
Strategies in Filtering in the Number Field Sieve

Stefania Cavallar

Centrum voor Wiskunde en Informatica
Postbus 94079, 1090 GB Amsterdam, The Netherlands

Stefania.CavallarOcwi.nl

Abstract. A critical step when factoring large integers by the Number
Field Sieve (8] consists of finding dependencies in a huge sparse matrix
over the field IF2, using a Block Lanczos algorithm. Both size and weight
(the number of non-zero elements) of the matrix critically affect the run
ning time of Block Lanczos. In order to keep size and weight small the
relations coming out of the siever do not flow directly into the matrix,
but are filtered first in order to reduce the matrix size. This paper dis
cusses several possible filter strategies and their use in the recent record
factorizations of RSA-140, R211 and RSA-155.

Introduction

The Number Field Sieve (NFS) is the asymptotically fastest algorithm known
for factoring large integers. It holds the records in factoring special numbers
(R211 [4]) as well as general numbers (RSA-140 [3] and RSA-155 [5]). One dis
advantage is that it produces considerably larger matrices than other methods,
such as the Quadratic Sieve [l]. Therefore it is more and more important to
find ways to limit the matrix size. This can be achieved by using good sieving
parameters and by "intelligent" filtering.

In this paper we describe the extended version of the program filter which
we implemented following ideas of Peter L. Montgomery. Its goal is to speed up
Block Lanczos's running time by reducing the matrix size but still keeping the
weight under control.

A previous implementation of the program filter [8, section 7] did 2- and
3-way merges. When using Block Lanczos, higher-way merges were commonly
banned from the filter step in order to limit the matrix weight. For instance,
also James Cowie et al. [6, section Cycles] explicitly avoided merges higher than
3 for the factorization of RSA-130.

The most important new ingredients of the present f i1 ter implementation
are an algorithm to discard excess relations and "controlled" higher-way merges.
We determine arithmetically which merges reduce Block Lanczos's running time.

For the factorization of RSA-140 only 2- and 3-way merges were performed
which led to a matrix of 4.7 million columns. With the present filter strategy we
could have saved up to 33% of linear algebra time by reducing the size to 3.3
million columns. For the factorization of R211 we already used an intermediate
filter version which did 4- and 5-way merges, but we could still get an improved

W. Bosma (Ed.): ANTS-IV, LNCS 1838, pp. 209-231, 2000.
© Springer-Verlag Berlin Heidelberg 2000

210 Stefania Cavallar

matrix after the factorization. For RSA-155, we could take full advantage of the
present version and did "controlled" merges up to prime ideal frequency 8 which
led to a matrix of 6.7 million columns and an average of 62 entries per column
which was used to factor the number. Afterwards, we were able to reduce this
size to 6.3 million columns.

First, we give a brief description of the NFS. Secondly, the filter imple
mentation will be described with special focus on the new features. In section 3
we will describe other filter strategies we came across in the literature and com
pare it with our approach. Finally, experimental results for RSA-140, R211 and
RSA-155 are listed and interpreted.

1 Brief Description of NFS

We briefly describe the NFS factoring method here, skipping parts which are
not relevant for the understanding of this paper such as the sieving step itself.

By N we denote the composite number we would like to factor. We select an
integer Mand two irreducible polynomials f(x) and g(x) E Z:[x) with cont(!)=
cont(g) = 1 and ff. ±g such that J(M) := g(M) := 0 mod N. By a, /3 EC we
denote roots of f(x) and g(x), respectively.

The goal is to construct a non-empty set S of co-prime integer pairs (a, b)
for which both n(a,b)ES(a - bo:) and TI(a,b)ES(a - bf]) are squares, say, --P E

2[a:) and 02 E 2[,8), respectively. Once we have found S, the two natural ring
homomorphisms </>1 : /Z[a:) -+ Z:/ NZ: mapping o: to M and </>2 : 2[,B) -+ 'll/ N'l/.,
mapping /3 to M as well, yield the congruence

</>1(1) 2 = 4>1(·y2) := IJ (a - bM) := </>2(.52) := 4i2(J)2 mod N.
(a,b)ES

which has the desired form X 2 := Y 2 mod N. By computing gcd(X - Y, N) we
may find a divisor of N. The major obstruction in this series of congruences
is that we need to find / E Q(o:) from 1 2 (and .S from 02, respectively). See
Montgomery's [15] or Phong Nguyen's [17] papers for a description of their square
root algorithms.

How to find the set S? We write

F(x, y) = f(x/y)ydeg(J) and G(x, y) = g(x/y)ydeg(g)

for the homogeneous form off (x) and g(x), respectively. Consider a - bo: E Q (a)
and a - bf] E Q (/3). The minus sign is chosen in order to have

NQ.(a)/Q.(a - ba) = F(a, b)/c1 and NQ(f3)/Q(a - b/3) = G(a, b)/c2,

where the ci's are the respective leading coefficients of f(x) and g(x).
After the sieving we are left with many pairs (a, b) such that gcd(a, b) = 1

and both F(a, b) and G(a, b) are products of primes smaller than the large prime

Strategies in Filtering in the Number Field Sieve 211

bounds L1 and L2, respectively, which were chosen by the user before the sieving.
The pairs (a, b) are commonly denoted as relations. A necessary condition for

II (a - ba) and
(a,b)ES

to be squares is that the norms

II (a - b/3)
(a,b)ES

Niij(a)/Q (IT (a - ba))
(a,b)ES

and NQ(f3)/Q (II (a - bf3))
(a,b)ES

are squares. Therefore we require S to have even cardinality and

II F(a, b) and
(a,b)ES

IT G(a, b)
(a,b)ES

to be squares. The condition is not sufficient because elements having the same
norm may differ from each other (not only by units!). Let p be a prime divisor
of F(a, b) = f(a/b)bdeg(f). We distinguish two cases:

- p I f(a/b). This means that a/b = q mod p with 0 :Sq< p is a root of f(x)
modulo p. In the sequel such a p is referred to as p, q.

- p I b. Since gcd(a, b) = 1 it follows that p f a and therefore p I c1. This
can happen for a small set of primes only, since the leading coefficient is of
limited size. These roots are called projective roots and denoted as p, oo.

We will call the couples p, q, where q is allowed to be oo, prime ideals, since
they are in bijective correspondence with the first degree prime ideals of the ring
Z'.:[a] n LZ[a- 1). See [2, Section 12.6).

Consequently, we write

IF(a,b)I = I1Pe1(a,b,p,q) and IG(a,b)I = ITpe2(a,b,p,q)_

p,q p,q

In order for flca,b)ES F(a, b) and flca,b)ES G(a, b) to be squares in <Ql(a) and
Q (/3), respectively, we require all the exponents in

II IF(a, b)I = IIpLs e,(a,b,p,q) and IJ IG(a, b)I = IIpLs e2(a,b,p,q)

(a,b)ES p,q (a,b)ES p,q

to be even. This condition can be stated in terms of the field JF2 as well. We
just think of a relation (a, b) as a vector in JF2 whose first entry is 1 (in order
to control the parity of S) and the following entries are given by the exponents
e1(a,b,p,r) and e2 (a,b,p, r) modulo 2. A 1 signals the occurrence of an uneven
power of a prime ideal. The task of finding some suitable sets S translates now
into finding dependencies modulo 2 between the columns of a matrix which is
built up with the relation vectors given by the siever. We need to have enough
relations to guarantee that the matrix provides enough dependencies.

212 Stefania Cavallar

Alas, not every dependency yields a set S such that TI(a,b)es(a - ba) and
n(a,b)es(a-b,8) are squares, but we can make the method practical by producing
several dependencies and doing quadratic character tests [2, Section 8].

The filter stage occurs between the sieving step and the linear algebra step
of the NFS. It is a preliminary linear algebra process since it corresponds to
dropping columns (pruning) and adding up columns modulo 2 (merging).

2 Description of the New Filter Tasks

We distinguish 19 merge levels: level 0 and 1 fall into pruning, level 2 through
18 within merging.

We shall say that a prime ideal p, q is (un)balanced in a relation (a, b) if it
appears to an (un)even number in F(a,b) or G(a,b)*. We distinguish between
prime ideals of norm below and above a user determined bound filtmin. Ac
cordingly, we speak about small and large prime ideals. We will denote prime
ideals p, q by l. We write a relation r = r(a, b) as the collection of its unbalanced
large prime ideals, r : Ii, h, . .. , lk. Merging means combining relations which
have a common prime ideal in order to balance it. For example, if l appears
only in r1 : Iio = l, 111, ... , lik 1 and r2 : 120 = I, I21, ... , hk2 , we can combine
the two relations into ri + r2 : 111, ... , likt> h1, ... , I2k 2 with the result that I is
balanced in r 1 + r2. More generally, a k-way merge is the procedure of combining
k relations with a common prime ideal I into k - 1 relation pairs without I. By
a relation-set we mean a single relation, or a collection of two or more relations
generated by a merge. We do merges up to prime ideal frequency 18. The pa
rameter mergelevel l means that k-way merges with k-::; l may be performed.
The weight of a relation-set r, i.e., the number of unbalanced prime ideals in it,
is denoted by w(r).

2.1 Pruning

As the verb "pruning" suggests, this part of the program removes unnecessary
relations from the given data, that is duplicates and singletons and, if the user
wants to, also excess relations. Duplicates are obviously superfluous and single
tons cannot be part of a winning set S since they contain a prime ideal which
does not occur in any other relation and can subsequently not be combined to
form a square. If the difference between the number of relations and the num
ber of large prime ideals outnumbers a user-chosen bound (keep), the clique
algorithm selects relations to delete.

mergelevel 0 only removes duplicates and can be used to merge several
sieving outputs to a single file, possibly before sieving completes. mergelevel 1

* In very rare cases (p divides the polynomial resultant) we can have the same p, q
appearing in both F and G. Recall that they are not the same, since they correspond
to ideals in· different rings. We abstain from labeling the ideals accordingly, for the
sake of simplicity.

Strategies in Filtering in the Number Field Sieve 213

will only be performed ifthe full set ofrelations is available and covers algorithms
for the removal of duplicates, singletons and excess relations.

Duplicates. First we want to eliminate duplicate relations. They may arise for
various reasons. Most commonly they come from sieving jobs that were stopped
and later restarted. In case of a line-by-line siever [8, section 6] the resumed
jobs start with the last b sieved by the previous job; this is the only way that
duplicates arise. In case of a lattice siever [18] the job starts with the special
prime ideal I sieved last, and will generate duplicates, or it can do so because a
relation may contain, apart from its own special I, other prime ideals that are
used as special prime ideals as well. The simultaneous use of line-by-line and
lattice siever also causes overlap.

Duplicates are tracked down by hashing [12]. Since it is easier and cheaper to
use a number instead of a relation as a hash table entry, we "identify" a relation
with a number. The user specifies how many relations he expects to be in the
input file(s) (maxrelsinp). This figure is used to choose the size of the in-memory
tables needed during the pruning algorithm. The program reads in relation after
relation. In order to detect duplicates, the program maps each relation (a, b) to
an integer between 0 and 264 - l. The mapping function, h = h(a, b), should
be nearly injective since relations mapped to the same value will be treated
as duplicates. It is rather easy to construct such a function, since even a huge
amount ofrelations, say 200 million (for RSA-155 we had to handle 124.7 million
relations), is small compared to the 264 possible function values. With 64 bits
for the function value we expect about

false duplicates, which means that there will hardly be any false duplicates.
With 32 bits only, this number would amount to about 4.7 · 106 , which is a fair
proportion of all relations.

The function h(a, b) is defined as follows. It takes values of a and b up to 253 .

Put ll = l'll' .1Q17J and E =le -1017J. We have gcd(ll, E) = 1. Define

H(a,b) == lla+ Eb.

If H(a1,b1) = H(a2,b2) and (a1,b1) I (a2,b2) we have

a1 - a2 E
b1 - b2 n

which is impossible, since iai and JbJ are known to be much smaller than ll /2 and
E/2, and gcd(ll,E) == 1. Define h(a,b) = H(a,b) mod264 . Since His injective,
false duplicates for h can only come from the truncation modulo 264 .

The function values of h again are mapped by a hash function into a hash
table. If the user has specified mergelevel 0, the non-duplicates are written to

214 Stefania Cavallar

the output file whereas, if the user has chosen mergelevel 1, the non-duplicate
relations are memorized in a table for further processing, while considering only
the large prime ideals. In the sequel, we shall call this table the relation table.

Singletons. If both polynomials f and g split completely into distinct linear
factors modulo a prime p which does not divide the leading coefficients, we get
a so-called free relation corresponding to the prime ideal factorization of the
elements p = p - Oa and p = p - 0/3 of norm NQ(cr)/Q(P) = F(O, p)/c1 = pdeg(J)
and NQ(/3)/Q(P) = G(O,p)/c2 = pdeg(g), respectively. Approximately 1/(9/ · 99)

of the primes offer a free relation, where 9/ and g9 are the orders of the Galois
groups of the polynomials f and g, respectively [10]. The free relation (p, 0)
is added to the relation table only if all prime ideals of norm p appear in the
relation table.

Next, a frequency table is built for all occurring prime ideals which is adjusted
as the relation table changes. The relation table is then scanned circularly and
relations containing an ideal of frequency 1 (singletons) are removed from it.
The program executes as many passes through the table as is needed to remove
all singletons.

At the end of the pruning algorithm we would like the remaining number of
relations to be larger than the total number of prime ideals. Therefore we need
to reserve a surplus of relations for the small prime ideals: Per polynomial, the
number of prime ideals below :filtmin is approximately 7r(:filtmin), i.e., the
number of primes below filtmin, see [14]. Consequently, we require a surplus
of approximately (2 - (9J · g9)- 1) · 7r(filtmin) relations. If the required surplus
is not reached we need to sieve more relations.

Clique Algorithm. If there are sufficiently many more relations than ideals,
the user may want to specify how many more relations than large ideals to retain
after the pruning stage (keep).

In [19, step 3] Pomerance and Smith eject excess relations by simply delet
ing the heaviest relations. However, as an alternative, they suggest to delete
relations which contain many primes of frequency 2. Our approach is similar to
this alternative. The algorithm we use is called clique algorithm, since it deletes
relations that stick together.

Consider the graph with the relations from the relation table as nodes. We
connect two nodes if the corresponding relations would be merged in a 2-way
merge. The components of the graph are called cliques. The relations in a clique
are close to each other in the sense that if one of them is removed, the others
will become singletons after some steps and are therefore useless.

The clique algorithm determines all the cliques, evaluates them with the
help of a metric and at each step keeps up to a prescribed number of them in
a priority heap [12, page 144], ordered by the size of a metric value. The metric
being used weighs the contribution from the small prime ideals by adding 1 for
each relation in the clique and 0.5 for each free relation. The large prime ideals

Strategies in Filtering in the Number Field Sieve 215

which occur more than twice in the relation table contribute 0.51- 2 where f is
the prime ideal's frequency. This way we "penalize" ideals with low frequency.
Relation-sets containing many ideals with low frequencies are more likely to be
deleted than those containing mainly high frequency ideals. By deleting these
low-frequency relation-sets we hope to reduce especially low frequencies even
more and get new merge candidates.

Finally, the relations belonging to cliques in the heap are deleted from the
relation table. When deleting relations we decrease the ideal frequencies of the
primes involved. Singletons may arise and we therefore continue with the sin
gleton processing step. The clique algorithm may be repeated if the number of
excess relations does not approximate keep sufficiently.

After duplication, singleton and possibly clique processing the relations are read
again and only the non-free relations** appearing in the relation table are written
to the output file. If the input files have grown in the meantime, the new relations
are discarded.

2.2 Merging

First, we have a closer look at how merging works, which parameters can be
given and at how to minimize the weight increase during a k-way merge. Next,
we give details about the implementation of the "controlled" merges. Finally we
study the influence of merging on Block Lanczos's running time.

Merging aims at reducing the matrix size by combining relations. Through
out this section we give figures about weight changes in the matrix. These figures
do not take account of possible other primes that may have been balanced inci
dentally during the same merge.

Parameters mergelevel, maxpass, maxrels and maxdiscard. With the pa
rameter mergelevel the user specifies the highest k for which k-way merges
are allowed to be executed. The user fixes the maximum number (maxpass) of
shrinkage passes to execute. During a shrinkage pass, all large primes are checked
once and possibly merged, see [8, section 7] for more details.

The simplest case is the so-called 2-way merge. A prime ideal I is unbalanced
in exactly two relations, r 1 and r2 , and we combine the relations into the relation
set r 1 + r 2. As a result, we have one fewer column (r1 and r2 disappear, r1 + r2
enters) as well as one fewer row (prime ideal J) and the total weight has thereby
decreased by 2.

In general, if a prime ideal I is unbalanced in exactly k relations (k ~ 2)* * *,
we can choose k - 1 independent relation pairs out of the possible (;) pairs. For

example, if k = 3, there are 3 possible ways to combine the 3 relations involved,
r 1, r 2 and r 3, to a couple, namely r 1 + r2, r2 + rs and r1 + r3. Each one can be

** Free relations will be generated during the merge stage again.
* * * The case k = 1 denotes a singleton which would be deleted.

216 Stefania Cavallar

obtained from the other two, for instance r 1 + r3 = (r1 + r2) + (r2 + r3) as all
the prime ideals of r 2 are balanced since r2 appears twice.

After the merge, the prime ideal I is balanced. Its corresponding row has
disappeared from the matrix. The total gain of every merge consists in fact in
one fewer column and one fewer row. The drawback of merging is, of course,
matrix fill-in. A 2-way merge causes no fill-in at all, we even have 2 entries fewer
in the matrix. However, a k-way merge, k ;::: 3, causes the matrix to be heavier by
about the weight of k - 2 relations minus the 2(k - 1) entries that disappeared.

If the matrix is going to be "lopsided", i.e., if it has many more relations than
ideals, it is useful to drop heavy relation-sets. The program therefore discards the
ones which contain more relations than the user-determined bound maxrels.t
The user may specify maxdiscard, that is, the maximum number of relation
sets to be dropped during one filter run. Once maxdiscard has been reached,
k-way merges, k ;::: 3, are inhibited.

Minimizing the Weight Increase of a k-Way Merge. Which k - 1 of the
possible (~) relation pairs should be chosen in order to achieve the lowest weight

increase? First of all, each relation has to appear in at least one relation couple,
that is, we need to form independent relation sets, in order not to loose data.
Secondly, we focus on minimizing the weight increase. In the beginning, when all
relations are true single relations, we usually achieve the lowest weight increase
by choosing the lightest relation (pivot) and combining it with the remaining
k - 1 relations. We call this pivoting. More precisely, this happens always when
no additional prime ideals except for the prime ideal I become balanced in any
of the candidate relation couples. If we assume the pivot relation to be rk, the
weight increase L'.lw will be exactly

Llw = (k - 2)w(rk) - 2(k - 1). (1)

The choice becomes more complicated, when additional prime ideals get bal
anced, especially when we are merging already combined relation-sets. For ex
ample, consider the following 5 relations, which are candidates for two 3-way
merges with the prime ideals I and J:

r 1 : I and v - 1 other prime ideals
r2 : I and v - 1 other prime ideals
r3 : I, J and v - 2 other prime ideals
r4 : J and v - 1 other prime ideals
rs : J and v - 1 other prime ideals

For the sake of simplicity, we assume that all the relations have the same weight
v and do not share other primes except for I and J. Imagine, r3 is used as a

t We weigh a free relation less than 1 (we used 0.5), because, even if it may have
several large primes, it should have less total weight.

Strategies in Filtering in the Number Field Sieve 217

pivot relation to eliminate I. We get

r1 + r3 : J and 2v - 3 other prime ideals
r2 + r3 : J and 2v - 3 other prime ideals
r 4 : J and v - 1 other prime ideals
r·5 : J and v - 1 other prime ideals

Now J appears 4 times, so we need a 4-way merge to balance it. For the elimina
tion of J the two relations r 4 and r 5 seem the best pivot candidates in a 4-way
merge, since they have lowest weight. However, pivoting with r 5 results into

(r1 + r3) + r5 : 3v - 4 prime ideals
(r2 + r3) + r5 : 3v - 4 prime ideals
r4 + r5 : 2v - 2 prime ideals

with total weight 8v - 10, whereas

{r1 + r3) + (r2 + r3): 2v - 2 prime ideals
(r1 + r3) + r 5 : 3v - 4 prime ideals
r4 + r5 : 2v - 2 prime ideals

ends with weight 7v - st. When v > 2 we have 8v - 10 > 7v - 8 which indicates
that we should not stick to pivoting for all the merges.

The problem of minimizing the weight increase can be stated using graphs.
The vertices are given by the k relations which are candidates for a k-way merge
and the (;) edges between them represent possible merges. The edge between

two nodes T'j and Tj has weight w(r; + Tj). Given this weighted graph we wish
to select a tree with minimum total weight. The solution is called a minimum
spanning tree [11, page 460]. This problem is a well-known problem of combina
torial optimization. In order to solve it we use the algorithm as formulated by
Jarnfk [9, pages 46-47].

Implementation of "Controlled" Merges. We limit the weight increase of
a single merge by requiring that a merge should not add more than a prescribed
number, mmax, of original relations to the matrix. We give all the initial re
lations the same weight (except for free relations that weigh one half), which
is reasonable since the relations are the factorizations of numbers of about the
same size.

Let us consider k relation-sets which are candidates for a k-way merge. The
individual relation-sets may contain several original relations. Suppose the light
est candidate relation-set has j relations, where free relations count for 0.5. Let
c be the number of relation-sets with exactly this minimum number j of rela
tions. Shrinkage pass 1 starts with m = 1 and we subsequently augment m up
until mmax and allow for the k-way merge when (k - 2)j :=:; m - (c - 1)/2. The

l The latter situation is also achieved when first using r1 as a pivot and then doing a
3-way merge with pivot relation rs.

218 Stefania Cavallar

m gives the maximum weight increase (in number of relations) allowed during
a merge. We introduced c in order to postpone some merges and do the ones
where the best way to merge is clear cut first. Since we are still interested in
doing lower weight merges before higher weight merges we increase m only every
other shrinkage pass and set c = 1 during these shrinkage passes. In most of the
runs we had mmax = 7, but we tried mmax = 8 as well. Solving the inequality
(k-2)j :S mmax fork gives k :S m'J", +2. It follows that, with mmax = 7, merges

with ordinary relations (j = 1) are limited to prime ideal frequency 9 whereas
free relations (j = 0.5) can be used in merges up to prime ideal frequency 16. For
the factorization of RSA-155 we performed merges up to prime ideal frequency 8.

Table l shows the maximum number of relations a pivot relation-set may
consist of, for mmax = 7 and 8. Even if we are not pivoting, we ask at least one
relation not to contain more relations than this bound.

k l ffimax 2J /Z
k-2

ffimax = 7 ffimax = 8
3 7 8
4 3.5 4
5 2 2.5
6 1.5 2
7 1 1.5

8-9 1 1
10 0.5 1

11-16 0.5 0.5
17-18 - 0.5

Table 1. Allowed number of relations in pivot relation-set for k-way merge

Influence of Merging on Block Lanczos's Running Time. Given an m x n
matrix, n > m, of total weight w, the running time estimate of Block Lanczos
is given by O(wn) + O(n2) [16]. Both terms grow with n, so we will focus on
reducing n. If we manage to reduce n by a certain factor while w does not grow
by more than this factor, we will get a running time reduction, independently of
the constants in the two terms. Moreover, we predict the constant in the O(n2)

term to be the larger one. Therefore, it is natural to write the running time as

O((w + Cn)n) (2)

with C > l. Since we do not need absolute running times, we drop the 0-sign
and use the function t(n, w) = (w + Cn)n. The larger the constant C, the more
it will be convenient to reduce the matrix size. The constant depends on the
implementation, for example on the number of bits per vector element (K) used§.

§ Montgomery [16) gives the formula 0(wn/ I<)+ 0(n 2) for the running time.

Strategies in Filtering in the Number Field Sieve 219

Montgomery (personal communication) at first estimated the constant C to be
about 50. For some approximate values of C see Table 7 or Table 2.

Let us determine a bound for the weight increase .dw such that a merge
causing an increase below this bound still is beneficial to the running time. The
condition for .dw becomes

t(n - l, w + L1w) - t(n, w) < 0. (3)

Inequality (3) is equivalent to

0 > n ((1 - 2n)C - w + (n - l)L1w) = (n - l)(-2Cn - w + n.dw) - w - Cn.

The inequality is satisfied if L1w < 2C + ;i.. It follows that the allowed weight
increase grows with C and the average column weight ;'-. That means that denser
matrices allow heavier merges than sparser matrices do.

Let us calculate a limit for the pivot relation weight j of a general k-way
merge, k;::: 3. According to equation (1) we require

L1w = (k - 2)j - 2(k - 1) < 2C + w.
n

which results into
. 2C+*+2(k-1)
J< k-2 . (4)

In Table 2 we report the allowed pivot relation weights for merges up to prime
ideal frequency 10. We chose ~ = 30 (typical after applying only 2- and 3-way
merges) and * = 50 (typical * of many of our final matrices). The horizontal
lines divide between above and below ;;- .

k I 2G' + ;- + 2(k - 1) I - 1
k-2

;;. = 30 ;;. = 50
c =49 c =37 c = 14 C=l C=49 c =37 C= 14 C=l

3 131 107 61 35 151 127 81 55____
4 66 54 31 18 76 64 41 28
5 45 37 21 13 51 43 28 19
6 34 28 16 10 39 33 21 15
7 27 23 13 8 31 27 17 12
8 23 19 11 7 26 22 15 10
9 20 17 10 6 23 19 13 9

10 18 15 9 6 20 17 11 8

Table 2. Allowed pivot relation weights for k-way merge

From Table 2 we can see that 3-way merges can be done with rather heavy
pivot relations; even for C = 1 and :;;. = 50 the allowed weight exceeds :;;. . Denser
matrices allow also for denser pivot relations.

220 Stefania Cavallar

By substituting ~for j in (4) we can derive a condition for when to do k-way
merges for k > 3 with an average weighing pivot relation:

w 2C+2(k- l)
;- < k-3 (5)

The analysis for k = 3 has to be done separately, we require (3) for L1w = ;; - 4
By reorganizing the terms we get -4 (n - 1) - ~ - C (2n - 1) < 0 which is
always satisfied. This means that 3-way merges with an average weight pivot
relation are always profitable, independently from the density of the matrix or
the constant C.

Table 3 gives the allowed average weights when merging with an average
weight pivot relation. If we assume C < 50 and we apply the merges in ascend
ing order of prime ideal frequency, 6-way merges with average weighing pivot
relations will not be worthwhile because after the 5-way merges we have seen in
practice '; to be around 50, which is higher than the maximum value of 35.

k I 2C + 2(k _ 1) I - 1
k-3

C=49 c =37 C= 14 C= 1
4 103 79 33 7
5 52 40 17 4
6 35 27 12 3
7 27 21 9 3
8 22 17 8 3
9 18 14 7 2
10 16 13 6 2

Table 3. Allowed average weights for k-way merge

3 Other Methods in the Literature

We would like to mention two articles about similar filter strategies. These are
''Solving Large Sparse Linear Systems Over Finite Fields" of LaMacchia and
Odlyzko from 1990[13] and "Reduction of Huge, Sparse Matrices over Finite
Fields Via Created Catastrophes" of Pomerance and Smith from 1992[19]. Their
strategies are similar to each other but differ in some points. Both were de
signed to reduce the initial data to a substantially smaller matrix. This matrix
was allowed to be fairly dense since it was going to be processed by Gaussian
elimination afterwards. In contrast, the purpose of our method is to reduce the
matrix size but still keep it sparse in order to take advantage of the Block Lanczos
method. They were dealing with matrices of size up to 300K, we with matrices
of size up to 7M. Each reflects the maximum size that could be handled at the
time.

Strategies in Filtering in the Number Field Sieve 221

Both other methods executed their operations on the matrix itself whereas
we dealt with the raw relations. We identified relations with columns in the
final matrix whereas they identified relations with rows. Nevertheless, for an
easier comparison, we will stick to identify relations with columns in the present
description.

They operate only on part of the matrix (active rows) where no fill-in takes
place. The operations must be memorized in order to be repeated on the complete
matrix afterwards. LaMacchia and Odlyzko store the history in core, whereas
Pomerance and Smith keep a history file.

We will distinguish between the pruning and merging step, as in the descrip
tion of our method. The weight they look at is only the weight of the active
primes at that moment.

The pruning step does differ from our approach only in how to delete ex
cess relations. Duplicates and singletons are removed as soon as possible, as in
our approach. Pomerance and Smith choose to remove the excess immediately,
whereas LaMacchia and Odlyzko remove the excess just before the "collapse" or
"catastrophe" during the merge step. Both decide to drop the heaviest relations,
but Pomerance and Smith indicate that one might try other strategies (as we
did).

In the beginning of the merge stage, a small number of rows (the heaviest,
which correspond to small primes) are declared inactive. Merges are done by
pivoting with columns that have only one 1 in the active part. There is no fixed
limit for the prime ideal frequency up to which to merge. Once all possible merges
have been done and there are still l 's in the active part, more rows (again the
heaviest) are declared inactive and the merge step is repeated. This is repeated
until the active part collapses. This procedure leads to very heavy matrices. To
overcome this, LaMacchia and Odlyzko for example, extend the inactive part
considerably after it has reached a certain critical size. This way fewer merges
can be executed and the fill-in is confined. Nevertheless, the matrices still have
high column weights: the lightest example given by LaMacchia and Odlyzko
has an average of 115 entries per column for a 6.0 · 104 columns matrix which is
much denser than our densest matrix, the 6.3 · 106 columns matrix from Table 11
having an average 81 entries per column11.

Initially, for a sparse matrix, merges are done with very light columns, since
the inactive part is small and cannot contain many l 's. Further on, pivot rela
tions can be very heavy: very probably, the single 1 in the increasingly smaller
active part mostly represents a large prime and goes together with many small
prime factors, since all polynomial values are about the same size (Pomerance
and Smith try to overcome this by also allowing merges with pivot columns hav
ing two l's in the active part of the matrix.). Moreover, they do not make a
distinction between "original" pivot relations and already merged ones, which
can be substantially heavier.

1f The column weight 70 given in Table 11 corresponds to the matrix obtained when
dropping the prime ideals of norm below 40.

222 Stefania Cavallar

In our merge procedure we also merge with already merged relations, but
this happens in a controlled way. We limit the number of original relations which
can be added during a single merge. We also minimize the fill-in per merge by
using a minimum spanning tree algorithm instead of the simpler pivoting, see
Section 2.2. But here we also have to say, that we cannot guarantee to always
get the cheapest merge, because we count the contribution from the large prime
ideals but only estimate the contribution from the small prime ideals.

In 1995, Thomas Denny proposed a Structured Gaussian elimination prelim
inary step for Block Lanczos [7]. He estimated C = 1 for his own Block Lanczos
program. We therefore also included C = 1 in Tables 2 and 3.

4 Experimental Results

The experiments were done with two versions of our program filter. Both of
them include pruning facilities.

The first version was capable of doing merges up to prime ideal frequency 5
and corresponded to the old program [8, section 7] if invoked with mergelevel 2
or 3. With the first version the user needed to specify when to start with the 4-
and 5-way merges. For example, in the tables about filter runs (Tables 5, 8 and
10) the notation 4(x) in column mergelevel means that 4-way merges started
x shrinkage passes after 3-way merges started. 5(x-y) means that 4-way merges
started x shrinkage passes after 3-way merges did, and 5-way merges started y
shrinkage passes later than 3-way merges.

The present filter version does not need this information any more. It can
do merges up to prime ideal frequency 18. The merges are done in order of weight
increase (measured in numbers of original relations). All runs except RSA-155's
B6 had mmax = 7.

Table 4 gives an overview of all pruning activities in our experiments for
RSA-140, R211 and RSA-155. All the figures are in units of a million. With
prime ideals we mean prime ideals above lOM; we need to reserve an excess
of I.3M relations for the small prime ideals. The non-duplicate relation counts
differ so much due to the use of different large prime bounds. Apparent errors
are due to rounding values to units of one million.

The figures in Tables 5-11 are given in units of a million (M) or a thousand
(K). We labeled the experiments with capital letters. All experiments with the
same letter started with the same mergelevel 1 run.

In Tables 5, 8 and 10, columns 2-6 are input parameters. Column 7-10 are
results: column "sets" gives the number of relation-sets remaining after the run,
column "discarded" gives the total number of relation-sets which were discarded
during the run. "excess" gives how many more relations than the approximate
total number of ideals we retained. It indicates how many more relations we
might still throw away in a further run. "not merged" gives the number of large
prime ideals of frequency smaller or equal to mergelevel among the output
relations. For the runs with the new version we also report the number of output

Strategies in Filtering in the Number Field Sieve 223

number being factored RSA-140 R211 RSA-155
experiment A B A B A B c D
raw relations (1) 65.7 68.5 57.6 130.8
duplicates (2) 10.6 11.9 10.6 45.3
non-duplicates (3)=(1)-(2) 55.l 56.6 47.0 85.5
free relations (4) 0.1 0.1 0.8 0.2
prime ideals (5) 54.2 54.7 49.5 78.8
excess (•)=(3)+(4)-(5) 1.1 2.0 -1.7 6.9
singletons (7) 28.5 28.2 26.5 32.5
relations left (•)=(3)+(4)-(7) 26.8 28.5 21.3 53.2
prime ideals left (9) 21.5 22.6 18.5 42.6
excess (10)=(•)-(9) 5.2 6.0 2.8 10.6
clique relations (11) 17.6 18.7 7.4 0 34.l 33.0 29.6 22.9
relations left (12)=(8)-(11) 9.2 9.8 13.9 21.3 19.1 20. 2 23.6 30.3
prime ideals left (13) 7.8 8.1 12.2 18.5 17.4 18.2 20.6 25.3
excess (=keep) (14)=(12)-(13) 1.4 1.7 1.7 2.8 1. 7 2.0 3.0 5.0

Table 4. summary of mergelevel 0 and 1 runs

relation-sets made of one single relation since among those could be candidates
for future high-way merges.

The Block Lanczos code typically finds almost J{ dependencies [16}, where
J{ is the number of bits per vector element. This enables us to drop the heav
iest rows which leads to substantially lighter matricesll. We dropped the rows
corresponding to prime ideals of norm smaller than 50 for R211, whereas for
RSA-140 and RSA-155, which have both exceptionally many small prime ideals,
we omitted the prime ideals of norm smaller than 40 ... In addition, the Block
Lanczos code truncates every m x n matrix by default to m x (m + J{ + 100).

The tables featuring matrix data (Tables 6, 9 and 11) are made of two parts.
In the first part we state the real size (m x n), weight (w) and average column
weight (;-) of the matrices built. The numbers between two lines express the
changes in size (number of columns) and weight from one matrix to the smaller
one as percentages. Note that a i% decrease in matrix size makes the term
wn shrink as long as the weight does not increase by more than 1 ~~r:!.; % which
is slightly larger than i%. The second part shows the effective weight (We.ff)
after truncating the matrix to size m x (m + !{ + 100), the effective average
column weight (m+~'! 100) and the Block Lanczos timings from a Cray C90 and
a Silicon Graphics Origin 2000. The timings can vary substantially according to

II In particular, all quadratic character rows are omitted. The pseudo-dependencies
being found for this reduced matrix must be combined to real dependencies after
wards.

•• These figures match with the implementation for !{ = 64. For !{ = 128, we could
even have dropped the prime ideals up to norm 180. The resulting lighter matrices
would have led to shorter timings for that implementation. However, for simplicity,
we used the same matrices for both the J(= 64 and the K = 128 versions.

224 Stefania Cavallar

the load on the machines (other jobs interacting with ours): time differences of
20% are not unusual. Aiming at a fair comparison we tried to run the matrices
at times with comparable load. In our tables, comparable timings are written
in the same column. Only one Block Lanczos job per number was completely
executed. All times in the tables are extrapolations: we did a short run, took
the time of the fastest iteration and multiplied it by the number of iterations
(m + K + 100)/(K - 0.76), see [16}.

RSA-140

This 140-digit number was factored on February 2, 1999. The experiment se
ries A started with 65.7M raw relations, B with 68.5M from 5 different sites.
We removed 1.4M and l.6M duplicates, respectively, with mergelevel 0 runs
on each contributor's data. The experiments in Table 5 start with the remaining
64.3M respectively 66.9M relations having 54.2M and 54.7M large prime ideals,
respectively. After the pruning step (with filtmin= lOM) we need an excess of
i~~7r(lOM) = 1.3M for the small prime ideals. For a summary of mergelevel 0
and 1 runs, see Table 4.

In this paragraph we only describe experiment series A. The mergelevel 1
run on the whole bunch of data removed another 9.2M duplicates and added
O.lM free relations for large primes. Note, that at this point the excess 64.3M -
54.2M - 9.2M + O.lM = l.}Mtt was less than the needed l .3M. The excess
was sufficient only after removing the singletons, when we were left with 26.8M
relations having 21.5M large prime ideals. The clique algorithm removed a total
of 17.6M relations to approximate the excess of l.4M = 9.2M- 7.8M.

The factorization was done using matrix Al.1 which took lOOh on the Cray.
Only 2- and 3-way merges were performed, because the code for higher than
3-way merges was not ready by then. For logistic reasons we had built the matrix
before we received all the data.

With the complete data (experiment series B) the excess was enough from
the beginning. Furthermore, a matrix constructed from this data by applying
the same filter strategy as for Al.1 would have performed better than Al.1 as
one can imagine when comparing Al.1.2.l to Bl.2: both did merges up to prime
ideal frequency 5 and the latter is smaller in size and weight.

We also tried mergelevel 8 (B2) with mmax = 7 which was introduced
only just before the factorization of RSA-155. The program stopped with k-way
merges, k 2: 3 at shrinkage pass 10 after having deleted 381K relations. This
means that only merges with a maximum weight increase of 6 original rela
tions had been done. Matrix B2 beats the mergelevel 5 matrix of the same
series (Bl.2).

In Table 6 one can see from the percentages that each size reduction should
have a favourable effect on Block Lanczos's running time which is confirmed by
the time column.

tt The apparent arithmetical error is due to rounding all numbers to units of a million.

Strategies in Filtering in the Number Field Sieve 225

These experiments confirm our idea of the advantage of higher-way merges.
They show that collecting more data than necessary is recommendable. It does
not become clear, however, how much excess data one should keep after the
pruning step.

..., ...; 'O '"O <I> !-< i:: > <tJ '"O
Cl)

Cl)
<I> i:: v <ll <Jl

I>()

s <ll; <ll ...; <Jl '"O Cl)

·c <I> s <I> <tJ 00 s <ll bO ..., 'O " 0.. «l 00
<ll

0.. " .-I >< >< >< 00 u v ...,
>< <I> <tJ <tJ ell

..., 00 >< 0 Cl) ;.a Cl) s s a a 00 Q) i::

A 1 lOM keep l.4M 9.2M 46040K 90K -
Al 2 lOM - 4.0 6 6.0M 54K 36K 59
Al.l 3 lOM unlim. 10.0 10 4.7M 3K 33K 0
Al.1.1 4(0) lOM 20K 10.0 10 4.2M 20K 13K 243K
Al.1.2 4(0) lOM 20K 12.0 10 4.0M 14K 20K 0
A 1.1.3 4(0) lOM 20K 11.0 10 4.0M 20K 13K 48K
Al.1.2.1 5(0-0) SM 17K 15.0 10 3.5M 17K 4K 0
B 1 lOM keep l.7M 9.8M 46 906K 384K -
Bl 4(5) lOM 300K 8.0 12 4.3M 170K 208K 6K
Bl.l 5(1-3) lOM 200K 11.5 10 3.6M 85K 128K lK
Bl.2 5(1-3) lOM 200K 10.5 10 3.4M 200K 14K 28K
B2 8 lOM 375K 8.0 15 3.3M 383K lK 909K/455K

Table 5. RSA-140 filter runs

exp. matrix size % weight % col.w. 'Weft col.w. Cray SGI 0

Al.l 4 671K x 4 704K 151.lM 32.l 147.4M 31.5 75h 59d 24d
Al.1.1 4 180K x 4193K -ll 163.lM +8 38.9 161.3M 38.6 65h 56d 22d
Al.1.3 3999K x 4012K - 4 168.7M +3 42.0 166.8M 41.7 63h 54d 2ld
Al.1.2 3960K x 3980K -~ 171.lM +l 43.0 168.lM 42.4 62h 53d 20d
Al.1.2.l 3 504K x 3 507K - l 191.3M +lZ 54.5 190.SM 54.4 56h 51d 18d
Bl.2 3 380K x 3 394K

-3
178.8M

+2
52.7 176.8M 52.3 5lh 46d 16d

B2 3 285K x 3 286K 182.lM 55.4 182.0M 55.4 50h 43d 15d

Table 6. RSA-140 matrices

a The second column gives timings from the I<= 128 implementation.

With each timing column, we fitted a surface t = s 1 n 2 + s2 nw to the
points (n, w, t). The fits were done by gnuplot's implementation of the nonlin
ear least-squares (NLLS) Marquardt-Leven berg algorithm. The quotient si/ s2
corresponds to the C from (2). Table 7 gives some possible values for C.

C = 14 is much smaller than we had initially expected. According to Table 2,
with C = 14 and assuming * = 30 we have that 4-way merges are convenient

226 Stefania Cavallar

Block Lanczos implementation s1 s2 C
vectorized Cray code with [(= 64 1.84 ±0.06 0.0499 ±0.0014 37 ±2
SGI code with/(= 64 0.86 ±0.14 0.060 ±0.003 14 ±3
improved SGI code with J(= 128° 0.69 ±0.08 0.0140 ±0.0018 49 ±12

Table 7. C values for different Block Lanczos implementations

0 This version 'under development' by Montgomery is being optimized for cache usage
rather than vectorization. It is being redesigned to allow parallelization, but we used
only one processor.

with pivot relations up to weight 31, which is slightly above average whereas
5-way merges should be done with lighter than average (max. 21 entries) pivot
relations. When assuming ~ = 50 the maxima are higher but below average also
for 4-way merges.

Why then did the matrices, which were constructed by more or less brutally
doing all possible 3-, 4- and 5-way mergesU, perform better than we would expect
from looking at the figures in Table 3 and 2? It seems most merges were able to
find a pivot relation with much smaller weight than average. Furthermore, we
must consider that the inequalities (4) and (5) do not take account of the weight
and size reduction obtained by discarding relation-sets which are made of more
than maxrels relations. Some benefit also comes from the minimum spanning
tree algorithm.

With C = 49 and ;i- = 30, even above average 6-way merges can be beneficial.

R211

The following two tables give data concerning filter experiments with the special
211-digit number R211:= (10211 - 1)/9, which is a so-called "repunit", since all
its digits are 1. It was factored on April 8, 1999. Five sites produced a total of
57.6M raw relations. l.2M duplicates were removed during mergelevel 0 runs
on the individual data. The experiment series A and B both started with the
remaining 56.4M relations having 49.5M prime ideals of norm above lOM. This
means that we had 6.9M more relations than prime ideals which seemed to be
enough since we needed to reserve i~7r(lOM) = I.3M more relations accounting
for the small prime ideals. Unfortunately, the mergelevel 1 run on the complete
data set revealed 9.4M duplicates. The remaining 47.0M relations plus 0.8M free
relations were less than the number of prime ideals. However, we did not need
to sieve further since we had an excess after removing the 26.5M singletons. The
clique algorithm started hence with 21.3M relations having 18.6M prime ideals
of norm larger than lOM, which is an excess of 2.8M. See Table 4.

Experiment series A gives the parameters and results of the filter runs that
led to the matrix that was used to factor the number; it took 120 hours on the

U For A 1.1. 2.1, all possible merges up to prime ideal frequency 5, for prime ideals of
norm larger than 8M, had been performed.

Strategies in Filtering in the Number Field Sieve 227

Cray. B shows a different approach, where we kept l.lM more relations than for
A after the pruning step, leaving more choice for merging.

... r-t -0 'O <II lo< = > "' 'O
QJ

QJ
~ s <II i::: u Ill Ill QJ

r-t Ill r-t Ill 'O QJ
·i:: <II a <II "' ta "' s CU bO -0 lo< Q., "' QJ
i:i.. lo< r-t >< >< >< "' u u
>< <II "' "' "'

..... "' >< 0 QJ :e CU a 'H a a a "' QJ =
A 1 lOM keep l.7M 13.9M 33 839K 433K -
Al 4(5) 20M 300K 6.0 10 6.8M 304K 124K 1637K
Al.1 5(5-10) 20M 15K 12.0 15 5.6M 15K 109K 796K
Al.1.1° 5(5-10) 8M SOK 15.0 15 4.9M n.a. 63K n.a.
B 1 lOM keep 2.8M 21.3M 26 488K 1484K -
Bl 4(5) 20M 1300K 6.0 10 6.7M 1310K 206K 1410K
Bl.1 5(5-10) 20M 170K 12.0 15 4.8M 170K 11K 97K
Bl.1.1 5(1-3) 8M lOK 18.0 10 4.6M 4K 8K 2
B2 8 lOM 1400K 9.0 15 4.7M 1421K 30K 1244K/925K
B3 8 lOM 1400K 10.0 15 4.5M 1423K 64K 918K/777K

Table 8. R211 filter runs

0 This run was done with the flag regroup, which splits up existing relation-sets and
does merges from scratch, which leads to different relation-sets.

Both mergelevel 4 runs can actually be considered mergelevel 3 runs, since
the maximum number of discards, maxdiscard, was reached before 4-way merges
would have started.

exp. matrix size % weight 3 col.w. Weff col.w. Cray SGI
Al.1.1 4 820K x 4 896K _ 0 234.2M 5 47.8 221.2M 45.88 118h - 97h 93h 96d
Bl.l 4 863K x 4 877K _ 3 223.3M +4 45.8 221.3M 45.92 119h - 97h 95h 97d
B2 4 723K x 4 754K 231.9M _ 0 48.8 228.2M 49.10 - 95h 93h 92h 95d
Bl.1.1 4661K x 4670K =~ 231.2M 7 49.5 229.3M 49.60 115h - 93h 91h 95d
B3 4 503K x 4 569K 247.5M + 54.2 239.0M 53.06 - 90h - - -

Table 9. R211 matrices

Experiment series B achieved smaller matrices than A. The reason must be
the different keep values during the pruning stage. Experiment series A kicked
out 7.4M relations with the clique algorithm whereas B kept all the excess re
lations, performed more merges and discarded more relations during the merge
steps. We can conclude that for this data the best thing was to skip the clique
algorithm. This is strongly connected to the fact that we barely had enough
relations. Sieving any longer would surely have led to smaller matrices.

228 Stefania Cavallar

Matrix Al.1.1 performed better than matrix Bl.1, which may seem counter
intuitive since Bl.1 produced the smaller and lighter matrix. However, matrix
Al.1.1 contained fewer rows (fewer prime ideals) than matrix Bl.1 and due to
the default truncation taking place in the Block Lanczos algorithm the effective
Al.1.1 matrix was smaller in size and weight than the effective Bl.l matrix.

At B2 we also tried mergelevel 8 while having mmax = 7. maxdiscard was
reached already at shrinkage pass 9 (with 15 possible passes) when the allowed
weight increase was 5 original relations. The final matrix was larger than Bl.1.1.
We had chosen maxrels too low. It was 9, compared to 18 in Bl.1.1. With
maxrels 10 we achieved the desired reduction (B3).

RSA-155

The 155-digit number RSA-155 (512 bits!) was factored on August 22, 1999. A
total of 130.8M relations were collected from 12 different sites. 6.lM relations
were removed in individual mergelevel 0 runs. Another 39.2M duplicates where
removed in a mergelevel 0 run on the whole amount of data. All the experiments
below started with the remaining 85.5M relations and its 0.2M free relations.
Therefore, in contrast to the previous examples, the figures in the discarded
column do not contain any duplicates. See Table 4 for details.

Matrix B2 was used for the factorization. It took 225 hours on the Cray.

.... r-l 'Q "ti Q) 1-1 ~ > 11' "CS
<ll

<ll bO s Q) i:: u Ill rll <ll ;...
r-l rll r-l rll "CS <ll ·c: Q) l!I Q) 11' ~

., s <I) tlO .., 'Q 1-1 Q.,

.,
<ll e- '""

.--! >< >< >< ., u u
Q) 11' Ill 11',

>< 0 <ll ;a <ll l!I l!I l!I l!I "' <ll ~

A 1 lOM keep 1.7M 19.lM 66593K 385K -
Al 5(1-3) lOM 370K 11.0 12 7.lM 370K 15K 67K
B 1 lOM keep 2.0M 20.2M 65 531K 684K -
B18 lOM 600K 9.0 15 6.9M 603K 81K l 611K/764K
B2 8 7M 670K 9.0 15 6.7M 672K 13K 1576K/716K
B3 8 7M 670K 10.0 15 7.lM 366K 317K 1432K/744K
B4 16 7M 670K 9.015 6.6M 690K -5K 4 130K/694K
B5 16 7M 670K 10.0 15 6.SM 482K 193K 3 797K/562K
B6 18 7M 670K 10.0 15 6.3M 672K n.a. n.a.
c 1 lOM keep 3.0M 23.6M 62 092K 1 682K -
Cl 8 lOM 1670K 8.015 6.8M 1675K 7K 1 710K/698K
D 1 lOM keep 5.0M 30.3K 55 402K 3 677K -
D18 lOM 3670K 7.0 15 7.lM 3 698K -20K 2118K/780K

Table 10. RSA-155 filter runs

The experiments indicate that retaining more data (keep 2: 3.0M) after the
pruning stage did not help to reduce the size of the matrix.

Strategies in Filtering in the Number Field Sieve 229

Experiments B4 and Dl discarded too many relation-sets which is recogniz
able from the negative excess.

In B2 merging was stopped at shrinkage pass 11, while m = 6. Since there
were still many unmerged ideals in B2, we tried to make the matrix smaller
by increasing maxrels in B3 which allows also relation-sets with 10 relations,
which were deleted in test B2. But even after this run many potential merge
candidates remained unmerged, although maxdiscard was not reached. This
indicates that the weight increase of the merges was considered too high and the
merges were subsequently not executed. Next, we tried mergelevel 16, which is
the maximum prime ideal frequency you can have a merge with for mmax = 7.
Some reduction was achieved (B4 and B5). Finally, we took mmax = 8 together
with mergelevel 18 and maxrels 10. maxdiscard was reached during shrinkage
pass 14, when m = mmax·

exp. matrix size 3 weight 3 col.w. Wejj col.w. Cray
B2 6699K x 6 711K 417.lM 7 62.2 415.SM 62.0 218h
B6 6342K x 6354K-5 445.3M + 70.l 443.4M 69.9 213h

Table 11. RSA-155 matrices

Matrix B6 is 5% smaller than B2 but also 7% heavier. With C = 14 we can
expect to save 1 - 14 '6 ·3422±6 342 ·445 .3 '"" 1 o/c running time which is too small

14·6.6992+6.699·417. l "" 0 '
a gain to accept the weight increase, whereas with C = 37 or C = 49 we may
save 3% or 4 %, respectively. The effective runs on the Cray (C = 37) indicate a
saving of 2%.

5 Conclusions

We extended our previous filter program to allow higher-way merges and
proved theoretically and practically that we can reduce Block Lanczos running
time by performing higher-way merges. We determined limits for the weight of
pivot columns.

During a merge, instead of merging by pivoting we calculate a minimum
spanning tree in order to assure minimum weight increase.

A denser matrix allows for more weight increase during a merge than a lighter
one: this means we can merge with denser pivot columns. Therefore we do the
light merges before the heavier ones.

We determined the ratio between the two terms characterizing the running
time of Block Lanczos for different implementations. To which extent we can
profit from higher-way merges depends on this ratio. We saw values ranging
from 14 to 49. With the help of this constants we can estimate the running time
of a matrix, given the running time of another matrix.

230 Stefania Cavallar

Collecting more data than necessary is advisable. The clique algorithm en
ables us to get rid of excess data quickly and in a sensible way. It is a useful tool
when having abundant excess.

References

L Hendrik Boender. Factoring Large Integers with the Quadratic Sieve. PhD thesis,
Rijksuniversiteit Leiden, 1997.

2. Joe P. Buhler, Hendrik W. Lenstra, Jr., and Carl Pomerance. Factoring integers
with the number field sieve. In Arjen K. Lenstra and Hendrik W. Lenstra, Jr.,
editors, The development of the number field sieve, number 1554 in Lecture Notes
in Mathematics, pages 50-94. Springer-Verlag, 1993.

3. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Paul Leyland, Walter Lioen,
Peter L. Montgomery, Brian Murphy, Herman te Riele, and Paul Zimmermann.
Factorization of RSA-140 using the number field sieve. In Kwok Yan Lam, Eiji
Okamoto, and Chaoping Xing, editors, Advances in Cryptology - Asiacrypt '99, vol
ume 1716 of Lecture Notes in Computer Science, pages 195-207. Springer-Verlag,
1999.

4. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Paul Ley-
land, Walter Lioen, Peter L. Montgomery, Herman te Riele, and
Paul Zimmermann. 211-digit SNFS factorization. Available from
ftp: //ftp. cwi. nl/pub/herman/NFSrecords/SNFS-211, April 1999.

5. Stefania Cavallar, Bruce Dodson, Arjen K. Lenstra, Walter Lioen, Peter L. Mont
gomery, Brian Murphy, Herman te Riele, Karen Aardal, Jeff Gilchrist, Gerard
Guillerm, Paul Leyland, Joel Marchand, Franc.;ois Morain, Alec Muffett, Chris
Putnam, Craig Putnam, and Paul Zimmermann. Factorization of a 512-bit RSA
modulus. Submitted to Eurocrypt 2000.

6. James Cowie, Bruce Dodson, R.-Marije Elkenbracht-Huizing, Arjen K. Lenstra,
Peter L. Montgomery, and Jorg Zayer. A world wide number field sieve factoring
record: on to 512 bits. In K wangjo Kim and Tsutomu Matsumoto, editors, Ad
vances in Cryptology - Asiacrypt '96, volume 1163 of Lecture Notes in Computer
Science, pages 382-394. Springer-Verlag, 1996.

7. Thomas F. Denny. Solving large sparse systems of linear equations over finite
prime fields. Transparencies of a lecture of the Cryptography Group at CW!, May
1995.

8. Reina-Marije Elkenbracht-Huizing. An implementation of the number field sieve.
Experimental Mathematics, 5(3):231-253, 1996.

9. Ronald L. Graham and Pavol Hell. On the history of the minimum spanning tree
problem. Annals of the History of Computing, 7(1):43-57, January 1985.

10. Jurgen Neukirch. Algebraische Zahlentheorie. Springer-Verlag, 1992.
11. Donald E. Knuth. The Stanford GraphBase: A Platform for Combinatorial com

puting. Addison-Wesley, 1993.
12. Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Pro

gramming. Addison-Wesley, second edition, 1998.
13. Brian A. LaMacchia and Andrew M. Odlyzko. Solving large sparse linear systems

over finite fields. In A. J. Menezes and S. A. Vanstone, editors, Advances in
Cryptology - Crypto '90, volume 537 of Lecture Notes in Computer Science, pages
109-133. Springer-Verlag, 1991.

14. Serge Lang. Algebraic Number Theory. Springer, 1986.

Strategies in Filtering in the Number Field Sieve 231

15. Peter L. Montgomery. Square roots of products of algebraic numbers. In
W. Gautschi, editor, Mathematics of Computation 1943-1993: a Half-Century of
Computational Mathematics, volume 48 of Proceedings of Symposia in Applied
Mathematics, pages 567-571. American Mathematical Society, 1994.

16. Peter L. Montgomery. A block Lanczos algorithm for finding dependencies over
GF(2). In Louis C. Guillou and Jean-Jacques Quisquater, editors, Advances in
Cryptology - Eurocrypt '95, volume 921 of Lecture Notes in Computer Science,
pages 106-120. Springer-Verlag, 1995.

17. Phong Nguyen. A Montgomery-like square root for the number field sieve. In J.P.
Buhler, editor, Algorithmic Number Theory - ANTS-Ill, volume 1423 of Lecture
Notes in Computer Science, pages 151-168. Springer-Verlag, 1998.

18. J.M. Pollard. The lattice sieve. In Arjen K Lenstra and Hendrik W. Lenstra, Jr.,
editors, The development of the number field sieve, number 1554 in Lecture Notes
in Mathematics, pages 43-49. Springer-Verlag, 1993.

19. Carl Pomerance and J. W. Smith. Reduction of huge, sparse matrices over finite
fields via created catastrophes. Experimental Mathematics, 1(2):89-94, 1992.

