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On Relativistic Lamé Functions

S. N. M. Ruijsenaars

ABSTRACT To date, the quantum relativistic Calogero-Moser—Suther-
land system with elliptic interactions is the most general one in the hierar-
chy of “Ajs - 1-symmetric” integrable M-particle systems. We present and
discuss eigenfunctions for this system. More specifically, we only deal with
the M = 2 case, but we handle a dense set in the relevant parameter space.

1 Introduction

The following serves to report on explicit eigenfunctions for quantum Calo-
gero-Moser-Sutherland systems of the relativistic variety. More precisely,
we restrict attention to eigenfunctions for the case of two particles, but we
do treat the most general {clliptic) type of interaction for which integra-
bility is known to persist. Qur account is based on our papers [20~22]. In
keeping with these papers, we emphasize quantum-mechanical /functional-
analytic aspects. In particular, to ensure that the defining dynamics is at
least formally self-adjoint, we restrict attention to real couplings and elliptic
functions with a real and purely imaginary period.

We begin by recalling the Hamiltonians defining the nonrelativistic and
relativistic Calogero-Moser-Sutherland systems for arbitrary particle num-
ber M. The nonrelativistic quantum dynamics is given by the PDO:

2 M 2 . M
Hy, =1 Z(i) +€g’;;ﬂ 3 olz; - ). {1)

Jik=1
1<k

Here, m is the particle mass, g is the coupling constant, k is Planck's
constant and p(z;w,w’) is the Weicrstrass p-function with half-periods w
and w'. From now on we will set

=T =%
W= W= g r,a € {0, 00). 2)

This somewhat unusual parametrization anticipates our conventions for
the relativistic level. Here we find it convenient to work with a close relative
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of the Welerstrass o-function, viz.,

y=ofz = expf - T
3{1‘,u,z)~a(:ﬂ, Qr‘?‘)exp( - ) (3)

This function is entire, odd, and #/r-antiperiodic. It satisfies the analytic
difference equation

s(r,a;x +1a/2) v
! P , 4
s{r,a;xr ~1a/2) ¢ )

and has trigonometric and hyperbolic limits

sinrz a Tz
; Y= BT ) = k| 22
alg&s(r, a x) _— l% s(r,a;z) - Hh( A ), (5)
uniformly on compact subsets of the complex z-plane.
The relativistic interaction involves the functions
. . 1/2
s(r,a;z £ig/me)\ ™
)= | = 6
fate) = (Hnzzgme) )

where ¢ is the speed of light; the defining quantum dynamics is then given
by the analytic difference operator (henceforth AAQ):

M
Hm;=W92Hf—($j—$k)exp(*%)f+(%"‘xh)' )

‘ ] me
i=lk#j

The connection between Hie and Hy, is given by the nonrelativistic limit
¢ — 00: One clearly gets

Heg = Mmc® + Hy + Cu +0(c™?), c— o0, (8)

(Here, Cy is a constant.) From now on, we work with the parameter § =
1/mcand put m = h = 1.

Next, we recall that the above quantum dynamics can be supplemented
with M—1independent and commuting PDOs and AAQs, respectively; this
is why Hpe and H are viewed as quantum integrable systems. Background
information on the nonrelativistic systems can be found in the surveys by
Olshanetsky and Perclomov {14, 15]. Morc recent accounts including the
relativistic versions are our survey [17] and lecture notes [23].

At the quantum level there are two basic problems associated with the
above formal operators. First, onc wants to find joint cigenfunctions for
the whole commuting family of PDOs or AAOs, in a form that is as ex-
plicit as possible. Second, one wants to redefine the operators as bona fide
commuting sell-adjoint operators on & Hilbert space.

We are mentioning the two problems in this order, since the second prob-
lem appears quite inaccessible without having explicit joint cigenfunctions
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available. More precisely, at the nonrelativistic level the Hilbert space as-
pects are reclatively simple for A = 2, but aiready hard to contral for
M > 2, whereas at the relativistic level quite novel difficulties are present.
In particular, it is not clear at face value that the Hamiltonian (7) can
be defined as a symmetric operator on a dense subspace of the pertinent
Hilbert space.

We continue by sketching the state of the art concerning the problems
just mentioned, restricting attention to the elliptic settings. Beginning with
the nonrelativistic level, there are explicit results only for integer g. For the
two-particle case one is dealing with the Lamé operator

Ho=~F: v olg - ela), g€R ©

{The center-of-mass motion may be ignored.) Eigenfunctions in product
form were already found by Hermite in the last century; ¢f the last pages of
Whittaker and Watson [26). (These functions will be detailed in Section 2.)
For M > 2 the first results were obtained by Dittrich and Inozemtsev [3]
(cf. also Ref. 9). More recently, Felder and Varchenko (4, 5] handled the
arbitrary M, integer g case in a quite different, representation-theoretic
and algebro-geometric setting, obtaining eigenfunctions without addressing
their quantum-mechanical features.

At the relativistic level eigenfunctions for arbitrary M are only known
when ¢ equals an integer, just as in the nonrelativistic case. Such eigen-
functions were quite recently constructed by Billey 2] via a nested Bethe
ansatz. See alsc papers by Hasegawa [8] and by Komori and Hikami [11],
where it is shown {among others things) that the commuting AAOs admit
finite-dimensional invariant subspaces spanned by theta functions. Other
results relevant to the arbitrary M case can be found in a recent paper by
Komori {10]. He shows in particular that one can associatc a symmetric
Hilbert space operator to the AAO (7).

Let us next specialize to the M = 2 case. Separating off a center-of-mass
factor from Hye (7), one winds up with the generalized Lamé operator:

N 1/2 N 1/2
Hy = (s(r,a,x 1»59)) cxp(~iﬂ%)(3(r’a’x zﬂ!ﬁ)

s(r,a;x) s8(r,a;1)
+ (- =i), B>0. (10)

We obtained integer g eigenfunctions of Hg in 1988, announced this in
Ref. 17, and presented details in our 1994 lecture notes [23]. Integer g cigen-
functions in a different guise (for g > 2) were then presented by Krichever
and Zabrodin {12], who used them to study certain solutions to their spin
generalizations of the relativistic elliptic systems. Their work emphasizes
the finite-gap propertics associated with these functions; roughly speaking,
the integer g equals the number of bands in the spectrum of the operators
arising from (9) and {10) when one shifts z over half the imaginary period.
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In this connection we also point out that a close relative Sy of the gen-
cralized Lamé operator Hg (10) was alrcady introduced by Sklyanin in the
carly eighties. He studied quite special eigenfunctions of Sy corresponding
to the band edges in the finite-gap picturc [24, 25].

In Ref. 7 Felder and Varchenko obtained integer ¢ eigenfunctions in a
form substantially equivalent to ours (cf. also Ref. 6). From their perspec-
tive, the functions arise via the algebraic Bethe ansatz, as a special case of
their extensive work on representations of elliptic quantum groups.

In our paper [20] and in the present contribution as well, we are desling
with eigenfunctions for a dense set in the parameter space r, a, § > 0,
g € R. As it turns out, these functions are in fact joint eigenfunctions
of three independent commuting AAOs. To handle Hilbert space aspects,
however, the spectral variable must be discretized. Thus one ends up with
two commuting generalized Lamé operators, namely Hg (10) and the AAO
obtained by interchanging f and a. (Note that from a physical point of view
both Af and a have dimension of length.)

It so bappens that the hyperbolic and trigonometric specializations can
be treated in far more detail (cf. Refs. 21 and 22). The results obtained
in these settings have their own flavor and are of independent interest. We
will mostly deal with the elliptic case, however. In Section 2 we recall what
is known about the two problems mentioned earlier for the integer g Larmé
operator Hg. We summarize these results mainly to prepare the ground for
Section 3, where we consider the problems for the relativistic generalization
Hg, choosing again g € N.

In Section 4 we extend the results to parameters that are dense in the
natural parameter domain. To bring out some remarkable symmetry prop-
erties, we adopt another normalization and notation. In particular, this
enables us to handle at once the two generalized Lamé operators men-
tioned earlicr. Section 5 contains several concluding remarks. In particular,
we discuss the existence and features of interpolating eigenfunctions, and
we briefly consider the hyperbolic specialization, where an explicit inter-
polation is known to exist [19, 23]. We also add some speculations about
AL > 2 eigenfunctions.

2 The Nonrelativistic Integer g Case

Let us consider the time-independent Schridinger equation

—f"(z) + 9(9 - )p(z) f(z) = Ef(2), (11)
arising from the Hamiltonian Hy (9). It is a second-order ODE to which
standard existence and uniqueness results apply. Iterating the integral cqua-
tion corresponding to it, one can obtain an infinite series representation for
solutions on the interval (0,7 /r) (say), with arbitrary initial conditions

fzo), f'(x0) for zop € (0,m/7).
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The ODE (11) has quite special features, however. The singularity at
z = 0 is of the regular (Fuchsian) type, and the indicial equation has
roots g and 1 — g. For g & Z/2 one therefore obtains two fractional power
series solutions with behavior fi(z) ~ 29 and fa(z) ~ z'~9 as z — 0. For
g € N*/2 there exists a power series solution behaving as z9 for z — 0, but
a second linearly independent power series solution need not exist. When
it exists, however (as is the case for (11) with g € N*), then it behaves once
more as z' 79 for z — 0.

The upshot is that in the nonrelativistic setting there is no difficulty
concerning existence and uniqueness of solutions, and the solutions can
actually be represented in two distinct forms. Even sa, both formulas are
not sufficiently explicit to get detailed information on the second problem
mentioned above.

Of course, it is not a priori clear that more explicit formulas exist, but
this turns out to be true for integer g. (These formulas can be derived in
various ways; for a complete account, sce the last chapter of Ref. 26.) To
specify them, we put from now on

g=N+1, NeN- (12)

{(Note that the cases ¢ = 0,1 are trivial.) Then the ecigenfunctions of Hy
are linear combinations of functions F(z,y) and F(—z,y) of the form

o) = L s + z;) . .
(=y) =11 =@ elire(V +1) + iz (13)

i=1

Here, s(z) stands for s(r,a;z), and the spectral variable i reads

y=—(N+1)r +ii () (14)
el C))
(Clearly, the first term on the right-hand side can be absorbed in y; it
is needed for later purposes, however.) The numbers 2i,...,2y5 (“zeros”)
satisfy the constraint system

S) S Sm—m) esly) o,
N s(zx) +J_§=-:’ s(z;-—zk) _j};; s(z;) =0, k=1,...,N, (15)
Tk

and this system admits a solution curve. (Note that the sum of the N left-
hand-sides vanishes identically, so that this is a priori plausible.) Adding
the relation (14) between y and 21, ...,2y to the system, one may view y
as the curve parameter. For y € (K, o0) with K sufficiently large, one can
then choose z; =ie;(y), ¢; >0, with €; | 0 for y T 0.
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It is not obvious, but true that *(z,y) thus defined is a solution to (11)
with F given by

N

E=-(2N-13 plz) (16)

=1

Thus one gets E = E(y) T oo as y T oo
The functions F(+z,y) clearly become singular as 27" = z'"9 forz —
0, in agrecment with Fuchs theory. Morcover, the functions

4,‘I>(x, 3}) = f(l‘, 3[) - (*I)N-}-{—:L y) (17)

-N

vanish as z™¥*! for z | 0. (Again this is not obvious at first sight. Note,
however, that the leading singularity ™V is taken out in &, so that its
2N+ hehavior follows from Fuchs theory.)

Next, note that F{x,y) satisfies the quasi-periodicity relation

F(a+ To) = oo ) 70 (1

Hence F(x,nr), n € N, is «/r-periodic or -antiperiodic. As a consequence,
the functions

O.(z)=O(z,nr), neN, (18)

vanish not only at x = 0, but also at = = «/r. Thus they belong to the
Hilbert space

H = LY(0,7/r), dz) (20)

of square-integrable functions on the interval (0, 7/r}). For n — oo one gets
E, = E(nr) | oo, so the eigenvalues of Hy on &,, are distinct for n large. It
now follows from a standard argument that the functions @, are pairwise
orthogonal for n large.

Maore generally, from the well-developed self-adjointness theory for ordi-
nary differential operators one readily deduces that Hy is essentially self-
adjoint on C§° ((0,7/r)) for g > 3/2. Morcover, the Weyl- Kodaira-Titch-
marsh theory of cigenfunction expansions yiclds the cxistence of an or-
thonormal base of eigenfunctions. It is natural to expect that the latter is
given by the {renormalized) functions {®,}3%,, but to our knowledge this
has not even been shown for g = 2.

In this connection it should be noted that the g = 2 case is particularly
accessible, since the constraint system (15) is trivial for N = 1. From (14)
one then sces that the sequence of values y = 0, 7, 2r, ... yiclds a scquence
of distinct z;-values z;{nr) in the interval i(0,a/2). The corresponding
cnergies B, are obviously distinct, too (cf. {16)), so the functions @, &,
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. are well-defined, nonzero, and pairwise orthogonal. (But it is not clear
that they are complete.)

By contrast, the system (15) for N > 1 is quite inaccessible. Though
results for generic y € € can be gleaned from Refs. 26 and 5, the Hilbert
space aspects involve the (nongeneric) values y = nr. (It is not clear, for
example whether the functions @, are nonzero for n small and whether
the eigenvalues E, are distinct.) Thus, even in the nonrelativistic integer g
context the Hilbert space questions have not been completely elucidated.

On the other hand, for the trigonometric specialization we have

lim (zl ia.) = r? r?
(L-—»oc»ga ! 21', 2 - Sin2(7‘ﬂ:) 3 ) (21)

For this potential the Hilbert space theory is in great shape. Indeed, in the
trigonometric case the above functions ®,(z) and eigenvalues E, can be
secn to be of the form

&, (z) = w(z)/?P,(cosre), neN, (22)
E,=Mn+N+1)%* - (N+ 1)NI;. (23)

Here, the functions P,(u) are Gegenbauer polynomials, of degree n and
parity (—1)™, and

w(z) = (sinrz)2N+2 (24)

amounts to the weight function with regard to which they are orthogonal.
Thercfore, completeness is obvious, and this is one important reason to
conjecture that for a < oo the functions &g, @, ... are still complete.
Unfortunately, no representation analogous to (22) is known for the elliptic
case.

3 The Relativistic Integer g Case

Let us now turn to a consideration of the AAO Hpg (10). Here the time-
independent Schrédinger equation is an analytic difference equation (AAE),
viz.,

s(x —iBg) s(z —iB +ifyg) 1/2 ~ o
( sz) sz~ 1if) ) Flz~if) + (i — ~i) = BF(z). (25)

The theory of such equations is far less developed than for ordinary differ-
ential and discrete diffcrence equations. Though some existence results are
known, the main problem is to single out solutions with special properties.
{ndeed, the key difference between the ODE (11) and the AAE (25) is that
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the former has a two-dimensional solution space, whereas for the latter the
existence of onc nontrivial solution Fz{z) already entails that the solution
space is infinite-dimensional: For any meromorphic (say) multiplier M{x)
with period i the function M(z)Fr(x) solves (25) as well.

‘The problem is, then, to find solutions with special properties, preferably
such that they can be used to define the AAO Hg (10) as a genuine self-
adjoint operator on H (20). The point is that there is no obvious way to
define Hpg first as a symmetric operator on a dense subspace, by contrast to
Hy, where for instance C§°({0,7/r)) serves this purpose. Since no general
Hilbert space theory for AAOs exists at the present time, one may instead
try to find sufficiently explicit pairwise orthogonal eigenfunctions &, € H
with real eigenvalues E,. Setting then H®, = E,®,, extending linearly,
and taking the Hilbert space closure H of the symmetric operator H thus
defined, one obtains a self-adjoint operator H on (a dense subspace of) the
closed subspace spanned by the pertinent eigenfunctions.

As it turns out, this scenario can be realized to a large extent. We con-
tinue by describing the eigenfunctions that generalize the above eigenfunc-
tions F(z,y) and that play the desired role in rigorously redefining Hp
as a self-adjoint quantum dynamics. Choosing as before ¢ = N + 1 with
N € N*, and requiring first

2NG € (0,a), (26)
they are of the form
N s(z + z;)
Flz,y) = H 1 cexplirz(N + 1) +izy].  (27)

UGG ripsE - o

Here, the spectral variable y is related to the zcro functions via

N

- = LTy Sz =ib)
y=—(N+1)r wm(g s(zj+w))’ (28)

and the latter obey the constraint system

s(a = iNB) [ ] s(z; — 2 — 1) [ [ s(z; +148) = (6 — =B) =0,
otk J k=1,...,N. (29)

It is clear that for 8 | O these equations yield the nonrelativistic coun-
terparts (13)-(15). But in contrast to (15), it is by no mecans clear that one
of the N equations for the N unknowns zj, ..., zn Is a consequence of
the remaining N — 1 cquations. This is, however, true, and it is important
to understand the reason. Viewing (27) as an Ansatz for solving (25) with
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g = N + 1, one obtains the function

1 y s{z ~if + z;)
E=—{s(z+iNB)exp[(N -+ 1)8r + —_—
5 (e + iNB) el + 1)5 Al %2
e~ -5)). (0
Of course, this function depends on & when one.gives zi, . .. , zy arbitrary

values. But since the function is elliptic in z (with periods 7/, ia, cf. (4)),
one need only require that the residues at N of its N + 1 (gencrically)
simple poles in a period cell vanish to ensure that it is constant. Now
the requirement that the residue at z = 0 vanish yields (28), wheress the
residues at £ = —z; give rise to (29). Thus we need only prove that the
system (29) with £ =2, ..., N (say) admits a solution curve to infer that
all of the equations are solved.
Now it is obvious that all of the N equations are solved by choosing

z;=1ijB, j=1,...,N. (31)

An application of the implicit function theorem then shows that the equa-
tions with k = 2, ..., N have a unique holomorphic solution z(21), k = 2,
..., N, near (31). Morcover, taking z; () = 44 +it with ¢t € [0, ¢), the func-
tions z; (21(t)) are real-analytic functions from {0, €) to (0, 00) for e small
enough. From (28) it is then clear that (eventually decreasing €) y = y(t)
is real-analytic and real-valued on (0,¢), and that one hasy Too for t | 0.

As a consequence, one can trade ¢ for y in & neighborhood (K, 00) of co.
Since we know very little about the minimal K satisfying various require-
ments, we may increase K as the need arises. In particular, we can choose
it sufficiently large so that the functions

®,.(z) = F(z,nr) - F(—z,nr), nr>K, neN, (32)

are well defined and nonzero. Indeed, the above functions z; (21 (¢(y)))
(denoted simply z;(y) from now on) satisfy

yloo = z(y) »14iB, j=1,....N, (33)

80 that the summands on the right-hand side of (32) have distinct zeros for
y large enough. (Recall our standing assumption (26).) Moreover, taking
z = iNf in (30) (which we may do, since E is 2-independent), one deduces
that an eventual increase of X ensures E(y) is increasing on (K, co). Then
Hpg has distinct eigenvalues on (K, o0).

The crux is now that all of the functions ®,(z) just defined belong to a
dense subspace A C H such that Hg.A C H and such that Hp is symmetric
on A. It is important to point out that the definition of A (which we do not
present here) is not directly motivated by Hg, but rather by properties of
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the above (very speciall) Hy-cigenfunctions. Since the eigenvalues E,, and
E,, arc distinct for n # m, it now follows from symmetry that &, and ®,,
are orthogonal. Thus we obtain a sclf-adjoint operator (denoted again Hy)
on the closed subspace Hx € H spanned by the functions (32).

We expect that My equals H whenever K can be chosen negative. Put
differently, we conjecture that for K < 0 the functions g, Py,... are an
orthogonal base for . In the special case N = 1 cne can choose K =
-r (cf Ref 22, Eq. (2.35)), but completeness is still open, even in this
simple case. More generally, we expect that the orthocomplement of Hy
is spanned by functions &g, ... , ®x/,) that arc eigenfunctions of Hy with
real cigenvalues.

Once again, the orthogonality and completeness problems are trivial for
the trigonometric specialization, since one winds up with orthogonal poly-
nomials in that case. Specifically, for ¢ = oo the functions @, are still of
the form (22}, with the weight function (24) now given by

N
w(z) = sin’(rx) H sinr{z - ij8) sinr{z + (j3). (34)

j=1

The associated orthogonal polynomials are then ¢-Gegenbauer polynomials
{cf, for exarmple, Ref. 1), with ¢ given by

g = exp(—20r). (35)

Returning to the elliptic case, we recall that we have restricted 3 by (26)
in the above account. But a substantial part of our results continues to be
valid under the restriction

k8¢ Na, k=1,... 2N (36)

In particular, this suffices to infer the existence of eigenfunctions of the form
{27)-(29). (Note that this more general restriction still guarantees that for
y large the zeros z1(y), ... , 2n (%), ~21(¥), - . . , —2zw(¥) arc distinct modulo
the period ia, cf. (33}.)

A key difference is, however, that for N > a the functions ¢,, (32) are
most likely no longer pairwise orthogonal. More precisely, our symmetry
prouf breaks down for N8 > a, and orthogonality is indeed violated in all
cases where this could be tested. For N = 1 and 8 > a & breakdown of
orthogonality occurs in the strongest possible form: Onc has ($n, $1n) # 0
for all n  m. (Here, we still assume (36); note that Hy becomes “free” for
N=1and g =la/2,l e N*.)

We prove the latter assertion in Rel 22, which is concerned with the
g = 2 case. To conclude this section we mention another remarkabie result
from this paper. Taking J T a (the edge of the unitarity region) and simul-
tancously a | 0 in & certain way, the above eigenfunctions ¢, (z) converge
to the Lieb-Liniger eigenfunctions [13] for the (M = 2, center-of-mass)
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repulsive delta-function Bose gas. The role of the finite volume in [13] is
played by the elliptic period 7/7 < co. This limiting transition generalizes
the connection between the g = 2 hyperbolic relativistic M = 2 eigen-
functions and the infinite-volume delta-function eigenfunctions, which we
pointed out at the end of [17].

4 Eigenfunctions for a Dense Parameter Set

Thus far, we have viewed the functions Flaz,y) (27} as eigenfunctions of
Hy (10). However, they also satisfy the quasi-periodicity relations (cf. (4))

N

Flz +ia,y) = cxp[«?zrz 2;,{y) — (N + Llar — ay|F{z,p), {37
J=1

#(a+ 2) = -ow( ) 7(z. (39)

Thus, they can also be regarded as eigenfunctions of the AAOs Ty, and
Tiysrs where we use the notation

T, F)}z)= F{z —a), ael (39)

Now this is true for F(~z, y}, too, but then we obtain different eigenvalues.
On the other hand, introducing the “extra” AAQ,

Hc = Tna + T——iuy (40)
and the “quasi-periedicity” AAO,
Q= Tn/’r + T-—-'Jr/ry (41)

we obtain the same eigenvalues for F(z,y) and F(~z,y). Hence the func-
tions F(=zx, y) are joint cigenfunctions of the triple of independent AAOs
(H 5 He, Q)

As will now be detailed, we have found eigenfunctions F(+z,y) of Hp
for a set that is densc in the parameter space r, 5, a > 0, g € R. These
eigenfunctions of Hy are once again cigenfunctions of @ with eigenvalue
~2cos{ry/r) and of an extra AAQ H, involving the shifts Ty;,. But the
latter operator is no longer “free”: It involves the functions (6) with an
interchange of @ and hfB = K/me. Within this more general setting, Hg
and H, arc on the same footing from a mathematical viewpoint, and we
take this into account by switching to notation that makes this symmetry
manifest.

Specifically, we work from now on with parameters a., @, and b defined
by

ay =83, a.=a, b=fg. (42)
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The pertinent parameter domain at the elliptic level is then
£ = {{r,as,a-,b) € {0,00)" x R}. (43)
Introducing the notation
ss{z) = s(r,as;x), &=+, -, (44)

we now define the AAOs

. 1/2 . /2
e () " () - -0).

§=+,—-. (45)

Comparing H; (10), one sees that H_ arises from Hy via the substitutions
(42}, but for the prefactor exp{—br). Likewise, taking g = N +1, the AAQ
H. reduces to a positive multiple of H. (40). The choice of prefactor in
{45) ensures that the operators thus defined satisfy the invariance property

Hi(as +a- = b) = Hs(b), &=+, —. (46)

The assertions just made can be easily verified by using the AAE (4).
Similarly, this AAE can be used to check that Hy and H_ commute. Now
this is in accord with the existence of joint eigenfunctions, but there are
no general results to the effect that commutativity of two AAOs implies
the existence of joint eigenfunctions. (In this connection it is important to
observe that when the two summands of H.,. are multiplied by meromorphic
functions with period 1a., the resulting AAOQ still commutes with H_.)

Even so, we have found joint eigenfunctions F(%zx,y) of the three inde-
pendent commuting AAQs H,, H_ and Q for a dense set D in £ (43). For
expository simplicity, we will specify these functions for a subset D, UD.
of D that is already dense. The two scts Dy, @ € {+, ~}, are defined by

Dy = {(r,04,0-,b) € £ b=(Ny + Lag — N_ot_a,
Ni,N_eN,ai/a- ¢Q}. (47)

Since the quotient a../a_ is allowed to be an arbitrary positive irrational
number, the bvalues occurring here are densc in R. Hence cach of the two
{disjoint) sets D.. and D_ is dense in €. To visualize the situation, it may
be helpful to inspect Figure 26.1, where we have fixed a . and drawn some
of the pertinent lines in the (a4, b)-plane.

The two sets Dy, D are interchanged under the transformation & —
ey +a. — b Fixingr >0, as/a- € Q and Ny, N € N, we got a point
in D, by taking b = (N + 1)a; — N_a_ and a point in D_ by taking
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a, 3a,
0 2
a, 8 _
-a_ a,
b
-28 .
oi a, ¢ 2 Za_

FIGURE 26.1. Scme lines in the (a4, b)-plane belonging to Dy (left) and D
(right); the parameter a_ is fixed.

b= (N_ + 1)a~ — Nya.. In agreement with the invariance property (46),
the joint eigenfunctions F(zz,y) are the same in both points. They read

Ng 8
B s_slz+ 2] )
Flaw) = 5=£I.~ 7131 ls_5(z + ijag)s—s(z — ijas)]'/

-explirz(2N,.N_ 4+ Ny + No +1) +izy].  (48)

The zero functions z}’, j =1,..., Ny, satisfy the constraint system (29)
with N — Nj, § = +, —, and the two systems are coupled via the spectral
variable y in a somewhat involved way that we will not detail here.

We do specify the asymptatics of the zero functions and eigenvalues:

ytoo = 2j(y) »ijas, j=1...,Ns 6=+, (49)

dE
y oo == Es(y) ~expla-sy), ;;fy) ~ a_s exp{a—sy),

§=+,—. (50)

In view of the eigenvalue asymptotics, we can choose K such that on (K, 00)
the two eigenvalues separate points:

K<y <y = (Bly) BE-(n) # (Bx(12), E-(w)).  (51)

Another important feature is that the joint eigenspace is two-dimensional.
{Again, we can only prove this for y € (L,00) and sufficiently large L>
K, ¢f. Appendix B in Ref. 20.) Notice that this is false when a4 /a_ is
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rational: In that case joint eigenspaces are infinite-dimensional whenever
they contain one nontrivial function.

‘We now turn to Hilbert space aspects. To this end we study the functions
(32), with F now given by (48). These functions are clearly x/r-periodic
(-antiperiodic) for n odd (even) It is far from clear, but true that they
are also pairwise orthogonal in H (20), provided b belongs to the unitarity
interval {0, as. + a.. Fixing once more a., we have depicted the resulting
unitarity region in the (e, b)-plane in Figure 26.2.

As a consequence, Fy and H_ can be redefined as commuting self-adjoint
operators on the closed subspace Hy spauned by the functions (32): We

need unly set
Hs®, = Es(nr}d,, nr>K, neN, (82)

extend linearly, and take the closure.

Just as in the special case N =0 (cf. Section 3), orthogonality is most
likely violated for b < 0 and b > a4 + a—. We also expect that for b €
(0,a4 +a-) the subspace H% has dimension [K/r] + 1 and is spanned by
joint eigenfunctions ®o, ... , Byx;y with real eigenvalues.

We conclude this section by explaining a key feature in the symme-
try forthogonality analysis. To this end we first rewrite F(z,y) as

Ns
Flz,y) =Hzw)) [] [Qls-sle +ijas)s-slc - ijas)}'?,  (53)
B, — j=1

so that we have

AN

FIGURE 26 2. The unitarity region and the symmetry line b = (a4 +a-)/2
{dashed) in the (a4, b)-plane
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N
Hizy)= [[ []s-e(z+2w)
§=+-3=1  xexplirz(2N4N-+ Ny + N_ +1)+izy]. (54)

Note that this similarity transformation yields holomorphic cigenfunctions.
By exploiting the transformed AAEs it can now be proved that one has
the identities

H(ikyay +ik_a_,y) = H{—dkia, —ik_a_,y),
ks € {_'Nﬁy'-':ou‘“sNJ}t b=+~ (55)

Therefore, the function H(z, y)—H(—z, y) has (2N, +1)(2N_+1) explicitly
known zeros on the imaginary axis. Since the functions

PYo(z) = H(z,nr) — H(—2,n7) (56)

are 7/r-periodic (n odd) or w/r-antiperiodic (n even), the above zeros
repeat under a shift by m/r:

1/1n(z'k+a+ bik_ao + l?'”) =0,
ks € {~Ns,...,0,...,Ns}, §=+,—-, 1l €Z. (57)

These explicit zeros of 1,{(z) are crucial in canceling poles arising from
the squared denominator in (48). But only for b € (0, a+ + a-) one gets
a pole-zero cancellation in a strip around the real z-axis that suffices to
deduce pairwise orthogonality. For b < 0 and b > a + a— one obtains
instead a residue sum that has no reason to vanish (although in general its
vanishing cannot be ruled out).

5 Concluding Remarks

In this final section we sketch some more results related to the above
cigenfunctions. First, we point out that the functions F(+£z,y) (48) can
also be viewed as joint eigenfunctions of H, and H_ for the b-values
~Nyay — Noa_ and (N4 + Day + (N_ + 1)a— (in addition to & =
(Ny + 1)a, — N_p@_o, @ = +, —). This is because one has the identi-
ties

H5(~N+a+ - N_.CL_) = H&((N+ + 1)a+ + (N_ + 1)(.1_)
= rsHs((Ny +1)ay — N_a_), (58)

where
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ry = exp(2N. + D2N- + Daoyr (59)

(The first equality follows from (46); the sccond can be checked using (4).)
To cbtain once again the eigenvalue asymptotics (50) for these new b-
values, one should, however, shift the spectral variable y over a distance
(2N, + D(2N_ + I)r.

More generally, since we can handle a dense subsct of £ (43), a natural
question concerns the existence of continuous interpolating joint cigenfunc-
tions for all of £. Clearly, such interpolations are uniquely determined up to
multipliers depending solely on y and the parameters. Now a crucial feature
of tho above functions F(z,y) is that their y — oo asymptotics is given
in terms of a scattering function u(r,a,a-,b;x) that has a real-analytic
extension to all of € (teking = € R), as will now be detailed.

First, we note that (49) entails

F(z,y) ~ ((Ny, No)[- exp(irz)u(z)] *explaizy), y—o0,  (60)

where { is a suitable phase and where

) = (e T[] et

Phaalign 1-5&(1“‘.?0 §)
x exp[2irc{2N N + Ny + N.)|. (61)
To explain why this function extends to all of £ (and for other purposes),
it is convenient to introduce a function
G(r.as,a-;z— b +i{ay +a-.)/2)
G(ray,a-;2 + (a4 +a-)/2)

e(r,ay,a_, bz} = (62)
Here, G(r,a4,6; z) is the elliptic generalized gamma function introduced
and studied in Ref. 18. It is meromorphic in z and in the parameters r, g,
and a. as long as ra, and ra. stay in the right half-plane. Now the
extension to &£ of the function u(z) = u(r,a+,a~, (Na +1)@a —~ Nop_o;2)
given by (61} reads

_e—ﬁir:z C(x) (63)

u(zx) = et

For real z this function is real-analytic on &, as advertized. In particu-
lar, it is uniquely determined by (61). Thus the asymptotics of the joint
cigenfunctions admits a unique real-analytic interpolation.

The similarity transformation (53) turning the two-valued cigenfunction
F{z,y) into the holomorphic function H{x,y) is readily seen not to admit
& continuous interpolation. But when we introduce a generalized weight
function

= (64)
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then the similarity transformation to a new, meromorphic function
4
V(zy) = (65)

does admit an interpolation, since w(z) does. The function ¥ has asymp-
totics

¥(z,y) ~ c(z)e™, y— o0, (66)

and correspondingly ¢{z) may be viewed as a generalization of the Harish-
Chandra e-function for symmetric spaces of rank 1 (cf. Refs. 15 and 17).

Of course, this does not answer the question of whether the meromorphic
joint eigenfunctions ¥(£z,y) of the similarity-transformed AAQs

oobr 85z — ib)

Ap = w(z) ViHuw(z)? = e

Tiay + (i — —1),
§=+,-, (67)

admit an extension to £ This appears to be a quitc delicate issue. For the
even combination

X(Iw y) = ‘IJ(.’I.‘, y) + ‘P(‘x‘ y) (68)

the identities (55) give rise to pole-zero cancellations on the imaginary
axis, but as before one needs to choose y = nr, n € N, to ensure the same
cancellation on the lines Rez = kn/r, k € Z*.

These cancellations are not only crucial for the orthogonality issue, but
they are also relevant for the question of meromorphic interpolations. Iu-
deed, for convergence to points in £ for which ay /a_ is irrational and b
not equal to ka; + la— with k,! integers (for example), one needs to let
Ny and N_ go to oc; hence cancellations are needed to prevent poles from
becoming dense.

Even so, it appears hard to ezclude the existence of a meromorphic inter-
polation for ¥(z,y). (This is because poles of meromorphic functions can
exhibit drastic changes under convergence.) At any rate, for Hilbert space
purpases it would suffice to control the convergence to arbitrary points in
£ for the functions x{z,nr), n € N.

Though we have discussed these questions in more detail in Ref. 20, we
have obtained no clear-cut answers. By contrast, at the hyperbolic level an
interpolation of y(z,y) is explicitly known. More precisely, there exists a
function R(a4,a-, b z,p) that is real-analytic in a4, a—, and b in the hy-
perbolic parameter domnain {a,,a_ > 0,b & R} for z, p fixed, meromorphic
in x, p for fixed parameters, and that satisfies

Rlay,a_ ka; +la_;z.p)
=ryas,a-;p)x{as, 0  kay +la-jz,mpjaze), k,l€Z. (69)
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The renormalization of the dependence on the spectral variable ensures the
self-duality property

R(a‘-h Gy b; z, p) = R(a'i-! a—, b§ 2 Z)‘ (70)
Furthermore, one has the symmetry property
R(ay,a-,bz,p) = R(a—,a4,b;2,p), (71)

and the Ag-eigenvalues take the simple form
AsR(a+, a-,b;z,p) = 2ch(:-—f) R(a4,a-,bz,p). (72)

The latter properties are proved in Ref. 21 for the b-values occurring in
(69). The interpolating function R is detailed in Ref. 23; we study a more
general function in Ref. 19 and elsewhere.

We conclude this contribution with some conjectures concerning M-
particle eigenfunctions of the M commuting AAOs. We believe that such
joint eigenfunctions exist not only at the hyperbolic, but also at the el-
liptic level. (At the trigonometric level the joint eigenfunctions needed for
quantum-mechanical purposes amount to the Apr—; Macdonald polynomi-
als, cf. Ref. 23, Scction 6.2.) In the hyperbolic case we expect self-duality
(invariance under (2i,...,Znm) < (D1,...,PM)), 88 the quantum general-
ization of the classical self-duality first proved in Ref. 16. Moreover, the
parameter symmetry (71) should still hold true for M > 2, and the eigen-
values should be the obvious (scattering theory) generalizations of (72).

In the elliptic case we also expect the symmetry property (71). Note in
this connection that a4y « a- symmetry would entail the joint eigenfunc-
tion property for the M AAOs obtained by interchanging a, and a_; This
second AAQ family is readily seen to commute with the first one.

Finally, both at the elliptic and at the hyperbolic level we expect that the
unitarity region is given by b € [0, a; +a-] for all M > 2 and that the scat-
tering (eigenfunction asymptotics) is factarized in terms of the (2-particle)
u-function. To date, we are not aware of any evidence contradicting the
ahove scenario, but the evidence supporting it is mainly circumstantial.
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