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From the infinite set of routes that you could drive to
work, you have probably found a way that gets you
there in a reasonable time, dealing with traffic
conditions and running minimal risks. Humans are very
good at learning such efficient sequences based on very
little feedback, but it is unclear how the brain learns to
solve such tasks. At CWI, in collaboration with the
Netherlands Institute for Neuroscience (NIN), we have
developed a biologically realistic neural model that, like
animals, can be trained to recall relevant past events
and then to perform optimal action sequences, just by
rewarding it for correct sequences of actions. The
model explains neural activations found in the brains of
animals trained on similar tasks.

Neuroscientists have prodded the inner workings of the brain
to determine how this vast network of neurons is able to gen-
erate rewarding sequences of behaviour, in particular when
past information is critical in making the correct decisions.
To enable computers to achieve similarly good behaviour,
computer scientists have developed algorithmic solutions
such as dynamic programming and, more recent, reinforce-
ment learning (Sutton and Barto 1998).

We applied the insights from reinforcement learning to bio-
logically plausible models of neural computation. Concepts
from reinforcement learning help resolve the critical credit
assignment problem of determining which neurons were
useful in obtaining reward, and when they were useful.

Learning to make rewarding eye movements

Animal experiments have shown that in some areas of the
brain, neurons become active when a critical cue is shown,
and stay active until the relevant decision is made. For
example, in a classical experiment by Gnadt & Andersen
(1988) a macaque monkey sits in front of a screen with a cen-
tral cross (Figure 1). The monkey should fixate its eyes on
the central cross and, while it is fixating, a cue is briefly
flashed to the left or right of the cross. Then, after some
delay, the fixation mark disappears. This indicates that the
monkey should make an eye movement to where the cue was
flashed. The monkey only receives a reward, usually a sip of
fruit juice, when it executes the whole task correctly.

To solve the task, the monkey must learn to fixate on the cor-
rect targets at the correct times, and it must learn to store the
location of the flashed cue in working memory, all based on
simple reward feedback. The critical finding in these experi-
ments was that, after learning, neurons were found that
"remembered" the location of the flashed cue by maintaining
persistently elevated activations until the animal had to make
the eye movement.

Neural network model

We designed a neural network model that is both biologically
plausible and capable of learning complex sequential tasks
(Rombouts, Bohte, and Roelfsema 2012).A neural network
model is a set of equations that describes the computations in
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a network of artificial neurons, which is an abstraction of the
computations in real neurons.We incorporated three innova-
tions in our neural model:

1.Memory neurons that integrate and maintain input activi-
ty, mimicking the persistently active neurons found in ani-
mal experiments.

2. Synaptic tags as a neural substrate for maintaining traces
of an input’s past activity, corresponding to eligibility
traces in reinforcement learning (Sutton and Barto 1998).

3. We let the neural network predict the expected reward for
different possible actions at the next time step: action val-
ues. At each time step, actions are chosen stochastically,
biased towards actions with the highest predicted values.

A plausible learning rule then adjusts the network parameters
to have the action values better approximate the amount of
reward that is expected for the remainder of the trial. This
learning rule is implemented through a combination of feed-
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Figure 1: Delayed Saccade Task (Source: CWI)

back activity in the network, and a global reward signal anal-
ogous to the function of the neurotransmitter dopamine in the
brain.

When this model was applied to complex sequential tasks
like the eye-movement task described above, we find that
activity in the artificial neurons closely mimics the activity
found in real neurons. In the example task, integrating neu-
rons learn to code the cue that indicates the correct action as
persistent activity, effectively learning to form a working
memory. Thus, the model learns a simple algorithm by trial
and error: fixate on the fixation mark, store the location of
the flashed cue, and then make an eye-movement towards it
when the fixation mark turns off.

The neural network model solves the problem of disam-
biguating state information: while driving to work, some
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streets look very similar; remembering the sequence of turns
taken provides the information to determine your position.
Mathematically, problems where instantaneous state infor-
mation is aliased with other states are known as non-
Markovian. Learning to extract and store information to dis-
ambiguate states is a challenge and an open problem. The
neural model suggests how brains may solve some of these
problems.

Link:
http://homepages.cwi.nl/~rombouts
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The Computer and the
Brain, Synergies and
Robots

by Martin Nilsson

Compared to a contemporary robot, the human body
comprises a large number of actuators and sensors.
Nevertheless, the central nervous system can efficiently
extract just the right low-dimensional subsets of these
for fast and precise motion control. How is this
achieved? In the EU FP7-ICT project THE, scientists from
neurophysiology, physics, computer science, and
robotics are working together in order to try to answer
this question. SICS' role is to try to understand and
model some of the functioning of the mammalian
central nervous system in order to apply it to adaptive
control of robot limbs.

The Synergy: a clever brain trick?

The human hand-arm system has on the order of 102 degrees
of freedom, but studies [1] have shown that just a small
number of combinations — "motor synergies" — of elemen-
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Figure 1: A simplified view of motor control
loops of the hand arm system: It contains at
least three cascaded feedback loops,
involving the spinal cord, the cerebellum,

and motor centra in the cerebral cortex.

tary movements account for most of the motion repertoire.
How and why are such synergies formed? The hand-arm
system also has in the order of 104 sensors. How does the
brain "know" which sensor combination, "sensor synergy",
best represents which motor? Knowing the answers to these
questions would enable us to improve the design and control
of robots. It is currently a real challenge to achieveanything
approximating human agility in robots.

In the EU FP7-ICT project THE (www.thehandembodied.eu),
scientists from neurophysiology, physics, computer science,
and robotics are working together in order to try to find the
answers. Considering the complexity of the mammalian cen-
tral nervous system (CNS), this may appear to be an impos-
sible task. However, we are beginning to see indications that
much of the observed complexity in the adult is due to expe-
rience, while some of the fundamental, underlying mecha-
nisms may be simpler than previously thought. Could it be
that nature originally provides a relatively simple, general-
purpose substrate, on which our interaction with the environ-
ment builds and optimizes the control circuitry? As our pic-
ture of the low-level machinery is crystallizing, some sur-
prising properties are revealed.

von Neumann: ahead of his time

It is well known that when John von Neumann wrote the
seminal “First Draft of a Report on the EDVAC” in 1945, he
was deeply impressed by Alan Turing, but it is seldom men-
tioned that he was also much inspired by McCulloch and
Pitts’ work in neuroscience. In fact, references to the
nervous system abound in the report, and the only publica-
tion referred to explicitly is their 1943 paper “A logical cal-
culus of the ideas immanent in nervous activity”. Although,
for many years, there has been public debate on whether the
brain can be compared to a computer, or even be understood
at all, von Neumann himself considered the brain and the
computer two kinds of automata. In his last work, "The
Computer and the Brain", written in 1956, von Neumann
compares computers with the brain, and many of von
Neumann's observations are amazingly on target, more than
50 years later.
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