steps required for (almost) 

nonnegative solutions. The Courant numbers are r/h = 25/N. 

(} 0 .7 .74 .75 .76 .8 

N(4) 40 21 21 24 31 46 75 

N(3) 39 21 21 23 26 38 63 

For the larger values of () the number of steps needed to achieve minimal values 
larger than -10-4 and -10-3 are relatively far apart; we do not have an explanation 
for this. We see from Table 3.1 that the theoretical results obtained for the linear class 
of problems do have a relevance for the van Leer limiter. In particular, if() is close to 
0. 75, we can take significantly larger steps than with () equal to O or 1. On the other 
hand, in this test the largest step sizes could be taken with values of () slightly less 
than 0. 75, in contrast to Figure 3.1. Also, the allowable step size with () = O seems 
somewhat larger than one would expect on the basis of Figure 3.1 in comparison with 
() equal to 0. 75 or 1. 
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It should be noted that the semidiscrete system obtained here with limiting can 
be written in the quasi-linear form 

I 1 
W; = -1. qa;(w)(w;_ 1 - wi) with 0::; a;(w)::; 2; 

/, 

see [11]. The results for the linear systems therefore suggest positivity if the Courant 
numbers v =qr/hare not larger than ~1(8). In the above experiment this condition 
indeed seems sufficient, but it also seeins a bit too strict, probably due to the fact 
that the limiter switches locally to first order upwind discretization for which the 
condition v ::; "'!(8) is sufficient (and necessary). Similar to [11] for explicit Runge­
Kutta methods, we can conclude that the linear theory does give reasonable qualitative 
predictions for more difficult, nonlinear situations, but these predictions should not 
be taken too literally. 

As noted before, the 8-BDF2 methods are unconditionally stable for convection­
diffusion problems iff 8 2': ~. Based on the linear theory a1~d practical experience, 
we do prefer the implicit method with 8 = ~ over the standard fully implicit BDF2 
method with 8 = 1 for convection. For instance, with the lD Buckley-Leverett 
test problem (2.7) the choice 8 = ~ still gives accurate results with T = 1/200, 
h = 1/100 for which the standard BDF2 method produces qualitatively poor results; 
see Figure 2.2, Note, however, that basically we still have the same problems as with 
() = 1, namely, the high cost of solving the implicit relations and the fact that large 
Courant numbers lead to loss of monotonicity. Therefore we would like to apply this 
method with 8 = ~ only if the temporal or ;;patial variation in the solution is not too 
large. This will be achieved by considering different value;; for 8 in different parts of 
the spatial domain. 

4. The 0-BDF2 scheme. To combine implicit and explicit formulas we shall 
allow f} to vary over the spatial grid. Let in the following 8 = diag(8;), where B; will 
correspond with grid poi1.1t x;. We consider once more (1.5) but now with specification 
of 8;., 

( 4.1) 
~Wn - 2wn-l + ~Wn-2 = rF(t,,,~Wn + (~ -8)(2Wn-l -Wn-2)), } 

8 _ { Q If V; ::; !J 1 

i - 8* othenvise, 

with V; denoting the local Courant number at grid point X;. We choose 8* = ~ since 
this appeared the best choice to aim for with respect to stability and positivity, and 
v* = ~ since the explicit scheme appears to be stable and positive for vi ::; ~. 

Note that for lD problems (2.1) the local Courant number is given by v; = 
rlq(xi)f' (w;) I/ h;, where h; is the length of the cell D; around x;. For multidimensional 
problems on Cartesian grids, v; is taken as the sum of the lD contributions. \Vhen 
implemented with variable time steps the matrix 8 will also become variable in time 
even for linear convection with constant velocities. In section 6 we shall consider a 
simple variable step size selection procedure that essentially limits the ma.x-norm of 
the displacement Wn - w11 _ 1 . As a consequence, the scheme will be implicit only in 
those spatial regions where the velocities are large, but the solution is smooth, 

With the above choice for 8 we apply the explicit scheme as much as possible 
within the stability constraint, and we switch to 8 = ~ elsewhere. With this choice 
there are abrupt changes in the values of the 8i over the grid. The effect of this on 
the accuracy is discussed next. 
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First we take a look at the truncation error of (4.1). Let w(tn) = 2w(tn-1) -
w(tn-2). Insertion of the exact solution of (1.2) into the scheme gives 

(4.2) ~w(t,,) - 2w(tn-1) + ~w(tn-2) = TF(tn,8w(t,,) +(I - 8)w(tn)) + Tr,, 

with truncation error r,,. By a Taylor expansion we obtain 

~w(t,,) - 2w(tn-1) + ~w(tn-2) = TW1(t,,) - ~73 w"'(t,,) + 0(74 ), 

and hence 

(4.3) 

with Jacobian matrix A,, = /wF(tn, w(t,,)). If a diffusion term is added as in (1.8) 
this formula for the truncation error is still valid. 

The truncation error is often a good measure of the accuracy. Indeed, if we are 
dealing with a fixed ODE system, then the truncation error is 0(72 ), reflecting the 
second order accuracy of the formula. However, in our situation where the ODE 
system is a semidiscrete PDE, the function F and its derivatives will contain negative 
powers of the mesh width h. In particular, the term 7 2 An(I - 8)w"(t,,) in (4.3) will 
be only a genuine 0( 7 2 ) term if 8 is sufficiently smooth in space. With the choice 
(4.1) this does not hold. Yet, as we shall see, the accuracy is not affected by this. 
Instead of looking only at the truncation error, a more refined error analysis is needed. 
This will be presented in the next section for linear systems. 

We note that in (4.1) the linear combination with 8 is taken "within" the function 
F to ensure mass conservation. The related method 

~Wn - 2Wn-1 + ~Wn-2 = 78F(t,,, w,,) 
(4.4) 

+ 2(1- 8)F(t,,_1, Wn-1) - 7(1 - 8)F(t,,_2, Wn-2) 

has smaller trul1cation errors in general. By Taylor expansion it is easily seen that 
the truncation error of (4.4) is equal to 

~ rnw(t,,) - 2w(tn-1) + ~wCtn-2)) - ew'(t,,) - 2(1 - 8)w'(t,,_i) 

+(I - 8)w'(t.,,_2) = 72 (~1 - e)w"'(t,,) + 0(73). 

Therefore, as far as local accuracy is concerned, the form ( 4.4) is better than ( 4.1) 
in general. This is similar to genuine multistep formulas versus the so-called one-leg 
formulations; see [10]. However, the form ( 4.4) is not mass conserving. 

Suppose that the discrete mass is given by fLTw(t) = L,µ;w;(t) with components 
µi denoting the length of grid cell ni, or area or volume in more dimensions; then 
mass conservation of the semidiscrete system (1.2) means that µTw(t) should remain 
constant in time for all starting values w(O). This is equivalent to the condition 

µTF(t,w) = 0 for all t,w. 

Now, suppose that µTwo= µTw1. Then with (4.1) it easily follows by induction that 
we will have 

µT Wn = µT Wo for all n. 

With formula (4.4), however, this will hold only if 8 =er, that is, 8 constant over 
the space. Therefore, even though ( 4.4) has smaller truncation errors in general, we 
shall continue with the form (4.1). 
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5. Global accuracy results. In this section an error analysis for the 8-BDF2 
scheme ( 4.1) will be presented for linear svstems 

(5.1) w'(t) = Aw(t) + g(t), 

where the matrix A is assumed to be a finite difference approximation to a convective 
operator. Stability results with a 8 that varies over the space according to ( 4.1) are 
not available. The variation in 8 over space has as a consequence that the standard 
von Neumann analysis, based on Fourier decompositions, is no longer applicable. In 
the numerical tests the scheme ( 4.1) never encountered stability problems. In the 
following it will therefore simply be assumed that the scheme is stable in a given 
norm II · 11 for the above linear system, and we will consider global accuracy of the 
scheme under this assumption. 

Let En= w(tn) - Wn be the global discretization error. From (1.5) and (4.2) we 
obtain the error recursion 

(5.2) 

where Z = TA and r n is the local truncation error. This can be written in the more 
transparent form 

(5.3) 

with matrices 

determining the propagation of previous errors, and with Dn the local discretization 
error introduced in the step from tn-l to tn, 

For the linear system (5.1) this local discretization error equals 

Here the last term contains only genuine O(r3 ) terms; there are no hidden negative 
powers of h in the constant. 

Our tacit stability assumption can now be specified: we assume that from the 
error recursion (5.3) it can be concluded that 

(5.5) 

with C > O a moderate stability constant, independent of the mesh width h. In 
particular, this assumption implies that ll1It1ll and ll1It2ll are bounded, from which it 
easily follows that terms like II(! - ~Ze)- 1 II and l\(J - ~Ze)- 1 Zll are also bounded 
(by moderate constants, independent of h). 

It thus follows from (5.4) that ll8nll = 0(T2 ). Note that this deviates from the 
estimate that would be obtained in the standard ODE case with a fixed, bounded 
matrix A. In that case llZll = O(r) and consequently ll8nll = O(T:i). 
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Since we are dealing with semidiscrete syst~ms arising fr~m. PD Es, where A will 
contain negative powers of h, the local error Dn is merely O(T ). m. general. Thus one 
might expect the global errors to be first order only. However, smnl~r to [12] and [.10, 
sect.V.7] for stiff ODEs. it will be shown here that due to cancellation and dampmg 
effects we still have global convergence with order 2. 

To demonstrate this second order convergence, define 

(5.6) 

which will turn out to behave more regular than En- By observing that 

it follows that the:;e transformed errors r::;, satisfy the recursion 

with transformed local error 

b~ = Dn - 7 2 (J - 8)w"(tn) + W1T2 (J - 8)w"(tn-d 

+ \I!272(I - 8)w"(tn-2) =-(I - ~Z8f 1 ~73w"'(tn) + 0(73 ). 

This transformed local error is genuinely of order 3, independent of the mesh width h. 
The stability argument applied to the recursion of the transformed errors now yields 
in a standard way order 2 convergence for the e:;.. Hence it follows that we also have 
for our original errors llcnll = 0(72 ), uniformly for tn :s; T, independent of the mesh 
width h. 

Although this is not a complete convergence proof, since we had to assume that 
the scheme is stable, it does show that the choice for 8 in ( 4.1), with abrupt changes 
in 8, over the grid. will not lead to an order reduction. 

Remark. The above analysis carries over to linear systems 

w'(t) = Aw(t) + Bw(t) + g(t), 

where B is a diffusion term that is treated fully implicitly as in ( 1.8). The transformed 
errors should then be defined as 

E~ =En+ 7 2X(J - 8)w"(tn) 

with X = (A.+ B)-1 A. We then obtain second order convergence provided that 
X = 0(1) uniformly in h. 

6. Numerical results. In this section numerical results are presented for a 2D 
test convection problem arising from the quarter of five spots problem in reservoir 
simulations; see [7, 18], for example. On a square region n = [O, 1] 2 we have a source 
term(}' at the point :r = (0,0), with volumetric rate(}'= ~w, and a sink term -a 
at .r = ( 1. 1). corresponding to an injection and production well, respectively. It is 
assumed here that the permeability K and viscosityµ in the actual reservoir problem 
are constant, say. K / µ = 1. The velocity q and pressure p are then given by 

(6.1) q = -\lp, tip+ s = 0, 
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with s = s(x) describing the sources and sinks aud with homogeneous Neumann 
boundary conditions for p. This determines p up to an additive constant. The result­
ing convection problem is 

(6.2) 'Ut + \7.(q.f(u)) = s+ + s-u, 

where s+ = max(s, 0) and s- = min(s, 0). The initial condition is u := 0. For the 
flux function f we 8hall consider both the linear flux function (2.6) and the Buckley­
Leverett flux function (2.7). These are simplified model 8ituations for miscible and 
immiscible reservoir flows. Illustration8 for the behavior of the solutions on n = [O, 1 ]2 

are given in Figure 6.1. 

T = 1 /2 , miscible T = 1 , miscible 

0.8 0.8 0.8 0.8 

0.6 0.6 0.6 0.6 

0.4 0.4 0.4 0.4 

0.2 0.2 0.2 0.2 

0 0 
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

T = 1/2, immiscible T = 1 , immiscible 

0.8 0.8 0.8 0.8 

0.6 0.6 0.6 0.6 

0.4 0.4 0.4 0.4 

0.2 0.2 0.2 0.2 

0 0 
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 

FIG. (J.l. Numerical solutions r1t T = ~ and T = 1 on 50 x 50 grids for the misC'ible model 
with linear convection (top picture.,) and the ~immiscible model with Buckley-Leverett fiuxes (bottom 
pictures). 

In the numerical tests, the pressure equation was solved using 8tandard second 
order finite difference8 on a uniform rn. x m grid, mesh width h = 1/rn., resulting 
in a first order approximation of the velocities at the cell edges. The injection well 
was modelled as a source term a/ h 2 in the lower left grid block. Likewise, for the 
production well we get a sink term -awm,m / h 2 at the upper right grid block. For real 
reservoir simulations the pressure equations are usually solved in a more sophisticated 
manner; see, for instance, the contribution of Russell and Wheeler in [7]. With the 
above test problem the pressure could even be calculated analytically, but numerical 
solution directly leads to approximations for the velocities that are divergence-free in 
a discrete fashion. The convection terms in (6.2) are discretized on the same uniform 
grid with the van Leer limiter as described in section 2; see also Molenaar [18]. 
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The velocities are large only at the corners where the wells are located, approx­
imately ~ \7 log r with distance r to the well near (0, 0) and (1_, 1),. respectively. Due 
to the injection at x = (0, 0) a fro~t has f~rmed at t = 0, wh1c~ is rou?~l~ halfway 
to the production well at time t = 2; see Figure 6.1. Therefore, m the v1cm1ty of ~he 
sharp front we could then use the explicit BDF2 method. Near the wells the solut10n 
is smooth, so that there an implicit method could easily be applied. A combination 
of this is provided by the blended scheme ( 4.1). 

The time integrations in the numerical tests were started with a small initial time 
step To = 160 h2 and subsequently a simple variable step size selection was used, 

(6.3) tn+l = tn + Tn, Tn = WTn-1, W = min(2, TOL llunlloo/llun - Un-1 lloo). 

The variable step size form of the 8-BDF2 method was taken as 

(1+2w)wn+l - (1 + w)2wn + w2Wn-1 

(6.4) 

where the coefficients are similar to the standard implicit BDF2 method; see [9], for 
example. The initial step is taken with the Euler method, implicit if ()* > 0 and 
explicit if ()* = O. We note that the step size selection used here is the same as 
in [18]. Results with a more sophisticated selection, based on an estimate of higher 
derivatives, gave comparable results. Since the focus here is on the methods and not 
on step size selections, only the results for the above implementation are presented. 

The implicit relations were solved with a modified Newton iteration, using first 
order upwind discretizations for Jacobian approximations, as described in section 2. 
In the Newton iteration the initial guess for Wn+i in (6.4) was taken as 

( (l+w)2 w2 l+w ) 
8nWn+l +~Sn) l + 2W Wn - l + 2W Wn-1+l+ 2w TnF(tn+i,Wn+1) . 

To solve the arising linear systems the Bi-CGSTAB method [23] was used without 
preconditioning. Note that due to the first order upwind approximation in the Newton 
iteration the linear system is diagonally dominant. This choice for the linear solver 
was guided by experiments in [3], where several linear solvers were compared for more 
general porous media equations. Both the Newton iteration and the Bi-CGSTAB 
iteration were stopped as soon as the norm of the residue was below 10-6 . The norm 
used here is the maximum norm, as in the step size selection, instead of the more 
common weighted L2-norm as in [3], since we also want to resolve the steep solutions 
gradients accurately. 

In Tables 6.1 and 6.2 the statistics are presented for output time T = ~ with the 
implicit, explicit, and blended scheme ( 4.1). Along with a CPU timing in seconds on a 
SUN SPARC4 workstation, also given are the average number of Newton iterations per 
step (N-it) and the average number of Bi-CGSTAB iterations per Newton iteration 
(L-it). In the step size selection we used TOL = 0.1 for the implicit and partially 
implicit scheme, and TOL = 0.01 for the explicit scheme. With the explicit scheme 
this smaller value of TOL was needed to avoid oscillations (mild instabilities) near the 
inflow well. With this choice, the accuracy of the various schemes was very similar; 
the spatial discretization errors are the dominating ones. 

Since the errors of the three methods were similar in the experiments, the CPU 
time is a measure of efficiency here. Obviously this is most favorable with the blended 
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TABLE 6.1 
Stat·istics for 2D linear convection at T = ! on 50 x 50 and 100 x 100 grid. 

()* v* TOL Grid Steps CPU (s) N-it L-it 

Implicit 1 0 .1 50 x 50 218 217 3.34 2.52 
Blended .75 .5 .1 50 x 50 226 44 0.25 1.14 
Explicit 0 0 .01 50 x 50 2142 131 - -

Implicit 1 0 .1 100 x 100 340 2205 3.92 4.19 
Blended .75 .5 .1 100 x 100 364 413 0.51 2.37 
Explicit 0 0 .01 100 x 100 4016 963 - -

TABLE 6.2 
Statistics for 2D B'Uckley-Leverett at T = ! on 50 x 50 and 100 x 100 grid. 

()* v* TOL Grid Steps CPU (s) N-it L-it 

Implicit l 0 .l 50 x 50 292 288 3.57 1.55 
Blended .75 .fi ,] fiO x .50 280 65 0.21 1.00 
Explicit 0 0 .01 50 x 50 2985 227 - -

Implicit 1 0 .1 100 x 100 531 2318 3.90 1.60 
Blended .7.5 .5 .1 100 x 100 498 445 0.24 0.99 
Explicit 0 0 .01 100 x 100 5515 160:1 - -

method. It Rhould be noted, however, that the explicit scheme also performs quite 
well. With the step size Relection described above, the maximal Courant numbers 
are much larger than unity without introducing instabilities. There are still some 
small oscillations with the explicit method near the inflow corner, but on the scale 
of Figure 6.1 these are not visible. Apparently, relatively large Courant numbers can 
be taken here with the explicit scheme t:ince the velocities are large only near the 
wells and possible instabilities are transported to the interior domain where they are 
damped. 

However, the step sizes that can be taken with the implicit and blended scheme 
are much larger, but the fully implicit scheme is not efficient due to the amount of 
work that has to be performed in solving the algebraic relations. The blended scheme 
is initially fully explicit, since the step sizes selected according to ( 6.3) are small if 
the sharp front is in a region with large velocities. After awhile this scheme becomes 
implicit near the wells, but then the implicit relations are easy to solve since the 
solution does Hot vary much anymore near the wells. 

It should be noted that the performance of the explicit scheme will decrease if a 
local grid refinement is used near the wells. This is often done in practice to capture 
small-scale geological features. In such a situation a more pronounced advantage of 
the blended ::;eheme can be expected. This has not been tested, since for the present 
model problem such a grid refinement would be very artificial. 

Numerical tests with small diffusion terms added to the convection equation, 
implemented as in ( 1.8), did give very similar results. Finally it should be noted that 
our irnplementation of the blended scheme in the above experiments was not very 
sophisticated. For example, the whole function F was calculated in each Newton 
iteration step, whereas this is not necessary inside the region where 8 = 0 (more 
precisely, at those grid points where rJ; = 0 for the grid point itself, its neighbors and 
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adjacent points). For ease of programming it was decided to use the sa1ne subroutines 
as for the fully implicit scheme. 

In view o'f these experiments, we conclude that the blended scherne. "."orks very 
well for problems of the above type, where there are locally large veloc1t1es. If the 
size of the velocities is more or less uniform, and the solution is not very smooth, 
an explicit treatment of the convective terms will be more efficient in general. Ful~y 
implicit methods seem to be efficient only if the solution is sufficiently smooth m 
space, but with convection dominated flows steep gradients in the solution are the 
generic ca:-;e. 
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