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Abstract. Bisimulation is generalized from process models to game 
models which are described using Game Logic (GL), a logic which ex
tends Propositional Dynamic Logic by an additional operator dual which 
allows for the construction of complex 2-player games. It is shown that 
bisimilar states satisfy the same GIAormulas (invariance), and that an 
atomic bisimulation can be lifted to non-atomic GL-garnes (safety). Over 
process models, GL forms a highly expressive fragment of the modal µ
calculus, and within first-order logic, the game operations of GL are 
complete: they suffice to construct all first-order definable games which 
are monotonic and safe for bisimulation. 

1 Introduction 

Among the different notions of process equivalence one can consider, bisimula
tion has received much attention especially within the logic community. From 
the perspective of modal logic, there is a tight correspondence between bisimi
lar states of a process (Kripke model) and states which make the same modal 
formulas true: Bisimilar states satisfy the same modal formulas, and for cer
tain classes of Kripke models (e.g. finite models), the converse holds as well. 
This bisimulation-invariance result makes bisimulation an attractive notion of 
equivalence between Kripke models, since it matches the expressive power of 
the modal language rather well. On the other hand, bisimulation has provided 
a characterization of the modal fragment of first-order logic (FOL). Modal for
mulas can be translated into formulas of FOL, and it turns out (see [5] and 
lemma 2) that the modal fragment of FOL is precisely its bisimulation-invariant 
fragment. 

This line of investigation and the two main results mentioned can be extended 
from modal logic to Propositional Dynamic Logic (PDL) [12, 16], a logic where 
the modalities are indexed by programs. Programs can be constructed from 
atomic programs using a number of program operations such as sequential com
position, iteration, etc., and like modal formulas, PDL-formulas are bisimulation
invariant. Secondly, iteration-free PDL-programs can be translated into FOL as 
well, raising the question how to characterize the FOL-fragment which (trans
lations of) PDL-programs define. In [6], such a result has been obtained: The 
program-fragment of FOL can be characterized as its bisimulation-safe fragment, 
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where roughly speaking a program is safe for bisimulation if it preserves bisim
ulation. This result shows that if we take bisimulation as our notion of process 
equivalence and FOL as our language, the program operations provided by PDL 
are complete, i.e. no additional program operations will allow us to construct 
new programs. This result has been extended to monadic second-order logic in 
[13]. 

In this paper, we carry the investigation one step further, moving from non
deterministic programs (i.e. 1-player games) to 2-player games. In the program 
specification literature, such a move has been useful to obtain intermediate non
implementable specifications which contain demonic as well as angelic choices 
[2, 3]. A formalism such as the refinement calculus models programs and spec
ifications as predicate transformers, i.e. functions which map postconditions to 
weakest preconditions. This notion is general enough to model games as well as 
programs, and it is the semantic foundation of Game Logic (GL), introduced in 
[18]. In GL, the program operations of PDL are extended with a new construct 
called dual. In the terminology of games, this operation introduces a role switch 
between the players. 

After introducing game models and GL in the next section, section 3 intro
duces bisimulation for game models. The first main result of this paper (proposi
tion 1) shows that GL--formulas are invariant and GL--operations safe for bisim
ulation. Starting from section 4, we focus on a special class of models, Kripke 
models. For Kripke models, the generalized notion of bisimulation coincides with 
standard bisimulation and GL becomes a fragment of the modal µ-calculus which 
can express properties requiring multiple nested fixpoints. Section 5 is devoted to 
the second main result (proposition 2): Over Kripke models, iteration-free games 
(like programs) can be translated into FOL, thus defining the game-fragment of 
FOL. The result demonstrates that this fragment is precisely the monotonic 
bisimulation-safe fragment of FOL. 

2 Syntax and Semantics of Game Logic 

GL is a logic to reason about winning strategies in strictly competitive deter
mined games between two players who we shall call Angel and Demon. For a 
game expression 'Y, the formula ("!) rp will express that Angel has a strategy in 
game 'Y for achieving rp, i.e. he can guarantee that the terminal position reached 
after 'Y has been played satisfies rp. Similarly, [1]rp will express that Demon has 
a strategy in game 'Y for achieving rp. 

GL provides a number of operations which allow for the construction of 
complex games: A test game 'P? consists of checking through a neutral arbiter 
whether proposition 'P holds at that state. If it does, nothing happens (i.e. an
other game can be played) and otherwise, Demon wins. The game 'Yl U ')'2 gives 
Angel the choice of playing 'Yl or "(2. The sequential composition 'Yl; ')'2 of two 
games consists of first playing 11 and then ')'2, and in the iterated game 'Y*, Angel 
can choose how often to play "(, possibly not at all. More precisely, after each 
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play of"(, Angel can decide whether or not to play 'Y another time, but 'Y may 
not be played infinitely often (in that case, Demon wins). 

In order to introduce interaction between the players, GL adds an operator 
dual for role interchange: Playing the dual game 'Yd is the same as playing 'Y with 
the roles of the players reversed, i.e. any choice made by Angel in 'Y will be made 
by Demon in 'Yd and vice versa. 

Formally, the language of GL consists of two sorts, games and propositions. 
Given a set of atomic games I'0 and a set of atomic propositions <!?0 , games 'Y 
and propositions t.p can have the following syntactic forms, yielding the set of 
games I' and the set of propositions/formulas cP: 

'Y := g I <p? I 'Y; 'Y I 'Yu 'Y I 'Y* I 'Yd 
t.p == J_ I P I _,'P I 'P v 'P I b)'P 

where p E <Po and g E I'o. As usual, we define T := -,J_, ['Y]t.p := -i(r)-i<p, 
t.p /\ 1/J := -i(-it.p V -i't/J), <p-+ 1/J := '<f! V 1/J and <p <:-+ 7/J := (<p-+ 'I/;)/\ ('lj;-+ t.p). 

As for the semantics, given a signature (<Po, I'o) of atomic propositions and 
atomic games, a game model (also called neighborhood model or minimal model, 
see [9]) I= (S,{N9 ! g E I'o},{Vpjp E Po}), consists of a set of states S, a 
valuation for each propositional letter p E <!?0 such that VP ~ S, and a function 
N 9 : P(S)-+ P(S) for every atomic game g E I'0 • We require monotonicity, i.e. 
X ~ Y implies N 9 (X) ~ N 9 (Y) for all g E I'0 . 

Intuitively, we can think of every state s as being associated with a 2-player 
game tree for every atomic game g E I'0 . Every terminal position of such a 
game tree is associated with a state t E S. Since generally both players will have 
choices in the game, a player will usually not be able to force a particular state 
to come about at the end of the game. Rather, all he can do is force the outcome 
to lie in a particular set Y ~ S, and the game model specifies the sets of states 
which Angel can force, i.e. s E N9 (Y) holds if Angel has a strategy for ending up 
at a terminal position whose associated state is in Y. Given this interpretation, 
the monotonicity requirement is a natural one: If Angel has a strategy to bring 
about a state in Y, then that strategy trivially brings about a state in Y' for 
every Y' 2 Y. 

The semantics of formulas and games is then defined by simultaneously ex
tending V and N to non-atomic cases: 

Vi_ = 0 
V~ip = V"° 
Vipv'I/! = V'P U V,µ 
V(,,)ip = N,,(Vip) 

Na;f3(X) = No.(Nf3(X)) 
Nad (X) = No.(X) 
Nauf3(X) = No.(X) u Nf3(X) 
Nip1(X) = v"" n x 
Na· (X) = n{Y ~SIX u N°'(Y) ~ Y} 

By induction, all Na can be shown to be monotonic, and hence the operation 
f°',x(Y) =XU No.(Y) will be monotonic as well. Thus, by the Knaster-Tarski 
theorem, Na• ( X) is the least fix point of f °''x (Y): 
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i.e. JIY.,x(Ncx•(X)) = Ncx•(X) and for every Z ~ S, if JIY.,x(Z) = Z then 
NQ. (X) i;;; Z. 

Finally, we say that r.p is true in I= (S, {N9 lg E I'o}, {11plP E Po}) at s ES 
(notation: I, s F cp) iff s E v'P. Some more standard terminology: cp is valid in I 
(denoted as I F r.p) iff V'P = S, and cp is valid (denoted as F r.p) iff it is valid in all 
models. cp and 'ljJ are equivalent iff f= cp +-+ 'lj;. Lastly, 'ljJ is a (global) consequence 
of cp (denoted as cp F 'ljJ) iff for all models I, if I F cp then I F 'ljJ. 

3 Bisimulation for Game Models 

Bisimulation provides an answer to the question when two models or processes 
should be considered the same. Different criteria may come to mind depend
ing on what aspects of the models one is interested in. If only interested in 
observable properties of processes, one may choose for finite-trace equivalence, 
but if interested in mathematical structure, one may choose isomorphism. These 
equivalence notions (see e.g. [7] for an overview) partition the class of models 
into equivalence classes, and one may order equivalence notions according to 
how fine-grained the induced partition is. While finite-trace equivalence is often 
considered as too coarse and isomorphism as too fine, bisimulation is situated 
between these two extremes. 

As it stands, bisimulation cannot be applied to the game models of CL since 
these models are not processes. As will be discussed in the next section, the 
following definition generalizes the standard notion of bisimulation to the more 
general models used for CL. In a different context, this modification of bisimu
lation has been proposed to deal with concurrency in [4]. 

Definition 1 (Bisimulation). Let I = (S, {N9 lg E I'o}, {VplP E Po}) and 
I 1 = (S',{N~lg E I'o},{V;IP E Po}) be two models. Then,.....,~ S x S' is a 
bisimulation between I and I' iff for any s '"" s' we have 

1. For all p E Po: s E VP iff S1 E v; 
2. For all g E ll0 : Ifs E N9 (X) then 3X' ~ S' such that s1 E N~(X') and 

't:/x1 E X' :lx E X : x "'x'. 
3. For all g E ll0 : Ifs' E N~(X1 ) then :JX ~ S such that s E N9 (X) and 

Vx E X 3x1 E X 1 : x "'x'. 

Two states s E S and s' E S' are bisimilar iff there is a bisimulation '"" such 
that s ,....., s'. If we want to make the underlying models explicit, we will write 
(I,s),....., (I1 , s'). 

The notions of invariance and safety generalize the bisimulation clauses from 
atomic to general formulas and games. 

Definition 2 ( GL-Invariance & Safety). A CL-formula cp is invariant for 
bisimulation if for all models I and I', (I, s) ,....., (I', s') implies I, s F r.p 9 

I 1 , s' F r.p. A CL-game 'Y is safe for bisimulation if for all models I and I', 
(I, s) ,....., (I', s') implies (1) ifs E N,(X) then :JX' ~ S' such that s' E N~(X') 
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and Vx' E X' 3x E X : x ,...., x', and (2) ifs' E N~(X') then 3X ~ S such that 
s E N-y(X) and Vx EX 3x' EX': x,..., x'. 

As an equivalence notion for game models, bisimulation requires that if Angel 
can guarantee t.p in game g in one model, he must be able to guarantee something 
at least as strong in the other model. If this were not the case, the two models 
could be distinguished by playing g, since Angel can achieve more in one model 
than in the other. The following result shows that GL is sound for bisimulation 
equivalence, i.e. not too expressive: Bisimilar states cannot be distinguished by 
formulas of the language (invariance), and the game constructions provided do 
not produce games which can distinguish bisimilar states either (safety). 

Proposition 1. All CL-formulas are invariant for bisimulation, and all GL
games are safe for bisimulation. 

Proof We prove invariance and safety by simultaneous induction on ii! and 
I'. By definition, atomic games (formulas) are safe (invariant) for bisimula
tion.Consider two models I= (S, {N9 lg E I'o}, {VplP E <Po}) and I'= (S', {N~lg 
E I'o}, {V;IP E <Po}). For non-atomic formulas, the boolean cases are immedi
ate and we shall only show one direction of invariance for ('y)cp. If I, s f= ('Y)'P, 
s E N-y(Vc,o) and so (by safety induction hypothesis for 'Y) there is some X' such 
that s' E N~(X') and for all x' E X' there is some x E Vc,o such that x "' x'. 
By invariance induction hypothesis for cp, this means that X' ~ V~, and so by 
monotonicity, s' E N~(V~), which establishes that I', s' f= ('y)cp. 

As for proving that the game constructions of GL are safe for bisimulation, 
consider first the case of test cp?: Ifs E Nc,o1(X) = Vc,o n X, let X' := {x'l3x E 
X : x"' x'}, where ,....., denotes the bisimulation as usual. Then s' E N~7 (X') by 
induction hypothesis (1.) for cp, and for all x' E X' there is some x E X such 
that x ,....., x', simply by definition of X'. 

For union, ifs E N°'u{3(X) we can assume w.l.o.g. that s E N°'(X) and apply 
the induction hypothesis, i.e. for some X', we haves' E N~(X') and hence also 
s' E N~uf3(X'). 

For composition, suppose that s E N°'(N13(X)). Using the induction hypoth
esis for o:, there is some Y' such that s1 E N~(Y') and for all y' E Y' there is 
au E Nf3(X) such that u ,....., y'. Now let X' := {x'l3x E X : x "'x'}. We must 
show that s' E N~(N~(X')). For this, it suffices by monotonicity to show that 
Y' ~ Nh(X'). So suppose that y' E Y', i.e. for some u E Nf3(X) we have u,....., y'. 
Using the induction hypothesis for {3, there is some V' such that y' E Nh(V') 
and for all v' E V' there is some x EX such that x,....., v'. Hence V' ~ X' and so 
by monotonicity, y' E Nh(X') 

Dual: Suppose s E N°'d(X), i.e. s fj. N°'(X). Again, let X' := {x'l3x E X : 
x ,....., x'}. It is sufficient to show that s' ff. N~(X'). Suppose by reductio the 
contrary. Then there is some Z with s E N °' ( Z) and for all z E Z there is some 
x' fj. X' such that z ,...., x'. From this it follows that Z ~ X, so by monotonicity 
s E N°'(X), a contradiction. 

Iteration: Let X' := {x'l3x E X : x "'x'} and Z := {zlVz' : z,...., z' =? z' E 
N~. (X')}. It is sufficient to show that N°'. (X) ~ Z, and given the definition of 
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Na.• (X) as a least fixpoint, it suffices to show that XU Na.(Z) i;; Z. Supposing 
that x E X and for some x' we have x ,...., x', we have x' E X' i;; N~. (X'). 
On the other hand, suppose that x E Na.(Z) and x ,..., x'. Then by induction 
hypothesis, there is some Z' such that x' E N~(Z') and for all z' E Z' there is 
some z E Z such that z"' z'. But then Z' i;; N~.(X'), and so by monotonicity 
x' E N~(N~.(X')) i;; N~.(X') which completes the proof. D 

4 Games on Kripke Models I: µ-Calculus 

In the remaining part of this paper, we shall look at a special class of game 
models, namely Kripke models. A Kripke model I= (S, {R9 /9 E I'0 }, {Vp/P E 
<I>o}) differs from a game model in providing an accessibility relation R 9 i;; S x S 
for every atomic game g E I'o. In Kripke models, atomic games are particularly 
simple since they are 1-player games. For each atomic game, all choices within 
that game are made by Angel so that Angel has complete freedom in determining 
which terminal position will be reached. Thus, sR9 t will hold if when playing 
game 9 at state s, t is a possible final state. To obtain the corresponding game 
model from a Kripke model, let N9 (X) = {s E S/3t E X : sR9 t}. Under this 
correspondence, one can easily verify that for Kripke models, definition 1 indeed 
reduces to the following standard notion of bisimulation: 

Definition 3 (Bisimulation for Kripke models). Let I= (S, {R9 /9 E I'0 }, 

{Vp/P E <I>o}) and I' = (S', {R~/9 E I'o}, {V;/p E <I>o}) be two Kripke models. 
Then "' i;; S x S' is a bisimulation between I and I' ifj for any s "' s' we have 

1. For all p E <Po: s E VP iff s' E v; 
2. For all 9 E I'o: If sR9t, then there is at' E S' such that s' R~t' and t,..., t'. 
3. For all g E I'o: If s'R~t', then there is at ES such that sR9 t and t,...., t'. 

Two well-known languages for describing Kripke models are PDL and the 
modal µ-calculus. The language of PDL differs from the language of GL only in 
not having the dual-operator available. Since this operator was responsible for 
introducing interaction between the players, all games which can be constructed 
within PDL will be 1-player games, i.e. nondeterministic programs. 

The µ-calculus introduces fixpoint operators into the modal language, yield
ing a logic which is strictly more expressive than PDL (see [15]). Besides proposi
tional constants <I>o, the language contains propositional variables X, Y, ... E Var 
and the set of formulas is defined inductively as 

cp := 1- I P I X I -.cp I cp v cp I bo)cp I µX.cp 

where p E iP0 , 'Yo E I'o, X E Var and in µX.cp, X occurs strictly positively in <p, 

i.e. every free occurrence of X in <p occurs under an even number of negations. 
Note that in contrast to GL, modalities are always atomic in the µ-calculus. 

Formulas of the µ-calculus are interpreted over Kripke models as before (using 
the corresponding game model), but a variable assignment v : Var-+ P(S) is 
needed to interpret variables. The semantics of the fixpoint formula is given by 

v:X.<p = n{T i;; siv;[X:=T] i;; T} 
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where v,;[X:=TJ differs from v; in assigning T to variable x. Since 'P was assumed 
to be strictly positive in X, monotonicity is guaranteed and µX.cp denotes the 
least fixpoint of the operation associated with cp(X). 

Inspecting the semantics of GL, one can easily translate GL-formulas into 
equivalent µ-calculus formulas, demonstrating that CL is a variable-free frag
ment of the µ-calculus. While a characterization of the precise expressiveness of 
this fragment is still lacking, some preliminary observations can be made: GL 
is strictly more expressive than PDL, since CL can express the existence of an 
infinite a-path by the formula 

µX.[a]X = ((ad)*)..L 

which cannot be expressed in PDL (see [15]). More complex properties such as 
"on some path p occurs infinitely often" (EF00p in GT L* notation) can also be 
expressed (we assume that I'0 = {a}): 

vX.µY.(a)((p /\ X) VY)= [((a*;a;p?)d)*]T 

where vX.ip abbreviates -,µX.-,ip( -,X) and yields the greatest fixpoint of i.p(X). 
More generally, if we let g0 = a and gn+l = (g~)*, the µ-calculus translation of 
(gn)..L will be a formula of alternation depth n, so that GL formulas cover all 
levels of the alternation hierarchy as defined in [10]. 

5 Games on Kripke Models II: First-Order Logic 

It is well-known that modal logic and PDL without iteration can be translated 
into FOL. In spite of the second-order appearance of Game Logic, a translation 
into FOL is possible here as well: The signature contains a unary relation symbol 
VP for every propositional letter p E <Po, and a binary relation symbol R9 for 
every atomic game g E I'0 . Furthermore, we allow for second-order variables 
X, Y, ... as well. Thus, the unary relation symbols now comprise constants as 
well as variables. As will become clear later, we will not quantify over these 
variables but only use them as a matter of convenience to serve as place-holders 
for substitution; hence, we can still consider the language to be first-order. We 
define the translation function ° which maps a GL-formula cp to a FOL-formula 
with one free variable x, and an iteration-free CL-game 'Y to a FOL-formula with 
two free variables x and Y. 

p0 = Vpx for p E <Po 
( ''P )o = ...,'Po 

( cp V 1/J) o = cpo V ?/Jo 
( ('Y)'P )o = 'Yo [Y := cpo] 

g0 = 3z(xR9 z /\ Yz) for g E I'o 
(cp?)o ='Po/\ Yx 

(a U ,8) 0 = a 0 V (3° 
(a;,B)o = ao[Y :=(Jo] 

(ad)o = ...,ao[Y := -,Yx] 

In this definition, substitution for second-order variables is used as follows: 
Given two FOL-formulas o and ( where ( contains exactly one free first-order 
variable, say x, o[Y := (] denotes the result of replacing every occurrence Yt in 
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6 by e[x := t]. As an example, 3z(xR9 z /\ Yz)[Y := -.,Yx] yields 3z(xR9 z /\ -,Yz). 
Some more remarks on notation: rp(x1, ... , xn) refers to a formula <p whose free 
variables (first- and second-order) are among x 1, ... , Xn. When a formula has 
been introduced in this way, <p(t1, ... , tn) denotes rp[x1 := t1, ... , Xn := tn], i.e. 
the simultaneous substitution of ti for Xi in <p. 

Regarding the semantics, we can interpret a Kripke model I= (S, {R9 lg E 
I'o}, {VplP E <iio}) as a first-order model in the obvious way, taking R9 as the 
interpretation of R9 , and interpreting VP as VP. For a unary predicate symbol VP 
and X <;;; S, let Ip:=X be the model which is the same as I except that VP= X. 
Given a model I, states s1 , ..• ,sm ES, sets of states S1 , ..• ,Sn <;;;Sand a 
FOL-formula rp(x1, ... , Xm,X1, ... , Xn), we write I f= cp[s1, ... , Sm, 81, ... , Sn] 
to denote that <p is true in I according to the standard FOL semantics when xi 
is assigned the value S; and xi the value Si. 

The following result states the semantic correctness of the translation func
tion. 

Lemma 1. For all CL-formulas <p, games '"Y and Kripke models I= (S, {R9 lg E 
I'o}, {VplP E <Po}): I, sf= cp iffI f= <p 0 [s] and s E N7 (X) iffI f= "(0 [s, X]. 

As with the safety result for program constructions, the safety result for game 
constructions makes use of the characterization of the modal fragment of FOL 
as its bisimulation-invariant fragment. The definition of invariance and safety 
(definition 2) which was phrased for GL has its natural first-order analogue: 

Definition 4 (FOL-Invariance & Safety). A FOL-formula cp(x) is invariant 
for bisimulation if for all models I and I', (I, s),...., (I', s') implies that If= <p[s] 
iff I' f= cp[s']. A first-order formula cp(x, Y) is safe for bisimulation if for all 
models I and I', (I, s),...., (I', s') implies (1) if If= cp[s, T] then there is some T' 
such that I' f= rp[s', T'] and for all t' E T' there is some t E T such that t ,...., t', 
and (2) if I' f= rp[s', T'] then there is some T such that If= cp[s, T] and for all 
t E T there is some t' E T' such that t ,..., t'. 

By a modal formula we mean a CL-formula which only contains atomic games 
(i.e. also no tests). The classic result from [5] can now be stated as follows: 

Lemma 2. A FOL-formula cp(x) is invariant for bisimulation iff it is equivalent 
to the translation of a modal formula. 

For the rest of this section, we will assume that games are iteration-free. 
Call a FOL-formula rp(x, Y) monotonic iff for all Kripke models I and states 
s, I f= cp[s, X] implies I f= cp[s, X'] for every X <;;; X'. Similarly, call a modal 
formula <p monotonic in p iff for all Kripke models I and states s, Ip:=X, s f= <p 
implies 'Lp:=X',s f= cp for every X <;;; X'. Lastly, let Pos(<p) (Neg(cp)) be the 
set of atomic propositions which occur positively (negatively) in <p, i.e. under an 
even (odd) number of negations. Thus, formula cp is strictly positive (negative) 
in p iff p ~ Neg(<p) (p ~ Pos(rp)). 

The final lemma needed relates the syntactic notion of positivity to the se
mantic notion of monotonicity. It makes use of the Lyndon interpolation theorem 
for modal logic (see e.g. [17]) and the global deduction theorem (taken from [11 ]). 
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Lemma 3 (Lyndon Interpolation Theorem). If Fa -+ f3 for modal for
mulas a, (3, then there exists a modal formula 'Y such that (1) F a -+ "Y, (2) 
F= "Y-+ (3, (3) Pos('-y) ~ Pos(a) nPos(/3), and (4) Neg('"Y) ~Neg( a) n Neg([J). 

Lemma 4 (Global Deduction Theorem). For modal formulas 8 and -y, 8 F 
'Y iff there is some n > 0 such that F (018 /\ ... /\ ono) -+ "(, where each Di 
represents a possibly empty sequence of universal modalities labeled by (possibly 
different) atomic games. 

Lemma 5. A modal formula <.p is monotonic in p iff it is equivalent to a modal 
formula strictly positive in p. 

Proof. One can easily check by induction that strictly positive modal formulas 
are monotonic, so we shall only prove the other direction. If cp(p) is monotonic 
in p, then taking a proposition letter q not occurring in cp, we have p -+ q F 
cp(p) -+ cp(q) (recall that semantic consequence was defined globally). By lemma 
4, we know that 

(ol(p-+ q) /\ ... /\ on(p-+ q))-+ (cp(p)-+ cp(q)) 

is valid, and as a consequence, 

<p(p)-+ ((Dl(p-+ q) /\ ... /\ on(p-+ q))-+ cp(q)) 

is also valid. By lemma 3, this implies that 

<p(p)-+ -y and "I-+ ((D1 (p-+ q) /\ ... /\ on(p-+ q))-+ cp(q)) 

are valid, for some modal formula -y which does not contain q and which is strictly 
positive in p. The second conjunct implies that "I -+ cp(p) is valid: For suppose 
I, s F 'Y and X = {tlI, t F p}. Then since -y does not contain q, Iq:=X• s F "Y· 
From this it follows that Iq:=X• s F <p(q) and hence I, s F cp(p). Thus, cp is 
equivalent to "f, a modal formula strictly positive in p. D 

The main lemma we need for our safety result relates monotonic modal for
mulas to GL-formulas of a special kind. 

Lemma 6. Every modal formula cp which is monotonic in p is equivalent to a 
GL-formula ('y)p, where "Y is a game which does not contain p. 

Proof. We prove by induction that every modal formula <p which is strictly 
positive (negative) in p is equivalent to a GL-formula ('y)p (-i("f)p), where -y 
does not contain p. Then the result follows by lemma 5. The following table 
provides the equivalent GL-formulas for every modal formula cp depending on 
whether <.p is strictly positive or strictly negative in p. 
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modal formula str. pos/neg CL-formula ind. hyp. 
p pas (T?)p -

qyfp pas (q?; ..L?d)p -
qyfp neg ...,(q?d;..L?)p -

...,'P pas (l)p F= <p +-+ ...,b)P 

...,'P neg ...,('Y)p F= <p +-+ (l)p 
'PI V 'P2 pas (11 U 12)P F <p; f-7 (li)P 
<p1 v 'P2 neg ...,((11d U/2d)d)p F 'Pi f-7 -,(!i)P 

(g)cp pas (g;1)P F= 'P +-+ (l)p 
(g)tp neg ...,(i; !)P F= <p +-+ ...,b)P 

0 

Proposition 2. A FOL-formula tp(x, Y) is equivalent to the translation of a 
CL-game iff it is safe for bisimulation and monotonic in Y. 

Proof. If <p(x, Y) is equivalent to the translation of a CL-game /, then using 
lernma 1, <p will be monotonic in Y (because N1 is monotonic) and safe for 
bisimulation (by proposition 1). 

For the converse, assume that tp(x, Y) is monotonic and safe for bisimulation. 
Taking a new predicate symbol VP which does not occur in cp, tp(x, VP) will be 
invariant for bisimulation. By lemma 2, tp(x, Vp) is equivalent to the translation 
of a modal formula 8, i.e. f= r.p(x, Vp) f-7 8°. Since r.p(x, Y) was monotonic, r5 
will be monotonic in p and by lemma 6, f= 5 +-+ (1)p where r is a CL-game 
which does not contain p, and so f= tp(x, VP)+-+ ((1)p) 0 • It can now be checked 
that f= cp(x, Y) +-+ 1°: If If= r.p[s,X] then given that VP does not occur in <p, 

Ip:=X f= <p(x, Vp)[s] and so Ip:=X f= ((l)p) 0 [s]. Since p does not occur in/, this 
implies that I f= 1° [s, X]. The converse is proved along the same lines. 0 

On the one hand, proposition 2 provides a characterization result for the 
iteration-free games which can be constructed in Game Logic: CL-games are the 
monotonic bisimulation-safe formulas tp(x, VP) of first-order logic (we can simply 
replace the variable Y by a designated unary predicate constant VP). In other 
words, the game-fragment of FOL is precisely the monotonic bisimulation-safe 
fragment. On the other hand, looking at the set of operations on games which 
CL provides, one may ask whether one could not add other natural operations to 
create new games (e.g. playing games in parallel), thus increasing the expressive 
power of the language. Proposition 2 demonstrates that if the new game opera
tion is (1) first-order definable, (2) monotonic and (3) safe for bisimulation, then 
it is expressible in CL already. As argued before, requirements (2) and (3) are 
natural desiderata for games, i.e. they are minimal requirements for any alleged 
game operation, and so the operations of test, union, composition and dual are 
sufficient to construct all first-order definable games. 

The result concerning bisimulation-safe programs from [6] can be reformu
lated to fit the present framework. Semantically, the difference between games 
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and programs lies in the difference between monotonicity and continuity: Call 
a FOL-formula i,o(x, Y) continuous iff for all Kripke models I and states s, 
If= <p[s, UxEV X] iffthere is some X E V for which If= <p[s, X] holds. Then the 
program-analogue of proposition 2 states that a FOL-formula <p(x, Y) is equiva
lent to the translation of a CL-program iff it is safe for bisimulation and contin
uous in Y, where CL-programs are dual-free GL-games. Thus, the dual operator 
makes all the difference between programs and games; without dual, we obtain 
all first-order definable programs, with dual, all first-order definable games. 

6 Beyond First-Order Logic 

The last two sections were concerned with Kripke models rather than game 
models in general. The reason for this restriction is that game models are rather 
unorthodox structures. We do not know of any logical languages besides non
normal modal logics and Game Logic which have been proposed for these struc
tures. Consequently, this prevents an easy extension of the definability result of 
proposition 2 to GL over general game models. 

Even for Kripke models, the translation into FOL carried out in the previous 
section relied on the restriction to iteration-free games. For programs, a stronger 
definability result covering iteration has been obtained in [13] which charac
terizes the class of monadic-second-order definable programs which are safe for 
bisimulation. The proof makes use of the fact that the bisimulation-invariant 
fragment of monadic second-order logic is the µ-calculus (14]. An extension of 
proposition 2 along these lines however would require a better understandiri' 
of how exactly GL relates to the µ-calculus. As for the µ-calculus itself, mar 
fundamental properties were established only recently, such as completeness (19] 
the non-collapse of the alternation-hierarchy [8] and uniform interpolation [1], 
and others such as Lyndon interpolation are still open. 

To summarize, the restriction of the scope of proposition 2 to FOL is due to 
the fact that FOL is one of the logics we know most about and is able to express 
the most fundamental game-operations. When moving to stronger languages 
one has different options available, always depending on the game constructions 
one is interested in. For besides playing a game iteratively, playing two games in 
parallel or interleaved might present another attractive game construction worth 
investigating in relation to bisimulation. 
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