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Abstract 
We consider solutions of the stationary extended Fisher-Kolmogorov equation, 
with general potential, that are global minimizers of an associated variational 
problem. We present results that relate the global minimization property to a 
generalized concept of monotonicity of the solutions. This monotonicity can 
be described as the lack of intersections of the solution curve when projected 
onto the (u, u')-plane. 

Our method is based on applying a cut-and-paste argument in the space 
*H2 (JR) to intersections in the (u, u')-plane. The statements and proofs are 
presented for the extended Fisher-Kolmogorov equation, but the method can be 
directly extended to a wide class of fourth-order ordinary differential equations 
that derive from minimization problems. 

Mathematics Subject Classification: 58E99, 34C99, 34C37, 37145, 37150 

1. Introduction 

Many higher-order ordinary differential equations are known to have a large number of bounded 
solutions on the real line. This feature has been extensively studied in equations such as the 
stationary extended Fisher-Kolmogorov (sEFK) equation and its generalizations and is found 
to be closely linked to the oscillatory nature of the solutions involved. Apart from being an 
interesting property in itself, this wealth of stationary states naturally raises the question in what 
ways this solution set can be structured. The most well known example of structuring can be 
found in classical bifurcation analysis, where one obtains information on continua of solutions 
in phase space. One might describe the results that are obtained within this framework as 
the creation of conceptual links between solutions that are close to each other in the space of 
solutions. 

An alternative source of structure can be found in stability considerations. From this 
point of view solutions are classified not on the basis of their neighbours in solution space, 
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but according to their stability in a larger, dynamical, setting. For equations that are the Euler 
equation of an associated energy (as is the case for the sEFK equation) there is a convenient 
connection with the energy; up to degenerate cases, local stability in the dynamical setting is 
equivalent to local minimization of the energy. Local stability of stationary solutions of the 
extended Fisher-Kolmogorov (EFK) equation and its relatives has had a considerable amount 
of attention in the literature (see, e.g., [1-4]). 

In this paper we restrict our view and limit ourselves to solutions that are global minimizers 
of an energy functional. Our goal is to demonstrate how the global minimization property 
imposes a form of monotonicity on the solution, thereby drastically limiting the set of 
potential global minimizers. To some extent this concept is modelled on the case of second
order problems in JR", where symmetrization techniques can be applied to prove that global 
minimizers are radially synunetric and monotonic in the radial variable. 

We illustrate the concept on two model systems: (a) a model of an elastic strut supported 
by an elastic foundation; and (b) a model of pattern formation in polymeric materials under 
tension. Both examples concern the equation 

u"" + pu" + F'(u) = 0 on IR (1) 

which is also known as the stationary extended Fisher-Kolmogorov equation or the stationary 
Swift-Hohenberg equation, under various choices of nonlinearity F. Equation (1) arises in 
a variety of settings (besides the discussions in the later sections of this paper, see [5] for a 
review). It also has a Hamiltonian structure, where the Hamiltonian is given by 

H = u'u 111 - ~u"2 + fu 12 + F(u). 
2 2 

(2) 

The core observation in this paper is a simple one: in a variational problem involving 
integrals of derivatives up to second order, a cut-and-paste argument is possible under the 
condition of C1-continuity. In order to locate candidates for such an argument one considers 
the solution in the (u, u')-plane; an intersection in this plane implies a point at which a switch 
can be made. In both of the examples below we use this switch to construct a contradiction 
of the property of global minimization; this rules out the existence of such intersection points, 
resulting in a statement that is reminiscent of monotonicity. A first application of a cut-and
paste argument for the specific question of global monotonicity can be found in [2, 6], for 
an unconstrained problem related to (1 ). The two problems we consider here both contain a 
constraint of some sort and as a result the argument is more delicate. 

We should note that in addition to the interest of the results of this paper as an application 
of the cut-and-paste tool, the results that we obtain are of independent interest, both in the case 
of the elastic strut and in the case of the polymer patterns. 

The structure of the rest of this paper is as follows. In sections 2 and 3 we introduce the 
model of an elastic strut on an elastic foundation and we state and prove our monotonicity 
results. In sections 4-6 we do the same for the polymer model. 

2. An elastic strut on an elastic foundation 

Structures consisting of thin elastic struts that are laterally supported appear in many different 
settings. Examples of such structures are railroad tracks and pipelines (a strut supported on 
one side) [7-9], suspension bridges (a strut suspended by springs) [10], sandwich structures 
(two plates surrounding a weaker material) [11, 12] and 'single layers' in geologic strata (a 
thin layer of a competent elastic material confined on both sides by thick layers of a weaker 
material) [13, 14]. 
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The simplest and most common model for structures of this type features a one
dimensional linearly elastic strut supported by a purely local ('Winkler') elastic foundation. 
Let u : 1R ~ JR. describe the lateral deflection of an infinite-length strut; the strain energy W 
for this model is defined as 

W(u) = ~ l u"2 + l F(u). 

The first integral models the strain energy associated with the bending of the strut, while the 
second represents the energy resulting from the deformation of the foundation. The function 
F : JR. ~ JR. is similar to the potential energy of an elastic spring; we will make assumptions 
on F below. We refer the reader to [14] for a detailed derivation of this model. 

The classical 'rigid' or 'hard' loading problem consists of seeking the configuration with 
minimal strain energy subject to a displacement constraint: 

inf{W(u): u E H 2(1R), J(u) =A.}. (3) 

Here A. > 0 is a parameter and the functional J, 

J(u) = - u 1 Im 12 

2 lR 

models the total shortening of the strut associated with a profile u. A minimizer of this 
constrained variational problem solves the associated Euler-Lagrange equation 

W'(u) - pl'(u) = 0 (4) 

where primes denote Frechet derivation. The Lagrange multiplier p E JR. can be interpreted 
physically as the load, or force, that has to be applied to the ends of the strut in order to 
equilibrate the profile u. This is similar to buckling a ruler between one's hands; a longitudinal 
force is required to maintain equilibrium. Equation ( 4) is equivalent to (1 ). 

This constrained minimization problem was studied in [14], where it was shown that it 
is well posed for nonlinearities F(u) = u2 /2 - u4 /4 + au6 /6, a ;;:: -ft. In the same paper 
a numerical algorithm was used (constrained gradient flow) to find solutions of (3). The 
algorithm itself only finds local minimizers; a posteriori comparison of the values of W is 
used to identify those that also minimize globally. Figure 1 shows some of the results obtained 
by this method. 

The global minimizers in this figure share a common feature, that can be formulated in 
the following way. Let x; E IR, i E I c Z, be the x-values of the local minima and maxima 
of u, where x; corresponds to a maximum if i is even and a minimum if i is odd. We observe 
in figure 1 that the sequence of maximal values (u (x2;)) is what we shall henceforth call bi
monotonic: there exists an index 2io E /,such that both (u(x2;));,.;;0 and (u(x2;));~;0 are 
monotonic. Similarly, the sequence of minimal values is also bi-monotonic. 

The functions shown in figure 1 that are not global minimizers clearly do not share this 
feature. The main results of this paper state that this fact applies in a general manner and that 
every solution of (3) is bi-monotonic in this sense. In fact, we prove a stronger result. 

Theorem 1. Let F satisfy hypothesis F1 below and let u solve ( 3 ). Then there exists i E 1R 
such that the junction x t-"* (u(x), u'(x)) is injective on (-oo, i] and on [i, oo). 

This result is depicted in figure 2. The bi-monotonicity of the maximal and minimal values 
is a consequence of theorem 1. 

Corollary 2. Under the conditions of theorem 1, both the sequence of maximal values and the 
sequence of minimal values are bi-monotonic. 
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Global minimizers: 

Local, non-global minimizers: 

Figure 1. Local and global minimizers for the minimization problem (3) with nonlinearity 
F(u) = u2 /2 - u4 /4 + 0.3 u6 /6. The constraint values are in the region 7.5-8.5. 
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Figure 2. The statement of theorem I: when the curve is cut at x, the two resulting curves do not 
self-intersect. 

Corollary 2 can be slightly sharpened in the direction of strict monotonicity; lemmas 4 
and 5 give a more accurate statement. 

Hypothesis F1. This hypothesis consists of the following two assumptions: 

(a) F: lR--+ lR is smooth, F(u) ~ Oforall u E lR and F(O) = O; 
(b) for any non-negative function <P E L 1 (JR), such that supp </> is an interval, there exists 

h E int(supp <P) such that 

Part ( b) of hypothesis F1 can be interpreted in the following way. If v : [O, T] --+ lR is a given 
monotonic function, then we can write the function h H- W(v + h) using 

W(v+h)=- v"2 + F(v+h)=- v"2 + F(s)</>(h-s)ds 1 1T 1T l loT frn 
2 O 0 2 O 1R 
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where we define <P(-v(x)) = I l/v'(x) I for 0 :( x :( T, with <P = 0 outside the range R(-v) 
of-v. Condition (b) implies that if O does not belong to int R(v), then we can choose h E lR 
such that 0 E int R(v+h), while decreasing the energy W. This hypothesis attributes a special 
place to the value zero in the function F. 

Examples of functions F that satisfy hypothesis F1 include all single-well potentials, such 
as the function used in [14], F(u) = u2 /2 - u4 /4 + au 6 /6,for a ~ i and the 'suspension
bridge' nonlinearity F (u) = eu - u - 1 [15]. For multiple-well potentials the situation 
is slightly more delicate; in the case of the sixth-order polynomial above, the hypothesis is 
satisfied for a= ~ - s, but not fora= ft+ s (the positivity condition F ~ 0 is equivalent to 
a ~ ft). We comment further on hypothesis F1 in remark 6 after the proof of theorem 1. 

Remark 3. In [14] it was proved that as A-+ oo, solutions of (3) exhibit a form of convergence. 
Ifwe choose a solution U>.. for every A > 0 (note that solutions of (3) are not necessarily unique 
and that the set { u >..} >..>O need not be a continuum), then for any sequence An -+ oo there exists 
a subsequence An' such that, after an appropriate translation, 

uniformly on compact sets. 

The function u00 is periodic on lR and is characterized as a solution of the minimization problem 

{
.{[!v"2 +F(v)] l p M := inf 0 2 T : T > 0, v E H 2 (JR) is periodic with period T . 

! r v'z 
2 Jo 

(5) 

This convergence can be recognized in figure 3(a). 

(a) (b) 

Figure 3. Solutions of (3) for different values of A, for the nonlinearity F(u) = u2 /2 - u4 /4 + 
0.3 u6 /6. The vertical lines indicate the different choices of translations: in (a) the solutions are 
aligned on their maximum and in (b) on a smallness condition to the left of the line. 

While in [ 14] it was not possible to prove more than this, the present results allow us to 
strengthen this convergence, most importantly by allowing for a different translation with a 
different limit. We choose a smalls > 0 and fix the translation of u;,. by imposing [u>.. (0) I = s 
and [u;,.(x)I < s for all x < 0. The monotonicity result of corollary 2 implies that the 'mass' of 
the integral J(u;..) remains localized; therefore we can use an argument similar to that in [14] 
to conclude that a subsequence u,_", converges uniformly on compact sets to a (different) limit 
function v00 (figure 3(b)). 

The limit function v00 is necessarily monotonic, in the sense of this paper-i.e. the 
sequence of maximal values is increasing and the image in the u, u'-plane does not intersect 
itself. If u00 , as defined by (5), is unique, then an additional argument can be used to show 
that v00 (x) -+ Oas x-+ -oo and v00 (x)-+ u00 (x) as x-+ oo (the latter up to a translation). 
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Formulated differently, the limit function v00 is a heteroclinic connection 1 between zero and 
Uoo. 

3. Proof of theorem 1 

We introduce some notation. Our main tools are sections of solutions that we describe as 
elements of the set 

U := { (v, D(v)): D(v) C lR is a closed interval, v E C 1(D(v)) }. 

In this definition of U we explicitly include the domain D(v), but when there is no risk 
of confusion we shall denote an element (v, D(v)) simply by v. For v E U we define 
Yv: D(v) ~ IR2, Yv(x) = (v(x), v'(x)). 

Sections can be cut (or extracted) out of others by the natural restriction operator: if 
v E U and I c D(v), then vlr = (v, I) is the restriction of v to I. The opposite is the 
concatenation operator: if v1, v2 E U, if sup D(v1) and inf D(v2) are both finite and if the 
continuity condition 

Yv1 (sup D(v1)) = Yv2 (inf D(v2)) 

is satisfied, then the concatenation is defined as 

v1 © v2 := (v, I) 

where I is the concatenation of D(v1) and D(v2), 

I = D(v1) U (D(v2) - inf D(v2) +sup D(vi)) 

and 

x E D(v1) 

xEl\D(v1). 

(6) 

By condition ( 6) we have v1 @ v2 E U. This operator extends in a natural way to three or more 
arguments, with the coordinate system of the result being that of the first argument. 

For (v, D(v)) E U we define in a natural manner W(v) = fvcv)[!v" 2 + F(v)] (and 
similarly J(v)). We shall often write W1(v) instead of the more cumbersome notation W(vlr ). 

Proof of theorem 1. Recall the notation that was introduced in the previous section: let xi E JR, 
i E I c Z, be the x-values of the strict local minima and maxima of u, where Xi corresponds 
to a maximum if i is even and a minimum if i is odd. The function u then is increasing on 
[X2i-i. x2d and decreasing on [x2i, x2i+d· We first prove an intermediate result. 

Lemma 4. For all 2io E I such that 2io ± 2 E I we have 

Proof. Suppose that there exists 2io E I that contradicts this statement, i.e. Z2io < 
min(z2i0-2, Z2i0+2). It follows from this inequality that the curve Yu has a topologically 
transverse intersection (an intersection which persists under perturbation) in (X2io-2• X2io+2) 
(see figure 4), i.e. there exist Yt, Y2 E (x2io-2• x2io+2) with Yu (y1) = Yu (y2). We now define 

u = uic-oo,y1l@ ui[y2,00J 

1 This function, in fact, minimizes LJR (u) (when defined in an appropriate fashion), for the load p = PM (the Maxwell 
load, given by (5); see [14, 16) fora discussion of this concept) and is therefore also a c-optimal minimizer, as defined 
in section 4. 
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u' 

Figure 4. The ordering of the maxima implies the existence of an intersection in the u, u' -plane. 

and 

V = UJ[y1,y2]· 

From the inequality Z2io < min(z2;0-2, Z2;0+2) it also follows that 

inf u ( inf v < sup v < sup u. 

The function Yv maps the interval [y1, Y2] to a closed curve in the plane. Hypothesis F1 
allows us to assume that (0, 0) lies inside this curve: if inf v ) 0 or sup v ~ 0, then there exists 
h E IR such that W[y1 ,y2J ( v + h) ( W[y1 ,y2J ( v) and inf v + h < 0 < sup v +h. The new function 
v = v + h again corresponds to a closed curve in IR2, containing the origin. By construction at 
least one of the points (inf u, 0) and (sup u, 0) lies outside this curve; the former if h > 0 and 
the latter if h ( 0. 

We are interested in intersections of u with v. The fact that u connects two points of which 
one is outside the curve and the other is inside it implies that u and v intersect. There is a slight 
pitfall, however: if h = 0, then there is one intersection that we have already encountered and 
which we have used to break u into the two parts u and v: y,:;(y1) = Yv(y1). If h = 0 then 
v = v and this intersection still exists. However, the assumption that the initial intersection 
was topologically transverse implies that the opposite is true for this intersection of u and v. 

We conclude from this argument that there exists a (different) intersection point, i.e. there 
exists y3 E IR, y3 -=fa Y1 and y4 E [y1, Y2] such that y,:; (y3) = yv(y4). We then construct 

u = i1lc-oo,y3J © i!J[y4,y4+Tl @uJry3,oo)· 

Here we implicitly extend v outside [y1, y2] by concatenating translated copies of itself, thus 
creating a periodic function with period T = Y2 - Y1. 

By tracking the shuffling of sections above it follows that W(u) ( W(u) and J(u) = J (u), 

so that u is also a solution of (3). However, the concatenation cannot be of class C 3, since this 
would imply local uniqueness and therefore u = u. It follows that W - pl is not stationary 
at ii and therefore u is not optimal, implying a contradiction. 0 

Lemma 5. Let z2; = z2;+2. Then z2; = sup u and u is even with respect to x = (x; + X;+2) /2. 

Proof. First we prove that u is even. Define _ I u(x) 
u-

u(x; + X;+z - x) 

x ( x; or x ) x;+2 

X; ( X ( Xi+2· 



1228 MA Peletier 

Wehaveu E C1 (1~.). W(u) = W(u)andJ(u) = J(u),sothatiiisoptimal;bylocaluniqueness 
this implies that u(x) = u(x1 + x;+2 - x) for x ;;<: x21+2. which is equivalent to the statement 
that u is even with respect to (x; + x1+2) /2. It also follows that the equation z; = Zi+2 can have 
at most one solution i. 

Now suppose that z21 < sup u. Along similar lines as in the previous proof, we define 

and 

We have by assumption 

supv < supu; 

we split up the proof on the basis of the inequality inf u ~ inf v. 
If inf u ~ inf v, then the two functions u and v are similar to the case of the proof of 

lemma 4 and by following the argument through we obtain a contradiction. 
If inf u > inf v, then we again apply a similar argument, but with a slight variation: the 

point (inf u, 0) lies inside the curve described by Yv and (sup u, 0) lies outside this curve. The 
rest of the argument is similar. 0 

The combination of lemmas 4 and 5 implies that (z2;) is a bi-monotonic sequence; if 
z210 is the sole maximum of this sequence, then (z2; );:,;;;0 and (z21 ) 1;;;,10 are strictly monotonic 
sequences; if z210 = z210+2. then (z21);::;;10 and (z21 );;;;,10+1 are strictly monotonic. A similar 
argument holds for (z21+1). Note that these results also imply that (-1 )1 z1 ;;;::: 0. 

To finish the proof of theorem I we pick a value for x. If z210 is the sole maximum of u, 
then let i = 2io; if z210 = z210+2. then we set i = 2io + l. We then set x = X[. This choice 
implies that the sequences (z21ht;;,oi• (z21b::;;i• (z21+1ht+i;>.;i and (z21+ihi+i,.;:i are each strictly 
monotonic. 

Suppose that there exist x < Y1 < y2, YI E (x;1 , x;1+1) and y 2 E (x12 , x12+1) with 
Yu(yr) = Yu(Y2). If the two sections of the curve Yu intersect non-transversally, then 
(u, u', u 11)(y1) = (u, u', u11)(y2); since the Hamiltonian H is constant along u and since 
u' (y1) # 0, it follows that u111 is also equal at y1 and y2. This implies that u is periodic, which 
is ruled out by assumption. This contradiction proves the theorem for this case. 

In the alternative case, that is if the two sections of Yu intersect transversally, the 
monotonicity of (z21) and (z21+1) implies that the intersections come in pairs: there also exist 
Yi E (x;pXi1+1) and Y2 E (x;2 ,X12+1), different from YI and Y2. with Yu(Yi) = Yu(Y2) and 
satisfying (y1 - yi) (y2 - Y2) > 0. Assume for definiteness that Yr < Yi, which implies the 
ordering 

We then construct a contradiction along now familiar lines by defining 

ii.= ul(-oo,yi] © Uj[Y2.Y2l © uj[Yi.Y2l © uj[y1.Y;J © Uj[y2,oo)· 

This concludes the proof of theorem I. 0 

Remark 6. The function <P in hypothesis F1 is associated with the function v that appears in 
the proof of lemma 4. It represents the reciprocal of the derivative v' when considered as a 
function of v on a monotonic section. If more is known about v than the bare minimum, then 
the conditions on <P in hypothesis F1 can be more stringent and the class of functions satisfying 
hypothesis Fi therefore larger. We discuss two examples. 
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(a) If it is known a priori that the load p associated with the solution u (and therefore also 
with v, which is a restriction of u) is non-negative, then on an increasing section v' is a 
concave function of v (this follows from a transformation of the equation H = 0 into 
the u, u'-plane; see, e.g., [3, appendix 2]). Therefore, <f> = l/v' is a convex function of 
v on [inf u, sup u]. This constitutes an additional condition on <f> in the formulation of 
hypothesis F 1• 

(b) More generally, instead of simply translating v by adding a constant, we could replace v 
by the solution ii of 

inf {W(ii) : T > 0, ii E H 2(0, T), (ii, ii')(O) =(ii, ii')(T), J(v) = J(v) }. 

Since v is a candidate in this minimization problem we have W (ii) :( W ( v). 
If we know, by other means, that the range int R(iJ) contains zero, then the argument of 
the proof of lemma 4 continues unchanged. Unfortunately, no result is currently known 
to us that specifies conditions such that 0 E int R(iJ) for a general multi-well potential. 
We leave this for future study. 

4. Patterns in polymeric materials under tension 

The second example that we discuss is taken from the theory of thermodynamic equilibrium 
states of so-called 'second-order materials' [ 17-26]. We introduce these models by briefly 
dwelling on the phenomenon of necking in polymer fibres. 

An essential step in the production of polymer fibres is the drawing process, in which 
fibres of unordered (unaligned) polymer are extended with the aim of aligning the polymer 
chains and thus increasing the tensile strength of the fibre. The state of slow homogeneous 
extension can be unstable, leading to 'necking': at one or more places along the length of the 
fibre the thickness locally decreases. The extension then concentrates at these necks, which 
lengthen and further decrease in thickness. In contrast to plastic yielding in metals this does 
not necessarily result in a total failure at the neck; the thinning may halt at a critical thickness, 
corresponding to a highly aligned polymer state. Under continued drawing the material in 
the neck then no longer deforms, but the overall extension takes place by migration of the 
thick-thin transitions into the thick state. 

A common model for this phenomenon [17, 18] considers a fibre of infinite length, 
parametrized by a Lagrangian coordinate x E R The unknown u : JR -+ JR represents 
the longitudinal strain due to stretching; the lateral deformation due to thinning is taken into 
account via the choice of functional to be minimized. This leads to minimization problems of 
the form given below. 

Definition 7. A function u E H1~c (JR) is an equilibrium state if it achieves the minimum in the 
minimization problem 

where 

and 

f.l := inf{ Q(u): u E H1~(JR)} 

1 
Q(u) := lim inf -L[-T.n(u) 

T-->oo 2T 

L[-T,TJ(u) := {T £(u, u', u"). 
Lr 

(7) 

(8) 
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A traditional choice for .e is 

.l'.(u, u', u") = v(u)u'2 + F(u). (9) 

Since this expression does not depend on u", such a material is said to be 'of first order'. For 
functions v and F that are positive the problem (7)-(9) has been considered in [27]. 

In a number of subsequent papers, as mentioned at the beginning of this section, extensions 
of this framework are considered in which v can take negative values. For the minimization 
problem (7) to have solutions a dependence on u" is added, resulting in the more general 
'second-order' materials. Here the canonical example, to which we shall restrict ourselves in 
this paper, is 

.l'.(u, u', u") = ~u"2 - ~u'2 + F(u). (10) 

Any expression of the form au"2 - bu'2 + F (u) can be reduced to this form; we choose ( 10) so 
that the associated Euler equation will again be (1). Note that in the notation of the previous 
sections we have 

L = W- pl. 

Hypothesis Fz. Throughout the rest of this paper we assume that F satisfies hypothesis F2, 

Fis smooth and F(s)s-2 -+ oo as lsl -+ oo. 

The parameter p is an arbitrary real scalar. 

Regardless of the choice of .e, the formulation of definition 7 defines a class of equilibrium 
states that is too large to be of direct use. To illustrate this, suppose that u is an equilibrium state 
and that v E C~(JR); then u +vis again an equilibrium state. This shows that the formulation 
of definition 7 provides no information on bounded sets. A refinement was therefore proposed 
in [17]. 

Definition 8. A function u E Htac(lR) is a c-optimal minimizer (or a minimizer on compact 
sets) of Q if 

(a) u achieves the minimum of Q and 
(b) for each bounded interval I, u achieves the minimum in the problem 

inf{L 1 (v): v E H 2 (/), (v, v') = (u, u') on al}. 

C-optimal minimizers satisfy L~(u) · rp = 0 for all rp E C~(lR) and therefore solve 
equation (1). In the papers mentioned above these c-optimal minimizers are viewed as the 
basic objects of study and here we shall do likewise. 

A considerable amount of effort has been invested in obtaining various kinds of information 
on c-optimal minimizers. The question of the existence of such solutions has been answered 
positively in [ 17] and in [23] multiplicity results are given. In [17, 20] it was shown that there 
exist c-optimal minimizers that are periodic. By [23, theorem C] these periodic solutions are 
symmetric with respect to any local minimum or maximum, so that they can be described as 
symmetric periodic extensions of solutions of the minimization problem 

inf{L[o.n(v): T > 0, v: [O, T]-+ ~is monotonic, v'(O) = v'(T) = O}. (11) 

Note that the half-period T is free. Depending on p and F the minimum in ( 11) might be 
achieved by a constant function or by a non-constant half-periodic function [17, 23]. 

The minimizers of the half-periodic problem (11) are encountered in the limits x -+ ±oo. 
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Lemma 9 (see [17]). Let u be a c-optimal minimizer. There exist x,, --+ oo, Tn > 0, such that 
u is monotonic on [x,,, x,, + T,,], u'(x,,) = u'(x,, + T,,) = O, the sequence T,, converges to a 
limit T and u(· - x,,) converges on compact sets to a 2T-periodicfunction w. The function w 
achieves the minimum in ( 11 ). 

Other examples of information that has been derived are boundedness in C 1 (lR) (see [24] 
and [20, proposition 3.1]), boundedness and equidistribution of 'local energy' L 1 [24) and 
uniqueness of minimizers of (11) for 'generic' functions F [25]. 

S. Results 

In this paper we add two results to this list. The first is an intermediate result with some 
independent interest. 

Theorem 10. Let F satisfy hypothesis F2 and let u be a c-optimal minimizer. Then u solves ( 1) 
and the associated Hamiltonian (2) is equal toµ on JR. 

The main statement here is the particular value of the Hamiltonian, which is the constant µ 
given by (7). An immediate consequence is that many of the non-constant solutions that were 
constructed in [23] are not c-optimal, since they have a different value of H. In remark 15 we 
discuss extensions of the results of this paper to more general functions £ and there we also 
comment on the significance of this specific value of the Hamiltonian. 

Our main result is one of monotonicity similar to that of sections 2 and 3. 

Theorem 11. Let F satisfy hypothesis F2 and let u be a c-optimal minimizer. Then one of the 
following three alternatives holds: 

(a) u is constant; 
(b) u is periodic; or, 
(c) the curve {(u(x), u'(x)) E IR.2 : x E JR.} has no self-intersections. 

Before proving these theorems, in section 6, we discuss some of the implications of 
theorem 11. We define the limit states of a c-optimal solution u by 

W± := n {(u(x), u'(x)): ±x ~ T). 
T>O 

First we consider the limit states themselves. It is a classical result in dynamical system 
theory that the w-limit set of a single trajectory is a union of entire solutions (i.e. solutions on 
JR.) of the dynamical system. Lemma 9 provides a certain amount of infornation on the w
limit set, but it leaves open the possibility that this union contains more than a single solution. 
Theorem 11 allows us to partially rule out this possibility. 

Corollary 12. Under the conditions of theorem 11, the limit state W+ is a simple closed curve 
in the plane (which might be degenerate, i.e. a point); along this curve u has a single local 
maximum and a single local minimum. The same holds for w_. 

Proof. If u is monotonic near +oo, then w+ is a singleton and the corollary is proved; we 
therefore suppose that u oscillates at +oo, i.e. that u' continues to change sign. We can 
construct an infinite sequence of closed curves in IR.2 that act as barriers by exploiting the 
direction of solution curves in the plane; this is illustrated by figure 5. There are only two 
possibilities: the curve spirals either inward or outward. In both cases the set W+ is the limit set 
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Figure 5. In the half-plane {u' > O} the solution curve moves to the right. Therefore, the closed 
curve forms a barrier that the solution curve cannot pass. The limit state (broken curve) is the limit 
of such closed curves. 

in JR2 of this sequence of simple closed curves; since the regularity of these curves is bounded 
when u' is bounded away from zero, the limit set therefore is a simple closed curve itself. 0 

Secondly, the non-intersection result implies that the set of all c-optimal minimizers 
reduces to a bare minimum when uL = W+· 

Corollary 13. If a c-optimal minimizer is homoclinic to a constant state, then it is constant; 
if it is homoclinic to a periodic state, then it is periodic. 

Proof. The second part of this corollary follows immediately from the observation that if 
w_ = W+ is not a singleton, then intersections are unavoidable. By theorem 11 the solution is 
therefore periodic. 

For the first part the same is true if one of the tails oscillates. If both are monotonic, 
however, a slightly different argument is called for. The stable and unstable manifolds of a 
well for equation (1) can only contain monotonic solutions if p ~ 0; but if p is non-positive, 
then all c-optimal minimizers are constant. 0 

Corollary 13 seems slightly strange in the light of the following question. Let <P be a 
solution of (11) and define the phase-shifted version 

ef>(x) = (12) 
_ l<P(x) x~-1 

cp(x +a) x ~ 1 

for some a ER What then happens to the sequence of functions Un, defined by 

14> 
Un= 

minimal for L[-n,n] 

on (-oo, -n] U [n, oo) 

on [-n, n]? 



Generalized monotonicity from global minimization in fourth-order ODEs 1233 

If the sequence Un respects the phase difference in(/>, then a non-trivial homoclinic orbit to tf> 
results, in contradiction with corollary 13. 

The answer is given in the proof of theorem 11. The cost of changing wavelength in tf> 
(i.e. rescaling x but not </:i) by a factor 1 + s is quadratic ins. By spreading it over a large 
number of periods, the total cost of a given phase shift can be made arbitrarily small. Thus the 
sequence Un 'corrects' the phase mismatch of(/>. 

Note that this contrasts with the case of limit values that differ by more than a phase shift. 
If we repeat the argument with a function 

_ 14>1 (x) 
<j:J(x) = 

</Jz(x) 

x ~ -1 

x ~ 1 

where 4>1,2 are distinct solutions of (11), then we find that a homoclinic solution is possible 
(see remark 3 for an example). In this case the mismatch cannot be corrected by adding a 
large number of small perturbations to the limit states </>1,2; an 0(1) change is needed in the 
cross-over region and consequently the argument given above does not apply. 

Finally, in [25] the authors demonstrate for a class of systems of the general form (8) that the 
periodic minimization problem (11) generically has a unique solution (the term 'generically' 
should be understood in terms of the choice of the function F). In such a case the limit states 
of a c-optimal minimizer are necessarily given by this periodic function. 

Corollary 14. Suppose that the solution of ( 11) is unique (up to translation). Then the only 
c-optimal minimizers are translations of this periodic solution. 

Corollaries 12-14 were also stated in [23] and proved in [25]. 

6. Proofs of theorems 10 and 11 

In addition to assuming hypothesis F2, we shall wish to normalize F, which means to replace 
Fby 

F := F - µ 

and drop the tilde (µ is the limit value in (7)). By doing this we can assume without loss of 
generality that µ = 0, which simplifies notation. 

We first prove theorem 10; note that the redefinition of F has changed the assertion of the 
theorem into 'H = O'. 

Proof of theorem 10. It was mentioned above that u satisfies equation (1). C-optimal 
minimizers are bounded on~ and therefore standard elliptic estimates imply that all derivatives 
of u are bounded on R 

Suppose that H -:f. O and first assume that H < 0. If we define the 'stretched' version of 

u, 

u,_(x) = u(xj)...) 

then 

L[o A.TJ(u,_) = [AT [~2- u" (xj)...)2 - E-\ u' (x/)...)2 + F(u(x/)...))] dx , lo 2 )...4 2)... 

= ( [-1- u" (y)2 - .!!..... u' (y)2 + )...F(u(y))J dy lo 2)...3 · 2)... 



1234 MAPeletier 

so that 

~Lro,J..TJ(u,.)! = 1r [--2
3 u"(y)2 + ~ u'(y)2 + F(u(y))] dy 

dA A=l 0 

= 1r [u 111 (y)u 1 (y) - ~ u"(y)2 + ~ u'(y)2 + F(u(y)) J dy - [ u"u']~ 

=TH - [u"u']~. (13) 

By a similar calculation and taking into account that all derivatives of u are bounded on R, we 
have 

d22 L[o,1.ri(u1.)I ::;:,_ CT 
dA !.=I 

where C > O is independent of T. Therefore, we can choose e, To > 0 such that 

Lro.o+e)T](U1+e) ::{,_ Lro.r1(u) + !eT H 

We now construct a new function v: 

{ 

u(x) 

v(x) := UJ+e(X) 

u(x) 

x < -1 

O<x<(l+e)T 

x > (l+e)T+l. 

for all T >To. 

On the interval (-1, 0) we construct a C1-connection between u(-1) and u1+8 (0). Similarly, 
we construct a C 1-connection between u 1 +e ( ( 1 + e) T) and u ( ( 1 + e) T + 1); here we can assume 
that Lro+e)T,(l+s)T+lJ(v) is bounded independently of T. By choosing T sufficiently large we 
find 

L[-l,(l+e)T+t](V) < L[-1,(l+e)T+I] (u) 

which contradicts the optimality of u. 
In the case H > 0 we use a similar perturbation, but in the opposite sense: the function 

u lro.r1 is compressed instead of extended (e < 0). In this case there is a gap to be filled 
(see figure 6). By lemma 9 we can find an interval [x', x' + T'] on which u is monotonic, 
u' (x') = u' (x' + T') = 0 and 

L[x',x'+T'J(u) ::{,_ ~lei T' H. 

By replicating this monotonic section (locally) as in figure 6 the gap can be closed; the cost, 
in terms of L, of this replication is bounded by 

T I 
T' L[x',x'+T'J (u) ::{,_ 4 lei TH. 

The argument then proceeds analogously. D 

Proof of theorem 11. We place ourselves in the position of theorem 11 and we suppose that 
u is neither constant nor periodic. Note that u solves (1) and that the constant Hamiltonian is 
equal to zero by theorem 10. 

Suppose there is an intersection, i.e. there exist x1, x2 E lR, x 1 < x2, such that 
Yu(x1) = Yu(x2). Then consider 
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Figure 6. In the case H > 0 the original function u is compressed; a near-optimal section is taken 
from the tails and replicated to fill the gap. 

Since µ., = 0, the functional L is non-negative on any periodic function, so that 

(14) 

The function v also solves equation ( l) for all x # x 1• If v has a C3-connection at x 1, then 
by local uniqueness we have vlx~x, = ulx~x,; this implies that ulx~x2 is equal to a translated 
version of u lx~x, and therefore that u is constant or periodic. This is ruled out by assumption 
and we conclude that v does not have a C3 -connection at x = x 1 • We can therefore perturb 
v on (x 1 - 1, x1 + 1) to obtain a strict inequality in (14) and in the following we assume 
that this has been done. Note that by construction the Hamiltonian H ( v) is equal to zero on 
(-oo, x 1 - 1) U (x 1 +1, oo). 

We now split the argument into two cases. First suppose that u' is of one sign for x -+ oo; 
this implies that u converges to a constant u ( oo) and the assumption µ., = 0 implies that 
F (u ( oo)) = 0. Since u' (x) -+ 0 as x -+ oo, by choosing T > 1 sufficiently large we can find 
a function w E C2([0, x2 - xi]), with Yw(O) = Yw(x2 - x1) = Yv(T), such that L[O,xi-xiJ(W) 

is arbitrarily small. Define 

Then z = u on (-oo, x1 - 1) U [T +x2 -x,, oo) and 

By choosing T sufficiently large (so that Lro.xz-xiJ(w) can be taken sufficiently small) the 
right-hand side of this expression is less than L[x1-l,T+x2-x,J(u). 

We next consider the alternative situation, in which u oscillates at oo, i.e. u' continues to 
change sign as x -+ oo. We choose y1 > x1+1 such that u1(y1) = 0 and T > 0 (destined to 
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be large) such that u' (y 1 + T) = 0. We now stretch the region (y,, YI + T) of v to compensate 
for the shortening: 

x ~YI 

{ 

v(x) 

w(x) = v(y1 + (x - YI)(A) 

v(x - (.A. - l)T) 

YI< x <YI+ .A.T 

x ~YI +A.T 

with A. = 1 + (x2 - x 1)/T. The connections at y1 and at YI+ Tare of class CI since u is 
stationary at these points. Note that wand u coincide on (-oo, XI ~ l] U [YI+ T, oo). Since 
H(u) = 0 and using 

we have 

L[y1,y1+TJ(W) - L[_v1,y1+TJ(V) ~ CT(A. -1)2 

provided T is large. Since A. - I = O(T-I) we can choose T large enough for 

L[x 1-t,y1+TJ(w) < L[.q-I,y1+TJ(u) 

to hold, contradicting the assumption that u is c-optimal. 
theorem 11. 

This concludes the proof of 
D 

Remark 15. Many of the papers on patterns in second-order polymeric materials that are 
mentioned above consider functionals L of a more general form than those considered here. 
We chose the simple integrand (10) for the simplicity of exposition and the connection with 
other, well known aspects of equation (1) (among which the results of sections 2 and 3 
of this paper). Let us briefly discuss the potential for generalization of the results of this 
section. 

The two key elements in the proof of theorem 11 are the intersection argument and the 
fact that H = 0 (when F has been normalized). First consider the intersection argument. 
The choice of the integrand in (8) has consequences for the character of the associated Euler 
equation. In a general sense, if the Euler equation has a property of local uniqueness, then the 
lack of smoothness that is typical in paste connections results in strict inequalities. These are 
essential to obtain contradictions. An example of a sufficient condition for local uniqueness 
is 

d2 
-d , £(-, ·, w) ;? s > 0. 

w-

Turning to the value of the Hamiltonian, for Hamiltonian systems that are related 
to a variational (Lagrangian) principle, as is the case for the combination of (1), (8) 
and (10), the Hamiltonian is the derivative of the Lagrangian with respect to length 
scale changes, as illustrated by (13). The fact that H, or equivalently the derivative 
in (13), is translation-independent (independent of the choice of stretched section2) is 
a consequence of the Hamiltonian structure for Hamiltonian systems; however, this 
property can also be derived directly from minimization, since differences in this 
derivative along the length of the solution would allow for a rescaling and accompanying 
decrease in L that contradicts c-optimality. The Hamiltonian structure is not necessary 

2 The term [u"u'Jij in (13) is considered a perturbation, for large T, in comparison to the term TH. 
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for the formulation of this property of conservation, nor is it necessary for its 
proof. 

The fact that this constant derivative is zero results from a different argument: 
if the derivative is non-zero, then by stretching a long section, arbitrarily large 
changes in L can be made. It remains to make a connection between the ends of 
the stretched section and the original function u with a penalty that is sufficiently 
bounded. The possibility of such a connection (which is given by lemma 9 in the 
case discussed above) does not depend in any important way on the form of the 
integrand. 

In summary, the essence of the arguments that lead to theorems 11 and 10 remains 
valid for functionals of the more general fonn (8), under reasonable assumptions on the 
function e. 
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