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PARTICLES

S. N. M. RULJSENAARS*
Centre for Mathematics and Computer Science
P.O.Boz 94079, 1090 GB Amsterdam, The Netherlands

Abstract. We discuss the connection between the N-soliton subspace of the sine-Gordon field theory
and (a specialization of) the relativistic Calogero-Moser N-particle systems. At the classical level this
soliton-particle relation is well understood, and we summarize its main features. At the quantum level
we expect a physical equivalence of the pertinent particle systems and the sine-Gordon/massive Thirring
field theory. We survey the evidence for the 2-body case in some detail.

1. Introduction

The sine-Gordon equation
(65 ~ 87)p =sing (1)

defines a relativistically invariant field theory that has been studied very extensively.
Indeed, there are hundreds of papers that have a bearing on it, yielding information
from a great many angles. In most of these papers, one of two possible interpretations
of (1) is chosen, namely as a classical or as a quantum equation. Accordingly, one either
views (1) as a nonlinear evolution equation for a real-valued function ¢(t,y), (t,y) € K2,
or as an interacting relativistic quantum field theory in two space-time dimensions.

Next, we recall that both at the classical and at the quantum level the notion of ‘soli-
ton’ plays a crucial role. Beginning with the classical level, we illustrate the N-soliton
solutions to (1) with Fig. 1, which depicts a 3-soliton collision. It exhibits one of the two
hallmarks of soliton scattering, namely, the conservation of momenta in the collision.
The second hallmark consists in the structure of the shift of the asymptotic soliton
positions (compared to a linear superposition of 1-soliton solutions): It is factorized as
a sum of shifts incurred in all pair collisions.

It is nowadays viewed as a commonplace that this picture has a quantum analog.
Specifically, particle annihilation and creation has been shown to be absent in the
sine-Gordon quantum field theory, and in a collision the set of momenta is conserved.
Moreover, the scattering operator for an N-particle collision factorizes as a product of
all pair scattering operators.

Both in the classical and in the gquantum setting, many relevant quantities are
explicitly known. In particular, the ‘particle spectrum’ (solitons, antisolitons, and their
bound states—the ‘breathers’) and the N-particle scattering are known in complete

* E-mail; siru@wxs.nl

27

S. Pakuliak and G. von Gehlen {eds.),
Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, 273-292.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.



274

Figure I. A 3-soliton solution to the sine-Gordon equation.

detail. The following is concerned with an appraisal of a scenario that is quite different
from field theory, but which nevertheless gives rise to the same physical quantities.
More specifically, this scenario originates from the question: Do there exist Hamiltonian
dynamics for N point particles that lead to the same factorized scattering, both at the
classical and at the quantum level?

We asked this question for the first time more than 20 years ago [1]. By now, it
has been answered in the affirmative and in great detail at the classical level. In this
contribution we are mostly concerned with the quantum level, but as a preparation we
present a short summary of features that are relevant for the classical soliton-particle
correspondence.

Although there is meanwhile considerable evidence that our question has an affirma-
tive answer at the quantum level as well, there are still some formidable road blocks for
N > 2, to which we return below. The two-body problem, however, has been completely
solved, and all of our results are in accordance with the well-established lore concerning
the two-body sector of the sine-Gordon quantum field theory, A considerable part of
this contribution will be devoted to a survey of our two-body results.

In more detail, the plan of this paper is as follows. Section 2 concerns the classical
level. Here, the gist of the particle-soliton correspondence can be casily explained in
detail. For brevity we do not even sketch proofs, and we bias our account towards
properties that foreshadow the state of affairs at the quantum level.

In Section 3 we first recall some highlights concerning the physical picture associated
with the sine-Gordon quantum field theory. We then sketch the lines along which we
expect our N-particle systems to lead to the same physics. As it has turned out, a
key too! for our program is the functional analysis/Hilbert space theory of analytic
difference operators, which is in its infancy at the present time. Physical heuristics
based on experience with differential and discrete difference operators can casily lead
to wrong answers in this area, so that a rigorous approach appears indispensable.

In Section 4 we sketch some of our results pertinent to the two-body sector of the
sine-Gordon quantum field theory. As in previous sections, the relation to the sine-
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jordon theory involves a specialization of parameters, and it is far wore natural from
the *particle viewpoint' to study the general case. We expect that other specializations
of the particle systems will turn out to be relevant for a similar deseription of various
relativistic quantum field theories of Toda type, but we restrict our attention to the
sine-Gordon field theory in this contribution.

2. The classical particle-soliton correspondence

It transpired some 15 years ago that the point particle systems yielding a positive
answer to the above question at the classical level are relativistic generalizations of the
nonrelativistic Calogero-Moser N-particle systems. More precisely, one needs a special
class of the former, but for later purposes it is convenient 1o review first the most
general class.

To this end we begin by recalling the most general Galilei-invariant Calogero-Moser
systems. They are defined by the Hamiltonian

N

1 o 92

Hpr = o LP? + 57 Z p(z; - i), @
M =1 M 1€ 5<k<N

where p{z) is the Weierstrass p-function. Supplementing H,, with the total momentum

N
Py = ij: (3)
J=t
and the boost generator
N
B=-M)Y z, (4)
J=1
one obtains a representation of the Lie algebra of the Galilei group:
{Hnnpnr} =40, {Hm'sB} = Pyr, {Pnr»B} = NM. (5)

The relativistic generalization of these systems is given by the time and space
translation generators

N o
Ha=ME Y cc\sh(-f{% | IR (6)
F=1 1<j<k<N
N .
Pa=Mcy sinh(zh) ] Jla;-=), M
j=1 1€j<he N
where g 12
for= (14 el @

and the boost generator B (4). Specifically, one has the Poincaré Lie algebra represen-
tation )
{HrehvaX} = (), {HreluB} = Py, {Pm-sB} =Hrel/c ’ (9)
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As should be the case, it contracts to the Galilei representation (5) in the nonrelativistic
limit ¢ — oo, since one has

Cliglo(Hre} - NMCZ) = Hy, cl-l-fgo Proy = Pur. (10)

The only one of the above equations whose verification is nontrivial is the Poisson
commutativity of Hre and P (space-time translation invariance). It amounts to a
sequence of [unctional equations for the p-function. These equations were proved in
Ref. [2], where the relativistic systems were presented for the first time.

Turning to the relation with the sine-Gordon theory, we should first of all specialize
from elliptic functions to hyperbolic functions. It is convenient to work with the function

f(z) = (1 + sin’® 7/ sinh®(uz/2))/2, 7€ (0,7/2], (11)

and the phase space
Q= {(z,p) e R |z € G}, (12)

where G is the configuration space
G={reR|zy < - <z} (13)

Denoting a point (z,p) € € by u, we may let u evolve with the 2-parameter Hamiltonian
flow exp(tHyre — yPret). Then we define functions

Uj (t) y) = (exp(tHia — UPrel)(“))jy i=1...,N, (14)

so that u;(0,0) = z;.

We are now prepared to detail the connection to sine-Gordon solitons. First, the
sine-Gordon theory corresponds to the choice 7 = /2 in (11). (Different 7-choices
yield relations to other soliton equations, cf. below.) Second, in (1) no scale parameters
oceur, and accordingly we need a special choice for our scale parameters M, ¢ and u to
make contact with (1), viz., M =c=p=1.

With these specializations in force, we introduce the function

N
¢(t,y) =4 Arctg(explu;(t,y)])- (15)
=1

It is by no means obvious, but true that ¢(¢,¥) is an N-soliton selution to (1). Fur-
thermore, one obtains all V-soliton solutions by letting u vary over £ (12). Finally, the
requirement u;(t,y) = 0 gives rise to uniquely determined space-time trajectories g;(t)
for the N-soliton collision. Some of their features can be gleaned from Fig. 2, which
should be compared to Fig. 1.

To appreciate the caption of Fig. 2, observe that the state of affairs gives rise to
an intuitive picture of space as an elastic medium, which hides the goings-on in an
interaction process. Although it shows the presence of individual partners for long
times, it does not reveal their identities and whether they are attracted or repelled by
each other.

The presence of antisolitons and bound states of solitons and antisolitons (breathers)
in the sine-Gordon theory can be taken into account as well. Indeed, some of the
phase space positions ¢; can be shifted to z; + im/y, so that repulsive interactions
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Figure 2. ‘Space is a blanket,’

sinh™?(u(z;—z4)/2) turn into attractive interactions — cosh™2 (u(z;—2x)/2). To explain
the gencral situation would take us too far afield, however. (It is treated at length in
Ref. [3].)

As a final remark on the physical aspects of the soliton-particle correspondence
Jjust sketched, we mention that the relation is equivariant under the Poincaré group.
To be quite precise, we have two actions of the latter, namely one on ) via the flows
generated by Hie,FPre and B, and one on space-time R? via the well-known freshman
formulas. We have also defined a map from points v € 2 to soliton space-time diagrams
such as Fig. 2. Now the action of a Poincaré transformation g on a space-time picture
corresponding to u € Q yields the space-time picture corresponding to g(u) € §.

We continue by describing additional features of the above relativistic Calogero-
Moser systems, especially inasmuch as they yield insight into the expected quantum
situation. First of all, the insistence on relativistic invariance already singles out the
p-function interaction. By contrast, in {2) one can replace the pair potential p(z) by
any function V(z) without losing Galilei invariance. But the potential p(z) has the
extremely restrictive property that it is not only confining, but also gives rise to a
Liouville integrable system. As it turns out, this property persists for the relativis-
tic generalization. Indeed, the Poisson commuting Hamiltonians can be more easily
understood than their nonrelativistic counterparts.

To be specific, the former can be taken to be

Sl(wJ)) = E exp ( 3&) Hf(zj_'mk)t = ls :N) (16)
Icql,.,N} i€l jer
1=t kgl

with f(z) given by (8). Note that this entails

N
Sn(z,p) = exp (ZPi/MC) ) ()
i=1
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Sh(my"‘p) =SN_k(Z,p)/SN(1C,p), k=1a""N—' 1, (18)
Hea = Mc*(Sy(z,p) + Si(z, ~p)) /2, Pra = Mc(Si(z,p) — Si(z,—p))/2.  (19)

The involutivity of these Hamiltonians can be reduced to a set of functional equa-
tions for the p-function [2]. These equations can be obtained as a corollary of a
set of functional equations for the Weierstrass o-function, which encode quantum
commutativity [4].

The functions S;(z,p) are proportional to the symmetric functions of an N x N
Lax matrix L(z,p) that involves the o-function [5, 4]. Its hyperbolic specialization is
of decisive iraportance in the construction of an action-angle map

2:0=GxR" Q=R xG, (z,p)— (&7). (20)

Here we think of the pure soliton case, i.e., all particles have the same ‘charge’, and
hence interact via f(z) (11). This map is constructed in Refl [6]. It has a striking
property we refer to as self-duality: The map is essentially an involution. (This duality
property and related ones can also be explained in group-theoretic terms. See the recent
paper Ref. [7], where also related work is mentioned.)

We single out this self-duality property, since we expect that it persists at the
quantum level, cf. Section 3. Similarly, the action-angle map for the general situation
(which is constructed in Ref. [3]) has certain duality properties that presumably sur-
vive quantization. Before turning to quantum issues, however, let us add some more
information on the classical scattering and on relations to classical soliton equations.

First, we mention that the ¢ — tco asymptotics of the H,e-flow is given by

N<j+1
v, (8) ~a;+ ctsinh(@/Mc) £ { Y =Y | 665 — ), (22)
N—j+1 k> k<j
_ 1 sin?(r)
ole) = E;I]n(l * sinhz(p/2Mc))' @8

This is the ‘particle version' of soliton scattering: The asymptotic momenta are con~
served in the collision, and the position shifts are factorized as a sum of pair shifts.
Exploiting the above particle-soliton correspondence, one can in fact obtain the asymp-
totics of sine-Gordon solutions with an arbitrary number of solitons, antisolitons and
breathers in great detail [3]. .

Next, we make some remarks on other applications of the classical relativistic
Calogero-Moser systems to soliton equations. To begin with, the 7 = /2 shift in (22)
has more applications than just the soliton scattering in the sine-Gordon theory. Indeed,
when suitable variables are employed, it also describes the scattering of solitons for the
KdV, modified KdV and finite-density nonlinear Schrddinger equations. Likewise, it
applies to the solitons in the infinite Toda lattice, and in its relativistic [8, 9] and
nonlocal {10] generalizations.

The r = n/(n+1),n = 2,3,... shift can be used to encode the soliton scattering

for the equations arising from the A&l)-reductions of the KP and 2D Toda hierarchies.
Just as in some of the 7 = /2 cases, the space-time dependence of the solitons can
also be tied in with suitably chosen Hamiltonian flows in the particle systems.
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At the elliptic level there is a special case of the systems (generalizing the 7 = #/2
choice for the hyperbolic level), which is relevant for the solitons of the Landau-Lifshitz
equation [11]. For the details of this case and several hyperbolic cases we refer to our
survey Ref. [12]. See also Ref. [13] for more recent examples.

We conclude our sketch of the classical aspects of the particle-soliton correspondence
by mentioning our lecture notes Ref. [14], where far more information on the classical
particle systems is presented in a rather leisurely fashion. It might also be consulted to
provide more background for the quantum aspects, to which we now proceed.

3. The general scenario at the quantum level

We begin by reviewing some standard lore concerning the quantum sine-Gordon field
theory, in a form that suits our later requirements. As is customary on the quantum
level, we choose ¢ = A = 1. The sine-Gordon Hamiltonian is then given by

1,1 2
Hg = /dy : (§¢f + 54:’;; + %(1 — cos Bd))) ty (24)
where the colons denate normal ordering. We recall first that it is physically equivalent
to the massive Thirring model, whose Hamiltonian reads

o f —i8, M A,
HM'I‘:/dy:(\II ( ]tly iay)‘ll+—2—J Ju): . (25)

The equivalence was established in well-known papers by Coleman and Mandelstam.
It says that when the parameters in the two theories are related by

8u B A 4w
M—Eg(l g-',;), 1+7r—,52’ (26)
then the models give rise to the same particle spectrum and scattering. Moreover,
suitable correlation functions in the two models coincide.

The interpretation of the particles is however quite different in the two models.
The massive Thirring model is a theory of interacting Dirac fermions and antifermions.
It becomes free for A = 0, and it has fermion-antifermion bound states for A > 0,
whereas no bound states occur for A < 0. In the sine-Gordon theory the fermions and
antifermions are viewed as solitons and antisolitons, and the bound states are viewed
as quantized breathers.

There appears to be less agreement on the tenet that the lowest energy bound state
is to be viewed as the fundamental (neutral, bosonic) sine-Gordon particle, in relation
to which the solitons and antisolitons are coherent states. In any event, the equivalence
(26) entails that for 8% > 4 the sine-Gordon Hamiltonian £1) solely describes solitons
and antisolitons. It is also to be noted that M > 0 entails 8* < 8, and that the choice
B2 = 4 yields the free Dirac theory.

The bound state spectrum is explicitly given by the well-known Dashen-Hasslacher-
Neveu (DHN) formula: Their rest masses read

mp =2Msin(n + Do, e=p/2M, n+1=12,... <720 (27)

The DHN formula is corroborated by the explicit S-matrix, which was first presented by
Zamolodchikov. (A review can be found in Ref. [15].) We only quote here the two-body
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amplitudes involving solitons and/or antisolitons. Denoting their asymptotic rapidity
difference by 8, these amplitudes can be written in terms of the function

_ . [®dz sinh{e—w/2)z
usg(ﬁ) = exp (2 o o msxnxe . (28)

Specifically, one has

sinh 78 /20 sinh i /20 1 2
*sinhw{im — 0) /20’ sinh 7 (ir — 6) /2’ )~ (29)

{Due to fermion statistics, one gets only one amplitude for a soliton or antisoliton pair.
But a soliton and an antisoliton have opposite charge, so they can be distinguished.
Hence the notion of reflection and transmission coefficients makes sense in that case.)

The S-matrix involving an arbitrary number of solitons, antisolitons and bound
states thereof is explicitly known as well. In case no bound states occur, it is given by
sums of products of the 2-body amplitudes (29). This factorization can be performed
in a consistent way, since the structure (29) entails that the Yang-Baxter equations are
satisfied [15).

We do not have occasion to invoke more than the highlights just summarized. All
of these date back to the period 1974-1977. Of course, in the past quarter-century a lot
more information has been assembled. For example, the form factor program initiated
by Karowski and co-workers has mushroomed into a minor industry. (Cf. in particular
Smirnov’s monograph [16], which also contains an extensive list of pertinent references.)

Let us now proceed to the quantum version of the classical relativistic Calogero-
Moser systems from the previous section. Thus we should first address the question
how the Poisson commuting Hamiltonians S; (16) should be quantized. For the case of
no interaction {f(z) = 1) this causes no problems. Indeed, the obvious quantization of
exp(p;j/M) is the translation

(LY (@1, 2 gy IN) = B(2y, ..z — /M, 2N) (30)

(tasy 3, 763,35) (6) = 13 (6) (1

into the complex plane. (Recall we have put ¢ = fi = 1.) More precisely, this operator
acts on functions that have analyticity properties such that this formula has a meaning,.

In particular, the f = 1 operators are well defined on meromorphic functicns
U(x),z € CV, yielding so-called analytic difference operators (AAOs). There is however
also a simple way to turn them into commuting self-adjoint operators on LE(RY, dz):
One need only pull back the self-adjoint operators of multiplication by

Soexp| > pi/M

=t i€J

on L*(RY,dp) with Fourier transformation. The latter are already essentially self-
adjoint on functions ¥(p) € L*(RY, dp) with compact support, and the Fourier trans-
forms of these functions have an analytic continuation to entire functions of zy,...,zx
whose constant imaginary part restrictions are square-integrable.

For f s 1 the state of affairs is vastly different. To begin with, one should find
an ordering of the z- and p-dependent factors in Sj such that canonical quantization,
together with an interpretation of the resulting operators as AAOs, gives rise to com-
muting AAQOs. Whether or not these commuting AAOs can be promoted to commuting
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self-adjoint operators on a suitable Hilbert space is a problem of later concern. The
ordering that does lead to commuting AAOs is quite nonobvious. For the elliptic case
it involves the Weierstrass o-function, and we will not detail it here. (Cf. Ref. [4] or our
lecture notes Ref. [14].)

Specializing from now on to the hyperbolic case, we factorize f(z) (11) as

. 1/2
1&) = F-@fale), feo) = (smb b Dyjomla) . (@)
Here we have set
T=ag, a=p/2M, (32)
80 that the sine-Gordon case T = /2 corresponds to
g =720 =uM/p. (33)

Now our commutative quantization reads

5'1.—_-2 H f_(a:j-sz:k)-HT,-- H Filzi — ). (34)

|J{=t jed b Jed  jedkes

The special case A% = 4 for which the sine-Gordon theory amounts to a free Dirac
theory yields parameters

M=py/n=sa=n/2=g=1, (35)

cf. {26). It is not hard to see that our quantization passes the corresponding comparison
test. Specifically, the AAOs (34) are indeed ‘free’ for g = 1:

S=31Im t=1....N, (@=1. (36)

W=tieJd

This can be checked by pushing the f,-factors through the shifts, after which they
combine with the f_-factors to yield 1, cf. (30).

With the commuting AAOs $ as a starting point, the key quantum mechanical
problem is quite obvious: One must reinterpret these operators as commuting self-
adjoint operators on a Hilbert space, and establish whether for 7 = 7 /2 the associated
physics (bound state spectrum, scattering) is that of the sine-Gordon/massive Thirring
N-body sector.

To date, the most promising approach to this goal appears to be the following.
Oune should discover/invent/construct (pick your favorite) joint eigenfunctions of the
commuting AAOs with a great many special features that quite likely render them
unique. These features ensure that the eigenfunctions can be used as kernel of a unitary
joint ecigenfunction transform, which makes it possible to reinterpret the AAOs as
pullbacks of real-valued multiplication operators, yielding bona fide commuting self-
adjoint operators.

We continue by listing the salient features for the case where all of the pair in-
teractions are given by (11). Thus all particles have the same charge and hence repel
each other. (Later on we will discuss the general case.) We should perhaps stress at
the outset that the following may be viewed as a list of expectations/working bypothe-
ses/requirements/conjectures (or, briefly, a wish list), the choice depending on taste,
cogency, and the mood of the day.
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First, we may and will restrict attention to antisymmetric functions E(z,p) with
the properties that follow. Hence we have

E(mlhp'r) = (“)U(‘)TE(x)p)i o,T € SN. (37)
The joint eigenfunction property reads explicitly
Si(u, M;2)Blz,p) =y exp(y_pj/M)B(z,p), k=1...,N.  (38)
\J|=k jeJ

We are making the parameter dependence explicit, since we expect E(z,p) to have
additional joint eigenfunction properties that involve transformations of the parameters.
In detail, we expect

Sk(@mM, p)2m;2)Elz,p) = Y exp()_ 2mp;/1) B(z,p), (39)
|Ji=k jeJ

Se(1/M,1/p;p)E(z,p) = Y exp()_ nz;) Bz, p), (40)
=k jed

82 /p, 1/2mM;p)E(z,p) = 3 exp(} | 2mMz;) Bz, p)- (41)
W=k jeJ

These properties, together with real-analyticity in u, M for p, M € (0, 00), should
yield a function E(z,p) that is uniquely determined up to a multiplicative constant.
The expected asymptotics we detail next fixes this constant. It reads

o p\1/2
E(z,p) ~ @n) VAN 50 () ] u(p““tmfj)

oESN i<jo(i)<a (i)
Di — Dj -1/2
x H T exp(i% + Po—1)s (42)
L ) 2M
i<j,a(i)>a{y)
for 3 — 23,...,EN_1 — TN — 00, which entails an S-matrix of soliton type,
S= [ wullei—np/2Mm). (43)
1<i<i<N
Provided
T €{0,7+ @), (44)

the u-function occurring here is given by

. [® dysinh(e — T)ysivh(r — 1)y .
_ dy 45
u(z) = exp (21, /0 ” siah ry sinh oy sin2yz ], z€R (45)

We will return to the u-function in Section 4.
The final item in our pure soliton wish list is that when (44) holds true, the
eigenfunction transform

£ IARY dp) » LRV do), W) [ apBen)¥e)  (49)
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is unitary, where the suffix denotes the antisymmetric subspace. (The unitarity con-
straint (44) is in particular satisfied for the sine-Gordon case 7 = 7/2.)

There are only two parameter choices for which an N-particle eigenfunction with
all of the above properties is known, namely v = 7 and 7 = a. Indeed, as is readily
verified, the AAOs are free in that case (cf. (38)). Thus we can choose

B(z,p) = (2m) "N (N2 3™ (=) expliz - po), (47)
a€Sy

so that the operator £ is a generalized sine transform.

Let us now motivate the above list. A crucial input for some of the expectations
comes from the classical level. Indeed, the action-angle transform is the classical analog
of the joint eigenfunction transform. Now in Ref. [6] we showed that it has factorized
asymptotics deep inside the ‘Weyl chamber’ G (13). Hence one expects factorized
asymptotics for the kernel of the unitary eigenfunction transform, too. Furthermore,
the classical self-duality properties translate into the symmetry property (40). The
remaining eigenfunction properties are not suggested by classical resuls. Rather, they
arise from our N = 2 results, where all properties are valid (as we will sketch in
Section 4).

Next, we comment on the joint eigenfunction properties (39) and (41). It is impor-
tant to appreciate why they make sense. The point is that the coefficients of the AAOs
in (38) and in (39) have period 27i/u and i/ M, respectively, so that the AAOs commute.
Likewise, the AAOs in (40) and (41) commute. (No such extra commutativity arises at
the classical level: The function exp(p) does not Poisson commute with any nonconstant
function F(z).) But it should be emphasized that there are no theorems known from
which one can conclude that a nontrivial function E(z,p) with the properties (38)—(41)
exists.

We proceed with a brief consideration of the general case, where some of the pair
interactions are attractive. Physically speaking, we are then dealing with N particles
having positive charge and N_ particles having negative charge. We expect a rather
baroque picture for Ny N_ > 0, in analogy with the classical situation and with the
Ny N_ > 0 sectors of the sine-Gordon quantum field theory.

To be more specific, let us first assume g € (0,1). This should be the simplest
case to handle, since no bound states are expected. On the other hand, the scattering
described via the joint eigenfunction transform should be factorized in terms of 2-body
amplitudes

(Utr tpms Tpmy U= ) (6) = u(0/2) (1

sinh w8/ 20 sinhing
' sinh(img — 70/2¢)’ sinh(irg — w6/2c)" " ) °
48)

(Here 8 denotes the rapidity difference §; — 8y = (py ~p2)/M = 2p/M.) Hence one gets
a nonzero reflection, causing complications not present for Ny N_ = 0.

For g > 1, however, we expect a far more elaborate state of affairs. Indeed, bound
states do exist for g > 1 and Ny = N_ = 1. Their rest masses are given by the formula

my = 2Mcos(a(g —n—1)), n+1=12...<g (49)

It should be noted that this reduces to the DHN formula (27) for the sine-Gordon case
T = 7/2,9 = w/2a. Likewise, the 2-body amplitudes (48) reduce to the sine-Gordon
amplitudes (29).
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Before turning to a close-up of the 2-body case, let us comment on the viability of the
general program to describe the physics of 2-dimensional relativistic soliton quantum
field theories via relativistic N-body quantum mechanics. Indeed, there still appears
to be a widespread belief that such a description cannot exist. Such a ‘no-go’ assertion
occurs, for example, on p. 258 of the review by the Zamolodchikovs [15], and on p. 1015
of a paper by Braden and Sasaki [17].

Now for the case at hand this issue is still unresolved, on two counts. First, we
have not shown yet that the above wish list materializes for N > 2. Second, in spite
of the wealth of ingenious and quite convincing sine-Gordon/massive Thirring results
assembled in a great many papers, the existence of 2 Wightman field theory yielding
the above S-matrix via the Haag-Ruelle theory has not been proved yet.

To refute a no-go claim, however, one counterexample suffices. At present the only
counterexample we are aware of is the (fermionic) Federbush model. Specifically, this
is & quantum field theory for which all Wightman axioms have been proved, including
a verification of the solitonic S-matrix [18]. (To date, this model is the only Wight-
man field theory for which asymptotic completeness has been shown.) But the same
physics can also be obtained via a certain (sequence of) N-body relativistic quantum
mechanics [19], yielding a realization of the above program, hence a counterexample.

4. The quantum two-body problem

Consider the N = 2 case of the Hamiltonians S (16). Using sum and difference variables

=31 - %, X=(n1+22)/2, (50)
they read
S = exp(—i@x/iZM)Hr, So = exp(—iax/M), (51)
where H, is the reduced Hamiltonian
H, = f_(z) exp(—i0: /M) f+(z) + f+(z) exp(i0z/M)f_(z). (52)

The nontrivial part of the joint Schrédinger equation

(S1F)(21,%2,p1,p2) = (exp(p1/M) + exp(p2/M))F (21, %2, P1,p2),

(852 F)(21,22,p1,02) = exp(p1/M + p2/M)F(x1,22,p1,P3), (83) -
can therefore be obtained by introducing
p=(m~—p)/2, P=p+pa, (54)
and setting
F(z1,22,p1,p2) = exp(iPX)F(z,p). (55)
Indeed, this entails we need only study the reduced Schrddinger equation
H.F(z,p) = 2cosh(p/M)F(z,p). (56)

Written out, this yields a so-called analytic difference equation (AAE),

J-(@)f+(a —i/M)F(z —i/M,p) + fi(z)f-(z +i/M)F(z+i/M,p)=
= (eP/™ 4 ¢ PMYF (g, p). (57)
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We continue with a few remarks concerning ordinary linear second-order AAEs, of
which (57) is a concrete example. First of all, there is no detailed existence theory for
such equations (as opposed to differential or discrete difference equations). Obviously,
a solution in any reasonable sense should have sufficient analyticity for the shifts into
the complex plane to have a clear-cut meaning. Once such a solution F(z,p) exists,
however, one immediately obtains an infinite-dimensional solution space. Indeed, when
one multiplies F(z,p) by any function m(z,p) that is meromorphic in z with period
i/M, one gets another solution.

A closely related problem is the absence of a well-developed Hilbert space theory for
AAOQs. For differential and discrete difference operators the Weyl-Titchmarsh-Kodaira
theory yields the link between eigenfunctions and Hilbert space features, but to date no
version of this theory exists for AAOs. As a matter of fact, from concrete examples one
sees that the Hilbert space theory of AAOs gives rise to some novel phenomena [20].

It is both convenient and illuminating to begin our account of explicit solutions to
the Schrédinger AAE (57) by focusing on the z — co asymptotics. This will lead us to
some important ingredients, and in particular to our ‘hyperbolic gamma function’—the
building block for a function E(z,p) with all of the above properties. First, we explain
how the explicit formula (45) arises from other items on our list. The asymptotics (42)
reduces to

Blz,p) ~ (2m) 72 (=0)lulp/M) 6P — ulp/M) e, & 400 (58)

for the 2-body case under consideration. (The phase —i is included for normalization
purposes.) Now E(z,p) should not only solve the AAE (57), but also the dual equation
arising from (40). Using a new parameter

v=p/f2, (59)
which minimizes factors of 2, this equation reads
f-o) 1+ —iv) Fla,p—iv) + f1 () f- (0 +iv) F (e, p+ iv) = (€*® +e™**) F(z,p), (60)

with the dual interaction functions given by
f1.(0) = (sinb((p % ivg)/M)/ sinh(p/M))}/*. (61)

Taking z — o0 in (60) and using (58), we can compare leading terms to deduce that
the u-function should solve the first-order AAE

ulp/M +iv/2M) _ . o, .
2o/ M ity = -+ A=) (62)

Just as for differential equations, it is much simpler to solve first-order AAEs than
to solve second-order AAEs. (‘Solving’ stands here for ‘explicitly solving’—admittedly
still a somewhat imprecise expression.) In particular, the AAE {62) can be solved, and .
this yields the function (45) for the parameter range (44), as we will detail shortly.

We should emphasize at this point that the sclutions to (62) form aun infinite-
dimensional space, for the same reason as we have already explained in connection with
(57). The periodic multiplier ambiguity can be removed for first-order AAE of a special
type that is relevant here by insisting on the ‘optimal’ analyticity and asymptotics that
is compatible with the AAE, We have made this precise in Ref. [21], and dubbed the
corresponding solutions ‘minimal’ solutions.
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‘We recall that this term is also used in exact S-matrix theory, for instance as applied
to the sine-Gordon S-matrix. In the latter framework, however, there are different
(albeit related) requirements to meet. In particular, one insists on crossing symmetry—a
notion that plays no role in our paper Ref. [21], and which is in fact a quite dispensable
ingredient for the relativistic quantum mechanics we are seeking. (But of course it
becomes crucial as soon as the relativistic particle systers are used to model/replace
the physics of a crossing-symmetric relativistic soliton quantum field theory.)

Let us now consider the AAE (62). Assume we have a solution G(ay,a—; 2) to

G(z +ia_/?)
G(z —ia-[2)

available. Then we can solve (62) by setting

= 2cosh(mz/ay), oa4,a- >0, (63)

G(m a;z —i7 + {7 + @) /2)G (7, o5 2 + 47 — i{7 + @) /2)
Glm, 052z —i{w —~ @) /2)F (7, 052 + i(x — &) /2) ’

as is easily verified. Now the minimal solution method introduced in Ref. [21] applies
to the AAE (63), and it gives rise to a meromorphic function admitting the integral
representation

= dy sin 2yz z ))
= ay —- 65
Glay,a_;2) = exp (l/; ” (2sinha+y sinha_y aqa-y (65)

for {Im 2| < (a4 + a-)/2. Therefore the integral representation (45) follows from (64)
and (65).

We have called the function (65) the ‘hyperbolic gamma function’ for reasons ex-
plained in Ref. {21]. Observe that it is symmetric in ay,a_, so that it also solves (63)
with a4 and a_ interchanged. As it has turned out, this function is not new: It is
essentially equal to Kurokawa’s double sine function, which in turn is a quotient of
Barnes’ double gamma functions. As such, it dates back more than a century. (See
Refs. [22, 23] for more bibliographic information.)

A closely related function, called the ‘quantum dilogarithm’, was also introduced in
the mid-nineties by Faddeev, cf. Ref. [24] (as we learned from R. Kashaev). It differs
from our function G{a4,a_; z) by a multiplicative factor of the form exp(co+cy z+c222),
and is used in particular in the quantum Liouville theory [25].

Returning to our u-function (64), it readily follows from the G-AAE (63) and its
(a4 ¢+ a_)-counterpart that it is an elementary function on the lines

u(e) = (64)

T=ka+ln, kl€Z, (66)

in the (¢, 7) half plane. (Recall @ = 1/2M, so & > 0.) It should be noted that this set
of lines is dense in the half plane. Indeed, choosing a/# irrational, we obtain a dense set
of 7-values when we let k and [ vary over Z, from which our assertion follows. Fixing
a line (ie., fixing kp,lp € Z), it is not hard to check that the points of intersection
with the remaining lines are dense on the fixed line. (Note one has a/7 € Q for these
intersection points.) Therefore, the set of all intersection points is already dense in the
{e, 7) half plage.

In Fig. 3 we have drawn some of these lines, together with some other lines of
interest. The limits indicated are worked out for the u-function in Ref. [21]. (See also
Refs. [12, 26] for the NLS (nonlinear Schrédinger) limit.)
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Figure §. Special lines and limits in the (e, ) half plane.

Of special interest are the / = 0 lines ¢ = L + 1, L € N, some of which are drawn in
Fig. 3. On the latter u(z) reduces to

L
u(z) = (=)* [] sinh(z + ika)/ sinh(z - ika). (67)
k=1
This reflects the elementary character of our solutions to the AAE (57), which we detail

next. (They date back to Ref. [12].)
To this end we introduce the auxiliary function

L
A(z) = [] [2sinh(z - ika)]?, (68)
k=1

and the coefficient matrix

o = () ep(L(L+1)e/2) D exp(=2ifir+ - +ixo)
1< << <L

x > exp(—2:[j1 + - - + file). (69)
—L<ji <<t <L
Fn@{~L4k,...—1+k.k)}
Then the functions F(=%z,p) solve (57), with F(z,p) given by

Fz,p) = (=) [Avz) Alp/M)] /76
L
X Z cr exp|(2k — L)vz + (21 — L)p/M]. (70)
k,i=0

At face value, it is not at all clear that (70) solves (57) for g = L + 1 € N*. But it
is important to note that once (57) is taken for granted, the dual equation (60) follows
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from ¢y = ¢y This symmetry property of the matrix ¢ is not immediate either, but it
is proved in Ref. [27], alongside with the eigenfunction property and asymptotics

Flz,p)~ —tulp/M)* Y explizp), z -+ %o (71)

The two remaining AAEs (39) and (41) on our list are readily verified, however.
Indeed, the pertinent reduced AAQs are given by

H, = explindy/v) + (i — ~i), H, = exp(axMdy) + (i - ~1), (72)

so the periodicity properties of the function F{x, p)exp{—1zp) entail the desired eigen-
values 2cosh({rp/v), 2cosh(x Mz).
Consider next the eigenfunction transform

(FU)(x) = (2n) /2 [m dpF(2,0)T(g), V& LA(R, dp). (13)

It preserves parity, so it maps LZ(R, dp) inte L2(R,dz). Again, it is not obvious, but
true that the restriction of ¥ to L2(R,dp) yields a unitary operator £ (i.e., an isometry
from L2(R,dp) onto L2{R,dz)), provided 7 € {0, » + o). Accepting this, it follows that
the antisymmetric eigenfunction

B(zy,29,p1,02) = (2n)7 27 Y% explizy +22)(p1 + p2)/2)
x[F(zy — 22, (01 ~ p2)/2)
~Flz2 — 21, {p1 - p2)/2)] (74)

has all of the properties on the list in Section 3.

The unitarity property is proved in Ref. [20]. It is also shown there that for 7 > 7+ a
unitarity is generically violated, in a way that is made completely explicit. Moreover, it
is proved that the restriction of F (73) to the even subspace L(R, dp) is only unitary
for a certain discrete set on each line. In particular, it is not unitary for = € (0, + a).

Proceeding to the dense set of lines (66), there exist joint eigenfunctions F(+z, p)
with asymptotics (71), where u is given by {64). They are elementary functions, since
they equal a product of two functions of the above form (70) times a plane wave
exp(~izp) (27].

At present, it i3 an open question whether two joint eigenfunctions exist for arbitrary
(@, 7) € (0,00) x R, with the property that they reduce to {a multiple of} the above
F(*z,p} on the dense set of lines. But the odd combination F(z, p) — F(~2,p) admits
such an interpolation for r € {0, x + ), and this is all that is required/expected for our
list in Section 3.

In order to detail the interpolating solution, we begin by defining a ‘generalized
Harish-Chandra function'

cfas,a-,b;z) = Glay, a2 ~ib+iley +0a-)/2)/Glay, a2 +i{ay +a}/2), (75)
and a ‘weight function’
wlag,a_, by 2) = [elay, -, b; 2)elag, 6o, by —2)] 7t (76)

(It is not hard to see that the function u(z) (64) equals ~¢(2)/e(~z).) Using (65) and
(63), one obtains

w(a+,a-,b2) = 4sinh(rz/ai) sinh{rz/a-)ws (a4, a-,b;2), {77)
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with
® dy (sinh(ay +a- — 20)y oy +a_ —2b
ya-,b;2) = - : ; Wz ~ ——————
urlar,a-,b:2) = exp (fn y ( simhagysinha_y 0 azay )) '
(78)
provided
b€ (0,aq+a ), [Imzl<aqy+a_—~|2b—ay—~a_| (79)
Requiring (44) from now on, we set
E(z,p) = w(m, a,7;ve)*R(z, pu(r, o, p/ M), (80)

To define the functions on the rhs, let us first note that for real £ and p we are entitled
to invoke (77) and (78). This entails that we may view the square root functions as
real-analytic odd functions on R, which are positive for z > 0,p > 0, resp. Doing so, we
turn to R(z,p). This function is meromorphic and even in £ and p, and real-analytic
for z,p € R. It is a specialization of a function R(a4,a—,c;v,?) to whose definition we
now proceed.

The latter is a generalization of the Gauss hypergeometric function o Fi(a, b, ¢, w).
Just as oF) can be specialized to the Jacobi polynomials, the R-function admits a
specialization to the Askey-Wilson polynomials. It is defined in terms of a contour
integral, which generalizes the Barnes representation for the hypergeometric function.
It depends on four coupling parameters ¢ = (cg, ¢1, €2, €3). Setting

s1=cp+a—~a-f2, sa=cpteg~ay/2, sa=cp+es, a=(ap+a’)/2, (81)

& = (co+ e +ca +¢3)/2, (82)
we require at first s; € (0,a),7 = 1,2,3,¢,6,v, 9 € (0,00). Then we have
N 1 -
R(a+,a._,C;'l), ‘U) = deZI(a—Ha—:c; v, ¥, z), (83)
where the integrand is given by
I(a.,.,a._,c; v, ﬁ,z) = F(a'+’a—a Co3 v,y z)K(a—ha'-aC; z)F(a+, a—, &o; ﬁ; z)a (84)

Glag,a-;z + y +id — ia)
Glay,a_;y +id —1a)

F(a+,a_,d;y,z) = ( ) (y hd ""y)) (85)

1 : G(a4, a-;155)
G(a+,a-;z +ia) i Glag,a—;z +1isj)’

K(oy,0-,¢;2) = (86)
The contour C separates upward pole sequences in the z-plane from downward pole
sequences, as depicted in Fig. 4. These doubly infinite pole sequences arise from the
hyperbolic gaxnma functions in the integrand. (Each such sequence generalizes the
well-known infinite pole sequence of Euler’s gamma function I'(z).)

It would take us too far afield to go into the salient features of the R-function, It is
studied in detail in Ref. {22], and in further papers to appesr. We have reviewed various
aspects of the R-function and related special functions in our lecture notes Ref. [28].
Here we only add the specialization required for the function R(z,p) in (80). It reads

R(z,p) = R(m, e, (1,0,0,0); vz, p/2M). (87)
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Figure 4. The pole sequences and the integration contour.

(Elsewhere we will show that the function

E(Zl:f‘:?aplaPZ) = (Zﬂ)—lz_llziexp[i(ml +$2)(p1 +p2)/2}
x Bz — zq, (p1 — p2)/2) (88)

has all of the properties on the N = 2 list, cf. Section 3.)

Thus far, we have only dealt with the case of equal charges, where the particles
repel each other. We conclude our account by sketching the state of affairs for opposite
charge. (We will present the details at another occasion.) The pertinent AAE is then
again of the form (57), but now one has

fi(z) = (cosh(vz + ir)/ cosh )2, (89)

First, we recall that for unitarity in the repulsive regime, we need r € (0,7 + «.
But to obtain unitarity in the attractive regime, too, we should sharpen this to 7 €
(0, /2+¢). (The necessity of this restriction can already be established for the integer-
g cases studied in Ref. {20].) Requiring this from now on, we first consider the region
g=7/a € (0,1] in the (o, 7)-plane, cf. Fig. 3. Then our interpretation of the reduced
‘particle-antiparticle’ AAO (given by (52) and (89)) as a Hilbert space operator is such
that no bound states occur. There are even and odd eigenfunctions

Es(z,p) = ws(z)'* Rs(z,p)0s(p) *, E=e,0, (30)
whose asymptotics yields the u-functions
ue(f) = t4—(8) +74-(8), () =14-(6) — r4-(8), (91)

cf. (48). The functions R, and R, are specializations of the R-function (83). Specifically,
one needs to choose

Re(z,p) = R(n, @, (0,7,0,0);vz,p/2M), (92)
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BRo(z,p) = R{x,a, (e, 7,0,0); v, 0/ 2M). (93)

For brevity, we omit the definitions of the functions wg(z}, ws(p),d = ¢, 0.

Turning to the regions g € (L, L +1], L € N*, the attractive Schrodinger AAE (57),
(89) yields (in addition to the ‘scattering states’ (90)) L pairwise orthogonal bound
states with energies given by (49). The ground state reads

O H ~y —
Vole) = exp [ Y (RO oy - 1221, (o0
o Y sinh wy sinh ay ray

and the excited states are then of the form

Un(z) = Fu(isinhvz)Tpiz), n+1=12,...<g, (95)

with B, (y) essentially a ¢-Gegenbauer polynomial. (These bound states can be obtained
via (90}, choosing p on the imaginary axis such that 2cosh(p/M) yields the energies
(49).)

With some provisos we omit, the above attractive eigenfunctions can be obtained by
analytic continuation from the repulsive ones. Although this may be viewed as a form
of ‘crossing’, we should emphasize that only for T = 7 /2 we get the standard S-matrix
crossing symmetry for the 2-body amplitudes (48). Indeed, as already mentioned, for
T = n/2 our scattering amplitudes are equal to those of the sine-Gordon theory.

As 2 final feature of considerable interest for the scenario of physical equivalence
to the sine-Gordon/massive Thirring quantum field theories, we show that the ground
state (94) can be rewritten as a quite simple function for 7 = n/2. Pirst, we use (65)
and {63) to write

G(rm, vz + i f2)G(m, o vz — it + icf2)
G(m,a;vz — ia/2)G(r, a; vy +iT ~ ia/2)

G(m, a;vz — it — ia/2)
Glm, vz +i7 — ief2)

T3(2)

I

4 cosh(ve) cosh{vz — ir)

(96)

i

Now we note that for 7 = x/2 we may use the (a4 ¢ a_)-version of (63) to deduce
Uo(z) = [sinh(2vz)/sinh(r M2, 7 =x/2. 97)

To summarize, the elementary function (97) can be viewed as the (internal wave
function of the) lowest energy bound state of the sine-Gordon soliton and antisoliton.
Note that it manifestly has decay exp(~v(1 — g)}z|) for z — oo. Thus, the square-
integrability of the bound states (95) is immediate.
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