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Introduction

When dealing with large dynamical systems consisting of many components, we
are often unable to analyze or control the whole system at once — both on a con-
ceptual and computational level. This problem, and the often modular nature
of the system itself, suggest a decentralized approach to large-scale systems: We
split the system into subsystems —or modules—, and then try to derive some in-
sight into the overall system by analyzing each module separately, and by taking
into account their interconnections. Similarly, we often strive to leave the control
of the overall system to local controllers instead of one centralized controller!.
Whether this approach — analyzing or controlling each module in isolation, and
then glueing the results back together according to the network topology — actu-
ally leads to good results, largely depends on the structure (or topology) of the
system, and on the objective we are trying to achieve, or the type of system prop-
erty we would like to analyze. The advantages and limitations of decentralized
analysis and control of large systems are illustrated in a few real-world examples:

o The example depicted on the cover of this thesis is an orchestra, coordinated
by a conductor: While all musicians have their own local information in
terms of the notes they should play, the conductor has a better overview
over the orchestra as a whole, and controls when and at which speed the
different musicians should be playing their parts.

o The basic principle of democracy, that every citizen’s opinion should weigh
equally in the government’s decision process, is infeasible in practice since
collecting and analyzing feedback information from all citizens is impossi-
ble. Instead, representative democracies are implemented as more feasible
alternatives: Groups of citizens choose one or more representatives, who
should then report a collated version of the citizens” feedbacks to the gov-
ernment. This form of representation often consists of several layers (e.g.
in federal republics). The principle of representative democracy is thus a
compromise between direct democracy, with direct feedback from all citi-
zens, and dictatorship, with no feedback from the citizens. The details of the
corresponding electoral system — or in other words, which type of bottom-
to-top feedback should be sent at which times and in which form - is an
interesting question both from a mathematical and political perspective.?

IThere are many possible reasons for this choice: The system will be more robust to the failure
(or corruption) of controllers, controlling one module is conceptually and computationally easier
than controlling the whole system at once, if the system topology changes (i.e. a module is added
or removed) the system does not have to be reconfigured from scratch, obtaining local information
necessary for control is easier than requiring information from another location, etc.

2The engineering version of democracy is called consensus control: several subsystems (e.g. tem-
perature sensors at different locations) communicate with each other until they agree on a common
value (e.g. the average temperature).
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o In contrast to the democratic structure based on feedback through voting,
hierarchical personnel structures with little or no bottom-to-top feedback
are very common in organizations — traditionally in the army, but also in
many companies. In this type of structures, control of the overall system is
based on the chain-of-command principle, allowing the top of the hierar-
chy to better control and predict the state of the overall system, and facili-
tating quick responses to changing conditions since no consensus needs to
be found. While typically undesirable for humans, its efficiency makes this
structure a useful topology for decentralized engineering systems.

e The human body — as well as many other biological entities — is an inher-
ently modular system: In a nutshell, it is an interconnection of several or-
gans, each with its own limited task and functionality. These modules are
interconnected by the nerve system, and controlled partly via a central con-
troller (the brain) and partly via local controllers (e.g. local reflexes). Only
through the coordination of these different modules is it possible to achieve
complex tasks, such as playing tennis, which none of the modules could
achieve independently.

o Another example for a decentralized system in which some form of coordi-
nation is inevitable is traffic: Each car is an independent entity, with its own
objective (to reach a destination) and its own local controller (the driver us-
ing the gas pedal and steering wheel). These entities are interconnected by
the fact that two cars should never be at the same place at the same time
(i.e. vehicles should not collide). This consideration gave rise to control
measures such as traffic lights, which coordinate the different cars passing
through the same intersection. Moreover, different traffic lights along the
same major road often cooperate to allow for green waves, while traffic
lights in different parts of the country are independent of each other.

From these examples, we can already derive some basic principles about decen-
tralized control:

o decentralization - i.e. splitting the system into parts and controlling each
part locally — is usually desirable but not always possible,

e hierarchies naturally arise from practicalities, and are often preferable to
other types of system structures,

e in decentralized control, it is essential where information is available, and
how (i.e. at which location) we can exert control on the system.

The aim of this thesis is to contribute to the mathematical formalization and ex-
ploration of some of these principles.
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1.1 Introduction to coordination control

The class of decentralized dynamical systems considered in this thesis is that of
coordinated linear systems, a special class of hierarchical systems. Coordinated
linear systems are structured linear systems consisting of one coordinator system
and two or more subsystems, each with their own input and output. The coordi-
nator state and input may influence the subsystem states and outputs. The state
and input of each subsystem have no influence on the coordinator state, input
or output, and neither can they influence the state, input or output of the other
subsystem(s). In other words,

e the coordinator subsystem influences the other subsystems but is not influ-
enced by them,

¢ and when disregarding the influence of the coordinator, the subsystems are
independent.

This corresponds to a hierarchical system with two layers and a top-to-bottom
information structure, as illustrated in Figure 1.1.

coordinator

lll

system 1 I system ZI

LA

Figure 1.1: Scheme of a coordinated system

Possible applications of coordinated linear systems arise when several subsys-
tems require interaction (i.e. coordination) to meet a joint control objective. This
may apply to linear systems with an inherent hierarchical structure, but also other
types of interconnected systems, which permit a hierarchical modeling approach.

Inherently hierarchical systems include traffic networks and power networks,
where the major roads or power lines are at a higher level than the side streets or
local distribution lines. Other examples are groups of autonomous vehicles with
a leader-follower structure, such as vehicle platoons and formations: Platoons are
typically modeled by chain structures, with the first vehicle at the highest level,
and in formations the first vehicle may have several direct followers.

Other interconnected systems can be transformed into coordinated systems,
where the coordinator consists of those parts of each system that are relevant to
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the other systems, and the subsystems consist of the remaining parts of each sys-
tem. This corresponds to imposing a hierarchy on the different parts of a decen-
tralized system, in order to facilitate decentralized control synthesis. Moreover,
large-scale monolithic systems can be decomposed into subsystems with a hier-
archical information structure in order to reduce the computational effort needed
for control synthesis.?

This thesis develops an in-depth mathematical analysis of coordinated linear
systems, focusing on the following questions:

(1) How can we construct coordinated linear systems, from large monolithic
systems or decentralized systems with non-hierarchical information struc-
tures (e.g. interconnected systems with two-way communication)?

(2) Given a coordinated linear system, is this system ‘as decentralized as pos-
sible’, i.e. are all interactions allowed by the system structure actually re-
quired? Is all communication actually necessary? And can centralized mea-
surement or control actions be replaced by local ones?

(3) Which part of each subsystem is controllable by which input — can control
be done locally, or is coordination required to meet the control objective?

(4) A similar question arises for observability: Is all measurement data which
is necessary for implementing a given control law available locally, or is
communication of measurement data required?

(5) Given a coordinated linear system and an achievable control objective, how
can we synthesize a control law which achieves this control objective, but
also respects the given information structure? How does the performance of
such a control law compare to its centralized counterpart? Will performance
improve if bottom-to-top communication is permitted on an event-driven
basis?

(6) Can we extend concepts and results derived for coordinated linear systems
to related classes of coordinated and hierarchical systems?

1.2 Literature review

Concerning questions (1)-(6) above, this section summarizes some of the previous
work, and relates it to the contributions of this thesis.

30ther criteria for the decomposition of dynamical systems into several parts include geographical
proximity and different time scales in the system evolution.
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System decompositions

Most previous work on decompositions of linear systems is based on structured
matrices and graph-theoretic approaches ([9, 57]): The system matrices are re-
duced to binary (structured) form, for each entry specifying whether it is zero
or non-zero. The dependencies among the different state, input and output vari-
ables can then be represented by a directed graph, with the different variables
as nodes, and directed edges among them whenever the corresponding entries
in the structured system matrices are non-zero. The graph-theoretic concepts of
reachability and co-reachability can then be used to decompose the system, and
to analyze the interconnections among the subsystems. A major drawback of this
approach is that it ignores the different possible structures corresponding to a
given linear system under transformed state, input and output spaces.

A complementary approach for decomposing large linear systems is based
on the strength of the interactions among the different subsystems: Weak inter-
actions are identified e.g. via dissipation inequalities ([1]), and then removed,
leading to a more decentralized approximation of the original system. Other de-
composition approaches are based on different time scales, different geographic
regions, etc. ([5]).

Previous work on the special case of decompositions into hierarchical linear
systems includes decompositions based on aggregation ([34, 43]): Lower-order
approximations of the original system (or subsystems) are used on the higher
level, in order to reduce the complexity of the control synthesis procedure. A
geometric approach to coordination control, in which a system is decomposed
using feedback compensation, can be found in [64]. The goal of this decompo-
sition is to identify a coordinator and several subsystems, with the coordinator
controlling the system-wide performance, while the subsystems do local control.
The compensating feedback is chosen such that system becomes a hierarchical
system.

The approach used in Chapter 4 of this thesis differs from existing approaches
in the sense that it uses the geometric (i.e. basis-independent) concepts of con-
trollability and observability subspaces, and that the original system and inter-
connections are neither changed nor aggregated, and the option of having com-
pensating feedback is not taken into account. Another original contribution of
Chapter 4 is the development of concepts and results concerning the minimality
of a given decomposition.

In the related field of team theory, the decomposition of a linear system ac-
cording to the observations and influence of two independent decision makers
was studied in [51] - this is a special case of the decomposition derived in Section
4.34.
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Controllability and observability

While the classical concepts of controllability and observability ([21]) for unstruc-
tured systems are characterized in terms of invariant subspaces of the state space,
most literature on controllability and observability in decentralized settings is
based on graph-theoretic concepts: A system is called structurally controllable
if every state variable is reachable from at least one input variable in the corre-
sponding graph representation ([8, 9, 57]). Structural controllability is a basis-
dependent concept, and it is necessary, but in general not sufficient for controlla-
bility. The dual concept is structural observability, defined via the co-reachability
of the state variables from at least one output variable. In [35], driver nodes are
identified, which can control the whole network (given as linear system).

Early work in the field of team theory discusses the controllability and observ-
ability of a linear system via multiple decision makers with partial observations
([2, 16]), using invariant subspaces of the state space. In Chapter 5, this approach
is generalized to coordinated linear systems. Together with the novel distinction
between independently and jointly reachable subspaces, and between completely
and independently indistinguishable subspaces, this allowed for a systematic ap-
proach to the problem of defining concepts of controllability and observability
for coordinated linear systems.

LQ optimal control

For monolithic systems, the LQ control problem was introduced and solved in
[20]. Early decentralized versions of the LQ problem appeared in the field of
team theory (a subfield of game theory), where several decision makers, each
with partial observations of the state of a linear system, aim at minimizing a joint
quadratic control objective ([2, 16, 45]). Team theory problems with delayed com-
munication among the decision makers are discussed in [49]. A different setup is
that of Stackelberg games (also stemming from game theory), where the decision
makers are one leader and one follower: First the leader makes a control decision,
and then the follower bases its control decision on information about the leader’s
decision ([17, 68]).

In the field of control theory, early work on decentralized control methods for
large scale and hierarchical systems is surveyed in [52], and an early survey of
leader-follower strategies is given in [6]. A linear-quadratic coordination control
problem was described in [3]. In this setup, the aspect of coordination was not
related to the information structure, but to the control objective: The coordinator
minimizes a global control objective, taking into account the subsystem control
laws, and the subsystems minimize local control objectives. Local or structured
control feedback synthesis for decentralized LQ control problems was also dis-
cussed in [58], [57] and [53].
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In general, decentralized LQ control problems are much more involved than
their monolithic counterparts: In [71] it is shown that in a decentralized setting in
which different subsystems have access to different observation sets, the optimal
control law may not be a linear controller. In light of this problem, the identi-
fication of special system structures, for which the LQ problem simplifies, has
been considered: First characterizations of structured systems, for which local
controllers can achieve global stability, are discussed in [57]. In the input-output
framework, the concept of quadratic invariance was introduced in [50], charac-
terizing convex problems in decentralized LQ control.

The class of poset-causal systems, introduced in [55, 56], consists of all struc-
tured linear systems whose information structure is consistent with a partial or-
der relation on the subsystems. For this class, the problem of finding structure-
preserving optimal controllers is convex in the input-output framework. In the
state space representation, the optimal control law is a dynamic state feedback:
The controller for each subsystem includes observers for all its direct or indirect
followers.

Coordinated linear systems are a subclass of poset-causal systems; however,
in contrast to the approach of [55, 56], we restrict attention to static state feedback
in Chapter 6. This choice was made in the interest of scalability of the results with
respect to the number of subsystems. In accordance with the results of [55, 56],
we found that the optimal static state feedback for each subsystem only depends
on its own dynamics and on its direct or indirect followers, but not on the rest of
the hierarchy. This result allowed us to approach the problem in a bottom-to-top
manner. The novelty of our approach is the derivation of this control synthesis
procedure restricted to static state feedback, making use of linear and quadratic
matrix equations and numerical optimization.

Control with event-based feedback

Control with event-based feedback —or event-triggered control- is a relatively
new topic, aimed at minimizing the amount of communication necessary for con-
trol, while still achieving the desired performance levels. Rather than having reg-
ular or continuous feedback from the plant to the controller, feedback is sent only
when the difference between the actual state of the plant and the observer esti-
mate of the state at the controller exceeds a fixed threshold ([13-15, 36]). This
leads to an ultimately-bounded closed-loop system. First attempts to incorporate
the concept of adaptive listening ([19]) in order to further reduce the total cost
of communication can be found in [38], and an event-based feedback scheme for
decentralized control was derived in [60].

In Chapter 7 we incorporate event-based bottom-to-top feedback in the set of
admissible control laws for our LQ control problem: The coordinator system im-
plements a piecewise-constant approximation of the optimal state feedback for
the centralized (i.e. unstructured) problem. Each lower-level subsystem sends
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its current state to the coordinator whenever the approximation error, caused by
using the last communicated value instead of the current value of the subsys-
tem state at the coordinator level, exceeds a certain threshold. Novelties of this
approach are the use of an exponentially decaying threshold, which leads to an
exponentially stable closed-loop system, and bounding the approximation error
instead of the difference between the current and last received state.

1.3 Contents of the thesis

This thesis is structured as follows:

As prerequisite material, some elements of the classical theory of linear sys-
tems are summarized in Chapter 2. In Chapter 3, the concept of a coordinated lin-
ear system is defined and characterized, several basic properties of coordinated
linear systems are derived, and an overview of related decentralized systems is
given.

Chapter 4 deals with questions (1) and (2): In Section 4.1 we give some con-
struction procedures for the transformation of monolithic and interconnected lin-
ear systems into coordinated linear systems. Based on the considerations sum-
marized in question (2), several concepts of minimality of a given coordinated
linear system decomposition are introduced and characterized in Section 4.2, and
some results concerning the construction of a minimal decomposition are given.

Questions (3) and (4) are discussed in Chapter 5: In Section 5.2, the concept of
reachability is refined to distinguish among the different inputs and the different
parts of the overall system state, and based on this, a controllability decomposi-
tion for coordinated linear systems is derived, and several different concepts of
controllability are defined and characterized. A similar approach is used for the
concepts of indistinguishability and observability in Section 5.3. We then illus-
trate how to combine these concepts, and derive equivalent conditions for stabi-
lizability via dynamic measurement feedback.

While question (5), in the generality in which it is formulated above, is eas-
ier posed than answered, its restriction to LQ control problems is the topic of
Chapters 6 and 7: The LQ problem over all structure-preserving static state feed-
backs is discussed in Chapter 6. The overall control problem is separated into
conditionally independent subproblems, a numerical approach to their solution
is derived, and the behavior and performance of the resulting control law are
illustrated in examples. Chapter 7 focuses on the last part of question (5): We ap-
proximate the centralized (i.e. not structure-preserving) optimum by introducing
event-based bottom-to-top feedback, and derive bounds on the stability of the
resulting closed-loop system and on the corresponding costs.

As anillustration of the theory developed in this thesis and its potential practi-
cal purposes, Chapter 8 discusses two case studies of coordination control: In Sec-
tion 8.1, a formation flying problem for autonomous underwater vehicles (AUVs)
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is introduced and solved using the coordination control framework developed in
the previous chapters. Section 8.2 deals with coordinated ramp metering, i.e. the
coordinated control of on-ramp metering devices at two neighboring on-ramps
of a highway.

Chapter 9 summarizes the main results of this thesis, and points to some pos-
sible directions of extending the results to related classes of systems, as suggested
in question (6).
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Prerequisites

In this chapter, some elements of the classical theory of monolithic (i.e. unstruc-
tured) linear systems are summarized as background material necessary for the
later chapters.

2.1 Notation

The notation for system-theoretic concepts used in this thesis complies in large
parts with e.g. [63]. The direct sum of two independent linear spaces will be
denoted by +, i.e.

-]

For notational simplicity, we restrict attention to coordinated linear systems
with one coordinator and two subsystems. The two subsystems are indexed by 1
and 2, and the coordinator is indexed by c. The index i is used for the subsystems
only (i.e. i = 1,2), and the index j denotes all three parts of the system (i.e. j =
1,2, ¢). State spaces are denoted by X, input spaces by U, and output spaces by
Y. Their dimensions are denoted by n = dim X, m = dimU and p = dim Y.

The state, input and output space of a coordinated linear system are composed
of the state, input and output spaces of the subsystems and coordinator, i.e.

veviwewh= v [Iw

X = X1+ Xo+ X, U =U1+Uz4+U., Y =Y14Yo+4Y,,

with dimensions ny + ns + ne. = n, my + ms + me = m and p1 + P2 + Pe = P.

Note that throughout this thesis, we will use the notation X; both for the
linear space X of dimension n;, and for the n;-dimensional linear subspace of
the n-dimensional space X. In other words, we use the notation X; both for

I
the space itself and for its natural embedding |0| X; into X = X;+Xs+X,. In
0
particular, for M € R™" and S a linear subspace of X, we use the notation M X;
I
for the image space M |0| X; ¢ X, and the notation X; N S for the intersection
0
1 1
space 0| X1 ) NS c |0| Xy. The same holds for the spaces X5 and X, and
0 0
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0 0
their embeddings || X3 and [0| X, into X, and for the corresponding input
0 I

and output spaces.
The state, input and output of a coordinated linear systems are then denoted

by
x1(t) uy (t) y1(t)
x(t) = [l‘g(t)] , u(t) = {uggtﬂ and y(t) = [yg(t)} )
Ue(t

In some parts of this thesis, we restrict attention to one subsystem and one co-
ordinator, in which case the subsystem is indexed by s, and the state, input and
output vectors are denoted by

o) = [220)] w0 <[220 ama e = [201].

2.2 Monolithic linear systems

The following sections summarize some of the theory for linear time-invariant
systems that will be needed in the following chapters. We primarily work with
continuous-time systems, but some examples and simulations use the discrete-
time equivalent. Here we consider the class of all linear systems of the form

=
—~

~+
~

Il

Az (t) + Bu(t), 2.1

with state space X, input space U and output space Y, and with initial state
x(0) = zg. If the input trajectory u : [0,t] — U is a piecewise-continuous function
then the integral on the right hand side of (2.2) is well-defined as a Riemann
integral, and the state z(¢) at time ¢ is then given by

t
z(t) = e +/ A7) Bu(r)dr. (2.2)
0
The output y(t) is given by

it
y(t) = Ca(t) = Cetlag +/ CeA") Bu(r)dr.
0
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Taking the Laplace transform, we get the input-output relation
9(s) = G(s)i(s), s € C

in the frequency domain, with transfer function

G(s)=C(sI - A)'B.

The transfer function is a rational matrix function, which characterizes the input-
output behavior of a continuous-time linear system without the need of a state
variable, and hence independently of the choice of the state space and its basis.

2.3 Controllability and observability

For linear systems, the concepts of reachability and controllability are defined as
follows (see e.g. [63]):

A state T ¢ X is called reachable (from the initial state =y = 0) if there
exists a finite terminal time ¢ < co and a piecewise-continuous in-
put trajectory w : [0,7] — U such that the state trajectory of the
linear system with x( = 0 satisfies 2:(¢) = Z. The set of all reach-
able states will be denoted by 9. A linear system (or, equivalently,
the matrix pair (4, B)) is called controllable if X = fR.

The reachable set 9 is the smallest A-invariant subspace of X containing im 5,
see [63, 72]. This subspace is unique, and is given by

M=im [B AB A2B ... A"'B], (2.3)

where n is the state space dimension dim X. The matrix [B AB ... A" 'B]|
is called the controllability matrix. Observe that 9} is an A-invariant subspace by
the Cayley-Hamilton theorem.

From these properties, we can derive the Kalman controllability decomposi-
tion (see e.g. [21]): Let X; = R, and choose for X, any complement of X; in X,
then with respect to the decomposition X = X;+X» the system has the form

i(t) = {Agl ﬁ;ﬂ 2(t) + ﬁl} u(t),

y(t) = [Cl Cg] (E(t)

(2.4)

The matrix pair (A;1, B1) is a controllable pair.

13
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We call a matrix M € R™*" exponentially stable if its spectrum lies in the open
left half plane, i.e. if o(M) c C. = {z € C | Re(z) < 0}. The related concept of
stabilizability is then defined as follows:

A linear system (or, equivalently, the matrix pair (A, B)) is called sta-
bilizable if there exists a linear state feedback F' € R™*" such that
the closed-loop system i(t) = (A + BF)x(t), obtained by applying
the input u(t) = Fz(t), is stable.

Stabilizability is equivalent to the matrix Ay in (2.4) being a stable matrix. The
exponential of a stable matrix is bounded in norm by a negative scalar exponen-
tial, i.e.

M stable = Ja >0,ceRst. ||| <ce VteR.

Applying the stabilizing state feedback u(-) = Fx(-) leads to the closed-loop state

trajectory z(t) = e+ Bty satisfying

o (@) = e B, | < [|etA B o)l < ce o)

Hence the closed-loop state trajectory goes to zero exponentially for t — oo.

The concepts of indistinguishability and observability are typically defined as
follows (see e.g. [63]):

A pair (Z,Z) of states in X is called indistinguishable if the outputs
g(t) and y(t), generated by the linear system with input trajectory
u = 0 and initial conditions zy = Z and zy = Z, respectively, have
g(t) = y(t) for all t € [0,00). The set of all states Z ¢ X such
that (z,0) is indistinguishable will be called J. A linear system
(or, equivalently, the matrix pair (C, A)) is called observable if J =
{0}

Note that for linear systems, the pair (z, ) is indistinguishable if and only if
the pair (z - 7, 0) is indistinguishable. Hence, when studying the observability
properties of linear systems, we can restrict attention to pairs of the form (z, 0).
In the following, and with some abuse of notation, a state £ ¢ X will be called in-
distinguishable if the pair (z, 0) is indistinguishable in the sense defined above.

The set of indistinguishable states J is the largest A-invariant subspace of X
contained in ker C, see [63, 72]. This subspace is unique, and is given by

C
CA

J—ker | CA4% |, 2.5)

CAn—l
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C
CA
with n = dim X. The matrix . is called the observability matrix. A-
CA™!

invariance of J again follows from the Cayley-Hamilton theorem.

The A-invariance property leads to the Kalman observability decomposition
(see e.g. [21]): Let X3 = T and choose for X; any complement of X, in X, then
with respect to the decomposition X = X;+X5, the system has the form

. A 0 By
&) = {A; A22} () + {BJ u(®), (2.6)
yt)=[C1 0 Jax(t).

The pair (C1, A11) is an observable pair.
In analogy to stabilizability, the concept of detectability is defined as follows:

A linear system (or, equivalently, the matrix pair (C, A)) is called de-
tectable if there exists a linear state observer matrix K € R™? such
that the system describing the observer error é(t) = (A — KC)e(t)
is stable.

Detectability is equivalent to the matrix Ay in (2.6) being a stable matrix.

24 LQ optimal control

We consider unstructured linear time-invariant deterministic systems. The
infinite-horizon, undiscounted linear-quadratic (LQ) control problem is given by

min J(xo,u(+)), (2.7)

u(-) piecewise continuous

with cost function

Toul) = [ OQul0) + T ORu() dr 28)

to
subject to the system dynamics
z(t) = Ax(t) + Bu(t), z(to) = zo. (2.9)

If @ > 0and R > 0 then the problem is a well-defined minimization problem, i.e.
there exists a piecewise continuous u(-) such that the minimum is attained.

15



16

Chapter 2: Prerequisites

In other words, our control objective in LQ optimal control is to minimize a
quadratic cost function, representing a trade-off: The cost function penalizes the
weighted norm of the state trajectory on the one hand, and the weighted norm of
the control effort on the other hand.

The solution of this problem is well-known (see e.g. [63]): If (A, B) is a stabi-
lizable pair and (@), A) is a detectable pair then the algebraic Riccati equation

XBR'BTX -ATX - XA-Q=0 (2.10)

has a unique solution X such that A - BR !BTX is stable. This solution X is
also the largest positive semidefinite solution. The optimal control law is then
the state feedback u(-) = Gz(-), where G = - R BT X. The closed-loop system is
given by

i(t) = (A+ BG)x(t) = (A- BR'BTX)x(t),

with A - BR™' BT X stable by the choice of X. The corresponding cost is given by
J(xo, Gz (")) = at Xxo. (2.11)

The control law u(-) = Gz(-) derived above has the following properties:

o the optimal input trajectory is a linear state feedback, i.e. it is of the form
u(t) = Gx(t) where G is a matrix and z(t) is the current state,

o the feedback matrix G is independent of the initial state x,

o the entries of G, and also the corresponding cost J(zo, Gz(-)), can be com-
puted offline.

In Chapter 6, we will derive the corresponding results for the case of coordinated
linear systems, and compare the properties of the coordination control law with
the properties given here.

2.4.1 Relation between costs and control laws

The following result quantifies the relative cost increase caused by using other
state feedbacks than the optimal one, and will be useful in Chapter 6, when we
restrict the set of admissible feedback matrices to those respecting the underlying
information structure.

This theorem is a slight variation of Lemma 16.3.2 in [33], and a proof is given
for convenience:

2.4.1. Theorem. We consider a system of the form (2.9) and the optimal control problem
(2.7), with cost function (2.8). We assume that Q > 0, R > 0, (A, B) is a stabilizable
pair, and (Q, A) is a detectable pair. Let X be the stabilizing solution of (2.10), and let
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G = —~R'BT X. For any other stabilizing state feedback matrix F the difference in cost
is given by

J (2o, F(-)) — J (w0, Gx(-)) = / |RV2(F — G)etA BP gy |2t
0

Proof. We have J(zg, Gz(+)) = zd Xx¢. The cost corresponding to any other sta-
bilizing feedback F is given by the solution Y of the Lyapunov equation

(A+ BR)'Y +Y(A+BF)+ FTRF+Q =0

For this choice of Y, and noting that lim;_, e(A+BE)t — () we have

J(xo, Fz(-)) = /000 z(t)T(Q + FTRF)x(t) dt

= /OO —z(t)T((A+BF)'Y +Y(A + BF))x(t) dt

a7 /Oo _% (e(A+BF)TtYe(A+BF)t> dt 7o
0

_— (_ e(A+BF)TtY€(A+BF)t‘

+ €(A+BF)TtY€(A+BF)t’ ) o — ang.CL‘O

t—o0 t=0

In the following, we derive a Lyapunov equation for the difference Y — X of the
costs, using the Riccati equation for X and the Lyapunov equation for Y
(A+BF)T(Y - X)+ (Y - X)(A+ BF)
= FTRF-Q-ATX -FTBTX - XA - XBF
= -F'RF-XBR'B"X - F"B"X - XBF
= (F+R'B"X)"R(F + R"'BTX)
= (F-G)"R(F-@Q).

Using this, we can now derive an expression for the cost difference:

J(xo, Fx()) - J(x0,Gx(+)) = xg(Y - X))z

JL,OT/ d (e(A+BF)Tt(Y B X)e(A+BF)t> dt o
0

dt

o7 /0 (AEITHA S BE)Y - X) 4 (Y - X)(A+ BE)W PO dt g

17
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= xg/o (e(AJrBF)Tt(F - G)TR(F - G)e(A*BF)t) dt xq

= [ IRE - Gper (o),
0

where () is the state trajectory of the closed-loop system obtained from apply-
ing the feedback Fz(-),i.e. xp(t) = e(A+ BNty O

From the theorem above we see that the difference in cost between the optimal
solution and another stabilizing solution can be described in terms of the corre-
sponding feedback matrices. If no special restrictions are imposed on the feed-
back F considered here, then minimizing 2 (Y — X)z trivially leads to F = G,
withY = X.

However, in decentralized control it is often necessary, or preferable, that F
complies with the underlying information structure of the system. Our result
above states that for any non-empty subset § ¢ {F ¢ R"™"|¢(A+ BF) c C },
the problem

inf 2l Vo
Fe¥

has a solution (if the unrestricted problem has a solution, i.e. if X exists), and this
solution can be found by solving

FeF

inf/ IRY2(F - G)ap ()|,
0

or equivalently

inf /OO |RY2(F — G)etABE) g |2 dt.
Fe§F 0



Coordinated Linear Systems

An intuitive description of coordinated linear systems was given in Section 1.1.
In the following, coordinated linear systems will be defined, and several of their
basic properties will be discussed.

3.1 Definition

For the purposes of this thesis, and in contrast to [48], we define coordinated lin-
ear systems with inputs and outputs in terms of independence and invariance
properties of the state, input and output spaces. This geometric approach to lin-
ear systems was developed in [72].

3.1.1. Definition. Let a continuous-time, time-invariant linear system with in-
puts and outputs, of the form

#(t) = Ax(t) + Bu(t),
y(t) = Ca(t)

be given. Moreover, let the state space, input space and output space of the sys-
tem be decomposed as

X = X1+ X0+ X, U=U1+Uz+Uc. and YV = Y1 +Yo+Ye.
Then we call the system a coordinated linear system if we have that
(1) X; and X, are A-invariant,’
(2) BU; ¢ X; and BUs € X,
(3) and CX; cY; and C X5 C Y.

In this definition, the subspaces X., U. and Y, are the state, input and output
spaces of the coordinator system, the subspaces X;, U; and Y; correspond to
subsystem 1, and the subspaces X5, U, and Y5 correspond to subsystem 2. Con-
ditions (1), (2) and (3) in Definition 3.1.1 imply that the state and input of each
subsystem have no influence on the states or the outputs of the coordinator or
the other subsystem.

With respect to the decompositions X = X;+Xs+X., U = U;+Us+U. and
Y =Y1+Y5+Y,, the system is then of the form

I
INote that we use X to denote both the space X; and the subspace |:0:| X1 € X (see Section 2.1).
0
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(A1 0 Ap] Bipn 0 Bie
1‘(t) = 0 AQQ AQC :L‘(t) + 0 BQQ Bgc u(t),
0 0 A 0 0 Bee
- - (3.1)
Cii 0 Ci
y(t) = 0 022 CQC x(t)
0 0 Cu

The structure of the system matrices in (3.1) follows directly from Conditions (1),
(2) and (3) in Definition 3.1.1. Note that, with the trivial choices

Xy = {O}a Xo = {O}a X = Xa
Ul = {0}5 U2 = {0}7 Uc - U7
Yl = {O}a YQ = {0}7 ch = Y7

any linear system qualifies as a coordinated linear system.
The interconnections between the different variables of a coordinated linear
system are illustrated in Figure 3.1.

@
N

Qmsn @

x1 |
v N

O, ®

Figure 3.1: A coordinated linear system with inputs and outputs

N
<
KN /3

M><

In this figure, we recognize the strict top-to-bottom information structure de-
scribed in Section 1.1.

For the special case of linear systems without inputs and outputs, we give
an alternative formulation of Condition (1) of Definition 3.1.1, in terms of projec-
tions. This leads to a more constructive description of all possible coordinated
linear system representations of a given linear system without inputs and out-
puts, in terms of systems of quadratic matrix equations. A linearmap P : X — X
is called a projection if P? = P (see e.g. [12]). Using the relation between projec-
tions and invariant subspaces (see [12, 72]), we can state the following result:
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3.1.2. Proposition. For the projections P, : X — X and P, : X — X, the linear
subspaces X1 = P X and Xy = P, X of X are independent and satisfy Condition (1) of
Definition 3.1.1, if and only if P, and P» satisfy

PLAP, = AP, P,AP, = AP, (3.2)
PP, =0, P,P, = 0. (3.3)

Proof. This follows directly from the fact that a subspace S of X is A-invariant if
and only if PAP = AP for some (and equivalently, any) projector P : X — X
with im P = S. Condition (3.3) is equivalent to

X,NX, =P XNPX ={0}. 0

Extending Proposition 3.1.2 to linear systems with inputs and outputs is con-
ceptually straightforward but notationally more involved.

3.2 Basic properties
The set of matrices

My 0 M.
Rcis = 0 My M|, My e R"" ™ 4,5 =1,2,¢
0 0 M..

forms an invertible algebraic ring (i.e. it is closed with respect to taking linear
combinations, matrix multiplication, and matrix inversion):
linear combinations:

A 0 Aqe Bii 0 By aAn+6Bn 0 aAi.+BB.
a| 0 Ay Ax|+8| 0 B By| = 0 Ao+ By aAac+BDBac
0 0 A 0 0 B 0 0 QAce+BBee

matrix multiplication:

A 0 Al B 0 By AnBn 0 A11Bic + A1cBee
0 Ay Ase 0 Bay By | = 0 AgoBoy AzaBo. + Aoe B
0 0 A. 0 0 Bee 0 0 A.cBee
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matrix inversion: Suppose M e Rcis is invertible, then M1, Maa, M. are invert-
ible because M is block upper-triangular. M~ is given by

My} 0 My My M.}
M'=|0 My *M§21M21cM5c1 € Rcrs
0 0 M

In particular, eM is of the form

M11 0 Mlc eMll 0 *1e
exp 0 M22 MQC = 0 €M22 *2¢ s (34)
0 0 M 0 0 eMe

where the entries denoted by * are not specified further. Hence the informa-
tion structure imposed by the invariance properties of Definition 3.1.1 is left un-
changed over time by the system dynamics.

A natural consequence of this invariance property is that the transfer function
is of the form

G(z)=C(zI-A)'B

Cy1(2I - A1) ' Biy 0 *1c
= 0 Cao(2I — Azs) ™' Boo *2¢ ;
0 0 Ccc(ZI - Acc)ichc

where
*ie = Cyi(2] - Aii)ilBic +(Cic — Cis(2I - Aii)ilAic)(ZI - Acc)ichc'

Note that the diagonal entries of the linear combination, product and inverse
are just the linear combination, product and inverse of the corresponding diago-
nal entries of the original matrices, respectively. This means that these operations
also preserve the structure of matrices corresponding to more nested hierarchies:
If A € Rcrs with a diagonal entry A;; € Rcys, then operations as above will yield
matrices in Rcrs with the ii-th entry again in Reys.

Hence coordinated linear systems can act as building blocks for constructing
linear systems with a more complex hierarchical structure: An extension to an
arbitrary number of subsystems is straightforward, and nested hierarchies can be
modeled by using another coordinated linear system as one of the subsystems
of a coordinated linear system. Hierarchical systems that are modeled by such a
combination of coordinated linear systems can again be shown to have an infor-
mation structure that is invariant with respect to the system dynamics. Two of
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these extensions are illustrated below:

Add a third subsystem:
1 A O 0 Aic| |z Bii 0 0 B |w
$'2 . 0 A22 0 AQC 2 0 Bzz 0 BQC u2
@3] | 0 0 Ass As.| |@s| 7| 0 0 Bss Bs| |us
T 0 o0 0 Al |ze 0 0 0 Be| | ue
Add another level:
&g Aji; 0 Az 0 A | [z Bz 0 Bj; 0 Bi.| |ug
&3 0 Ass As; 0 As | |3 0 Bj3; Bs; 0 Bs.| |uz
Tz| = 0 0 Az O Ze xz| +| O 0 Bz 0 Bz Us
.’tz 0 0 0 A22 AQC T2 0 0 0 BQQ BQC u2
Te 0 0 0 0 A. Te 0 0 0 0 Bee Ue

It is also possible to decompose the state space X; of subsystem 1 into
X;+X5+X:z but leave the input space U; unchanged — in the second example
Bi;
above, this would correspond to U; = Uz and By; = | Bs; | .
Bgz

3.3 Related distributed systems

In the following, several related classes of systems are described. For a more
complete overview of different classes of hierarchical systems, see [10, 57, 67].

Leader-follower systems

This type of systems (strongly related to the concept of Stackelberg games in eco-
nomics, see [17, 68]) is the most basic example of a hierarchical system, with one
leader system on the higher level and one follower system on the lower level. De-
centralized control synthesis for this class of systems was discussed in e.g. [61].
For the purposes of this thesis, we define leader-follower systems to be linear
time-invariant systems with a representation of the form

R ot R ] R P B

In compliance with our notation for coordinated systems, the subscript s stands
for ‘subsystem’, and ¢ stands for ‘coordinator’.

23
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Note that coordinated linear systems are a special type of leader-follower sys-
tems, with A,, = {Aél AOzJ and B,, = [3011 BOQZ] (or, equivalently, leader-
follower systems are a special type of coordinated linear systems, with only one
subsystem). For notational simplicity, some of the theory about LQ optimal con-
trol in Chapter 6 will first be developed for leader-follower systems, and then
extended to coordinated linear systems.

Poset-causal systems

The class of poset-causal systems, introduced and analyzed in [54-56], consists
of all distributed linear systems for which the underlying information structure
is invariant under the system dynamics, i.e. for which the set of corresponding
system matrices forms an algebraic ring. This class is characterized by partial
orderings on the set of subsystems (i.e. subsystem, < subsystem, if subsystem,,
influences subsystem, ), and includes all hierarchical systems that can be formed
by composing coordinated linear systems, as described in Section 3.2.

When viewing the underlying information structure of a decentralized system
as a graph, the poset-condition imposed on this class of systems can be restated
as follows:

o The information structure has no loops (this corresponds to the antisymme-
try property of partial orderings),

e and wherever there is a path, there is also a link (this corresponds to the
transitivity property).

The condition that there should be no loops is crucial for decentralized control
synthesis: Any system of this class can be written in such a way that the system
matrices are block upper-triangular (by arranging the subsystems according to
the partial ordering), and hence eigenvalue assignment problems for the global
system can easily be reduced to their local counterparts (see Section 5.2.3.2).

Research on decentralized control for this class of systems has focused on us-
ing the partial ordering among the subsystems to determine which observers to
include in which location for control purposes, an approach complementary to
the one used in this thesis.

Coordinated Gaussian systems

Coordinated linear systems are straightforwardly extended to include Gaussian
noise terms (see [41, 67]): In the discrete-time formulation, coordinated Gaussian
systems are defined to have a state space representation of the form
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T (t + 1) All 0 Alc xl(t) Bll 0 Blc ul(t)
T2 (t + 1) = 0 A22 AQC T2 (t) + 0 BQQ BQC U2 (t)
Te(t+1) 0 0 Al |z(t) 0 0 Bl |uc(t)

M1 1 0 Mlc U1 (t)
+ 0 M22 MQC V2 (t) s
0 0 M| |ve(t)

Y1 (t + 1) 011 0 Clc $1<t) N11 0 Nlc V1 (t)
Y2 (t + 1) = 0 022 CQC X2 (t) + 0 N22 Ngc V2 (t) s
Ye(t +1) 0 0 Ce |ze(t) 0 0 Nl |ve(t)

with vy, vg, v, Gaussian white noises. An LQG (linear-quadratic Gaussian) con-
trol problem, minimizing the infinite-horizon average cost for coordinated Gaus-
sian systems, is discussed in [41], and shows many similarities with the theory in
Chapter 6.

Coordinated discrete-event systems

Coordinated discrete-event systems, i.e. distributed discrete-event systems with
several subsystems and a coordinator, have been studied in [27-29]. The theory
of coordinated supervisory control for this class of systems shows some similar-
ities with coordinated linear systems. A case study involving a paint factory is
described in [4].

Systems with several dynamic controllers

If we take the transposes of all system matrices in a coordinated linear system, we
get one lower-level subsystem (corresponding to the original coordinator) with
two higher-level coordinators (corresponding to the original subsystems)?. The
higher-level systems can be thought of as two dynamic controllers. The two con-
trollers cannot interact with each other, just like the subsystems in the original
system were independent of each other.

This class of systems is related to team theory in economics (see [45]): In team
decision problems, several agents have different partial observations of the same
system, and make control decisions based on a common control objective (the
common objective distinguishes team theory from the broader field of game the-
ory). The overall performance of the agents in team decision problems can often
be improved by allowing for communication among the agents (see e.g. [49] and
the references therein). A concrete example of how the global performance can

2Transposing all system matrices is equivalent to reversing the causality relation among the differ-
ent subsystems, i.e. all arrows in the underlying information structure switch directions.
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be improved by including communication among the controllers on a nearest-
neighbor basis is discussed in [39], where different local voltage controllers jointly
try to keep the voltage in a large-scale power network within the safety limits.

Mammillary systems

In mammillary systems, different subsystems have bidirectional interconnections
with a joint coordinator, but are otherwise independent of each other. This type
of interconnection is common in compartmental systems observed in biological
applications (see [18]), and in particular is it used to model the role of the blood
in mammals as a coordinating agent among the organs. Gaussian mammillary
systems are of the form

j,‘l All - 0 Alc T Bll ... 0 0 (5%
— ' : "

x? 0 A€9 ASC '/I;S O B?‘? 0 u@
Te Acl Acs Acc Tc 0 0 Bcc Uc

M11 . 0 0 (%1

I o
0o --- Mss 0 Vs
0 -+ 0 M| |ve
with vy, ..., vs, v. Gaussian white noises. The main difference to coordinated

systems is that feedback from each subsystem to the coordinator is allowed (i.e.
Ag; # 0) — this destroys the ring structure of the system matrices, and hence the
invariance of the information structure under the system dynamics.

Nearest-neighbor systems

The class of nearest-neighbor systems arises naturally from applications with spa-
tially distributed networks of systems, by imposing that each system communi-
cates only with its nearest neighbors. In the special case of linear systems in a
string formation, i.e. each system has one neighbor to its left and one to its right,
this leads to linear system representations with tri-diagonal system matrices, of
the form
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T _All A12 o --- 0 0 0 17T T i
T Ajg Agp Ass --- 0 0 0 T
ig 0 A32 A33 cee 0 0 0 I3
i'n—2 0 0 0 e An—2,n—2 An—2,n—1 0 Tn-2
j?n—l 0 0 0 .- An—2,n—1 An—l,n—l An—l,n Tn-1
a0 0 0 - 0 Apaa Aun | |
_Bll 0 0o --- 0 0 0 1T (751 i
0 B22 0 0 0 0 U2
0 0 Bsz --- 0 0 0 us
I : E : .
0 0 0 ---Bpona 0 0 | |un o
0 0 0 e 0 Bn—l,n—l 0 Un-1
0 0 0 -~ 0 0  Banl [ un |

The controllability properties of the class of systems with nearest-neighbor
interconnections have been studied in the case of one leader/controller (see [62]
and [37]), using graph theory to describe properties of the interconnection struc-
ture. The work was extended to allow for several leaders/controllers (see [46]
and [44]). A common result is that connectivity in general, and cyclic intercon-
nections in particular, seem to destroy the controllability of the network — a result
in favor of hierarchical interconnection structures.
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Construction and Minimality

This chapter deals with the construction and minimality of coordinated linear
systems. Construction procedures are given to transform unstructured or inter-
connected systems into coordinated linear systems. Several concepts of minimal-
ity for coordinated linear systems are suggested and characterized. A few results
of this chapter were published in [23].

4.1 Construction from interconnected systems

Suppose we are given an interconnected system, consisting of two linear systems
and linear interconnection relations, of the form

1 = Anxry + Briug + Brazo, $2 = Agexa + Bagug + By 2,
y1 = Cniw1 + Diyug + Di2za, Yo = Cooxa + Dogug + Doy 21, 4.1)

21 = Pzt + Quiug, 2o = Paoxa + Qaous.

The variables z; and z; connect systems 1 and 2, as illustrated in Figure 4.1.

U — . —> Y1
1
>
29 21
<
x2
Y2 €— [€— U2

Figure 4.1: An interconnected system with inputs and outputs

Equations (4.1) can be combined to describe the dynamics of the overall state

x = [zl] of the interconnected system,
2

4.2)
ok

Y2 T2
with the state, input and output spaces given by X = X;+X,, U = U;+U; and
Y =Y1+Y,, and with A4, B, C and D given by
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A— [ An 312P22] . B= [ By 312Q22]

By Py Az B21Q11 By 43)
- [ Cn D12P22] D_ [ Dy D12Q22} '
Dy Py Coy | Do1Qn1 Dy |-

The problem we consider in this section is how to transform an interconnected
system of the form (4.2) into a coordinated linear system. In order to achieve
this, the part of system 1 which influences system 2 via z; will have to be in the
coordinator, and the same holds for system 2.

In other words, we want to decompose the state, input and output space of
the interconnected system into three parts each, forming a coordinated linear sys-
tem. The new subsystem spaces will be denoted by X;\., Ui\., Yi\¢, @ = 1,2, the
subscript i\c indicating that part of the original system has been moved to the
coordinator. The new decomposition should respect the original one, in the sense
that the original system 1 will be part of the new subsystem 1\c and the coordi-
nator, but not of subsystem 2\ ¢, and vice versa.

4.1.1 Simple case without inputs and outputs

We first give a procedure for the construction of a coordinated linear system for
the special case of an interconnected system without inputs and outputs. The
principle of the procedure is that each of the subsystems undergoes a state space
transformation, such that only part of the subsystem is observable to the other
subsystem.

4.1.1. Procedure. Construction of a coordinated linear system from an interconnected
system, without inputs and outputs.

Consider a linear system consisting of the interconnection of two subsystems,
with representation

-1 21E8) B[

Zo(t) Agr Ao | |z2(t)|7 |z2(to) Zoz2| "

(1) Apply a state space transformation such that the matrix pairs (As1, A11) and
(A1, Ags) are transformed to the Kalman observable form,

xtfbs(t) A11711 0 A12,11 0 x({bs(t)
x'imobs(t) A11721 A11’22 A12721 0 JUlanbs(t)

':Cgbs(t) A21,11 0 A22711 0 Igbs(t)
l'.tzmobs (t) Az 21 0 Az 01 Aso oo JUtzmobs (t)
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corresponding to the decompositions X; = XSiXinobs and X, =
X obs i X unobs
2 2
(2) Define the subsystem state spaces X1\, = X{"" and X5, = X§" and

the coordinator state space X, = X{P1 XS, This results in the coordinated
linear system

4ynobs (1) Ai1,22 0 Aii21 Az z}nobs(¢)

ymobs () _ 0 Ago0o | Aai 21 Azooi xinobs ()
9P (t) 0 0 A Az x9S (t)
9Ps(t) 0 0 Ao 11 Asa11 x9S (t)

with state space X = X\ +Xo\ o+ Xe.

Note that the unobservable parts of the interconnection of the two original
subsystems now form the local subsystems while the observable parts of the two
original subsystems form the coordinator.

This construction is possible for any interconnected system — the dimensions
of the new state spaces however depend on the ‘interconnectedness’ of the sys-
tem, and several may be zero.

4.1.2 General case with inputs and outputs

The problem of finding a coordinated linear system representation for an inter-
connected system with inputs and outputs can be stated as follows:

4.1.2. Problem. Given an interconnected system of the form (4.2), with state space
X = X +Xo, input space U = U;+U; and output space ¥ = Y;+Y3, find all
decompositions X = X\ +Xo\ 4+ X, U = Up\o+Us\+Uc and Y = Y7\ +Yo\ +Ye
such that the following properties hold:!

AX e € Xp\e, AXop\e € Xoye, (4.4)
BUp\ € X1\¢, BUa\ C X\, (4.5)
CXi\c €Y CXa\CYo, (4.6)
DUy\¢ € Yi\e, DUy C Yo, (4.7)
Xi\e € X1, Xo\e € Xo, (4.8)
Upn. c Uy, Ua\. € Us, 4.9)
Yie c ¥, Yo\c € Y. (4.10)

Properties (4.4)-(4.7) are equivalent to saying that, with respect to the decom-
positions X = X\ +Xo\+X¢, U = Up\+Up\+Uc and Y = Y7\ Y5\ +Ye, the

For possible ambiguities in our notation for linear subspaces, see Section 2.1.
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system is a coordinated linear system. Properties (4.8)-(4.10) are additional con-
straints on the possible decompositions of X, U and Y, particular to Problem
4.1.2: Since the interconnected system we start out with already has an inher-
ent decomposition into two subsystems, we require that this original structure
is preserved, in the sense that no part of the original system 1 will be moved to
subsystem 2 of the coordinated linear system, and no part of the original system
2 will be moved to subsystem 1.

With respect to the given decompositions X = X1+X,, U = U1+Uz and Y =
Y1+Y> of the state, input and output space of the interconnected system, we can
write the system as

i1 _ A Al o . Bi1 Bia| (w1
To Az1 Agxa| |2 By1 Bao| |u2]|’
[y1:| _ {011 012} {561} N {Du Du] [m]
Y2 Co1 Caz| |x2 Doy Doa| |uz]|”
For simplicity, this representation will be used in the rest of this section.

The following characterization of properties (4.4)-(4.10) will be useful in con-
structing a coordinated linear system from an interconnected system:

4.11)

4.1.3. Proposition. For a system of the form (4.11), properties (4.4)-(4.10) are equiva-
lent to the set of properties

Vi < Vi, (412)

X1\¢ 18 an Ayy-invariant subspace of ker {én} N Oy Yine, (4.13)
21

U\ C ker [gﬂ N BT XN DY, (4.14)

21

Yo\c € Yo, (4.15)

Xo\¢ 18 an Agg-invariant subspace of ker {éu} NCyY Yo\e, (4.16)
12

Ux\. C ker [g”} N Bys Xove N D33 Yo, (4.17)
12

where -—F denotes the preimage, i.e. Cl’lPYl\C ={z1 € X1 | Crimy € Y\ ).

Proof. First we show that (4.12)-(4.17) imply (4.4)-(4.10). Properties (4.4)-(4.10)
are only derived for subsystem 1, noting that the same holds for subsystem 2. By
(4.13), it follows that X\, € X; (since Cy; : X1 — Y1), s0 (4.8) holds. To see (4.4),
note that

All Alle c
AXl\c = |:A21:| ‘Xl\C = |: 0 \ < Xl\c-
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Similarly, (4.6) follows from

Cll Clle c
CX1\e = {021] X\ = [ 0 \ }

c Yl\c-

From (4.14) we derive that Uy\ . € U; (since By : Uy — X1), and hence (4.9) holds.
Properties (4.5) and (4.7) follow from

By B11Uy\¢
BUl\c = |:321:| le\C = [ 0 \ :| c Xl\c

and

Dy D11 U\
DUl\c = |:D21:| Ul\c = |: 0 \ :| C Yl\m

respectively. (4.10) is the same as (4.12).

Conversely, we need to show that (4.4)-(4.10) imply (4.12)-(4.17). To show
(4.13) we note that, since AX;\, ¢ X;\. € X; by (44) and (4.8), and C X\, <
Yi\e € Y1 by (4.6) and (4.10), we also have that

Ay
A Ao .
{C] Xi\e = Ch Xi\e € X14Y1.
Co1

From (4.4) and (4.6) it then also follows that [ém] X1\ = 0, and hence also
21

CriXne
0

A X1\e
AXl\c = |: 110 1\:| - Xl\c and CXl\c = |:
invariant and C11 X1\, C Y7\
(4.14) follows from a similar argument: We have BU;\. ¢ X\ € X; by (4.5)

and (4.8), and DU\ € Y7\ € Y1 by (4.7) and (4.10), but also U;\. € U; by (4.9), so

:| c S/i\ca i.e. Xl\c is Ai1-

Bll
B B .
|:D:| Ul\c = D?:ll Ul\c < X1+Y1;

Doy
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which gives le] Ui\ = 0. From this it follows that BU;\. = |:Bll([)]1\c:| and
21

DUy, = [DHOUl\C} , and together with (4.5) and (4.7) this gives By1Up\. € X1\,

and D11Up\¢ € Y7\
(4.15)-(4.17) follow from the same arguments for subsystem 2. ]

Using Proposition 4.1.3, the construction of a coordinated linear system from
the interconnected system (4.11) can now be done as follows:

For the construction of subsystem 1 of the coordinated linear system we first
choose an output space Y7\, C Y7. This space can be chosen freely. Given Y7\,
we can choose a state space X\, satisfying (4.13). Since the choice X;\. = {0}
satisfies (4.13), a valid state space X;\. always exists. Now, given Y7\, and X7\,
we can choose an input space Uy satisfying (4.14). Again, U\, = {0} is always
a valid choice.

Note that properties (4.15)-(4.17) for subsystem 2 are independent of the
choice of Xy\., Uy and Yj\.. This is due to the separation of the two subsys-
tems by properties (4.8)-(4.10), and does in general not hold for the construction
of a coordinated linear system from other classes of systems than the one consid-
ered here. Hence, in the setting of this section, we can choose the output space
Y5\., the state space X5\, and the input space Us\ . of subsystem 2 as we did for
subsystem 1.

Properties (4.12)-(4.17) contain no restrictions on the choice of the coordinator
spaces X., U. and Y.. Hence, given the state spaces, input spaces and output
spaces of the subsystems, we are free to choose any complements X., U. and Y,
such that X = X\ +Xo\+X¢, U = Up\+Up\+Uc. and Y = Y7\ Yo\ o+ Y.

The following proposition identifies one possible decomposition of the system
given in (4.11), according to Properties (4.12)-(4.17).

4.1.4. Proposition. In the notation of (4.11), the choice

le\c =Y, (418)

Xi\c = ker obsmat ([Azl} ,A11> , (4.19)
Co1

Ul\c = ker {521} N ker <obsmat (|:é§1:| ,A11> Bll) 5 (420)

Yo = Y, (4.21)

X\, = ker obsmat ([A”} ,A22> , (4.22)
Cr2

Uy = ker <[g1ﬂ> N ker <obsmat ({éi} ,A22> 322) (4.23)
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is a solution to Problem 4.1.2, with dim X, dim Y, and dim U, minimal.

Here, obsmat (C, A) refers to the observability matrix, i.e.

C

CA
obsmat (C, A) = ) )

CA'n’l
with n = dim X (see Section 2.3).

Proof. The choices Y1\, = Y7 and Y3\, = Y5 satisfy (4.12) and (4.15) and maximize
dim Yy, + dim Y3\, thus minimizing dim Y... With these output spaces we have
CifYie = X1, Cy3 Yoo = Xo, Dif Y1\ = Uy and D;3Ys. = Us, and hence
these choices also lead to the least restrictive conditions in (4.13), (4.14), (4.16)
and (4.17).

Recall from Section 2.3 that the indistinguishable subspace

Boy
ker obsmat A
€er obsma (l:D21:| s 11)

. . . . B
is the largest A;;-invariant subspace in ker [ 21] , and thus the largest subspace

Doy
satisfying (4.13). The same holds for X3\ . as given in (4.22), and hence dim X, =
dim X — dim (X 1\C+X2\C) is minimal. Again, choosing the largest possible X,
and X3\, automatically leads to the least restrictive conditions (4.14) and (4.17)
on Uy, and Uy

For the choice of U;\ . given in (4.20), we note that

ker 0bsmat< Bxn ,A11 | B1h :Bl’fkerobsmat B ,AH)
Do,y Dy,

= BIIPXI\G

and hence U\ is the maximal subspace of U; satisfying (4.14). The same holds
for Uy, as given in (4.23), and hence dim U, = dim U — dim (U +Us\ ) is mini-
mal. |

If we use the subsystem spaces given in Proposition 4.1.4, and if we choose
for X;. a complement of X\, in Xy, for U;. a complement of U\ in Uy, and do
the same for Xy, and Uy, then X, = Xi.+Xs. is a coordinator state space, and
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Ue. = Uic+Usc is a coordinator input space. With this choice, (4.11) yields the
state-space representation

‘:kl\c A%% A%% 0 A%% L]cl\c B%% B%% 0 B%g i _ul\c T
G 0 42| 0 A% || 2w 0 Bif| 0 Bff || wi
= —+ ,
T\ 0 A3 | A3 AR || za\e 0 B | By By || ua
B0 0 A2 | 0 AZ || 2o 0 BZ| 0 BZ || ua
T1\e _ul\c 1
{ () ] — { Ch 0121 01 0122 } Tle J{ Dy D§1 01 Diz Y1e
Y2 0 O35 | Oy O3 To\c 0 D3 | Dy D3 I ug\e ’
T2 L U2¢ |

which, after rearranging the blocks according to X = X\ +Xo\+X,, U =
Un\e+Up\ +U: and Y = Y7\ +Y3\ +Ye, becomes

ine | [AH] 0 AT A ([2ne ] [ Bit ]| 0 | Bif Bl ([ une ]
Fave || O [ A | AR AR | oae || O | By | Bif B3 || uxe
Tie 0 0 | A32 A% Tic 0 0 | B B% Ule
i | L O 0 | A3 A23 || 2 | | O 0 | B3 B% || uze
i xl\c ) ul\c )
Y1 _ 6111 ‘ 0 0121 C122 To\c N D%l 0 D%l D%2 Ug\c
y2 | L O . Cy | C3 C3, ZT1e | 0 | Dy, | D3 D3, | Ule
L T2¢ h U2¢ i

The coordinator spaces X. and U, are still free to choose (except that they
have to be complements of the subsystem spaces). A good choice for X, and U,
would be one that minimizes the amount of communication necessary from the
coordinator to the subsystems — this will be formalized in Section 4.3.

4.2 Decompositions of monolithic linear systems
This section discusses how to find coordinated linear system decompositions for

a given monolithic linear system.

4.21 Problem formulation
We first give a formal description of the problem considered in this section:
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4.2.1. Problem. Consider the monolithic linear system

& = Ax + Bu,
(4.24)
y=Cuz,

with state space X = R”, input space U = R™, output space Y = R? and initial
state zo € X. Find the number s € N of subsystems, and decompositions

X = Xpoh oo E X o X,
U=Upet... iUn AU,

such thatforall j =1,...,s:

When dealing with linear systems, one usually assumes that B has full col-
umn rank and C has full row rank. This assumption is natural for monolithic
linear systems:

o If B is not of full column rank then the input space U can be reduced with-
out changing the controllability properties of the system.

o If C is not of full row rank then the output space Y can be reduced without
changing the observability properties of the system.

For decentralized systems, these assumptions are not useful: For example, the
state of a subsystem may be controllable both via its local input or via the co-
ordinator input, so if we were to restrict attention to the usual concept of con-
trollability then one of these inputs is irrelevant to the system. However, for local
controllability it is important that the subsystem is controllable via the local input,
and for coordinator controllability it is important that the subsystem is control-
lable via the coordinator input (these concepts will be defined and discussed in
Chapter 5). Even though both inputs can control the same part of the state, their
different locations in the decentralized system distinguish them, and (in general)
neither of them should be removed from the system.

Similarly, different outputs in a decentralized system may have different roles
in the system even though they both observe the same part of the state: If a sub-
system output and a coordinator output both observe the same part of the coordi-
nator state, then this state information is available both locally and remotely, and
hence both the coordinator itself and the subsystem observing this part can use

2Note that such a decomposition always exists: The (trivial) decomposition X = X, Y =Y,
U = U, satisfies these conditions.
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this information for control purposes, without the coordinator having to commu-
nicate its observations.

The difference between Problem 4.2.1 and Problem 4.1.2 from the previous section
is that no a priori decomposition of the original system into two parts is given,
i.e. conditions (4.8)-(4.10) are dropped from the problem. These conditions sepa-
rated the overall decomposition problem into two independent subproblems (i.e.
each original subsystem has to be separated into a local part and a coordinator
part). Dropping these conditions means that we have more freedom in choosing
our decompositions, but also that we lose the independence property of the dif-
ferent subproblems. In fact, part of Problem 4.2.1 is to first identify the different
subproblems — this also means that choosing the number of subsystems s is part
of the problem.

Our approach in the following is to first decompose the state space X into sev-
eral subsystems according to the invariance properties of A, and then applying a
result similar to Proposition 4.1.3.

4.2.2 Systems without inputs and outputs
The first problem we need to consider is how to split the monolithic system into
different subsystems, and how many subsystems to expect. An important prop-
erty of subsystems is that their state spaces should be A-invariant — this suggests
that we consider the Jordan normal form of A (see [40]):

There exists a decomposition®

X = X131 X0t ... 1 X,,

and let the transformed system be given by

jjl Jl 0 e 0 I
1‘2 0 JQ e 0 X9
Ts 0 0 - Js| |

where the J; are the different Jordan blocks. We notice that the Jordan normal
form of A naturally splits the system into s independent subsystems, one for
each Jordan block. This decomposition is ‘as decentralized as possible’, i.e. split-
ting any Jordan block into two subsystems will destroy the A-invariance of the
subsystem. Hence, to summarize, by taking the Jordan decomposition, we have

3If A is assumed to be non-derogatory then the number of different A-invariant spaces in X is
finite. In that case, the Jordan decomposition of X is unique up to reordering.
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found the number of subsystems s and the state spaces of the different subsys-
tems, and any further decomposition would lose the A-invariance property.

For systems without inputs and outputs, this is the most straightforward way
of splitting up a monolithic system into subsystems. Since we consider systems
with inputs and outputs, the condition AX; ¢ X is not the only one the state
space has to satisfy, and hence a further decomposition of the state space will be
necessary.

4.2.3 Systems with inputs and outputs

We first rewrite conditions (4.25) into a more constructive form, similar to condi-
tions (4.12)-(4.17) for interconnected systems:

4.2.2. Proposition. With i € {1,...,s}, there exist linearly independent subspaces
Xie € X, Upne € Uand Yy, €Y, such that (4.25) holds, if and only if there exist
Ki, K¢, Li, Le, Xive) Xe, Up\e, Ue, Yi\c and Y such that

Y =Yiot.. Y 4Ye, (4.26)
kerC = K1+... + K+ K, (4.27)
ker B=Li+...+Ls+Le, (4.28)
Forj=1,...,s, Xj\isan A-invariant subspace ofC”PYj\C with Xj\.Nker C ¢ Kj,

(4.29)
X is a complement of Xy\o+ ...+ X\ in X, (4.30)
Forj=1,...,s, Uj\ is a subspace ofB’PXj\C with Uy . Nker B C Ly, (4.31)
U. is a complement of Up\ o+ ... +Ug\c in U. (4.32)

Proof. Conditions (4.26)-(4.32) indeed lead to decompositions of X, U and Y: For
j#ke{l,...,s} wehave

XjeNXpe €O (Yo N Vi) = CP{0} = ker C,
but X;\. Nker C ¢ K; and hence X\, N X\, € K; N K = {0}. Similarly,
Upe NUp € B (Xj\.N Xp\) = B 7{0} = ker B,

but Uj\. Nker B ¢ L; and hence Uj\. N Up\. € L;j N L = {0}. For Y we have a
decomposition given in (4.26). In addition, (4.25) is clearly satisfied, by (4.29) and
(4.31).

Conversely, let decompositions of X, Y and U be given such that (4.25) holds.
Then (4.26), (4.30) and (4.32) are automatically satisfied. Observe that for i # j
we have

(Xine Nker C) N (X Nker C) = {0}.
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Hence there exists a decomposition (4.27) such that (4.29) holds. Likewise, since
for i # j we have
(Uine Nker B) N (Uj\. Nker B) = {0},

there exists a decomposition (4.28) such that (4.31) holds. (]

From Proposition 4.2.2, we can now read off a general procedure for the con-
struction of a coordinated linear system decomposition from a monolithic linear
system:

4.2.3. Procedure.

(1) Choose the number of subsystems s € N, and pick any decompositions
(4.26), (4.27) and (4.28) of Y, ker C' and ker B.

(2) Foreachj =1,...,s, pickacomplement M; of ker C'in C-* Y\, and choose
for X\, an A-invariant subspace of M;+K;.

(3) For each j = 1,...,s, pick a complement N; of ker B in B’PXj\C, and
choose for U}, . any subspace of N;+L;.

(4) Pick for X, and U, any complements of X\o+...+Xg.and Up\+. .. +Uq\
in X and U.

At each step of this procedure there are many choices involved, and it is not
clear from the procedure which choices would lead to "good" decompositions
(e.g. decompositions with X\, # {0} for all j = 1,...,s). The most restrictive
condition in Proposition 4.2.2 is the A-invariance of the state spaces X .: If A
is non-derogatory then this gives us only finitely many choices, and the chance
that we picked spaces Y. and Kj in step (1) in such a way that M;+K; contains
a non-trivial A-invariant space in step (2) is very small. Hence we approach
the problem differently: We first decompose X according to the Jordan normal
form of A, and then find decompositions of ¥ and U for this fixed state space
decomposition.

Given the decomposition X = X;+...+X; constructed in the previous sec-
tion, our system is of the form

Ztl J1 0 X1 B1
A EREE N S N
Tg 0 - Jg| |xs B,
(4.33)
1
y=[C Co |

Ts
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In the following, we will first consider the problem of finding appropriate output
space decompositions, and then we will give a procedure for finding the corre-
sponding input space decompositions, noting that by Proposition 4.2.2, the condi-
tions on possible input space decompositions depend on the choice of the output
space decomposition, but not vice versa: The characterization of Uj\. in (4.31)
depends on X ., which in turn depends on Y}, in (4.29). The characterization
of Y\, given in (4.26) is independent of the choices for X . and Uj..

4.2.3.1 Output space decompositions

We discuss the problem of finding output space decompositions for a given state
space decomposition:

4.2.4. Problem. Given a system of the form

i A - 0 A |2
Ts a 0 e Ass Asc Ts ’
i 0 v 0 Awl |z
‘ i (4.34)
Ty
Y= [ C'1 Cs Cc } >
Ts
_xc_

with state space X = X;+...+X;+X, and output space Y, find an output space
decomposition
Y =Yi+...4Y,4Y,

suchthat CX; cY;forj=1,...,s.

For a fixed state space decomposition, appropriate output space decomposi-
tions do not always exist:

4.2.5. Proposition. For the existence of an output space decomposition as described in
Problem 4.2.4, it is necessary and sufficient that

rank [C1 ... Ci] = Z rank Cj. (4.35)

j=1,...,s
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Proof. The condition CX; ¢ Y; can only be satisfied by a linearly independent
set Y1,...,Y; of local output spaces if the set of images {C'X;},_, _is linearly
independent. This is the case if and only if

rank [Cl CS} =dim C(X;+...+Xs) =dim (CX;1 +--- + CXy)
=dim CX; +---+dim CX, = Z rank Cj. ([l
Jj=1,..., s

If (4.35) holds then im C; Nim Cj, = {0} for j # k, and a decomposition of the
output space is straightforward:

4.2.6. Procedure.

(1) If (4.35) holds then we set Y; = im C; for j = 1,..., s and pick for Y, any
complement of Y+ ... +Y, in Y. The resulting decomposition

Y =Yi+.. . 4Y4Y,
satisfies CX; c Yj forallj =1,...,s.

(2) With respect to this decomposition, the system representation is

T Apr oo 00 Agel (1 Y1 Cin -+ 0 Cil|m
-'I.f‘s a 0 e Ass Asc Ts , Ys - 0 Css Csc Ts '
jjc 0 e 0 Acc Tc Ye 0 0 cc Lc

We now return to the general case (4.34) without the assumption (4.35), and
give a procedure to construct a decomposition of the output space and the state
space such that C X\, c Yj. holds.

4.2.7. Procedure.
(1) Output space decomposition:
(a) For each subsystem j =1,...,s we set
Y[ =im C;n > imG |,
k=1,...;s, k#j

and let Y; be any complement of Y} in im Cj.
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(b) With respect to the output space decomposition

where VP! is any complement of im [C}

Y=Y Y[ YD v | v,
j=1

then of the form

C,] inY, the system is

I Aiq 0 A [z
By | Ass A | |as|

L ic J L O ACC _‘rC_

[y ] C Cie] » -
yl .11 . .1 1
Ys = Css Csc

y" Crn Chs Co| |%e

ycpl O CCpl _l'c_

(2) State space decomposition:
(a) For each subsystem j = 1,...,s we find the observability decomposi-

tion of the pair (Crj, Aj;).
(b) With respect to the decomposition X; = X¥°P*1 X%, we then have

(Crj» Ajj) = ([0 oyl [ )

The overall system is given by

b N
)
Ajj

r :btlln;)bs B Atlulwbs Ayl\l ...... 0 0 Atllrcmbs r l.llmzbs B
+.0bs obs obs obs
9 0 All ...... 0 0 Alc 9
- unobs unobs unobs unobs

Ty X 0 0 |- - AL A; AT Ty .
obs 0 0 |- - 0  A%s | A%bs x9S

L. 1 | o o |- 0 0 | Ae | L @ |
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yl C??Obs Cflljs ...... 0 0
y. = 0 0 . . Cur'lobs O("bs
y" 0 C%'is ...... 0 er]l;s
prl O O ...... O O
(3) We now define
)?1 = Ximobs’ e jzs — X;mobs7 )'Zc _ Xlobs-i-. o

and

i\}1:}/'17 ceey YSZst }Q

N
> Y
Jj=1,...,s

r .unobs -
1’1 N
obs
Ty
Clc
CSC
n
CCC l.unobs
o b
obs
xS
L T
obs
+ X7+ X,
1y

With respect to this decomposition, the system is then a coordinated linear

system, of the form

r ;.unobs - [ Aunobs N bs ] unobs -
Ty AfY 0 An 0 A Iy
- unobs unobs unobs unobs
Ty B 0 e | A 0 S A A xy
- b)
9P 0 |-+ 0 [|Ag 0  Agbs agPs
+.0bs : i c.>bs .b c;bs
3 0 0 0 - A A% x$
L Tc d L 0 0 0 0 Acc ] Te i
:Eunobs b
1
r b r (yunobs obs | .. 7
C 0 C 0 C
Al 11 11 le
bs
x;mo
= 0 . Ounobs 0 . Cobs C
Ys EE} Ss sc xcl’bs
N b b al .
v O -] 0 Cay - CAF Cccl :
cp e [
LY _ L 0 0 0 0 ch i .,E(S)bs
Te |
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This procedure does not necessarily lead to a decomposition with a minimal
coordinator state space: Moving X ¢4 ... + X to the coordinator state space is
sufficient for satisfying (4.35), but may not be necessary.

4.2.3.2 Input space decompositions

The problem of finding appropriate input space decompositions for a given state
space decomposition will be discussed next:

4.2.8. Problem. Given a system of the form

1 Apn oo 00 A [ By
3 I N
j:s 0 Ass Asc Ts Bs
i 0 - 0 Al |z B.

with state space X = X;+...4+X;+X, and input space U, find an input space
decomposition
U=U+...+Us+U,

such that BU; ¢ X; forj =1,...,s*

This problem is straightforwardly solved by applying the following proce-
dure:

4.2.9. Procedure.

(1) Pick an arbitrary decomposition
ker B = UFe i ... UK iyker
of ker B.

(2) For each subsystem j =1,...,s, let U;pl be any complement of ker B in the

space
ﬂ ker By,.
k=1,...,s,c, k#j

(3) Now we set the subsystem input spaces to U; = Uy +U. ;pl. With U, any
complement of U; +. .. +U, in U, we now have

U=U+...+Us+U,,

and BU; = BUF* + BU" = BU" = B;U ¢ X;.

4Such an input space decomposition always exists: Take U = U.
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(4) With respect to this decomposition, the system is now of the form

T A - 0 Al T Bii -+ 0 Bif [wm
= e : o I - : o

Ts 0 ce Ass Asc Ts 0 <o+ Bgs Bge Us

Te 0 - 0 Al |z 0 ... 0 Bl |ue

with each subsystem input space U; satisfying BU; ¢ X;.

Note that the spaces U, ..., U, are indeed linearly independent: Suppose
wlo.g ueUN(Us+---+Us).Since Uy + - - - + Us C ker By, we have

U € ﬂ ker B | Nker B; = ﬂ ker By, = ker B,

k=2,...,s,c k=1,...,s,c

but U; Nker B = U, and hence

wevrrn [ (O Uk = (o}
k=2,...,s,c
4.2.3.3 Combined procedure for systems with inputs and outputs

The following procedure shows how to combine the different procedures given
above to find a coordinated linear system representation of a monolithic linear
system with inputs and outputs:

4.2.10. Procedure.

(1) Decompose the state space X such that A is in Jordan normal form. The
system is now of the form (4.33).

(2) Check condition (4.35):

e If (4.35) holds then apply Procedure 4.2.6 to decompose the output
space,

e otherwise apply Procedure 4.2.7 to decompose the output space and
change the state space decomposition.

(3) For decomposing the input space, apply Procedure 4.2.9.
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4.3 Concepts of minimality

This section describes how to transform a given coordinated linear system de-
composition into a minimal decomposition — three different concepts of mini-
mal decompositions are introduced and characterized, and several transforma-
tion procedures are given.

4.3.1 Problem formulation
In this section we consider coordinated linear system decompositions of the form

X = X1iXoi X, U=U1iloiU, and Y = Y1 1Ys1Y,, (4.36)

of a given linear system defined by system matrices A, B, C, D, i.e. with respect
to the decomposition the system is of the form

1 A 0 A| |2 Bii 0 B |wm
0
0

To| = Az Aoe| |z2| + | 0O Bas Bacl| |u2],

j:c 0 Acc Te O 0 Bcc Ue
i - (4.37)
(1 Cii 0 Cicl| (=1 Diy 0 Dicf |wm

y2| = 0 Caos Coc| |x2| +| 0 Doz Dacl| |u2

yc O O CCC mc O 0 DCC uc

Before we can formally define the problem discussed in this section, we need to
introduce and define possible concepts of minimality.

4.3.1.1 Minimal coordinator

We say that a coordinated linear system decomposition has a minimal coordina-
tor if the state space, input space and output space dimensions of the coordinator
system are as small as possible:

4.3.1. Definition. Decomposition (4.36) is said to have a minimal coordinator if
for all possible coordinated linear system decompositions X{+X5+X/, U{+U5+U.
and Y/ 1Y, +Y! of X, U and Y we have

dim X, < dim X/,
dimU, < dim U,
dimY, < dimYC’.

This concept corresponds to the system being ‘as decentralized as possible”: The
coordinator system, and hence the centralized part of the system, is reduced to a
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minimum, in the sense of dimension. The existence of a minimal coordinator is in
no way obvious — we require the dimensions of X, U. and Y. to all be minimal at
the same time. Alternative formulations may require only dim X, to be minimal,
or the sum of the three dimensions.

4.3.1.2 Minimal communication

A coordinated linear system requires minimal communication if the dimension
of the vector which has to be sent from the coordinator to the subsystems is as
small as possible:

4.3.2. Definition. Decomposition (4.36) is said to require minimal communi-
cation if for all possible coordinated linear system decompositions X{+X5+X/,
U{+UL4+U) and Y{+Y4+Y! of X, U and Y, with system matrices A’, B/, C’ and D/,
we have

AlC BlC Allc Bic
rank {Clc ch} < rank [Cic AR

AQC BQC AIQC Béc
rank |:C2c Dzj < rank [Céc Dy |

This definition is based on the fact that the subsystem state #; depends on
Aicte + Bicue, and the subsystem output y; depends on Cjcz. + D;cu.. Hence
the coordinator needs to send a vector

Ajexe + Bicuc _ Aic Bl |z
Cicxc + Dicuc 01 Dic Uc

to subsystem i.

4.3.1.3 Local controllability and observability

Another concept of minimality which will be important in later chapters is local
controllability and /or observability: If a coordinated linear system is locally con-
trollable and observable then the coordination required to control or measure the
system is minimal.

4.3.3. Definition. Decomposition (4.36) is locally controllable if the pairs
(A11, Bi11), (A22, Ba2) and (Ace, Bee)
are controllable pairs; it is called locally observable if the pairs

(Cn, An), (0227 A22) and (Occa Acc)
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are observable pairs.

This definition is a short version of the definitions and characterizations in Sec-
tions 5.2.3.2 and 5.3.3.2, where these concepts are described in more detail.

4.3.1.4 Problem formulation

Given the concepts of minimality defined above, we can now formulate the prob-
lems considered in this section:

4.3.4. Problem. Given a coordinated linear system of the form (4.37), with re-
spect to a decomposition of the form (4.36), and given the concepts of minimality
defined in Definitions 4.3.1, 4.3.2 and 4.3.3,

o under which conditions do minimal decompositions exist,

e and how can the given decomposition be transformed into a minimal de-
composition?

Some considerations and partial results concerning this problem are given in
the following subsections.

4.3.2 Minimality of the coordinator

For interconnected systems, we have already found a decomposition with a min-
imal coordinator in Proposition 4.1.4. However, this was based on the extra con-
dition that the original decompositions X = X1+ X, U = U1+Uz; and Y =Y +Y,
are respected.

For the more general case of decomposing monolithic linear systems, we
found that a construction procedure similar to the one given for interconnected
systems is not useful in practice, and Procedure 4.2.10 generally does not lead to
a minimal coordinator. In particular, if condition (4.35) is not satisfied then Pro-
cedure 4.2.7 has to be applied, which leads to an unnecessarily large coordinator
state space. Moreover, reducing the number of subsystems s may lead to smaller
coordinator spaces — in fact, if s = 1, i.e. there is only one subsystem, then no
coordination is required at all.

In the following we assume that the decompositions (4.36) are already fixed,
and we describe how to reduce the coordinator spaces, noting again that the state
space decomposition depends on the output space decomposition but not vice
versa, and the input space decomposition depends on the state space and output
space decompositions but not vice versa.

The minimal coordinator output space is always Y. = {0}: We can always
move the coordinator output space to a (new or existing) subsystem without vio-
lating the underlying information structure. This would however lead to a locally
unobservable system, as discussed in Section 4.3.4.
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In the following we give a procedure for reducing the coordinator state space
for an arbitrary coordinated linear system with outputs:

4.3.5. Procedure.

@)

@)

©)

Alc

We find the observability decomposition of the pair ézc ,Ace | : The
lc

C2c
unobservable subspace X7 has no influence on the rest of the system, and

hence we can move it from the coordinator into a new subsystem X3 =
X? (or into one of the existing subsystems). The coordinator state space

decreases to the observable part: X, = X¢.

Clc
corresponding unobservable space X#! only influences subsystem 2, and
hence can be moved to that subsystem: X» = X5+X?!. The coordinator
state space reduces to the observable part: X, = X1

We find the observability decomposition of the pair ({Am] ,ACC>: The

We repeat this process for the pair ( {é%} , Acc> , leading to X 1 =X1+X gz
2c

and X, = X2,

Setting C. and Cs, to zero in this procedure, we get a procedure for reducing
the coordinator state space of a coordinated linear system without inputs and
outputs.

The state space decomposition resulting from this procedure, and even the
resulting dim X, may depend on the order in which steps (2) and (3) are applied.

Given the output space and state space decompositions, the coordinator input
space can be reduced as follows:

Blc
ch
BCC
DCC
hence be moved to Uy: With U, = Uker1 1t this gives U, = U1 and
(72 - Ug—i—Ugcr’l.

The subspace U¥°"! = ker of U, only concerns subsystem 2, and can

Similarly, the subspace UX*"»? = ker can be moved to subsystem 1.
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The new input spaces and their dimensions may depend on the order in which

. . B.
these steps are applied, since Uke"! 0 Uker2 = ker [ D C} may be non-zero.
-c
So far we have only considered reductions of a fixed coordinator subspace
X.. However, given subspaces X\, and X\, there are many choices for their
complement X.. Note that the state space transformation

1
2 (4.38)
I

»n »n

I 0
S=10 I
0 0

yields a new coordinator subspace X, with X = Xj\ .4+Xo .+X., while leaving
X1\ and Xy, unchanged, for all S; and S> of the appropriate dimensions.

In the following we will characterize minimal coordinator state spaces of the
system

1 A 0 Ae] |21
j’:g = 0 A22 AQC 2| , (439)
i 0 0 Al |ze

using transformations of the form (4.38).
For the proposition below, we note that for a system of the form (4.39), and
for S of the form (4.38),

A 0 AiSi— S1Ace + Aie
STAS = | 0 Ay AgSy— SoAc + Az | . (4.40)
0 0 Ace

We also note that, for a system without outputs, the part of the coordinator state
space which can be moved to a new subsystem in step (1) of Procedure 4.3.5 is
exactly the largest A-invariant subspace of X,. Similarly, with the notation

A A Ay A
1 _ |4 lc (2) _ |A22 Azc
AV = { 0 ACJ and A" = [ 0 Acc]’

the largest A(M-invariant subspace of X. was moved to subsystem 2, and the
largest A(?)-invariant subspace was moved to subsystem 1.

4.3.6. Proposition. Given a system of the form (4.39),

(1) no complement X. of X1\ .+Xo\. contains an A-invariant subspace if and only if
X1
all eigenvectors |xa | € X1\ +Xo\+Xc of A have x. = 0, and
Le
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(2) no complement X. of X1\.+Xo\. contains an AD-invariant or A®-invariant

subspace if and only if all eigenvectors [il} € X\ Xc of AL have x. = 0 and
all eigenvectors BQ] € Xo\ o+ Xc of AP have z. = 0.

Proof. By (4.40) and step (1) of Procedure 4.3.5, no complement contains an A-
invariant subspace if and only if the pair

Allsl *SlAcc+A1c A
A22Sy = S2Ace + Aoe| T
is observable for all S, Sy. Applying the Hautus test, this is equivalent to

(A1151 - S14cc + Alc)ﬂf o .
{(Azzsz —SoAce + A2c)x:| =0= =0
forall S;, S> and all z € X, such that A..x = Az. Substituting Az for A..x, this is
equivalent to
(All — /\I)Sll‘ + Alcl‘
(Agg = NSz + Asex| =0 = 2=0
(Aee = ADx

forall S;, S; and all z € X.. Setting 1 = S1z and o = Sy gives

AH Y 0 Alc xl_
0 AQQ*AI AQC 9| =0 = l‘:O,
0 0 Ace = M| | 7|
o
which is equivalent to saying that all eigenvectors |z2| of A have x = 0.
x
The proof of part (2) follows from the same argumentation. O

4.3.3 Minimal communication

For the problem of finding coordinated linear systems which require minimal
communication, we have not yet found any results. If all subspaces of the de-
composition are free to choose (e.g. because the coordinated linear system is con-
structed from a monolithic linear system), minimal communication is trivially
achieved by moving the whole system to the coordinator — in that case, no com-
munication is required at all.
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If we assume that the state, input and output spaces of the subsystems are
fixed, and in line with the previous subsection, we can reduce the problem to find-
ing complements X, of X1\ .+Xo\.in X, U, of Up\+Us\ . in U, and Y, of Y7\ +Ya\,
in Y, such that the resulting decomposition requires minimal communication:

Define the transformations

I 0 Ri. I 0 Si.
R=1|0 I Ry |:Y—=Y S=|0 I S| :X—X,
00 I 0 0 I
I 0 Ti.
and T= 1|0 I Ty | :U—U,
0 0 I

where the submatrices R;., S;c and T;. are free to choose. The problem we want
to solve can then be written as

(SASil)lc (SBTfl)lc

iy, rank [(RCSl)lc (RDT 1), | (4.41)
(SAS V)oe  (SBT V).

iy, rank {(Rcsl)gc (RDT V). | (4.42)

For A, B,C, D given in (4.37), we have

(SAS?l)lc (SBT?I)IC _ Alc - Allslc + Schcc Blc - BllTlc + Schcc
(Rcsil)lc (RDT?l)lc o Clc - Cllslc + Rlcccc ch - DllTlc + Rchcc ’
(SAS_1>2c (SBT_I)QC _ A2c - AZQSQ(: + SQcAcc BQC - B22T2(J + S2CBCC
(RCS?1)2C (RDT?l)Zc B CQC - C22526 + R2cccc DQC - D22T2c + RQCDCC ’

From this we can see that the two subproblems decouple — in (4.41) we
need to minimize over R, Sic, 1. and (4.42) is a minimization problem over
R267 5207 T2c-

For the special case of a system without inputs and outputs, the minimization
problem given in (4.41) reduces to

S1C:I)I(1iri>X1 rank (Alc - Allslc + Schcc) . (443)

The solution to this problem follows directly from [47, Theorem 2.1], a simplified
version of which is quoted for convenience:



54 Chapter 4: Construction and Minimality

Define s(A4;, A2) = maxy.c min {dimker (4; — AI),dimker (A — AI)}.
Consider the linear Sylvester map T : CP*9 — CP*4 defined by

T(S) =545 - A5, SecCP|
(a) Every matrix X € CP*? can be written in the form
X=T(S)+Y,

for some S € CP*? and Y ¢ CP*? withrank YV < s(A4;, Ag).

(b) Assume that s(A1, As) # 0. Then for fixed 4; and A, there
is a Zariski open nonempty set 2 of C?*? such that for every
X € Q) there is no representation of X in the form

X=T(S)+Y,

where S, Y ¢ CP*9 are such that rank Y < s(A;1, 4s).

Translated to the minimization problem in (4.43), this means that

o in rank (Aj. — A11S51c + S1cAce) < s(A11, Ace),

and that this upper bound is attained for all A;. in a Zariski open nonempty

subset of C"1*"< (i.e. for "almost all" A;.).

4.3.4 Local observability and controllability

The following result concerns the existence of locally controllable or observable

decompositions:

4.3.7. Proposition. For the existence of a locally controllable coordinated linear system
decomposition it is necessary and sufficient that the pair (A, B) is a controllable pair.
The existence of a local observable decomposition is equivalent to the pair (C, A) being an

observable pair.

Proof. By the block-triangular structure of A and B, local controllability is a
stronger concept than controllability of (A, B). Conversely, if (A, B) is a con-
trollable pair then setting X. = X and U. = U trivially leads to a locally
controllable system. The same argument holds for local observability, using the

block-triangular structure of C' and A.

For coordinated linear systems with inputs, a state space transformation

which renders the system locally controllable is straightforward:
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4.3.8. Procedure. We assume that the pair (A, B) is a controllable pair.

(1) For each subsystem i = 1,2 we find the controllability decomposition of
(A, Bi;), i.e. we decompose the subsystem state space into X; = X¢+X¢
such that with respect to this decomposition we have

Ag o AR [B

with (A§;, Bf;) a controllable pair.

119

(2) We reduce the subsystem state spaces to their controllable parts and move
the uncontrollable parts to the coordinator, i.e. we reset

Xp = X¢, Xg:= X§, and X, := X{+ XI5 X,.

(3) With respect to the new state space decomposition, the system representa-

tion becomes
&§ A 0 B,
Bgc u1

AN 0 Aﬂ [:clw [Bfl 0

5 0 AS, | 0 Ay As. | | 5 0 Bs,

. — (7
# =10 oAl o Al ||| 0 o |BL|[2
if 0 0| 0 A% AL | |28 0 0 |BL || ue
Fo 0 0] 0 0 Ag| L 0 0 |Be

Now the subsystems are locally controllable by construction. Suppose there is
a locally uncontrollable mode in the coordinator, then this mode is uncontrollable
in the usual sense (since the only option for controlling the coordinator state is via
the coordinator input), but the system is controllable in the usual sense, which
contradicts the assumption. Hence the system resulting from this procedure is
locally controllable.

Note that in Procedure 4.3.8 we only applied a state space transformation,
but left the input spaces unchanged. In some situations it might be useful to
move parts of the coordinator input to a subsystem in order to achieve local
controllability, instead of moving parts of the subsystem state to the coordinator.
However, if we start out with a decomposition in which the coordinator input
space has minimal dimension then the procedure above leads to a locally con-
trollable system with minimal coordinator state and input spaces.

For the transformation of a coordinated linear system into a locally observable
form, and in line with the previous section, we find that there are different choices
to consider:

4.3.9. Procedure. We assume that pair (C, A) is an observable pair.
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(1) We find the observability decomposition of the coordinator pair (Ce., Acc),
i.e. we decompose the coordinator state space into X. = X7+X¢, such that

A7 AN
(Ccchcc) = ([0 Cgc] ’ |: OCC A?{|> ’

with (C¢,, A2.) an observable pair.

cer

(2) If X7is [élc} -unobservable then X¢ can move to subsystem 2. Similarly, it
lc

A2c

may move to subsystem 1 if it is [ C
2c

} -unobservable.

(3) Otherwise, pick decompositions Y; = Y/*1Y;™ and Y, = LYy of the
subsystem output spaces, such that X¢ is observable from Y;"Y3".

(4) We reset the output spaces,
V=Y Yo =Y Yo = VoAYYT,
and the state spaces,

X is any A-invariant subspace of cty,
X, is any A-invariant subspace of C~ 7Y,
X, is any complement of X;+X5 in X.

Now the coordinator system is locally observable by construction. The
subsystems are locally observable since (C, A) was assumed to be observable.
Picking the decompositions in step (3) is a difficult problem — in practice, this
can be done by choosing one output vector at a time and testing whether the
unobservable subspace X7 would decrease if that vector were in the coordinator.
Moreover, the dimensions of the coordinator spaces resulting from this proce-
dure depend on which choices are made.

A combined procedure for transforming a coordinated linear system with in-
puts and outputs into a locally controllable and observable system would be to
iterate Procedures 4.3.8 and 4.3.9: Several iterations may be needed since apply-
ing Procedure 4.3.9 to a locally controllable system may render the system locally
uncontrollable, and Procedure 4.3.8 may destroy local observability.
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This chapter deals with the controllability and observability properties of coordi-
nated linear systems, and was published as [25].

5.1 Introduction

Control theory is typically concerned with controlling global behavior of a sys-
tem. For large systems consisting of several interconnected parts, it is of particu-
lar interest whether these global properties can be achieved via local control: The
idea is to solve a control problem of lower complexity for each part of the system
separately, and ideally these solutions would combine to a control law achieving
the desired global property. The structure of coordinated systems allows for local
control synthesis in a top-to-bottom manner, by first finding a control law for the
coordinator, and then controlling each subsystem separately. For this, it is rele-
vant which part of the system is controllable by using which input: Subsystem 4,
with state space X;, may be controllable via its local input u;, or via the coordina-
tor input u., or both. The coordinator can only be controllable via the coordinator
input u..

Moreover, decentralized systems are typically set up in such a way that each
part of the system only has access to partial information about the system state:
Each part of the system can observe (part of) its local state, and possibly the state
of other, usually neighboring, parts of the system. In order to obtain information
about the global state of the system, it is then necessary for the different parts to
communicate their observations to each other. This communication, and hence
the availability of global state information, is restricted by the information struc-
ture imposed on the system. In particular, the coordinator of a coordinated linear
system can only observe (part of) its own state. The subsystems, on the other
hand, can observe (part of) their local state and the coordinator state, where the
coordinator state can be observed by subsystem i either indirectly via its influence
on the local state z;, or directly via communication from the coordinator.

In this chapter, we study the controllability and observability properties of
coordinated linear systems, taking into account the different locations and roles
of the available inputs and outputs, in order to provide a conceptual framework
for future research on control synthesis for coordinated linear systems.

The results in this chapter make extensive use of the properties of reachable
and indistinguishable subspaces summarized in Section 2.3, and the controlla-
bility and observability decompositions derived for coordinated linear systems
combine the corresponding Kalman decompositions with the special structure of
the system matrices in (3.1).
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Note that for linear systems, the concepts of controllability and observability
are dual to each other: The matrix pair (A, B) is a controllable pair if and only
if the transposed pair (B”, AT) is an observable pair. However, for coordinated
linear systems, this duality cannot be used to reduce one of the two concepts
to the other one: If the matrix pair (A, B) corresponds to a coordinated linear
system then the transposed pair (BT, AT) does not represent a coordinated linear
system, unless A and B are block-diagonal. Hence, the concepts of controllability
and observability for coordinated linear systems are treated separately in this
chapter.

The outline of the chapter is as follows: In Section 5.2, we refine the usual
concept of reachability, taking into account which input is used to reach a state,
and which part of the system the reachable state corresponds to. Using these
concepts, we then derive a controllability decomposition for coordinated linear
systems, and discuss several possibilities for defining the concept of controllabil-
ity in this setting. In Section 5.3 the usual concept of indistinguishability is refined
in a similar manner, an observability decomposition for coordinated linear sys-
tems is derived, and several possible concepts of observability for this class of
systems are defined and discussed. The combination of the different concepts
of controllability and observability, for the purpose of stabilization via measure-
ment feedback or the characterization of other forms of output controllability, is
discussed in Section 5.4, and some conclusions are given in Section 5.5.

5.2 Controllability

In this section we consider coordinated linear systems with inputs and without
outputs, i.e. systems of the form

Ay 0 Ag Bin 0  Bie
a:(t) = 0 A22 A2C I’(t) + 0 B22 BQC U(t), (51)
0 0 Ace 0 0 B..
z1(t) uy(t)
with z(t) = [z2(t)| and u(t) = [ua(t)|.
w.(t) uc(t)

In the following we will refine the usual concept of reachability, taking into
account which input is used to reach a state, and which part of the system the
reachable state corresponds to. Using these concepts, we will then derive a con-
trollability decomposition for coordinated linear systems, and discuss several
possibilities for defining the concept of controllability in this setting.
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5.2.1 Reachability

For monolithic linear systems, the concept of reachability describes whether there
exists a piecewise-continuous input trajectory, such that a given state x € X can
be reached from the zero initial state in finite time (see e.g. [21]).

For coordinated linear systems it is not only interesting whether a state can be
reached, but also which input is used to reach it: While a subsystem state z; may
be reachable via the local input u;, or the coordinator input u., or a combination
of the two, a coordinator state z. can only be reached via the coordinator input
u.. This restriction is due to the condition BU; ¢ X, in Definition 3.1.1. For
this reason, the usual definition of reachability is not satisfactory for coordinated
linear systems. We introduce several concepts which are related to, but different
from the definition of reachability as quoted in Section 2.3. In these new concepts,
special attention is paid to specifying whether a state is reachable using the local
input or the coordinator input.

5.2.1. Definition. We define the following concepts of reachability:!

e Fori = 1,2, a state 7; € Xj is called u;-reachable (i.e. reachable using the
local input u;) if there exist a finite terminal time ¢ ¢ [0, c0) and a piecewise-
continuous input trajectory u; : [0, ] — U; such that the system

jfi (t) = A“.Il (t) + Biiui (t), Z; (O) =0

has a state trajectory z; : [0,f] — X, satisfying z;(f) = Z;. The set of all
u;-reachable states x; € X; will be denoted by fR;.

o A state € X is called u.-reachable (i.e. reachable using the coordinator
input u.) if there exist a finite terminal time ¢ € [0,00) and a piecewise-
continuous input trajectory u. : [0,¢] — U, such that the system

A11 0 Alc Blc O
@(t)=| 0 Az As|x(t)+ |Bac| uc(t), (0) = |0
0 0 A Be. 0

has a state trajectory z : [0,¢{] — X satisfying x(f) = Z. The set of all u,-
reachable states 2 ¢ X will be denoted by ..

Note that 931, Ji; and R, are reachable subspaces of three different linear sys-
tems, and hence these subspaces have the following properties (see [72]):

o A is the smallest A;;-invariant subspace of X; containing im By,

o R, is the smallest Ays-invariant subspace of X, containing im Bao,

I
INote that we use X; to denote both the space X and the subspace |:0:| X1 c X (see Section 2.1).
0
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B lc
e and R, is the smallest A-invariant subspace of X containing im [Bgc] .
Be.

Recall from Section 2.3 that the linear subspace R ¢ X was defined as the set
of all reachable states in the usual sense. The concepts of Definition 5.2.1 relate to
the usual concept of reachability as follows:

5.2.2. Lemma. For the set R of all reachable states, the following relation holds:
I 0
R=|0]| R+ |I| R+ Re. 5.2)
0 0

Lemma 5.2.2 implies that our choice of definitions of PR;, Ry and MR, complies
with our intuitive conception of reachability: A state is reachable if and only if it
can be reached via a combination of the available control inputs, and this is the
case if and only if it is a combination of several states, each of which is reachable
via one of the control inputs.

Proof. By (2.3) and with the notation € (4,B) = [B AB A?’B ... A"!B|,
we have
Bii 0 By
R=im ¢ (A, B) =im¢ A7 0 822 BQC
0 0 B
B [0 By
=imC|[A | O +im € [ A, | Bos +imC | A, | B
0 | 0 Bec
By AllBll A?lell- 0 0 0
=im 0 0 - 0 +im | Baos A22B22 - Ag§1B22
0 0 ... 0 | 0 0 ... 0
Blc
+im €& A, Bs.
Bee
[1] 0 Bi.
= (0| im Q:(AllaBll)+ I im@(Agg,B22)+im€ A, BQC
_O_ 0 Bee
[1] 0
= (0| R+ |I]| Rz +Re. g
10] 0
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So far we have split up the reachable subspace R according to the different
input spaces of a coordinated linear system. We still need to decompose the re-
sulting subspaces 911, Ry and PR, according to the three different state spaces:
Since R; € X; and Ry C Xs, no further decomposition of these two subspaces
is needed. A further decomposition of fi. according to X;+X2+X, is more in-
volved, since the same input trajectory u. is used for all parts of the system. A
simple example illustrates this:

5.2.3. Example. Let

0 1/0 0]0 1[0]0

0 0/0 01 0f[ofo
it)y=10 0[]0 1[0 |z@®)+ | 0[1][0 |u(),

0 0/0 01 0of[ofo

0 0/0 0]0 001

with X; = span{ei, es2}, Xo = span{es,es}, X, = span{es}, Uy = U = U, = R,
as indicated by the lines in the matrices above. This system has $&; = span{e; } ¢
X, and Ry = span{es} ¢ Xs. The u.-reachable space R, can be found by looking
A 0 Age By,
at the controllability matrix of 0 Asy As.|, |Bae
0 0 Acc Bcc

[ Blc AllBlc + Achcc A%lBlc + AllAchcc + Achcchc
9{c =im B2c A22-B2c + AQchc A%QBQC + A22AZCBCC + AQCACCBCC
L Bcc Acchc AECBCC
[0 0 1 0
01 0 0
=im [0 0 1 O = span{e; + e3, €2 + €4, €5}.
01 00
|1 00 0

We see that X, ¢ 9., and hence the coordinator is u.-reachable?. Since we have
X1 NRe = {0} and Xy, N R, = {0}, no part of either of the subsystems is u,.-
reachable. However,

(X1+X2) NR. = span{e; + e3, e + €4} # {0},

so X;+X has a non-trivial u.-reachable subspace. In fact, any state in X; can be
reached via u., but then subsystem 2 will arrive at the same state, and vice versa.

2In Definition 5.2.4 we will distinguish independently and jointly u.-reachable subspaces — in this
example, the coordinator is independently u.-reachable.
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In light of the properties of u.-reachability illustrated in Example 5.2.3, we
define the following spaces related to Ri.:

5.2.4. Definition. The subspaces
X1 NRe, XoNRe, XcNRAL

will be called the independently u.-reachable subspaces of X;, X, and X, re-
spectively.
The subspaces

[I 0 O] Re, [0 I O] Re, [O 0 I] R
will be called the jointly u.-reachable subspaces of X;, X» and X, respectively.

The term ‘independently u.-reachable’ means that a state is reachable via an
input trajectory u. : [0,t] — U, which leaves the rest of the system unaffected at
time ¢; in other words, a state z; € X is independently u.-reachable if the state

T
0 | € X is u.-reachable. The same holds for states in X5 and X..
0

The term ‘jointly u.-reachable’ is used for states that are u.-reachable, but not

necessarily independently u.-reachable; for example, a state x; € X; is jointly
T

u.-reachable if there exist x5 € X5 and z. € X, such that | zs | is u.-reachable, but
.

these x5 and z. may be non-zero.

5.2.5. Remark. Note that independent u.-reachability of z; € X, in the sense of
Z1
Definition 5.2.4, only means that the state | 0 | is u.-reachable in finite time; it
0
does not mean that there exists an admissible input trajectory u. : [0,t] — U,
I
such that the system state remains in the subspace (0| X at all times 7 € [0,¢]:
0
The second concept is a stronger alternative of Definition 5.2.4, and will not be
discussed here. In the following, we will always use the term ‘independently .-
reachable’ to indicate that other parts of the system reach state 0 (from the initial
state 0) at a finite time ¢, not that they remain in state 0 over the interval [0, ].
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The subspaces of Definition 5.2.4 can be combined to form over- and under-
approximations of fR.: It immediately follows from Definition 5.2.4 that

(Xl N m0)+(X2 N %0)+(Xc N ERP) c 9£{(:7 (53)
Rec[I 0 0]RA[0 I OJRA[0 0 I]Re. (5.4)

Note that the inclusions in (5.3) and (5.4) are in general not equalities.

5.2.2 Controllability decomposition

Using the definitions and results of Section 5.2.1, we will now derive a decompo-
sition of the state space X according to the reachable spaces i, > and ., and
the underlying decomposition X = X;+X5+X..

We start by looking at the state space X; of subsystem 1: We have that
RicXjand XiNR.C[I 0 0] R C Xy, (5.5)

where R, is the u;-reachable space, X; N R, is the independently u.-reachable
subspace of X, and [I 0 0] R, is the jointly u.-reachable subspace of X;.
We decompose X according to the following procedure:

5.2.6. Procedure.
(1) Let X{ = %Ry N (X1 NR.), and observe that then X{ c Ry N [I 0 0] R..
(2) Take for X7 a complement of X{in®R; N[/ 0 0] R..
(3) Let X3 be a complement of X{+X? in ;. Note that now X+ X7+ X7 = R;.

(4) Likewise, as X] ¢ X;NMR., we can let X{ be a complement of X7 in X; NR..
Observe that X{ N Ry = {0}, and R, + (X1 NR.) = X{+XZEXPHXT

(5) Next, we let X7 be a complement of X{+ X7+ X{in [I 0 0] %R, observing
that X{ + X7+ X{ isindeed a subspaceof [I 0 0] R, since X} € X1NR, C
I 0 0]%,by(55).

(6) X?isacomplement of X]+X?+ X7+ X+ X? in X;.

This construction can be done numerically, by first picking a basis B; for X{ =
M1 N (X7 NR,), and then extending B; to obtain bases for the other subspaces in
the decomposition.

Now we can write

X1 = X EXPIXPEX XD XY
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Note that one or more of these subspaces can be {0}.
The reachability properties of the elements of this decomposition are given in

the following table:

subspace | u;-reachable u.-reachable
X1 yes independently
X? yes only jointly
X3 yes no
X1 no independently
X3 no only jointly
X9 no no

The decomposition of X3 is analogous, with the same reachability properties.
For the decomposition of the coordinator state space, we have to take into
account the subspaces X, NR. c [0 0 I|R. c X..

5.2.7. Procedure.
(1) Weset X! = X.NA..
(2) Welet X2 be a complementof X!in [0 0 I]R..
(3) For X2 we choose any complement of X!+ X2 in X,.

Now we can write
X, = X HX24X3.

Now X! is independently u.-reachable, X? is only jointly u.-reachable, and X3
is not reachable at all.

The following theorem is the main result of this section. It describes the in-
variance and controllability properties of the system given in (5.1), using the de-
composition derived above.

5.2.8. Theorem. With respect to the state space decomposition
X =(Xi+. X0 F(X0+. . HX) + (XXX (5.6)

defined by Procedures 5.2.6 and 5.2.7, the system given in (5.1) has the form given in
Table 5.1.
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Table 5.1: The controllability decomposition

[ATT AT AT ATTAITAS | 0 0 0 0 0 0 | Ar Al2 A2
0 A22423 0 A204250 0 0 0 0 0 0 | A2L A32 4%
0 A243 0 AR A®¥ | 0 0 0 0 0 O 0 A3 A3
0 0 0 A A AT 0 0 0 0 0 0 | AL A2 A8
0 0 0 0 A%A%] 0 0 0 0 0 0 | AL A2 A%
0 0 0 0 A$34%| 0o 0 0 0 0 O 0 A%2 A%
0 0 0 0 0 0 |Ay A3 A3 A% A3 A3 | Ayl As2 Agp
0 0 0 0 0 O 0 AZ2 A2 0 AZ5 A% | A3l A2 AZ (5.7)
00 0 0 0 O 0 A32A33 0 A5 A35| o A32 A3
00 0 0 0 O 0 0 0 A% A3 A3S | Azl A2 A%
0 0 0 0 0 O 0 0 0 0 A3 A35 | AL A52 A53
00 0 0 0 O 0 0 0 0 AS5AS5| o AS2 AS3
0 0 0 0 0 O 0 0 0 0 0 0 | A A2 al3
0 0 0 0 0 O 0 0 0 0 0 0 | A% A2 g%

L 0O 0 0 0 0 O 0 0 0 0 0 O 0 0 A3 ]

[ B%l 0 Bllc 1
B%l 0 B%c
B} | 0 0
0 0 | B
0 0 | BS.
0 0 0
0 | By | B,
0 | B3| O
0 0 | B3,
0 0 | Bs.
0 0 0
0 0 | BL
0 0 | B

L 0 0 0 |




66  Chapter 5: Controllability and Observability

In the notation of Table 5.1, and with i = 1,2, the following pairs are controllable

pairs:
A At 00 |Ag By,
0 AR AT LB 0 0|0 A%|A5 Bj. (5.9)
0 00 o0 |Al Bl

All A12 B!

([ 25 [32))
Proof. Recall from Definitions 3.1.1 and 5.2.1 that the subspaces X; and R, are
A-invariant. Since 3, ¢ X; is A;;-invariant, its embedding into X is A-invariant.
Now X{ = R; N (X; N R,.) is an intersection of A-invariant spaces, and hence
A-invariant, which gives the first column of A in Table 5.1. The second and third
column follow from X{+X7+X7 = MR, being A-invariant (as a subspace of X).
The A-invariance of X; NR. = X{+X{ explains the fourth column. The fifth and
sixth column follow from the A-invariance of X;. Similar arguments establish
columns 7 - 12 for subsystem 2.

For establishing columns 13 and 14 of A, we note that

Blc
X 4X2=[0 0 I|R.=[0 0 I]im¢€ | A, |Ba
BCC

=im [Bcc AceBee A%Be. .. ] =im € (A, Bee) s
and hence [0 0 I]%R.= X!iX?is A.-invariant. Moreover,
AX.NR)CRC [T 0 0]RA[0 T O]RA[0 0 I]R
= (X1 XX X)) H X X+ X X)) H(X 1 X2),
which gives that no part of (X3+X9)+(X53+X$)+X?2 is u.-reachable.
The structure of the B-matrix follows from
im By € Ry = X{ X751 X}, im Byy € My = X5+ X3+ X3,
Blc

im | Bo.| € M. € (XXX X)) H(XSEX2EX0HX0)H( X X2).
BCC
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The first controllable pair follows directly from the first part of Defini-
tion 5.2.1 and R; = X}+X?2+X?2. The second controllable pair follows from
(X1+XH+H(X3+X$)+X]! ¢ R, and the second part of Definition 5.2.1. The last
controllable pair follows from X!+X2? = im ¢(A.., B..), which was derived
earlier in this proof. O

An additional decomposition of the input space U, of the coordinator, speci-
fying which subsystem is influenced by which part of the input, would lead to a
more refined controllability decomposition with respect to the B-matrix.

5.2.3 Concepts of controllability

In this section, we define several concepts of controllability for systems of the
form (5.1), and express these concepts in terms of the controllability decompo-
sition of Section 5.2.2. The concepts we introduce in this section were chosen
because of their relevance for different applications; many other concepts are pos-
sible.

The most important concepts introduced in this section are weak local con-
trollability (Definition 5.2.11) and independent controllability (Definition 5.2.17):
Weak local controllability is necessary and sufficient for pole placement, and in-
dependent controllability is a locally verifiable concept replacing the usual con-
cept of controllability.

5.2.3.1 Coordinator controllability
Coordinator controllability will be defined as follows:

5.2.9. Definition. We call a system of the form (5.1) coordinator controllable if
all states x € X are u.-reachable, i.e. if R, = X.

Coordinator controllability is a very strong condition (see Proposition 5.2.19). In
the case of coordinator controllability, control synthesis can be done by only spec-
ifying a control signal for the coordinator. This may be useful if the subsystems
correspond to physical entities with limited computing capabilities, since no local
control synthesis is necessary.

5.2.10. Proposition. A system of the form (5.1) is coordinator controllable if and only
Blc
B2c

if, in the notation of (5.1), the pair (A,
BCC

) is a controllable pair.

Proof. If the system is coordinator controllable, i.e. if 3. = X, then in particular
X1, X2, X, € R, and conversely if X, X5, X, € R, then X = X;+ X2+ X, = R..
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Hence, in terms of decomposition (5.6), coordinator controllability is equivalent
to

X=X NRe = X14HXE, Xo=XonNR, = X54X3, X.=X.NNR, = X1

The representation in Table 5.1 then reduces to

Al A o o | Al Bl | 0 | Bl
0 Al 0o o |Afl 0 | 0 |Bi
A= 0 0o [Al AlZT Al |, B=| 0 |BL,|[BL |, (510
0 0 0 A3d| Al 0 0 | Bs.
0 0|0 o0 [AI 0 | o [BL

and the second controllable pair in (5.9) coincides with the controllable pair given
in Proposition 5.2.10. g

5.2.3.2 Weak local controllability
We define weak local controllability as follows:

5.2.11. Definition. We call a system of the form (5.1) weakly locally controllable
if for j = 1,2, ¢, all z; € X; are u;-reachable, i.e. if

9%1=X1, D‘ig:Xganchg[O 0 I}D‘ic

The term ‘weak local controllability” is used to distinguish this concept from
the slightly stronger concept of strong local controllability, defined in subsection
5.2.3.3. Weak local controllability means that control synthesis can be done lo-
cally: The control law for the coordinator can be found independently of the sub-
systems, and once the coordinator input is fixed, control synthesis for the subsys-
tems can be done locally. In large systems, this is useful because the complexities
of the local control problems may be much lower than that of the combined con-
trol problem.

5.2.12. Proposition. A system of the form (5.1) is weakly locally controllable if and only
if, in the notation of (5.1), the following pairs are controllable pairs:

(A11,B11), (A2, Baa), (Ace, Bee) -

Proposition 5.2.12 can be proven directly without using the controllability de-
composition. We choose the longer proof here since it gives more insight in the
controllability structure.
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Proof. In the notation of decomposition (5.6), weak local controllability amounts
to

X; =% = X[ X3X3, Xo =R = X5 1 X24X3,
Xc=[0 0 I|R.=X1+X2.

The representation in Table 5.1 then reduces to

A AR AR 0 0 0 (AR AT TBL[ 0 |BL]
0 A% Ao 0 0|4l ad B0 |5
— 0 0 0 22 22 22 2c 2c _ 0 B22 BQC
AT 00 o oAz aglal a2 | BT o ey sz 0 O1D
0 0 0|0 A2 A% 0 AP 0 |B3| 0
0 0 0]0 0 0 |[AllAZ 0 | 0 [BL
| 0 0 0|0 0 o0 |AZ A2 0|0 B2 |

and the corresponding controllable pairs in (5.9) are

A AR AP B 11127 [pt
o bl Bl )iz (|G 5] 55]). 602
0 A?f Ai‘}? BS)2 cc cc cc

These are exactly the pairs (411, B11), (A22, Ba2), (Ace; Bee)- O

Note that weak local controllability is necessary and sufficient for pole place-
ment (see [48]): For coordinated linear systems, admissible state feedback ma-

i 0 Fic
trices must be of the form F' = | 0  Fhy Fj.|, since feedback matrices of any
0 0 F..

other form would destroy the information structure imposed on the systems. Ap-
plying a state feedback of this type leads to the closed-loop system

A+ BiiFia 0 Are+ BiiFie + BicFe.
(t) = 0 Asg + BooFay  Ase + BagFoe + BooFe | x(t),
0 0 Acc + BeelFee

with spectrum

O'(A + BF) = U(All + BllFll) @] O'(AQQ + BQQFQQ) @] U(Acc + Bchcc)-
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Now the spectrum of the closed-loop system matrix can be assigned freely if and
only if the pairs (A11, B11), (Aaz, Baa) and (Ag., Be.) are controllable pairs, and
this is equivalent to weak local controllability of the coordinated linear system.

5.2.3.3 Strong local controllability
The concept of strong local controllability will be defined as follows:

5.2.13. Definition. We call a system of the form (5.1) strongly locally control-
lable if for i = 1, 2, all states x; ¢ X, are u;-reachable, and for all z. € X, the state

0
[ 0 ] is u.-reachable, i.e. if
Te

R = X1, R = X and RN X, = X

0
An important detail in this definition is that for all z. € X, | 0 | is u.-reachable:
Te
For weak local controllability we only require that for all . € X, there exist
T
x1 € Xy and g € Xy such that |z | is reachable, but these z; and x2 may depend
Ze
on the value of z..

The difference between the concepts of weak and strong local controllability
is that in the case of strong local controllability, it is possible to control each part
of the system locally and independently, i.e. without influencing the rest of the
system (see Remark 5.2.5). This means that control synthesis can be done in a
fully decentralized manner: As in the case of weak local controllability, each part
of the system can be controlled locally. In contrast to weak local controllability,
control synthesis for the subsystems can be done in such a way that the subsystem
state at a fixed time ¢ is not influenced by the coordinator.

To illustrate this independence, we outline the control synthesis procedure for
a strongly locally controllable system: Suppose we want the system to reach the

T1 0

state |Zo| at time ¢, from the initial state [0| at time 0. This can be done as
Te 0

follows:

e Fix input trajectories u; : [0,¢] — Uy and us : [0,¢] — Us such that the local
systems described by

1 = A11x1 + Briug, o1 (O)

)

0
0,

o = Asoxo + Bosus, .%'2(0)
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satisfy z1(t) = Z1 and x2(t) = Zo.

e Fix an input trajectory u, : [0, t] — U, such that the system

5'61 A11 0 Alc T Blc xl(O) 0

i’g = 0 A22 AQC o | + B2C Ue, .’BQ(O) =10

de 0 0 Aol |ze| |Be 2.(0) 0
i)’]l(ﬂ 0
satisfies |zo(t)| = | 0
xe(t) T

The existence of these input trajectories follows directly from strong local con-
trollability.® Note again that (as in Remark 5.2.5) by applying u.. to the system,
we get 21(t) = 0 and x2(t) = 0, but not necessarily z;(¢t) = 0 and z2(t) = 0 for

U1
all ¢ € [0,7]. Now applying the combined input trajectory u = |uz| : [0,¢] = U
U
yields
z1 (%) £ B 0 Bic| [ui(7)
1’2({) :/ A(t T) 0 BQQ BQC ’LLQ(T) dT
xc(t_) 0 0 0 Be |ue(r)
By P 0 £ B
eA £-7) O uy (T )dT+/ AT | By | us( )dT+/ e By | ue(r)dr
0 0 0 0 B,,
3 0

lé /
+/Ot_

A“(t_’T)Bllul(T)dT + |1

t
|
0 0

Blc

Bae | ue(T)dr

_BCC

0 0 1
Il 22+ |0 | = |22
0 Te .

3By definition, reachability only implies the existence of a finite time ¢ at which a state  can be

reached via an input trajectory u :
be transformed into a trajectory @ :

[63]).

[0,t] — U. However, for linear systems this input trajectory can
[0,%] — U such that z(t) = z, for any given finite £ > 0 (see e.g.
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I
Hence we have found a suitable open-loop controller for reaching |Z2|. The
Te
problems of finding the local input trajectories u;(-) and us(-) are independent
of the rest of the system, and u.(-) can be found without knowledge of u;(-) and

UQ()

5.2.14. Proposition. A system of the form (5.1) is strongly locally controllable if and
only if there exist decompositions of X1 and X, such that the corresponding system
representation is of the form

AL AR AR 0 0 0 Al (B | 0 |BL

0 A% A% | 0 0 0 |42 B | o | B2

0 A2 43| 0 0 0| 0 B3| 0| 0
A=|70 0 0 [AQ AR AB AL |, B=|"0 |BL[BL |. (.13

00 0| 0 A% Az Al 0 | B2, | B:

0 0 0| 0 43248 0 0 | B | 0

0 0 0[]0 0 0 |Ax| 0 [0 [ B |

In the notation of (5.13), the following tuples are controllable pairs:

A A2 AR TB; Ajf| 0 | Ay Bi,
0 AR AR] B} 0] 0 [ A Bec
fori=1,2.

Proof. In the notation of decomposition (5.6), strong local controllability is equiv-

alent to
X, = X[HX2X3, Xo= X5+ X21X3, X, =X
The representation in Table 5.1 then reduces to a representation of the form (5.13),

and the corresponding controllable pairs in (5.9) reduce to the ones in (5.14). O

5.2.3.4 Joint controllability

Joint controllability will be defined as follows:
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5.2.15. Definition. We call a system of the form (5.1) jointly controllable if all

U
states ¢ € X are |us |-reachable, i.e. if
U
I 0
0 9{1+ 1 ‘ﬁg+9{c:X.
0 0

By (5.2), this definition is equivalent to X = R, and hence joint controllability is
equivalent to controllability in the usual sense (see Section 2.3).

From the characterizations given in Sections 5.2.3.1, 5.2.3.2 and 5.2.3.3, it fol-
lows that coordinator controllability, weak local controllability and strong local
controllability can be checked in a decentralized way, by looking at each subsys-
tem separately. As the example in Section 5.2.4 will illustrate, this is not neces-
sarily the case for joint controllability. We can however formulate a necessary
condition and a sufficient condition for joint controllability, both of which can be
checked for each subsystem separately:

5.2.16. Lemma. For joint controllability, it is necessary that
Xi=%+[I 0 0]R, Xo=R+[0 I 0]ReandX.=[0 0 I]R;
it is sufficient that
X1 =%R + (X1 NR,), Xo =R+ (XoaNR,) and X, = X, NA..

Proof. From inclusions (5.3) and (5.4) it follows directly that

(R + (X1 NRL)) + (R + (X2 NRe)) HXe NRL)

I 0
= 0| Ry + || R+ (X1 NR)HX2 NR)HX:NRL))
0 0
I 0
c |0 %1+ I %QJriRc
0 0
I 0
= 0| R+ [I| R+ ([I 0 O]RA[0 T O]RA[0 O I]R.)
0 0

C(PRi+[I 0 0]R)+(Re+[0 I 0]R)+[0 0 I]R.. 0
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For coordinated linear systems, joint controllability is not a very natural con-
cept: If the sufficient condition is not satisfied then control requires some parts of
the system to reverse the effects caused by controlling other parts of the system;

I 0
if, for example, R, = span { [I ] } then the state [O] can only be reached by

I %,
u ()

an input trajectory |[us(-) |, where neither u; (-) nor us(+) can be identically zero.
ue ()

Since for the subsystems, both the initial state and the target state are zero, the
only purpose of the non-zero input trajectories is to counteract the influence of
the coordinator on the subsystems.

5.2.3.5 Independent controllability

A more natural concept for coordinated linear systems is independent controlla-
bility, which will be defined as follows:

5.2.17. Definition. We call a system of the form (5.1) independently controllable

I 0
if for all z; € X; the state [O } is {ul} -reachable, for all x5 € X5 the state {:@] is

0 ¢ 0
" 0
[ 2] -reachable, and for all z. € X, the state | 0 | is u.-reachable, i.e. if
C xc

(R + (X1 NR)) + (R + (X2 NRY)) HXNR) = X.

In the case of independent controllability, each part of the system can be con-
trolled in such a way that at a finite time ¢, no other part of the system is influ-
enced by that control signal (see Remark 5.2.5). Control is possible both via the
local inputs and the coordinator input. As is immediate from Definition 5.2.17,
independent controllability coincides with the sufficient condition for joint con-
trollability, and hence can be checked by looking at each part of the system sepa-
rately.
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5.2.18. Proposition. A system of the form (5.1) is independently controllable if and
only if there exist decompositions of X1 and Xo, such that the corresponding system
representation is of the form

[ AL Alf Alf Aip[ 0 0 0 0 JAL ] [ BL| O |B ]
0 A2 A3 0|0 0 0 0 [A3 B? | 0 |B,
0 A2 4% o0]l0 0 0 010 B30 |0
0 0 0 A{f{0 0 0 0 |Af 0|0 |Bi
A= 0 0 0 0 [A}S AlZ AL3 Al3|AL, |,B=| 0 |BL|Bi. | (5.15)
0 0 0 0|0 A2 AZ o |42, 0 |B3, |B:
0 0 0 0|0 43243 o0 |0 0 |B3,| 0
0 0 0 0|0 0 0 A3f|AL 0 |0 |Bs.
"0 0 0 0]0 0 0 0 |Ac]| | 0]0 [Be |
with controllable pairs
AL A 00 AL Bi.
A AR APT B, 0 A} 0 0 |A | | By
0 Azé Azg , sz? , 0 0 [AL A%é A%C , Bglf . (5.16)
0 A7 A3 B 0 0 ]0 AyplAy By
0 0|0 0 |A. Be.

Proof. In the notation of (5.6), independent controllability is equivalent to
X1 =%+ (X1 NR) = X XTHXPHXT,
X =Ry + (X2 NR,) = X5+ X3+ X3+X5,
X.=X.NNR, = X}

The representation in Table 5.1 then reduces to a representation of the form (5.15),
and the corresponding controllable pairs in (5.9) reduce to the ones in (5.16). [

5.2.3.6 Relations between the concepts of controllability

In the following, some relations between the different concepts of controllability,
as defined in Sections 5.2.3.1-5.2.3.5, are established.

5.2.19. Proposition. The concepts of controllability defined in Sections 5.2.3.1-5.2.3.5
are related as follows:

(1) Coordinator controllability implies independent controllability,
(2) strong local controllability implies independent controllability,

(3) strong local controllability implies weak local controllability,
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(4) independent controllability implies joint controllability,
(5) and weak local controllability implies joint controllability.

Proof. The first three items follow directly from the reduced state space decom-
positions given in the proofs of Propositions 5.2.10, 5.2.12, 5.2.14 and 5.2.18.

The fourth item follows from the fact that the definition of independent con-
trollability coincides with the sufficient condition for joint controllability given in
Proposition 5.2.16.

For the last item, we note that by Definition 5.2.11, weak local controllability
corresponds to Ry = X1, Re = Xpand [0 0 1] R, = X,. This implies

X =X 51X+ X, = X131 X04+ [0 0 1] %R,

I 0 I 0
=10 X1+ |I| Xo+Re=|0| R+ |1 %2+9%C:%,
0 0 0 0
and this implies joint controllability by Definition 5.2.15. O

Weak local controllability is not a special case of independent controllability
because in the case of weak local controllability, the coordinator input . may
have a joint influence on the coordinator state and the subsystem states. In terms
of decomposition (5.6), for independent controllability it is necessary that X2 =
{0}, while for weak local controllability this is not necessary.

5.24 Example
To illustrate the theory developed in this chapter, consider the system

&(t) = Ax(t) + Bu(t),

with

[0 0 1[0 0 0|1 0 0] (100 0 0]
01 1[000/000 0lo/o 0 0
00 1[0 0 0/0 01 1|00 0 0
000[010/00O0 0[0/0 0 0
A=|0 0 0/0 0 0/0 0 1|,B=][0[1[0 0 0
00 0[001/0 01 0/0/0 0 0
000[(00O0|0O0 1 0[0/1T 0 0
00 0[000/00O0 0olojo 1 0
00 0[0 00|00 O] L ojof0 0 1




5.2 Controllability

This example, with subsystems X; = span{es, e, e3} and Xo = span{es, es, e}
and coordinator X, = span{er, es, eg}, has the following reachable subspaces:

) 9‘{1 = span{el,SQ,eg} = X1
o Ry =span{eq,es} ¢ Xo

X1 NR, =span{er } ¢ X1

XoNMR, = {0} ¢ X

o X.NMR. =spanfer,es,eq} = X

e [I 0 0]%R. =span{es, ez,e3} = X3

e [0 I 0]%R.=span{es,e5+es} C Xo

e [0 0 I]%R. =span{er,es, e} =X,

9‘1 = span{elv €2,€3,€4,¢€5, €6, €7, €8, 69} =X

R, = span{ei, ez + eq,e3 + €5 +eg,e7,eg,e9} © X

Since X. N MR, = X, the coordinator is strongly locally controllable. Since R; =
X1 and Ry # X, subsystem 1 is locally controllable, while subsystem 2 is not.
The system is not coordinator controllable since :i, # X. However, since R =
X, the system is jointly controllable. Independent controllability fails because

9{2 + XQ N fﬁc = {64, 65} 75 XQ.
Now suppose that B is given by

Sy
[
cooloo oo~

[N el Nl o] No o N

OO RO OO oo

O = OO O oo oo

— O OO0 O oo OO

i.e. the 1 in the first column, third row moves to the first column, second row.
In this case, e3 is no longer locally reachable. The reachable spaces change as

follows:

o Ry =span{er,ex} ¢ X3

e N =span{er, ez, €3 + €6, €4, €5, €7,€8,€9} C X,
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The other subspaces stay the same. Now R # X, and hence the system is no
longer jointly controllable.

Note that for this example, controllability cannot be checked by looking at the
subsystems separately: For both choices of B, the sufficient condition of Lemma
5.2.16 is not satisfied, but the necessary condition holds.

5.3 Observability

In this section we consider coordinated linear systems without inputs and with
outputs, i.e. systems of the form

A11 0 Alc
w(t) =] 0 Ax As| (),
O O ACC
! (5.17)
011 0 Clc
yt)=1 0 Coy Coe| x(t),
0 0 Ce
x1(t) y1(t)
with z(t) = |z2(t) | and y(t) = |ya(t)|.
xc(t) yC(t)

In the following, we will refine the usual concept of indistinguishability, as
discussed in Section 2.3, taking into account which output can distinguish a state
from the zero state, and which part of the system the distinguishable state be-
longs to. Based on these new concepts, we will derive an observability decompo-
sition for coordinated linear systems, and introduce several possible concepts of
observability for systems of the form (5.17).

5.3.1 Indistinguishability

For the case of unstructured linear systems, the concept of indistinguishability
describes whether a given initial state can be distinguished from the zero initial
state via the output trajectory in finite time (see e.g. [21]).

For coordinated linear systems, it is not only relevant whether a state is indis-
tinguishable from the zero state, but also which output is able or unable to distin-
guish this state from 0. Since for coordinated linear systems we have C'X; C Y,
the state z; of subsystem i can possibly be observed by looking at the correspond-
ing local output y;, while z; is indistinguishable from 0 at the other subsystem or
the coordinator. However, the state z. of the coordinator system may be distin-
guishable from 0 at y;, y2 or y.. In order to separate these different cases, we
introduce the following refined concepts of indistinguishability:



5.3 Observability

5.3.1. Definition. We define the following concepts of indistinguishability:

e Fori = 1,2, a state ;1’ € X;+X,. is called y;-indistinguishable (i.e. indis-

tinguishable from the zero state by the local output y;) if the system

w] _ [Au A [a zi
M L A

with initial state {xl] (0) = {xl
x T

c

}, has y;(t) = 0 for all t € T. The set of all

c

y;-indistinguishable states i

7
[

€ X;+X. will be denoted by J;.

o A state T € X, is called y.-indistinguishable (i.e. indistinguishable from
the zero state by the coordinator output y.) if the system

Te = Accwm Ye = Uecle,

with initial state z.(0) = Z., has y.(t) = 0 for all ¢ € T. The set of all
yc-indistinguishable states Z. ¢ X, will be denoted by J..

The spaces J;1, J; and J. are indistinguishable subspaces of three different
linear systems. Hence they have the following properties (see [72]):

A Ase

e J; is the largest [ 0 A

ker [C11 Chcl,

]-invariant subspace of X;+X, contained in

Azp Ao

0 A ]-invariant subspace of X3+X, contained in
cC

e J; is the largest [
ker [022 Cgc],
e and J. is the largest A..-invariant subspace of X, contained in ker C..

Recall from Section 2.3 that the linear subspace J ¢ X was defined as the set
of all indistinguishable states in the usual sense. The different indistinguishable
spaces of Definition 5.3.1 relate to the usual concept of indistinguishability as
follows:

5.3.2. Lemma. For the indistinguishable subspace J defined in Section 2.3, the following
relation holds:
J= (31+X2) N (X1+32) N (X1+X2+jc) (5.18)

The purpose of Lemma 5.3.2 is to verify that the different indistinguishable sub-
spaces of Definition 5.3.1 combine to the indistinguishable subspace in the usual
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sense: This should be expected since a state is indistinguishable if none of the
available outputs can distinguish it from the zero state.

C
CA
Proof. By (2.5) and with the notation O(C, A) = ) , we have
CAnfl
J=kerO(C, A)
Cii 0 Cic
=ker O 0 Cop Oy, A
0 0 Ce

zkerD ([Cll 0 Clc} ,A) ﬂkerD ([0 022 CQC} ,A) ﬂkerD ([0 0 Ccc] ,A)

= <X2%ker53 <[Cl1 Clc} s |:A011 :316:|>)

CCCACC
N <X1—i-ker53 ([022 Czc] , {AOQQ ﬁzﬂ)) Nker | . . .

0 0 C..A™!
:(X2+31) N (X1+32) N (X1+X2+ kerD(C’CC, ACC))
Z(XQ—;-’.H) n (Xl—i-jg) n (Xl';rXQ-i-jc). ([l

We have refined the concept of indistinguishability according to the differ-
ent output spaces of a coordinated linear system. In order to preserve our origi-
nal decomposition of the state space of a coordinated linear system according to
X1+X2+X,, we need to split up J; ¢ X;+X. and J2 ¢ Xo+ X, further. To show
that it is possible that J; ¢ X;+ X, butJ; N X; = {0} and J;, N X, = {0}, consider
the following example:

5.3.3. Example. Consider the system




5.3 Observability

with decomposition X; = span{ei, es}, Xo = {0} and X, = span{es, e4}. We can
find the y;-indistinguishable space by looking at the observability matrix of the

pair <[Cu Cic|, {ASI ilc}):

011 Clc
Ci11A11 C11A1c + CicAce
Ji=ker |0 43, CiiAiAie + CiiAicAce + C1 A2,

= ker

cocor

cor~ o

co o

o~ oo
o

1
= span{e; — e3} = span 1

This gives the following subspaces:
J1nX;={0}, [I 0]3y =span{es}, T1NX.={0}, [0 I]T;=span{es}.

While neither X; nor X, contain y;-indistinguishable subspaces, with notation

(Il)z (Ic)z
(x1)1 = 0and (z.)1 = —(21)2, and z. is y;-indistinguishable whenever (z.)2 = 0
and (l‘l)z = 7(580)1.

T = [(361)1] and z, = [(%)1} we have that z; is y;-indistinguishable whenever

Since J; can in general not be decomposed according to X; and X., we need
to work with under- and overapproximations of J;, ¢ = 1,2. In analogy with the
case of reachable subspaces in Section 5.2.1, these will be defined as follows:

5.3.4. Definition. We call the following spaces completely indistinguishable
subspaces:

IiNXy, I1nX. JanNXs TanXe..

The following spaces will be called independently indistinguishable sub-
spaces:

7 03, [0 N3, [T 0% [0 1%
The completely indistinguishable subspaces are subspaces of the indistinguish-
able spaces J; and J,. This means for example that a state x; € X; is completely
€ X1+X_. is y1-indistinguishable. The term

0
‘independently y;-indistinguishable’” means that a state is y;-indistinguishable

y1-indistinguishable if the state [Il
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from 0 if no further information from the other outputs is available: A state
x1 € X; is independently y;-indistinguishable if there exists a state z. € X, such

that [ml
X

(&

] is y;-indistinguishable. However, z. might not be 0, so it is possible that

x. is observable from y; or y., and given the value of z. we may be able to derive
the value of ;. In other words, a state is independently y;-indistinguishable if it
is not distinguishable from 0 by the output y; alone.

It immediately follows that

(INX)+(@inX)cTc[I 0]3+[0 I]7;,
and hence by (5.18), we have

(31 ﬂXl) (JgﬂX2)+((31ﬁXC)ﬂ(jzﬁXc) )g (519)
Sl 0)3i[I 0)%(0 N3N0 1]3:03). (5.20)

5.3.2 Observability decomposition

We will decompose the state space X according to the observability properties of
the system, by first decomposing X +X., and then including X5 in the decompo-
sition. In the following, we call a subspace of the state space y;-distinguishable if
it contains no non-zero y;-indistinguishable states.

In X;, i = 1,2, we have the y;-indistinguishable subspaces J; N X; and
[I 0]3;,withd;NX,; c [l 0]J;. Hence, we can decompose X; as follows:

5.3.5. Procedure.
(1) Let X3 = J; N X,.
(2) Let X? be any complement of X? in [I 0] J,.
(3) Finally, let X} be any complement of X2+ X} in X;.
Now X; = X} X21 X}, with the following distinguishability properties:

subspace | y;-distinguishable

X yes
X2 depends on z..
X3 no

For the decomposition of X, according to the observability properties of the
system corresponding to X;+X., we have to take into account the indistinguish-
able subspaces J., ;N Xcand [0 1] J;, withJ;n X, c [0 I]3J;. We decompose
X, as follows:
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5.3.6. Procedure.
(1) Let X8, =J.N(J; N X,).
(2) Let X7, be any complement of X¢, inJ. N[0 1] 7J;.

(3) For X, we choose a complement of X?;+X?, in J.. Note that now

c,i/

X2 4X2,4X8, =17
(4) Let X2, be a complement of X¢, in J; N X..
(5) X2, is any complement of X2 ,+X?,+X¢,in [0 1] J;.
(6) Finally, let X!, be any complement of X2, +X2,+ X}, + X2 +X?, in X..

Then X, = X} +X2,+X3,+ X! ,4X2,+X?,, with distinguishability properties
as described in the following table:

subspace | y.-distinguishable | y;-distinguishable
X!, yes yes
2 yes depends on z;
2 yes no
4. no yes
X2, no depends on z;
X3, no no

Suppose a decomposition of X;+X, as described above is given, then we ex-
tend it to a decomposition of X by including the y,-distinguishability properties
of X»: The subspace X5 will be decomposed into X» = X3+X35+X3 as above,
with X§ = J, N X, and X3+X3 = [I 0] J2. Now for k = 1,...,6, decompose
X 571 as follows:

5.3.7. Procedure.

(1) X2 =XF n(X.N73y),
(2) X3*1isacomplement of X3* in Xf,l N[0 1]3,,
(3) X322 is a complement of X2* 11 X3 in XF,.

The subspaces X232 are y,-distinguishable, the subspaces X3*~! are only
yo-distinguishable for some values of x5, and the subspaces X, 3F are yo-indistin-
guishable. Now X, = X!+... 1 X%, and the overall decomposition of X is

X = (X7 HXTHXD) + (X4 X34 X3) + (X4 X2+.. . +X.28). (5.21)
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In the above decomposition we first considered the subspace X;+X., and then ex-
tended the decomposition of X;+X, by considering the distinguishability prop-
erties of X». However, the properties of the resulting decomposition (5.21) are
unaffected by the order in which we consider X; and X»: By setting

X5y =X XF3IXES,

XEQ _ Xév+6J'rXéc+9J-rX§+12,

k=1,2,3,
k=4,5,6,

and using the decomposition of X as above, we get a decomposition of X»+X,,
with the same indistinguishability properties as the given decomposition of
X1+X.. The indistinguishability properties of X. in decomposition (5.21) are
given in the following table:

subspace | y.-distinguishable | y;-distinguishable | y,-distinguishable
X! yes yes yes
X2 yes yes depends on x>
X3 yes yes no
X3 yes depends on 4 yes
X3 yes depends on z; depends on
X5 yes depends on x4 no
X7 yes no yes
X3 yes no depends on x5
X2 yes no no
X0 no yes yes
X no yes depends on 5
X2 no yes no
X1 no depends on z; yes
XM no depends on z; depends on
X no depends on 14 no
X6 no no yes
X no no depends on x5
X' no no no

The main result of this section concerns the invariance and observability prop-

erties of the different subspaces of the decompositions derived above:
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5.3.8. Theorem. With respect to the decomposition (5.21) of X, system (5.17) is of the
form given in Table 2, with observable pairs

411 11 12 13 1,10 1,11 1,12 7
All Alc Alc Alc Al Al Al

0| a1 42 o o 0 0
0 | A2 42 0o 0 0 0 ; (522)
0 | A% A¥ A% o0 0 0
0 AL01 4102 Aig’lo Al(c),n 0
0
0

ALLL Ag1L2 g 41110 4l1L11 0
A121 A12,2 12,3 412,10 412,11 412,12
) cc

[Con | Co Co. O3 Cof Gl Cy¢ ]

M ALl 11 14 17 1,10 1,13 1,16 7
A22 AQC A2c AQC A2c A2c A2c

0 | Al Al 9 0 0 0
0 | AL A 0 0 0 ; (5.23)
0 | ATL ATA AT 0 0
0 | A0l Al04 g 41010 410,13
0
0

cC
A13.1 Ai;“?"* 0 A0 4313
16,1 16,4 A16,7 16,10 416,13 A16,16
A ACC ACC ACC A ACC .

All A12 All A12
Cl 02 , |: 11 11:|) ) ( Cl 02 , |: 22 22:|) ) 5.24
([ 11 11] A% A%% [ 22 22] A%% A%% ( )

[Ce CE C2

Cee Ci C& CL C& C2l,
AlLAlZ oAl A 0 00 00 0]
AZLoA2 0 A2 o4 0 0
A31 A32 A33 A34 A35 A36 0
L L S NE Y B
AL AR 0 A 4B 0 0
ASe AZ AR AT AR AR 00
Al AZ 0 AR AT 0 AlT AT
Age A0 AR AT 0 AN AR 0
A% AR AR AN AR AR AN AR AR

(5.25)

o O OO
OO OO oo

Proof. The first two columns of A follow from the A-invariance of X; (see Defi-

nition 3.1.1). Since J; ¢ X;+X, is {Aél ﬁlc
the subspace J;+X» € X is A-invariant. Now X3} = J; N X = (314 X5) N X7 is
A-invariant, which establishes the third column of A. Columns 4-6 follow from a
similar argument for X5.

}—invariant and X5 is A-invariant,
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AfALR 0 0 0 | All A2 AfJ A2 A2 A1 0 0 0 AR AR AR ARP AR ALY 0 0 0 ]
\wmw&mw 00 0 \wwm \QWW \www \www \www \wwm \wwm ﬁwm K&mw \wm Ho \wm : \mem \wm Hw \ww T» \wm Hm \ww 16 \ww 17 ﬁw 18
\wm\wwwkww 00 0 \wmm \www \»ww \www \www \»wm \www \www \pmw \wwwﬂo \wwm: \»w Hw \»w Hw \»w E \ww Hm \ww Hm \ww Hﬂ \ww Hw

1,10 41,11 1,13 41,14 1,16 41,17
0 AL A2 0 AR ADY 0 AT AR 0 AL AR 0 AP AD 0 A% Ap 0
21 22 23 24 25 26 27 28 29 N HO m HH 2,12 m wa w H% 2,15 w Hm.. w Hﬂ 2,18
\wwo \wmo \»mo \wwn \pwo \wmn \wwo ﬁwo \wmo \ww Ho \ww HH \wmnu.m \»w Hw \ww HA \ww Hm \ww Hm \ww Hﬂ bw Hm
33 31 32 33 34 35 36 37 38 39 s
\wmw \wwn \Pmn \Pwn \wwn \wwn \wwn \wmn &wn \ﬁwn \® \w \Pwn \w \w xﬁ \w >

o

(e}

(e}

e
aw:“S:

\ww

o
(]
o

0 00 0 0 0 Al A2 0 A% A 0o 0o 0 o O O O O O O O 0 o
0 0 0 0 0 0 | A% A2 0 A% 4% 0 0 0 O 0O O 0 o 0 o 0 o0 o0
0 00 0 0 0 A3L A32 433 434 A3 A3 0 0 0 0 0 0 0 0 0 0 0 0
0 00 0 0 0 AL A2 0 AM A% 0 0 0 O O O O O o0 o0 o0 0 o
0 0 0 0 0 0 | A% 452 o A% 4% o 0o 0 o O O O O O O 0 0 O
0 00 0 0 0 ASL AS2 AG3 AGL ASS A58 o 0 0 O 0 0 0 0 0 0 0 0
0 0 0 0 0 0 | AT A2 o A A2 o0 AT A 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 | A% A%2 o A% 4% o A% 4% o o 0 0 0 0 0 0 0 0
0 00 0 0 0 A% A92 A93 A9 A93 ASS A9 498 A% ¢ 0 0 0 0 0 0 0 0
0 00 0 0 0 | Al%T4102 ¢ \mwf%a 0 0 0 0 ALW041011 g 4l018410,14 ¢ 0 0 0
0 0 0 0 0 0 | ABIAILZ o All44IM® 0 0 0 0 Alb1o4lLil g Albisglhle 0 0 0
0 0 0 0 0 0 ,&wH&mﬁmﬁmﬁmmﬁwm 0 0 0 Al210412,11 412,12 412,13 412,14 412,15 0 0
0 00 0 0 0 | A31A2 o Al3443%5 0 0 0 0 A31041311 o Ald84ls14 0 0 0
0 0 0 0 0 0 | AB1AZ o Al%4445 0 0 0 0 AlB04all g glaisglald 0 0 0
000 0 | 00 0 [AZARZARIARADIALRS 00 0 ARCARVAREAREARIARE 0 0 0
000 0 | 00 0 [ABIAR? 0 A4S 0 ALTAS 0 AIOALT 0 APAIRM 0 A4 0
0 0 0 0 0 0 |ATAlT2 o ALTAALTS 0 ALTTALTS o ALT0ALTIL g AlTSISALTI4 g gITA6Y1TAT
000 0| 00 0 |Alalzansalalianealalsalzoalioali izl Al AL 0l T AL

Cic Cf. Cf. Ci. C%. C%. 0 0 0 Cif Cip Ci2 Ci2 Cif ¢i2 0 0 0

Q
=i
-

Q
=
—

(es]
o
o)
o)

000 |CnC30 | G C3, 0 C3 C3, 0 CL C3, 0 O30 Ci 0 C3f C3f 0 G2 C3f 0

0 00 0 0 0 cl. c: c3 oct sl octoctocloo 0 0 0 0 0 0 0 0




5.3 Observability

For the remaining columns of A, we first note that
Je = X 0P X EX P XX XX 0 xTix S
is Acc-invariant, which explains the lower-triangular block structure of A... Apart

from this, columns 7, §, 10, 11, 16, 17, 19 and 20 have no special structure.
Columns 13, 14, 22 and 23 follow from

XTix8ix2ix0ixTixX® =0, n X,
being A..-invariant (since X is trivially A..-invariant), and from

A Aicl o~ A Aol ~ . .
{ 61 Aij (31N Xe) C [ 0“ Aic] J, €Ty € (X21XD)iX..

Similarly, columns 9, 12, 18 and 21 follow from
X3ix0ix2iX2iXPiX® =7,n X,
being A..-invariant, and from

Az Ay A2z Aol 5y FX3)4
{ S Aij (32N X,) C [ 0 Ajc] J2 € Jp € (XFHX5) X

Finally, columns 15 and 24 of A follow from X2+X!8 c (3; N X.) N (32N X,) and
the arguments for J; N X, and J2 N X, above.
The structure of the C-matrix follows from

XPF (XXX XX EXS) <3y cker [Cry Cue],
X§+ (X§+X§+X3+X§2+Xcl5+Xcls) c 32 - ker [022 CQC} s
XXX PIX P XXX XX =3 C ker C.
The first two observable pairs follow from Definition 5.3.1, and from
Iy N (XTEXEXZEX2 XXX ?) = {0},
Jo N (X3 HXXXTIXOLX P 1X1) = {0},

87



88  Chapter 5: Controllability and Observability

The third and fourth observable pairs are due to

C” Olc
~ Ay A Cuty 7
ng =7, NX; =kerO ([C” CZC] ’ |: 0 ACC:|)

:kerD(C’,;,;, A”), 1= 1, 2,
and the last observable pair is due to
Je = X O+ XX PEX XX X0 X T RS m

An additional decomposition of the output spaces Y7 and Y5 of the subsys-
tems, specifying which part of the output observes (part of) the local subsystem
state or the coordinator state, would induce some additional structure on the C-
matrix. This is not considered here.

5.3.3 Concepts of observability

In this section, the observability decomposition derived in the previous section

will be used for the characterization of several possible concepts of observability.
In analogy to Section 3.3, the two concepts of observability most relevant for

practical purposes are weak local observability (Definition 5.3.11) and indepen-

dent observability (Definition 5.3.17).

5.3.3.1 Subsystem observability
Subsystem observability will be defined as follows:

5.3.9. Definition. We call a system of the form (5.17) subsystem observable if for
Z} € X1+X, are y;-distinguishable, i.e. if 3, = {0}.

1 = 1,2, all non-zero states [i
(&

Subsystem observability is a rather strong condition (see Proposition 5.3.19).
It is a useful concept if one aims at constructing a coordinated system that is as
decentralized as possible: If the system is subsystem observable then the coor-
dinator is both y;-observable and y,-observable. These observations can then be
used for local control synthesis, as described in Section 5.4. On the other hand,
if a coordinated system is not subsystem observable and if one aims at having a
coordinator of minimal dimension, then all parts of the coordinator that are not
both y;-observable and y,-observable can be moved to a subsystem (see [23]).
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5.3.10. Proposition. A system of the form (5.17) is subsystem observable if and only if
the following pairs are observable pairs:

([Cu Clc] ) [AOH iij) and ([022 Czc] ) {Aozz ﬁzj)

Proof. Subsystem observability is equivalent to J; = {0}, which means [I 0] J;
= {0} and [0 I]3J; = {0}. Hence, in terms of decomposition (5.21), subsystem
observability is equivalent to

X, =X, Xo=X1, X.=XXx0

The representation in Table 2 then reduces to a representation of the form

(AL 0 | Al AR T
11 11 1,10
CC(t) — 0 A22 A2c A2C 1‘(t),
0] 0| A2 o
L0 [ 0 AT ALY (5.26)
[Ch| 0 | ¢l Ci ]
y)=1| 0 |Ch| Co G50 |a(t),
| 0 0 C’Clc 0

and the corresponding observable pairs in (5.22)-(5.25) reduce to

AL oAl g0
[chlccl2 ], o x N Li=1,2. (5.27)

C
10,1 410,10
0 ACC ACC

These are exactly the pairs given in Proposition 5.3.10. O

5.3.3.2 Weak local observability
Weak local observability will be defined as follows:

5.3.11. Definition. We call a system of the form (5.17) weakly locally observable
if all non-zero states z. € X, are y.-distinguishable, and for i = 1, 2, all non-zero
i

ol € X;+X, is y;-distinguishable. This means that

states x; € X; have that [

ji n Xz = {0} and jc = {O}
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The term ‘weak local observability” distinguishes this concept from the
slightly stronger concept of strong local observability, defined in Subsection
5.3.3.3. While weak local observability implies that the coordinator state is ob-
servable from the coordinator output, the subsystem states are only required to
be observable from their local outputs if . = 0; for non-zero coordinator states
the influence of A;.x. on x; may render the subsystem state unobservable.

The following proposition states that weak local observability enables us to
reconstruct the system state via local observers:

5.3.12. Proposition. A system of the form (5.17) is weakly locally observable if and only
if, in the notation of (5.17), the following pairs are observable pairs:

(011,1411), (022,1422) and (OCC;A(:(:)-

Proof. If the system (5.17) is weakly locally observable, i.e. if J; N X; = {0} and
J. = 0, then in the notation of decomposition (5.21), we have

X, = X[3X?, Xo = X0+ X3, Xo = XHEX24. . 1X0.

The representation in Table 2 then reduces to

r 11 p12 11 A12 A13 A1l4 A15 A1l6 7
S| 0 0 A iiedi 0 0 O
11 “*11 lc “*1lc “*le “Hle “Hle “Hle “Hle “tle “Hle

Apy A3 | Agp A32 0 AT A 0 Al AR 0

A3y AZ3 | ASL AS2 AT ASL AR ASY AZT ASE AR

Aé%Aég 0 Aé%Aég 0 0 0 O

BB 5B s

241 442 0° 44 485 (°

EE 0 A

e R

A% A% Occ A%l A% 60 A77 A?S

ART 482 () ABd 485 o 487 488

Agcl ASC)% A93 AEC)Z Ag% A96 ASC)% Agg A99
cc cc cC ccC cc cc cc ccC cc

o
o

o
o

o O oo
o o oo

(5.28)

=l eloloNoNoNeNeBoel el
[l el e e Mo Moo Ne ol Nl
OO O O oo

SO OO OO OO
SO OO OO oo

[ C1111 0121 0 0 Cllc C'120 Cig)c Cfc Ci:’c Cl6c 0 0 0
c=| 0 0 [ChLC%,|CLCL 0 CLCh 0 CLCs 0 |,
0 0 ] 0 0 |C,CZCECCeCe CLCELCE, |
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and the observable pairs (5.22)-(5.25) reduce to

ALl 712 ALl A12
(tenen 1|44 ]) (Tenenr | B4 |),

[ Cee C& CZ Co C2 Co CL Gl CF ],

[ AL A2 0 A A% 0 o0 0 0 ]
AZL A2 0 A2 A% 0 0 0 0
ADL AR AR AT AR AR 0 00 (529)
A‘ég A‘éf 0 A‘C:ﬁ A‘C:é’ 0O 0 0 O
AL A2 0 A A% 0 0 0 0
A61 A62 A63 A64 A65 A66 0 0 0
A%i A% 56 A%i A% 66 A77 A78 0
ABL 482 o AB1 485 g 48T 488
| A% AR AL AR AR AR AU AR AR
But these are exactly the pairs (C11, A11), (Caz, Aaz) and (Cee, Ace). ]

If A is antistable (i.e. if 0(A) c {\ € C|Re(\) > 0}) then weak local observabil-
ity is necessary and sufficient for state reconstruction via linear state observers:
For coordinated linear systems, we have to restrict the admissible observer ma-

G 0 Gie
trices to matrices of the form G = 0 Ga2 Gac| in order to preserve the
0 0 Ge
information structure we have imposed. This gives
Ay - GuCn 0 Are — G11Che — G1:Ccc
A-GC = 0 Ay — G202 Age — G22C5; — G2.Cc
0 0 ACC - GCCCCC

Now the eigenvalues of this matrix are
0(A-GC) =0(A1n - G11C11) Uo(Azg — G22C2) U (Aee — GecClee),

so the matrix A-GC, describing the dynamics of the observer error, is stable if and
only if the blocks on the diagonal are stable. In the case that A is antistable, this
is equivalent to weak local observability of (C, A). Hence, just like in the case of
pole placement, state reconstruction concerns each part of the system separately.

5.3.3.3 Strong local observability

The concept of strong local observability will be defined as follows:
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5.3.13. Definition. We call a system of the form (5.17) strongly locally observ-
able if all non-zero states x. € X, are y.-distinguishable, and for 7 = 1, 2, all non-
zero states z; € X; have that [;1
ie if J; ¢ X.and 7. = {0}.

In the case of strong local observability, each part of the system observes its
own state. Compared to subsystem observability, observations are more decen-
tralized: Each part of the system has full information about their local state, and
the subsystems may or may not have information about the coordinator state.
Unlike in the case of weak local observability, the local observations of z; are
independent of the value of z.: the coordinator state cannot interfere with the sub-
system dynamics in a way that would render the subsystem state unobservable.

} € X;+X,. is y;-distinguishable for all z. € X,

c

5.3.14. Proposition. A system of the form (5.17) is strongly locally observable if and
only if there exists a decomposition of X resulting in a system representation of the form

Ay | O [ Al A2, 0
Aoy | A3, 0 A3,

Iy | 0 [TL T2, 0 0

co|lo| o
Q
|
o

0
A=1 0 0 [Al o0 o Py | T3, 0 T3, 0
0 | 0 |AZL AZ o
0 0 A31 0 A33 0 L 0 0 Péc Fgc Fgc Fgc .
0 0 Aécﬁ A42 Aﬁ% A44
] ) (5.30)
The following tuples are observable pairs:
[ Au | Al AL
[ I ‘ I I ]7 0 [ALl 0 )
0 Aéi A22
[ Azp | Ag. A3 ]
[T [T3. T3 ]| o [Al o |- (5.31)
0 A31 A33
Al o 0 o0
A2L A2 0 0

[ Ftlzc Fgc Fgc cmlc ]7 Agz 0 A%S 0

C

41 42 43 44
A Acc Acc Acc

Proof. The conditions J; ¢ X, and J, = {0} characterizing strong local observ-
ability are equivalent to the conditions [/ 0] J; = {0}, [0 I]J; = J; N X, and
J. = {0}. In terms of decomposition (5.21), this means

X, =X, Xo =X}, X, = XMX3XTiX0.
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The representation in Table 2 then reduces to a representation of the form (5.30),
and the corresponding observable pairs in (5.22)-(5.25) reduce to the ones in
(5.31). O

An interesting generalization of both subsystem observability and strong local
observability is to require that for some matrices D1., D2, and D, of appropriate
sizes, [é Dohj Bj is observable at subsystem 1, {é D02 C] [zj is observable
at subsystem 2, and D..x. is observable at the coordinator. The interpretation
of this concept is that each subsystem observes, in addition to its own state, a
particular part of the coordinator state. The observable part of the coordinator
can be different for each subsystem.

This concept is equivalent to J; € ker D;. for i = 1,2, and J. C ker D.. For
subsystem observability, we have D;c = I, ¢ = 1,2 and D.. = 0. Strong local
observability corresponds to the other extreme, with D;. = 0 for i = 1,2, and
D. =1

5.3.3.4 Joint observability
We define joint observability as follows:

5.3.15. Definition. We call a system of the form (5.17) jointly observable if all
Y1

non-zero states x € X are |y, | -distinguishable, i.e. if
Ye

(311X5) N (321 X1) N (31 X114 X,) = {0}

Since the characterization of joint observability is equivalent to 3 = {0} by
Lemma 5.3.2, the concept of joint observability coincides with the usual concept
of observability. For coordinated linear systems, this concept is not very useful: If
the system is jointly observable but not independently observable (see Definition
5.3.17), then the overall state of the system can only be observed by combining the
observations of the different parts of the system; the combination of these obser-
vations requires communication among different parts of the system, which does
not comply with the information structure we imposed on coordinated systems.
This difficulty is illustrated by an example in Section 5.3.4.

Since the concept of joint observability cannot be characterized by separate
conditions for each part of the system (which reflects the need for communication
between the different parts of the system for the observation of the system state),
we cannot give a reduced decomposition for this concept. We can however give
a necessary condition and a sufficient condition for joint observability, both of
which separate into conditions on the different parts of the system:
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5.3.16. Lemma. For joint observability of a coordinated linear system of the form (5.17),
and hence for observability in the usual sense, it is necessary that

31 N X1 = {0}, 32 n X2 = {O}, (31 ﬂXc) n (32 N Xc) ﬂjc = {0},
it is sufficient that

X, Joc X, [0 11300 1)F2n3, = {0}.

Proof. The necessary condition follows directly from (5.19). For the sufficient
condition, note that

(1 0]3,=1{0}, [I 0]32={0}, [0 7]3in[0 I]32n3.={0}

is sufficient for J = {0} by (5.20), but ([ 0] J; = {0}) < (J; ¢ X.), which gives
the sufficient condition stated above. O

5.3.3.5 Independent observability
Independent observability will be defined as follows:

5.3.17. Definition. We call a system of the form (5.17) independently observ-

Z1 Y1
able if all non-zero states z. ¢ X, have that [zo| e Xi+Xo4+X. is |yof-
Te Ye

distinguishable for any z; € X; and z2 € X», and for ¢ = 1,2 all non-zero states
x; € X; have that the state El] € X1+X, is y;-distinguishable for all z. € X, i.e.
if

[I 0] 73, ={0}, i=1,2, [0 I} JiN [0 I} J.N7J. ={0}.

By Lemma 5.3.16, independent observability coincides with the sufficient con-
dition for joint observability. Hence it is a stronger condition than joint observ-
ability, and more useful in the setting of coordinated linear systems because all
parts of the system state are observable independently of the value of x.: no com-
munication among the different parts of the system is required to observe the
subsystem states. The coordinator state can only be observed jointly by the dif-
ferent outputs.
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5.3.18. Proposition. A system of the form (5.17) is independently observable if and only
if there exists a decomposition of X resulting in a system representation of the form

A | 0 |[Af. AZ. 0 0 Af. Af. O
0 [Ax | AL, O A3, 0 A3, 0 Al
0] o0 [AX O 0o 0 0 0 0
(1) = 0 0 | A2} AZ 0 0 0 0 0
0 0 |[A3L 0 A® o0 0 0 0
0 | o [Afl A2 AB AM o 0
0] 0 [A2 0 0 0 A® 0 0
0 0 | A8l A% 0 0 A8 ASS 0
Lo [ o [af 00 AT 0 A% 0 AT
Iy | 0 |, T2, 0 0 I T8 0 ]
yt)=1| 0 [Ty Ty 0 T3 0 T5 0 T3
L 0 0 Fic FEC FEC FZCLC 0 O 0 .
and such that the following tuples are observable pairs:
[ Aun | Al AT AR, AT
L ore s s 0 [Al 0o 0 o0
[ Tu [Ty, TR, IR, TY, ], 0 | A2L A22 0 0
0 [AY 0 A®
0 A61 A62 A65 A66
[ Ao A%c Agc Agc Ag(’ |
0 [Al 0o 0 o0
[ Too [ T3 T3 T3, T3 ]| o [ ASL A3 o o
0 | A3l 0 A2 0
[0 [ AG AZ AL AL
Al 0o 0 0
AZLA22 0 0
[ F(l:c Fgc Fgc Fgc ]7 A3,1 0 Aizlg 0

41 42 43 44
Acc Acc Acc Acc

(1),
(5.32)

(),
: (5.33)
: (5.34)
(5.35)

Proof. In terms of decomposition (5.21), we have [I 0] J; = X?+ X} = {0}, and
since [I 0] J; = {0} implies that [0 I] J; = J; N X,, we also have

X2, X2 X5, X8, XB, XM X xM XP, X ={o}.
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Now the second condition for independent observability reduces to [0 1] J; N
[0 I]3;Nn3. = X2 ={0}. Hence, independent observability is equivalent to

X1 =X{, Xo = X5, X = X AXHXHX0HX "X P HX,E.

The representation in Table then reduces to a representation of the form (5.32),
and the corresponding observable pairs in (5.22)-(5.25) reduce to the ones in
(5.33)-(5.35). O

5.3.3.6 Relations between the concepts of observability

For the different concepts of observability defined in Sections 5.3.3.1-5.3.3.5, we
have the following relations:

5.3.19. Proposition.

Subsystem observability implies independent observability,

o strong local observability implies independent observability,

strong local observability implies weak local observability,
o independent observability implies joint observability,
o and weak local observability implies joint observability.

Proof. The first three items follow directly from the reduced state space decom-
positions given in the proofs of Propositions 5.3.10, 5.3.12, 5.3.14 and 5.3.18.
The definition of independent observability in 5.3.17 coincides with the suffi-
cient condition for joint observability in 5.3.16, which gives the fourth item.
Weak local observability corresponds to J3;NX; = {0} fori = 1,2 and 7. = {0}
by Definition 5.3.11, and since

J= (31+X2) n (32+X1) n (3C1.LX11LX2)
= (31+X2) n (jg—&-Xl) n (X1+X2)
= ((31 N X1)+X2) n ((32 n X2)+X1) =XoNX; = {0},

this implies joint observability by Definition 5.3.15. O

In the case of weak local observability, the observability of the subsystem
states z; might depend on the value of x., and hence the observability proper-
ties of the subsystem states are not independent of the rest of the system. Hence
weak local observability is not a special case of independent observability.
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5.3.4 Example

Consider the system

00 1/0 0 0|1 00
01 1/0 0 0/0 0 0
00 1/000/0 0 1
00 0/010[00 0
it)y=]10 0 0[0 0 0|0 0 1 |a(),
00 0[00 1|0 0 1
00 0/0 00|00 1
00 0/00O0/0 00
00 0/000[0 0 O]
(10 -1]0 0 0]0 0 0
01 0]00o0/0 00
00 0|1 0O0/0 0O
=100 olo o 1l0o 0o o|*®
00 0]/0 00|00 1
00 0/0 001 10

with X; = span{es, ez, €3}, Xo = span{eq, 5, ¢} and X, = span{er, es, eg}. The
A-matrix here is the same as in the example for the controllability decomposition,
in Section 5.2.4. From writing out the observability matrices of the different pairs
of submatrices given in Definition 5.3.1, we see that

J, = span{es}, Jo = span{er,es}, J. = span{er — es}.
This gives the following subspaces:

jlle = [[ O] 31 = 0}, 2 1 [I O] 32:{0}
J1NX.=[0 I]J; =span{es}, JoNX,=[0 I]Jy=span{er, es}.

This system is not subsystem observable since J; # {0}. While the subsystems
are strongly locally observable because J; ¢ X, for i = 1,2, the coordinator is
not locally observable since J. # {0}, and hence the overall system is not locally
observable (in either the weak or the strong sense). Joint observability follows
from

J :(31+X2) N (X1+32) N (X1+X2+jc)
= span{es} N span{er, es} Nspan{er — eg} = {0}.
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Moreover, the system is independently observable since [I 0] J; = {0},i = 1,2,
and

[0 I]3,N[0 I]J2Nn3J.=span{es} Nspan{er,es} Nspan{er —es} = {0}.

5.4 Systems with inputs and outputs

Coordinated linear systems with inputs and outputs were defined in Section 2.

Since the reachability properties and indistinguishability properties of linear
systems are independent of each other, a decomposition of the triple (C, A, B)
according to both observability and controllability can be derived by combining
the decompositions given in Tables 5.1 and 5.2. Since X; is decomposed into 6
subspaces according to reachability, and into 3 subspaces according to indistin-
guishability, combining these would lead to a decomposition of X into 18 sub-
spaces. The same holds for X,. The coordinator state space X. is decomposed
into 3 subspaces in the controllability decomposition, and into 18 subspaces in the
combined observability decomposition of X. Hence a decomposition of (C, A, B)
would involve 54 subspaces of X., and 90 subspaces in total. In light of the size
of the combined decomposition, we will only derive a decomposition of (C, A, B)
for some special cases.

5.4.1 Stabilization via dynamic measurement feedback
In e.g. [63], one can find the following:

Let a linear system
& = Ax + Bu, y = Cuz,

be given. Consider the state observer

§=(A-GO) + Gy + Bu,
with observer error e = z ¢, satisfying é = (A—GC')e. Couple this
to the feedback v = F¢. Then the closed-loop system and closed-
loop error are

= (A+ BF)x + BFe, ¢ = (A-GC)e,

which can be rewritten as

-1 22
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Hence the system is stabilizable via dynamic measurement feed-
back if and only if (A4, B) is a stabilizable pair and (C, A) is a de-
tectable pair.

For the class of coordinated linear systems, we need to define concepts of
detectability and stabilizability in order to find equivalent conditions for the ex-
istence of a stabilizing dynamic measurement feedback.

5.4.1.1 Stabilizability

For coordinated linear systems, we define the concept of Rc;s-stabilizability as
follows:

5.4.1. Definition. We call a system of the form (3.1) (or, equivalently, the matrix
pair (A, B)) Rcrs-stabilizable if there exists a feedback matrix

Fiu 0 Fie
F=10 Fy )|l eRcs
0 0 Fe.

such that the closed-loop system matrix A + BF is stable.

The restriction of all possible stabilizing feedback matrices to the class Rcys is nec-
essary (and sufficient, since Rcrs is a ring) for the closed-loop system to again be
a coordinated linear system: feedback matrices of any other form would destroy
the underlying information structure. This restriction leads to a stronger concept
of stabilizability than the one given in Section 2.3: there exist coordinated linear
systems which are stabilizable via an unstructured feedback matrix F', but not
stabilizable via a feedback matrix F' € R¢ys.

5.4.2. Proposition. For a system of the form (3.1), the following are equivalent:
(1) The system is Reys-stabilizable,

(2) The matrix pairs (A11, B11), (Aaz, Bao) and (Ace, Bee) are stabilizable (in the
sense of Section 2.3),

(8) For any decomposition
X1 =R 1X7, Xo =Rt X3, Xc=1[0 0 I]RAX],

where Ry, Re and R, are given in Definition 5.2.1, the restriction of A to the
subspace X{+X5+X7 C X is stable.
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Proof. 1 < 2: By Definition 5.4.1, Rcs-stabilizability means that there exists a
feedback I’ € Rcys such that the closed-loop system matrix

A+ BiiFia 0 Ate+ Bi1Fic + BicFe.
A + BF = 0 A22 + B22F22 AQC + BQQFQC + BQCFCC
0 0 Acc + Bchcc

is stable. Since this matrix is upper-triangular, this is equivalent to stability of
the matrices on the diagonal, which is equivalent to the existence of stabilizing
feedbacks Fi1, Fye and F,. for the pairs (A11,B11), (Asg, Bag) and (Acc, Bee),
respectively.

1 < 3: As quoted in Section 2.3, for i = 1,2 and with respect to any decom-
position X; = R;+X? (note that R, is fixed, and X7 is free to choose), the matrix
11 12 1
pair (A;;, By;) is of the form <{A61 3522} , [%”}) , given in (2.4). Moreover,

A0 0 I[Re=[0 0 AR =100 0 IJAR.c[I 0 0]R.

by the A-invariance of fi,, and also

Blc
imB,.e=1[0 0 I]im |Bs.| [0 0 I]%R..
Bcc

Hence the pair (A, B..) is also of the form (2.4). With respect to the decom-
position X = R+ X{1 R+ X5+[0 0 I] R 4 XS, the pair (4, B) is now of the
form

A

=
[y

AR 0 0 | AL AP B}
AR | 0 0 | AfL AR
0 [ A} Ax| A5 AY
0 A% | An AR |
0 0 | Al A2
0 0 0 A2

OOO&OO
[\S]
o)
DO
S

[evien] Benllen] Ren}
o oo
O OO OO
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F 111 F 121 0 0 F llc F 125
Applying the state feedback F' = 0 0 |EL, FL|FL FZ2 | €Rcs
0 00 0 |FL E2

leads to the closed-loop system matrix

Al +B{, F, Al3+B{ F{ 0 0 * *
0 A 0 0 * *
0 0 AR +BL,F), A2+ B, F3, * *
0 0 0 A% * * ’
0 0 0 0 All+BLFL AlZ+BLFZ,
0 0 0 0 0 A?2
where the entries denoted by * are not specified further.
An o 0 Al [Bn 0 By
Note that the restriction 0 A} Al | 0 Bi, Bi|| of the pair

0 0 Al 0 0 BL
(A, B) to Ry +Ra+ [0 0 I ] R, is weakly locally controllable by Definition 5.2.11,
and this is equivalent to the pairs (A}, Bl,), (433, Bl,) and (Al!, BL.) being con-
trollable pairs by Proposition 5.2.12. This means that there exist matrices F},, F,
and F., such that

o(Al} + BLFL Y Uo(AL + BLFL)Uo(All + BLEY) cC .

cc— cc

Now we have that the system is Rcys-stabilizable, i.e.

0(A+ BF) =0(Al1 + Bl Fiy) Uo(Ay + By Fiy) Uo (A + BeoFye)
Uo(Af]) Ua(AZ) Uo (A7) c C,

if and only if 0(A43%) U o(A23) U o (A?2) c C, and this in turn is equivalent to the
A22 0 A22
11 lc

restriction | 0 A3%2  A%2| of Ato X§iX51X¢ being stable. O
0 0 A%

5.4.1.2 Detectability

In analogy with the previous subsection, we define the concept of Rcrs-
detectability as follows:
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5.4.3. Definition. We call a system of the form (5.17) (o1, equivalently, the matrix
pair (C, A)) Rcrs-detectable if there exists an observer gain

Gii 0 G
G=1| 0 G G| €Rcs
0 0 Gee

such that the observer error matrix A — GC is stable.

As in the case of Rcygs-stabilizability, we consider only the restricted class Rcig
of possible observer gains, since unstructured observer gains would lead to ob-
server dynamics A — GC which violate the information structure imposed on the
system. This restriction renders the concept of Rcys-detectability stronger than
the usual concept of detectability, as quoted in Section 2.3.

5.4.4. Proposition. For a system of the form (5.17), the following are equivalent:
(1) The system is Rcrs-detectable,

(2) The matrix pairs (C11, A11), (Caz, Ago) and (Cy., Ac.) are detectable (in the sense
of Section 2.3),

(3) For any decomposition
X1 =01 NnX)+XT], Xo= 02N Xo)+ X5, X =T.4X],

where 31, Jo and I are given in Definition 5.3.1, the restriction of A to the sub-
space (3 N X1)+(J2 N Xo)+3. is stable.

Proof. 1 < 2: Definition 5.4.3 states that Rcys-detectability is equivalent to the
existence of G € Rcrg such that the observer error matrix

A1 - GnCia 0 Aie — G110 — G1Coc
A-GC = 0 Ao — G22C2  Age — G22C0% — G2cCre
0 O ACC - GCCCCC

is stable. This matrix is upper-triangular, and hence this reduces to the existence
of stabilizing observer gains G11, G2z and G, for the pairs (C11, A11), (Caz, A22)
and (Ce, Acc) on the diagonal.

1 & 3: Reversing the order of terms in the observability decomposition
given in Section 2.3, we have that with respect to any decomposition of the
form given in Proposition 5.4.4, the pairs (C,;, A;;), 7 = 1,2, ¢, are of the form

Al Al2
([0 Cjzj} J [ 5j A%jz] >, given in (2.6). Note that the subspaces J;, j = 1,2,¢,
43

are fixed, while the spaces X7, j = 1,2,¢, are free to choose. With respect to
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the combined decomposition X = (J; N X1)+XT7+(J2 N X2)+X5+3.+X7, the pair
(C, A) is then of the form

Al AR 00 | AL AR
22 21 422
0 ¢ lo o |C e R M
pi 1 2 0 0 | Ay Ay | Ay Ayl
0 0 0 022 CZC CQC ) 22 21 22
0 0 0 0 0 02 0 0 0 A22 A2c AQC
ce 0 0 0 0 | Al A2
0 0|0 0| o0 A2
G%l O G%c
G%l O G%c
0 GL | G}
Together with the observer gain G = 22 2¢ | € Reys, this gives the
0 | G | Ga,
010 |G
REAREE
observer error matrix
AL A _Gghci | o 0 * *
0 A2_G3C4H | O 0 * *
0 0 ALl A2 _GLCZ, | « *
0 0 0 A2 -G%,C%, | x * ’
0 0 0 0 All Az _ Gl Cz,
0 0 0 0 0 A2 _G2c2

where the entries denoted by « are not specified further.
The restriction of the pair (C, A) to X7+ X5 +X/ is

Ch 0 Cf] [Alf 0 AR
0o 0 C2 0 0 A2

Since J; N X = {0} by the definition of X7 for j = 1,2,c¢, the restricted sys-
tem is weakly locally observable in the sense of Definition 5.3.11. By Proposition
5.3.12, this is equivalent to the pairs (C%, A32), (C3,, A%) and (CZ2., A??) being

observable pairs, and hence there exist matrices G2, G3, and GZ2, such that
(AT} - G}1C1) Uo(A33 - G3,C3,) Uo(AZ - GZ.C2) c C .

Now the system is Rcrs-detectable, i.e.
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0(A-GC) =0(A1) Ua(Ay) Ua(Ae) Ua(Al] - G1,CF)
Ua(A3 - G3,C3) Ua(AZ - GL.CE) c T

ifand only if o (A} )Uo(A3L)Uo(ALL) c C-, and this is equivalent to the restriction
A 0 A
0 A All| of Ato (31N X1)+(J2 N X2)+3,. being stable. O
0 0 Al

5.4.1.3 Dynamic measurement feedback

The notions of stabilizability and detectability in the setting of coordinated lin-
ear systems were described in the previous two subsections. Combining the re-
sults about stabilizability and detectability of the previous subsections gives the
following result on stabilization via dynamic measurement feedback for coordi-
nated linear systems:

5.4.5. Corollary. For a system of the form (3.1), the following are equivalent:

(1) The system is Rcrs-stabilizable via dynamic measurement feedback with a
structure-preserving observer,

(2) The matrix pair (C, A) is Rers-detectable and the pair (A, B) is Rcys-stabilizable,

(3) The matrix pairs (Cj;,Aj;), j = 1,2, c are detectable and the pairs (A;;, Bj;),
j = 1,2, care stabilizable,

(4) For any decomposition of the form
Xy = X{+X74HXP4XT, Xo = Xo b X34+ X5+ X5, Xe = X+ X2+ X2+ X1,
where

X =R"n(0;NX;),i=1,2

X2 is a complement of X} in Ry, i = 1,2

X} is a complement of X! in 3; N X;, i = 1,2

X} isa complement of X} + X2+ X2 in Xy, i =1,2
X'=[0 0 I|R.N7.

X? is a complement of X, in [0 0 I] R,

X3 is a complement of X} in 3,

X2 is a complement of X2+ X2+ X2 in X,
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the restriction of A to
(XTHXPEXTY) F (X 1X54X5) + (XEX21XD)
is stable.

The decomposition in item 4 of Corollary 5.4.5 is a combination of the decom-
positions in Propositions 5.4.2 and 5.4.4. With respect to this decomposition, the
system (3.1) has the form

AAR AR A0 0 0 0 Al AR Al ap
0 A% 0 Ao 0 0 o Ao e
0 0 A Ao o 0 o |ai af ad g
0 0 0 AM| o o0 0 0 |Al a2 415 4
00 0 0 A AZ AF A Al Al alf
|00 0 0|0 aB o agazloaz o oap oAzl
0 0 0 0| 0 0 A3 A3 A3l A3 AP A3
0O 0 0 0|0 0 0 Al AR 43 41
0 0 0 010 0 0 0 [Al Az A5 414
o 0 0 0|0 0 0 0|0 A2 (o A%
0o 0 0 o000 O 0 0|0 0 A3 g3
.0 0 0o 0|0 0 0 0[]0 0 0 A¥]
Bl | 0 | Bl
B%l 0 B%('
0| 0 |B
0| 0o | B
0 B%Q B2lc
0 B%Q Bgc
1o | o |B|"
0| o | B
0 | 0 |BL
0| o0 |B%
0 0 0
o] o0 | o0 |
0 C121 0 Cill 0 0 0 0 Cllc Clzc C%c Cilc
y=|0 0 0 00 C% 0 ChL[CL C C3 CL |a
00 0 00 0 0 0] 0 C, 0 C&

Combining the closed-loop system matrix of Section 5.4.1.1 and the observer
error dynamics of Section 5.4.1.2, we arrive at the closed-loop system and error
dynamics
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A+ B 0 Arc+ BiiFie+ BicFee
T = 0 Aoy + BooFoy  Age + BogFoe + Bo Fe | @ (5.36)
O 0 ACC + BCCFCC
Bl 0 By Fic + By Fee
+ 0 Baalyy  BaoFhe + BacFec | e, (5.37)
0 0 B..F..
A - Gl 0 Are = G11C1e = G1Clc
€= 0 Agzg — G220 Age — G205 — G2.Cc | e, (5.38)
0 0 Acc - GeeCoc
where the diagonal entries are given by
All +B1 Fl A12 +Bl F2 A13 +B1 F3 A14 +B1 F4
Jf 33 A%J+ 3 J27 ' Jg i A24+sz 5
A]j +BJ]FJJ — .7]0 Jj ].7 .7] ji??]] j;fj ]] ,
0 0 0 A?}l
1 1 1 2 1 3 o)
e ne ny u
B F.. = |Cditii Piitii Piitii Pii Fjj
J3+33 0 0 0 0 ’
0 0 0 0
L e e 13 14 1 4
4 -GC=1 4 7" f;é’]fj H A% A34 G%J Ciﬁ
2 Y : 44 ¥
0 ijcjj 0 A G]]C]]

Note that item 4 of Corollary 5.4.5 is equivalent to requiring that the unstable
part of the system be both weakly locally observable and weakly locally control-

lable.

5.4.2 Example of a system with inputs and outputs

In this subsection we illustrate how to combine the decompositions according
to controllability and observability found in the previous sections on an exam-
ple. We choose a coordinated linear system that is subsystem observable (in the
sense of Section 5.3.3.1) and independently controllable (in the sense of Section
5.2.3.5). Combining the corresponding reduced representations (5.26) and (5.15),

we arrive at a representation of the form
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[CL Ch G} Ch| 0 0 0 0|0 Cf
C= 0 0 0 0 0212 0222 ng 032 0210 C%c )
L 0 0 0 0 0 0 0 0 |CL O
[ A Al Ay A 00 00 0 0 [ Al A

0 A% 4% 0 0 0 0 0 |A a3
0 A A 0 0 0 0 0 0 0
0 0 0 Ait] o 0 0 0 | A1l Af?
A= ] 0 0 00 [Ay Ap Ay Ap A, Ay
0 0 0 0 0 A3 A3 0 | A3l A3 |7
0 0 0 0 0 A3 A3 o0 0 0
0 0 0 0 0 0 0 A3} | A3l A%?
0 0 0 0 0 0 0 0 |Al o0
L O 0 0 0 0 0 0 0 | Az} A2 ]
I Bl; 0 Bi“ 1
By | 0| By
B} | 0 0
0 0 | Bf.
B_ 0 B%Q BQ;C
0 B%2 B3,
0 | By 04
0 0 | B3,
0 0 | Bl
L 0 [0 | B ]
For i = 1,2, the following pairs are observable pairs:
[ ALL AlZ Als Ald | gLl pl2
S S D
0 A2 A3 o | 0 0
[Ch G Ch ChlcCh CLT. | o 0 0 A%|an 4w
0 0 0 0 |AZ O
L0 0 0 0 |A2 42
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and the following pairs are controllable pairs:

ALl A4 ] AL gl12 Bl

A oap ap [ A i A
0 A22 A23 B2 1 c c c
0 AR A3 B 0 0 [A} 0 Bl
X3 X3 1 0 0 A21 A22 BQ

In the case of subsystem observability, each subsystem can reconstruct the
coordinator state x. from its local output y; via an observer. These observer es-
timates can then be used for feedback control: Since the local estimate of the
coordinator state is available at the subsystem, it can be used for the local control
input u;.

In the case that z. is also y.-observable, this means that the system is indepen-
dently output controllable: All state information that may be needed for control (i.e.
x; and z. for subsystem ¢, and .. for the coordinator) can be reconstructed locally
via a stable state observer, and hence all forms of state controllability defined in
Section 5.2.3 are equivalent to the corresponding forms of output controllabil-
ity. Since the system was assumed to be independently (state) controllable, this
means we have independent output controllability.

Note that subsystem observability, with the additional requirement that x. be
y.-observable, is the strongest concept of observability possible for coordinated
linear systems. For some concepts of state controllability to be equivalent to their
corresponding forms of output controllability, weaker concepts of observability
may be sufficient: For example, if a coordinated linear system is weakly locally
controllable then each part of the system is controllable using local state state in-
formation, and hence strong local observability is sufficient for weak local output
controllability.

5.5 Concluding remarks

In the previous sections, we refined the usual concepts of reachability and indis-
tinguishability to better comply with the class of coordinated linear systems, a
particular class of decentralized systems with several inputs and outputs. De-
compositions of the state spaces of the different subsystems, with respect to the
different reachable and indistinguishable subspaces corresponding to these def-
initions, were derived. For these decompositions according to the different state
spaces, it was necessary to distinguish between independently and jointly reach-
able subspaces, and between completely and independently indistinguishable
subspaces. These notions deviate considerably from the classical theory of lin-
ear systems.



5.5 Concluding remarks

While a generalization of our definitions of reachability and indistinguishabil-
ity to other classes of decentralized systems is straightforward, the corresponding
decompositions quickly become infeasible if the underlying information struc-
ture is less restrictive. However, the distinction between independent and joint
reachability, and between complete and independent indistinguishability, may be
relevant for other classes of decentralized linear systems as well.

When defining the concepts of controllability and observability, we again had
to deviate from the classical definitions for unstructured systems: These proper-
ties of linear systems in their usual sense are of little practical use for coordinated
linear systems, and cannot be verified in a decentralized manner. Instead, we
introduced the slightly stronger concepts of independent controllability and ob-
servability, related to the notion of independence needed for the decompositions.
In contrast to the case of unstructured linear systems, these new concepts did not
suffice for pole placement and state reconstruction; for this, we needed the con-
cepts of weak local controllability and observability, which easily carry over to
other linear systems with a top-to-bottom information structure.

For stabilizability and detectability, and consequently for stabilization via dy-
namic measurement feedback, we again needed the concepts of weak local con-
trollability and observability, rather than the usual concepts or their independent
counterparts. This is due to the necessary restriction of admissible feedbacks and
observers to the ones complying with the underlying information structure. This
effect of restricting the admissible feedbacks will also play an important role in
linear-quadratic optimal control for coordinated linear systems, as described in
the following chapter.
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LQ Optimal Control

In this chapter, we extend the classical LQ optimal control problem for monolithic
linear systems, the formulation and solution of which was summarized in Section
2.4, to coordinated linear systems.

This chapter is submitted as [22], and the corresponding numerical algorithm
and computations can be found in [70]. Based on the results derived here, the
related case of LQ control for coordinated Gaussian systems was worked out in
[41].

6.1 Introduction

The classical LQ (linear-quadratic) optimal control problem was first formulated
and solved in [20]', and has played a central role in system theory ever since —
on the one hand because of its wide applicability, and on the other hand because
of the computational and conceptual simplicity of its solution. Unfortunately, the
optimal control feedback u(-) = Gz(-), obtained by solving the Riccati equation
(2.10) for a coordinated linear system, does in general not respect the underlying
information structure. Hence, in order to apply the classical theory to the case of
coordinated linear systems, we need to add the constraint that the state feedback
should be an element of R¢ys.
The main results of this chapter state that

o the LQ problem for coordinated linear systems separates into independent
local problems for each subsystem and a more complex problem at the co-
ordinator level,

o due to this separation property, the LQ problem for any hierarchical system
whose information structure forms a directed tree can be separated into
subproblems and approached in a bottom-to-top manner,

e and in contrast to the unstructured case, the optimal feedback matrix does
depend on the initial state.

For notational reasons, and using the separability of the problem described
above, we first restrict attention to the special case of leader-follower systems, i.e.
hierarchical systems with two layers and only one subsystem at each layer, and
then extend these results to coordinated linear systems, and more general hier-
archical systems. The results are reformulated into control synthesis procedures,
and the theory is illustrated in an example involving vehicle formations.

1According to scholar.google. com, this will be roughly the 1100t time that [20] is cited.


scholar.google.com
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6.2 LQ control for leader-follower systems

In this section we consider LQ optimal control for leader-follower systems. Exten-
sions of the results of this section to coordinated linear systems and hierarchical
systems are discussed in Section 6.3.

For the purposes of this section, we denote the set of block upper-triangular
matrices by

6.2.1 Problem formulation

The control problem considered in this section is defined for two different sets of
admissible control laws:

6.2.1. Problem. We consider leader-follower systems, of the form

Flo=[v ] o [5 5] le flo=[] e

and quadratic infinite-horizon undiscounted cost functions, of the form

cor 7T 7 r
us() _ Zs Qss 0O Ts Us| |Rss 0O Us
(oo [n0) =[BT Q) LS R[] o e
where Qg5 > 0, Qcc > 0, Rss > 0, and R > 0.

We want to minimize the cost function over the following sets of admissible
control laws:?

lin — 0 Fcc
uA_ { |: us(taxsvxc) :|

uc(t7 Ts,0, l'c)

o { {Fss FSC] x(t)‘ A + BF is stable, F may depend on Io} )

us and wu, are stabilizing and piecewise continuous in ¢,
us and u, depend causally on x5 and z, ’

The control problems considered in this section are hence given by

, (rlf)ligA J (zo,u(")), (6.3)
min J(xo, Fz(:)). (6.4)

u(-)=Fz(-)eu’

lin

2In this context, we call a control law u(-) stabilizing if applying the control law u(-) leads to an
exponentially decaying system state for t — oo.
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The set {* contains all (linear or nonlinear) admissible control laws which
respect the underlying information structure of the system. The set Mﬁn c U4 re-
stricts the admissible control laws to structure-preserving linear state feedbacks.

Note that in both sets of admissible control laws, the initial state g is assumed
to be globally known: The coordinator system may use the subsystem initial state
x0,s, even though this does not respect the information structure. From the theory
developed in this section, it will become clear that this additional knowledge has
a large impact on the optimal coordinator feedback, and on the overall cost.

6.2.2 Optimal control over 412
The most straightforward option for extending the centralized solution given in
Section 2.4 to the more restrictive control problem (6.3) is to include a copy of
the subsystem in the coordinator. Since the state trajectory of a deterministic
linear system can be reconstructed from the initial state and the closed-loop state
transition matrix, the coordinator only needs to know ;o and the matrix A + BG
in order to deduce the state x(¢) at each time ¢. The coordinator can then apply
the optimal feedback of the centralized case, using its local copy of x5(t). With
Gss Gsc

, we get the coordinator control law
GCS GCC

this construction, and writing G = [

Uc(+ 5,0, Te(+)) = Gesz(+) + Geeel),
with z(-) given by the internal reconstruction
2= (Ags + BssGss)z + BssGsce, 2(0) = x50
of z4(-). This control law for the coordinator does not depend on z(¢) (but only

on its local reconstruction), and hence respects the information structure imposed
on the system. Together with the subsystem control law

us(',l‘s('), x(()) = GssxS(') + Gsch(')v

we have that {us] e 2. Since the resulting closed-loop system is equivalent to
c

the system & = (A + BG)z, this control law achieves the same optimal cost as the
centralized control law Gx(-):

min, J(zo,u()) = J(ao, Ga()
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From this it also follows that the control law {538
C

if and only if Gz(-) is stabilizing, and hence the conditions for well-definedness

of the control problem over $© are the same as in the centralized case, i.e. that

(A, B) be a stabilizable pair, and (@, A) be a detectable pair.

In [56, 61] it is shown that the construction above corresponds to the control
law obtained from solving the decentralized control problem in an input-output
framework, and then translating the solution back to its state-space equivalent.

However the control law constructed above, based on reconstructing the sub-
system state at the coordinator level, has several disadvantages:

} constructed here is stabilizing

o In a hierarchical system, the subsystem state x; comprises all parts of the
system which are influenced by the coordinator (see Section 6.3). Hence the
approach used here is not scalable for large hierarchical systems: The sim-
ulation of the subsystem at the coordinator level becomes computationally
very involved.

e Moreover, this approach is not extendable to systems with disturbances
or parameter uncertainties: The actual subsystem state may diverge from
its reconstruction by the coordinator, leading to arbitrarily large costs, and
even to loss of stability. This is because after the initial time, the coordina-
tor receives no feedback from the subsystem, and hence cannot adjust its
estimate accordingly.

In Chapter 7, we present one alternative to the control law found in this section,
using event-based feedback from the subsystem(s) to the coordinator. In the rest
of this chapter we present another alternative, using the restriction that the coor-
dinator control law u. must be a linear state feedback of the form u.(-) = F.cz.(-).

6.2.3 Optimal control over 3175

In the following we develop the core results of the chapter — the well-definedness,
separability and solution of Problem (6.4).

6.2.3.1 Conditions for well-definedness

In this subsection we introduce the concepts of Ra-stabilizability and Ra-
detectability, and show that these concepts are necessary and sufficient for the
well-definedness of Problem (6.4).

Stabilizability. In Section 5.4.1.1 it was shown that, for the case of coordinated
linear systems, the usual concept of stabilizability needs to be restricted to the
existence of a stabilizing structure-preserving feedback. We simplify Definition
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5.4.1 of Rcys-stabilizability (for coordinated linear systems) to Ra -stabilizability
(for leader-follower systems):

6.2.2. Definition. We call a system of the form (6.1) Ra -stabilizable if there exists

a feedback matrix
FSS FSC
F = { 0 Fcc:| e Ra

such that the closed-loop system matrix A + BF is stable.
The following proposition is simplified from Proposition 5.4.2:

6.2.3. Proposition. A system of the form (6.1) is R a-stabilizable if and only if the matrix
pairs (Ass, Bss) and (A, Be.) are stabilizable pairs.

Detectability. Similarly, we modify Definition 5.4.3 of Rcs-detectability, which
accounts for the restriction that possible observers must respect the underlying
information structure. For this, we first need to define leader-follower systems

with outputs:
i‘S . ASS ASC ‘,I:S BSS BSC uS
go] T 0 Al ] T 0 B [uc)
Ys| _ Css Csc Ts
yC B 0 CCC l,I;C ’

The role of the output matrix C will later be replaced by the cost matrix Q.

(6.5)

6.2.4. Definition. We call a system of the form (6.5) R x-detectable if there exists
an observer gain
KSS KSC

K:[o K.,

]ERA

such that the observer-error matrix A — K C'is stable.
The following proposition is simplified from Proposition 5.4.4:

6.2.5. Proposition. A system of the form (6.5) is R a-detectable if and only if the matrix
pairs (Css, Ass) and (Cee, Acc) are detectable pairs.

Conditions for well-definedness. Now we can give a sufficient condition for
well-definedness of Problem (6.4), using stabilizability and detectability proper-
ties of the corresponding submatrices:

6.2.6. Proposition. If the pairs (Ags, Bss) and (Acc, Bee) are stabilizable pairs, and
if the pairs (Qss, Ass) and (Qce, Acc) are detectable pairs, then Problem (6.4) is well-

defined, i.e. it admits a stabilizing solution, which lies inside Mﬁn.
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Proof. Since (A, Bss) is a stabilizable pair and (Qs, Ass) is a detectable pair, the
equation
XssBssR;;BssXss - A:srsXss - XssAss - st =0

has a stabilizing solution X . Similarly, the equation
chBccRgcl Bchcc - Az;ch - chAcc - Qcc =0
Fss 0O .
0 FCC:| , with

Fys = -R;!BL. X, , and F.. = —-R_;!BL. X... To show that F is indeed a stabi-
lizing feedback, we look at the spectrum of the closed-loop system:

ASS ASC BSS BSC FSS 0 _ ASS + BSSFSS ASC + BSCFCC
o O ACC + 0 BCC 0 FCC -7 0 ACC + BCCFCC

=0 (Ass + Bssts) Uo (Acc + B(:(:Fcc) eC.

has a stabilizing solution X... Consider the feedback F' = [

We conclude that there exists a stabilizing feedback F e {( , leading to a finite

cost (this follows directly from stability of the closed-loop system).

In order to show that the infimum over ilﬁn is indeed a minimum, we note
that on the boundary of the set of all stabilizing feedback matrices, the closed-
loop system has at least one eigenvalue on the imaginary axis, and hence one
part of the closed-loop system is not exponentially stable. If the initial condition
for this part is non-zero, then the state will never vanish, and by detectability of
the system, the corresponding cost will be infinite. We conclude that the infimum
over {1 is attained at a point in the interior of uﬁn, and hence it is a minimum.

lin
O
6.2.3.2 Conditionally-optimal solution, given F,

For the purpose of this subsection, suppose that the coordinator feedback Fi. is
fixed. Replacing the coordinator input u. with F,.z., we then have the system

o= dotgr] Flo-[5]wo o= e

The cost function becomes

Jr. (x0,us(+)) = ] @ 0 Tl 4 ugRygus dt
ce y» s 0 Ze O Qcc‘i’Fg;Rchcc Te stlgsllsg .
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For the related optimal control problem

min Jr, (zo,us(+)), (6.7)

us () piecewise continuous

we have the following result:

6.2.7. Theorem. Consider the system (6.6), and assume that A+ BecFe is stable, and
that (Ass, Bss) is a stabilizable pair and (Qss, Ass) is a detectable pair. Then the solution
ui(xo, Fee) of problem (6.7) is unique, and given by a linear state feedback of the form

u:(mecc) = [Fss Fsc] |:$5:| s

L
where the feedback matrices Fyg and F's. have the following properties:

o Fy,is given by Fys = —R;1 BT X, where X is the unique stabilizing solution
of the Riccati equation

XssBssR;;Bg;Xss - AZ;XSS - XssAss - st =0. (68)
In particular, Fs4 is independent of Fy. and F..

o F,. isgiven by Fs. = —R;1BL X, where X, is the unique solution of the Lya-
punov equation

(ASS + BSSFSS)TXSC + XSC(ACC + BCCFCC) + XSS (ASC + BSCFCC) = O' (6'9)
Xsc and Fs. depend on X, Fss and F..
o Let X be the unique solution of the Lyapunov equation

(Asc + Bschc)TXsc + Xi(Asc + Bschc) - FS:,;Rsstc

- - (6.10)
+ (Acc + Bchcc) ch + ch(Acc + Bchcc) + Qcc + FccRchcc =0.
Then the conditionally-optimal cost, corresponding to the control law
u:() - [Fss Fsc] |:ZS():| 5 (611)
e()

and conditioned on F., is given by

Tr.. (w0, us(-))

T
Zos Xss Xsc Tos
l:x()c:| |:XT ch:| l:x()c:| ' (612)

sc
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Note that the linearity of u} in [is} was not assumed here; it is part of the result.
C

The linearity of u. = F,.x. however was assumed.

Proof. We assumed that A.. + B..F.. is stable, and that (A, Bss) is a sta-
bilizable pair and (Qss, Ass) is a detectable pair. From this it follows that
the pair <{A§ ° izz i gzz;ﬂ ; {BOS S]) is a stabilizable pair and that the pair
QSS 0 ASS ASC + BSCFCC
0 Qcc + FCI;RCCFCC] ’ |: 0 Acc + Bchcc
sufficient conditions in Section 2.4 are satisfied, and we can apply the classical LQ
control theory to our problem. By Section 2.4, we have existence, uniqueness and
linearity of .
Writing out the Riccati equation of Section 2.4 for our system gives

|:Xss Xsc:| |:Bss:| R;; [B;[; 0] |:Xss Xsc:|

} ) is a detectable pair. Hence the

XT Xl ] O XTI X

_ Az; O XSS XSC
(ASC + BSCFCC)T (ACC + BCCFC(J)T X;I;: XCC

_ {XSS XSC} [ASS ASC+BSCFCC:| _ {QSS 0 :| i {0 O:|

XSTC ch 0 Acc + Bchcc 0 Qcc + FCJ;Rchcc N 00

and rewriting this equation entry-wise gives the three equations

XosBssRIBL X, - AT X — Xy Ass — Qs = 0,

XosBosRii Bl Xoe — AL X o — Xoo(Ase + BsoFee) — Xoo(Ace + BecFee) =0,
XI By R)BE X,o - (Ase + ByoFuo)" Xoo — XE(Ase + BscFee)

~(Ace + BecFee) " Xee — Xee(Ace + BecFee) — (Qee + FERecFre) = 0.

The first equation is the same as (6.8). Together with

= [-R,!BLX,, -R.BLX,],

A A

Xoo Xee
the last two equations can be rewritten as

(Ass + Bssts)TXsc + Xsc(Acc + Bchcc) + Xss (Asc + Bschc> = 07
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which is equivalent to (6.9), and

(Ase + BscFee)" Xoe + X (Ase + BscFee) = Flo Ry Fo
+ (Acc + BCCFCC)TXCC + ch(Acc + BCCFCC) + Qcc + Fg;Rchcc = 07

which is the same as (6.10). (]

6.2.3.3 Control synthesis procedure

Using the result of the previous subsection, we now give a procedure for finding

the optimal control law {Zigﬂ = {%5 ? ij Bjﬂ eyl

6.2.8. Procedure.

(1) Find X, by solving the Riccati equation (6.8) numerically, and set F,, =
-R.IBT.X,,.

(2) Find F,.. A numerical procedure for this is given in Section 6.2.3.5.
(3) Solve the Lyapunov equation (6.9) for X,., and set Fs. = - R;} BT X,..

(4) Now the Lyapunov equation (6.10) can be solved for X,., and the corre-
sponding cost J(xg, u(-)) can be found by computing (6.12).

If F,. is found via an iterative numerical search procedure (which is the case
for numerical optimization), steps (2)-(4) will have to be iterated. Step (1) only
needs to be performed once.

6.2.3.4 Uniqueness of the optimal F,

Concerning the uniqueness of the optimal coordinator feedback F,., we have the
following conjecture:

6.2.9. Conjecture. If the pairs (Ass, Bss) and (Acc, Bec) are stabilizable pairs and the
pairs (Qss, Ass) and (Qcc, Acc) are detectable pairs then there exists a unique minimizer

u* () e U for Problem (6.4).
Fss Fsc T A
Note that u*(-) = { 0 F } z(-) by the definition of 4(;; , and by Theorem

6.2.7 the matrices F; and Fj. are unique for any given F,. with A..+B..F¢. stable.
Hence, conjecturing that u*(-) € L;;, A is unique is equivalent to conjecturing that
the optimal F. is unique.

While we do not yet have a proof of this conjecture, testing randomly gener-
ated examples has not yet lead to a counterexample either.

119



120

Chapter 6: LQ Optimal Control

6.2.3.5 Finding Fi. numerically

So far we have not found an analytical solution for the problem of finding the
optimal F..

Setting Fi"d = _R_!BTY,., where Y,. is the unique stabilizing solution of the
local Riccati equation

Y::chcRgcle;chc - AZ—;}/CC - chcAcc - Qcc = 07

is always an admissible option (see the proof of Proposition 6.2.6), although usu-
ally not the optimal one. It can however serve as a good initial value for numeri-
cal optimization procedures.

One approach to finding the optimal solution numerically is to use the Matlab
routine fmincon to minimize the cost over all possible F.., with the constraint
that F... must be stabilizing. This approach is implemented in [70] (for coordi-
nated linear systems) as follows:

e The feedback Fi" is used as starting value for fmincon,
o The local feedback Fj, is computed from equation (6.8),

o At each step of the optimization procedure, the cost corresponding to the
current value of F. is computed using equations (6.9)-(6.12) if A.c + BecFree
is stable, and set to oo otherwise.

Testing this algorithm for randomly generated examples, we found that it always
converges to an admissible solution, and that the cost difference compared to
the centralized feedback is in general very small, and often even negligible. The
computation time scales exponentially with the problem size.

The set of all stabilizing F. is not a convex set with respect to its element-wise
parametrization

fl,l flmc

Foo= , f79 eR, 0 (Ape + BeeFoe) c C.

fmc,l fmc,nc

Hence there is no guarantee that the algorithm described above will perform well
in all situations. It is, however, a connected set, and alternative parameterizations
would lead to convexity. Whether a parametrization exists which would lead
to convexity of both the set of stabilizing feedbacks and the objective function
restricted to this set, is an open question.
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6.2.3.6 The scalar case, and properties of the solution

If the state and input spaces of the subsystem and coordinator all have dimension
1,ie. if

a a b b q 0 rss 0
A — SSs Sc , B — SSs sc , — SSs , R — SSs
[ 0 a‘CC:| [ 0 bCC} Q { 0 qCC] 0 rCC
then with z,, = 73* (ass + /a2, + bgsfff‘:) and xs. = al(;;bffﬂszwf we have

xSS xsc
X = l r 10?2 2(asc+bscfcc)-’tsc(Iccchfzc‘| N (6'13)

x S8 " SS SC
sc¢ 2(ace+bee fee)

Note that in the case where ac. + bc. fcc is a scalar, the set of stabilizing feed-
backs is indeed a convex set. Numerical optimization in the scalar case is straight-
forward.

The cost is a rational matrix function of f... For any stabilizing f,s and f.. we
have ags + bss fss + Gee + becfee < 0 and aee + bee fee < 0, and hence the function
X (fcc) has no poles within the stabilizing region.

We illustrate some properties of the solution in the following example, which
was worked out in [70]:

6.2.10. Example. Let the system and cost matrices be given by

1 0 1 1 1 0 as 0
S O B O B R R
with parameters o, . > 0. The coordinator system is not controllable in this
example; however, the subsystem is both locally controllable and independently
controllable via the coordinator input. Hence the LQ problem for this example
reduces to the problem which input (or combination of inputs) should be used to

stabilize the subsystem state, taking into account that different costs (o and a.)
are associated to the different inputs. Using (6.13), we get

X:las(l-ﬂ/l—s—als) Qs fee ]

s fec 2 (as + o) f2
o

With initial state zg = [
Zo

8} , the cost is given by
(&

1 1
J(xo, Fx()) = xOTXxo =, (1 +4/1+ ) x%s+2asfccx05:r0@+§ (as + ) ffczgc.

S
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The unique minimizer of this cost is given by

200520
(045 + ac) Zoc

fee =
cc T

and the corresponding minimal cost is

1 2a
J(xo, F*z()) = a, [ 1 1+—— s 2.
(oo, Fra) = (11 - 200 ),

For comparison, we also give the centralized optimum:

O TEE) e (14 TTETT)
G* =- QptQe ) , J(z0, G () = = Ll

a5<1+ 144 L 0 s + Q¢

as | ac

Qs+

From this, we can derive the following properties:
o The optimal coordinator feedback f, depends on z(, while G* does not.

e For . — oo, both J(zo,F*z(-)) and J(zo,G*z(-)) approach
as (1+,/1+a%) x3,.

e For a. — 0, we have that J(xg, F*2(-)) — as (,/1+ a% - 1) x3,, but
J(xo, G*z(-)) approaches 0.

The fact that f, depends on the initial state is a major drawback of the LQ coordi-
nation control problem for deterministic systems considered in this chapter, and
also implies that a closed-loop solution for fZ, cannot be derived directly from
the matrix equations characterizing the cost, as in the centralized case.

For very large a., using the coordinator input for stabilizing the subsystem
state is very costly compared to the local input, and hence both the central-
ized control law and the coordination control law converge to a local feedback
law for the subsystem state. If o is very small then using the coordinator in-
put is very cheap compared to the local input, and the relative cost difference

T (20, 2()) I (20,G" () : - :
gy of applying the coordination control law instead of the

centralized control law approaches co.

6.3 Coordinated and hierarchical systems

In this section we discuss how to extend the control synthesis procedure in-
troduced in the previous section to hierarchical systems with more subsystems
and/or more layers.



6.3 Coordinated and hierarchical systems

6.3.1 LQ control of coordinated linear systems

First we extend the results of the previous section to coordinated linear systems
with two subsystems and one coordinator.

6.3.1. Problem. In this subsection we consider the linear-quadratic control prob-
lem
e J(wo,u(")), (6.14)

lin

where the system dynamics are given by

T A11 0 Alc X1 By 0 Bicfl|w 1‘1(0) 1,0
Ba| =] 0 A Aoc||z2|+| 0 Baa Bac||ua|, |22(0)| =|720]|, (6.15)
T 0 0 Az 0 0 Bel|ue z.(0) Zc,0

the cost function is given by

T

wof 2] Qu 0 0][=n ur| (R 0 0 ||w
J(ajo,u()):/ T2 0 Q22 0 Io | + |U2 0 RQQ 0 (5 dt
0 Ze 0 0 Qecc]|me U 0 0 Ree||uc
(6.16)
and the set of admissible control laws is given by
Fii 0 Fic| |=
USES — 0 Fhy Fo.| |z2|| A+ BFisstable p . (6.17)
0 0 Fel |z

The sufficient conditions for well-definedness of this problem follow from the
same argumentation as in the proof of Proposition 6.2.6:

6.3.2. Corollary. If, in the setting of Problem 6.3.1, the pairs
(A11, B11), (A22, Ba2) and (Ace, Bee)
are stabilizable pairs, and the pairs

(Q11,A11), (Q22,A22) and (Qcc, Acc)

are detectable pairs, then Problem 6.3.1 has a stabilizing solution.

The following theorem is an extension of Theorem 6.2.7 from leader-follower
systems to coordinated linear systems:
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6.3.3. Theorem. If we assume that F,. is given, the unique conditionally-optimal solu-

tion
* X
ul _ F11 0 Flc 1‘;
u’ 0 I Iyl |
C

is described by the following set of equations for X;;, Xic, Xce, Fys and Fy. (i = 1,2):

0 =X11 B Ryi B, X11 — AT} X11 - X11411 - Quu (6.18)
Fiy = - Ry Bl X1, (6.19)
0 =X32 B2 Roy By Xog — Ay Xoo — X3 A20 — Qoo (6.20)
Fhy = — Ry3 B1, X0, (6.21)
0 =(A11 + Bi1Fi1)" X1o + X1e(Ace + BeoFoe) + X11(Are + BicFee),  (6.22)
Fi. = - R Bl X1, (6.23)
0 =(Ag2 + BoaFz)" Xoe + Xoc(Ace + BecFoe) + Xo2(Ase + BacFee),  (6.24)
Fye = = Ry3 B3y Xoe, (6.25)
0=(Ase + BieFoo)" X1e + X{o(Are + B1cFo.) — FLRy Fy.
+ (Azc + BacFee)" Xoe + X3.(Asc + BacFee) = Fa.RooFac (6.26)

+ (Acc + Bchcc)Tch + ch(Acc + BCCFCC) + (Qcc + Fgchchc)-

Note that equations (6.18)-(6.26) can easily be solved numerically, in the order
they appear here. Moreover, the subsystem feedbacks F; and F5; can be found
independently of the rest of the system: From the previous section we know that
the subsystem feedbacks are independent of the coordinator, but this result tells
us that they are also independent of each other.

Proof. Consider Problem 6.3.1, but with the extended set of admissible control
Iy Fig Fie| |71
Vs = Iy Fyy Fo.| |x2|| A+ BF is stable
0 0 F.l| |z

This extended problem is a special case of Problem 6.2.1, with

o I _ (5% _ A11 0 _ Bll 0
xs - |:x2:| bl us - |:u2:| bl Ass - |: 0 A22:| ) Bss - |: O BZZ:l bl

_ Qll 0 _ Ry 0
QSS - |: 0 Q22:| 9 RSS - |: O R22:| .
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Thus, fixing F., we can use Theorem 6.2.7 to find the conditionally-optimal con-

trol law for the extended problem. Rewriting equation (6.8) for this case, with
_ X X

Xss = |:X’1]“2 X22:| , We get

)l ) )l Al

X1T2 X22 0 BQQ 0 Ri% 0 Bg; Xipz X22
AT 0 ] [Xu X| [Xu Xie|[4An 0] [Qu 0 .
0 AL||XT Xoo| | XL Xaof [ 0 A 0 Qx| =
. X11 0 . eqe . .
The matrix 0 Xool with X, and Xs; the stabilizing solutions of (6.18)
22
and (6.20), respectively, is a solution of this Riccati equation. Moreover,
_p-1pT
the corresponding feedback F,, = Rlllgllel ,Rg%BE)QTg X22:| is stabiliz-
ing: The choice of X;; and X», ensures that the closed-loop subsystem matrix

_ _1pT
[Au BH?HB“XH Ayy - 3222521 B, ng] is stable. But the stabilizing solu-
X 0

tion of a Riccati equation is unique, and hence [ 0 X
22

} is the only stabilizing

solution. From this it follows that

_  _p-lpT __[Ba OJ[BL 0 [Xu 0
F,, = _Rss BSSXSS = - |: 0 Ri% 0 ng 0 Xoo

is automatically block-diagonal. This means that the conditionally-optimal solu-
tion of Problem 6.3.1 over the extended set TS is an element of 4G5, and since

lin
CLS CLS 4 e ; ; CLS
U € Y2, it is also the conditionally-optimal solution over (.

Equation (6.9) splits into equations (6.22) and (6.24), and equation (6.10) re-
duces to (6.26). O

In light of Theorem 6.3.3, we can now extend Procedure 6.2.8 to a control
synthesis procedure for coordinated linear systems:

6.3.4. Procedure.

(1) Find X;; and X2 by solving the Riccati equations (6.18) and (6.20) numer-
ically, and set Fy; = —Ry} BT} X11 and Fyy = —Ry3 BE, Xos.

(2) Combine the two subsystems to one system: Set

A 0 Bii 0 Qi 0 Rii O
Ass = 5 Bss = y Wss — ) Rss = 5
' { 0 Azz} { 0 B22] @ [ 0 Q2 0 Rao
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. o F; 11 0
and fix F,, = { 0 Fﬂ}.
(3) Use steps (2)-(4) of Procedure 6.2.8 to find the optimal coordination control

feedback for the problem.

6.3.2 Extension to hierarchical systems

In this subsection we discuss how to extend the results and procedures above to
more general hierarchical systems, with several layers and/or more subsystems
at each layer.

6.3.5. Problem. Let a hierarchical linear system, i.e. a distributed linear system
with its underlying information structure given by a directed tree, be given. We
will assume that the system is both locally stabilizable and locally detectable, i.e.
for each subsystem j in the hierarchy we assume that (A4,;, B;,) is a stabilizable
pair and (Q;;, A;;) is a detectable pair. We consider the infinite-horizon LQ con-
trol problem with @ and R block-diagonal, and restricting the set of admissible
feedback matrices to those which respect the system’s information structure.

For hierarchical systems, control is done in a bottom-up manner: First we find
local feedbacks for the subsystems which do not act as coordinators for any other
part of the system (i.e. the leaves of the corresponding directed tree), and then
we find the optimal feedbacks for the coordinating systems, using the results and
procedures of the previous sections.

6.3.6. Procedure.

e Pick a subsystem j, all followers® of which already have local feedbacks
assigned to them (or no followers exist).

o For this subsystem, calculate the solution X}?d of the local Riccati equation
ind -1 pT ind T ind ind _
Xji Bijhty; B X 5" - Ajy Xg5" = X557 445 - Qj5 = 0.

e Starting with F ji]”d = —RJ’-} BJTJ- X;;-“i, find the optimal F;; numerically: Con-

sider all followers of system j as one subsystem, and find F}; using the
numerical optimization procedure described in Section 6.2.3.5.
F 15
e Setu; = Fjjz;,find | : | from (6.9), and apply the feedbacks Fy;x; to all

Fs
followers k of system j.

iJ

3By followers, we mean all subsystems which are coordinated by system 3.
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Repeatedly applying the results of the previous sections, and assuming that
the algorithm of Section 6.2.3.5 indeed converges to the global optimum, we find
that the feedback F' found by Procedure 6.3.6 is the optimal linear state feedback
which respects the information structure.

6.4 Example: Vehicle formations

In order to illustrate the control synthesis procedures introduced in this paper, we
apply our results to a toy example involving several autonomous vehicles. The
goal of the vehicles is to maintain a fixed formation while tracking a reference
signal. Even though all subsystems have the same internal dynamics, the optimal
control feedback for each vehicle will be different, depending on the number and
formation of its followers.

Each vehicle V; is modeled by a very simple linear system, with its position
p; € R3 and velocity v; € R? as state variables, and its acceleration a; ¢ R? as
control input. For vehicle V, this system is given by

pil _ |0 I |pi|  |O] |Pj _ |Pjo

L')J} a [0 0} L)J} " [I “ v 0= Vo] (6.27)
For each vehicle, we moreover have a reference position pf ¢ R? and reference
velocity vf! € R?. How these reference signals are determined depends on the

formation to be kept, and will be discussed later. The optimal control problem to
be solved for vehicle V; is then the tracking problem

0o _ R
oy |0 ]|
a; (), (), vE () Jo Vi —

If the reference signal is given externally then pf and v} are fixed, and not part
of the optimization problem.
Suppose the reference signal also has dynamics

el =10 o B L] [ - )]

2
+ ||aj||?dt. (6.28)

for example because it is another vehicle or a moving object whose dynamics we
approximate using the internal model principle, with the internal model given
above. Then the difference vector occurring in the cost function has dynamics

127



128

Chapter 6: LQ Optimal Control

[ﬁj —Pﬂ _ [0 I} {pj —pf] . H (a; - af) {Pj —pf] (0) = |:pj70 —pfo}
by — 0 0 0] [v;—vf IV 07 oy —off V0 — Ufo ‘
where a; is the control input and a" is a disturbance input.

We assume that the disturbance is such that the certainty equivalence prop-
erty holds (see e.g. [65]). Hence all reference accelerations which are not known
(e.g. because they correspond to the acceleration of another vehicle in the for-
mation) will be treated as zero. This is also necessary for the infinite-horizon
undiscounted cost in (6.28) to be well-defined — taking the disturbances into
account, this cost is infinite for all possible control laws. Note that in practice,
our formation problem is always of finite duration (since battery power is lim-
ited), the infinite-horizon formulation is used here to avoid any emphasis on the
terminal state.

In this section, we will consider the following two formations, each consisting
of three vehicles:

e Formation 1 corresponds to the structure of a coordinated linear system, as
defined in Section 3.1: The coordinating vehicle follows an external refer-
ence signal, and the other two vehicles follow the coordinating vehicle in a
fixed formation, without interacting with each other.

e In Formation 2 the vehicles form a chain: The first vehicle follows an exter-
nal reference signal, the second vehicle follows the first vehicle in a fixed
formation, and the third vehicle follows the second vehicle in a fixed for-
mation. There is no direct interaction between the first and third vehicle.

These formations are illustrated in Figure 6.1.

Formation 1 One vehicle (V) follows an external reference signal, and acts as
a coordinator for two other vehicles (V; and V3): Vehicles V; and V5 regularly
receive the current position and velocity of V., and they track the signal

R
F i 2 B PAVE B
] =] [5] -
where A; is a fixed, time-invariant spatial shift (i.e. V; is supposed to be at posi-
tion p. + A1, not at the same position as V.). V; and V5> do not send their state to

4For certainty equivalence of the classical LQ problem with disturbances, it is sufficient that the
disturbances are Gaussian. Note that we have not shown that this property also holds for the coordi-
nation case.
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reference signal | | reference signal |
A A
Ve Ve
Y
Y Y
Ve
Vi Va
Y
Va

Figure 6.1: Formation 1 (left), Formation 2 (right)

the other vehicles. Moreover, we restrict attention to linear control laws for a1, as
and a,. Treating the disturbance input a% as zero, the combined control problem
for vehicles V1, V5 and V, is now

pl*pfz
Ul*U{?' 2
| p2-p¥ “
min / %{ + 1| a2 dt,
ai 0 V2 — V3 a
Y _ B c
ag | Uy Pe =P
e Ve — VU,
subject to
P - Py 0 Il0o 0]l0 0O p1 -t 0[0] 0
0y — oft 0 0[O0 0|0 O v — vt I(o]| -1
- - a1
p2-p5 | _ [0 0[O0 T[0 0| p-p | |O[0]0 -
by — 0FF 0 0/0 0[0 O vy — vl 0|7]-I 2|
be — Y 0 0[]0 0|0 I pe —pE 0/0] 0 e
b — 08 0 0/0 0[0 O v, — vF 00| I

with initial condition
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p1 - pff P1,0 — Pe,0 — A1
vy — vff V1,0 = Ve o
D2 — P% (0) = D2,0 — Pe,0 — Ao
Vg — Vg V2,0 — Uc,0
pe - P Peo — PHo
Ve — ’U(I:?’ ’UC_’() — ’UC70

This is a control problem of the type described in Problem 6.3.1, with = I3
and R = Iy. The local control problems (6.18) and (6.20) are solved by

V3l T .
ij:[ I V3l ,Fij[fI 7\/51},121,2.

The coordinator feedback matrices F., Fi. and Fj. are found numerically, using
Procedure 6.3.4. Since the optimal coordinator feedback depends on the initial
state of the overall system, we need to choose numerical values for the initial
state. We set

0 0 1

[pLo — Pc,0 — A1:| - |- {pQ,o — Pc,0 — AQ] - |- [pc,o —p%o] —10+% |:
V1,0 — Vc,0 : V2,0 = Uc,0 " Ve,0 - Ue,0 |

0 0 1

i.e. the follower vehicles V; and V, are already in formation w.r.t. V;, but the
coordinating vehicle V, is not yet tracking the reference signal.

Using Procedure 6.3.4 and the numerical algorithm described in Section
6.2.3.5, we arrive at the optimal coordinator feedback
[ 3.66 297 -6.98 -1.00 -042 0.34 |
3.67 2,67 -6.69 056 -1.99 0.35
412 343 -789 0.62 -0.35 -1.35

Fi. 3.66 297 -698 -1.00 -042 0.34
Fy | = 3.67 267 -6.69 056 -199 035 |,
Fe. 412 343 -789 062 -0.35 -1.35

-0.59 -5.48 5.33 -9.89 -15.37 23.72
-0.91 -8.01 8.15 0.36 -24.92 23.05
| 11.54 10.46 -22.59 7.17 -7.59 -1.28 |

with corresponding cost J(zg, Fz(-)) = 2646.92.
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The centralized cost (i.e. the minimal cost in the case that two-way communi-
cation among all vehicles is allowed) is J(zo, Gz(-)) = 2646.89.

Formation 2 In this formation, vehicle V. tracks an external reference signal.
Vehicle V;, regularly receives the current position and velocity of V. and tracks

the signal
R
Py |Pe| |
= 01
where A, ¢ R? is a time-invariant spatial shift parameter. Similarly, vehicle V,,
has information about the current position and velocity of V3 (but not of V), and

tracks the signal
R
Pa'| _ |Pb Aa
=[] [

with A, € R3 the spatial shift parameter. The set of admissible state feedbacks
respecting this information structure is given by

Faa Fab 0 Tq
yE2 — 0 Fyw Ful| |zp|| A+ BFisstable
0 0 F,.. T,

The subscripts a, b and ¢ for the different vehicles are chosen to avoid confusion
with the roles of the vehicles in Formation 1.
The overall control problem for Formation 2 is

2
Pa — Dy
vy — vE LTI
ool | Ty, —piE a
min / Py pl}g + || | ap dt,
aq 0 Yb — Yy a
o R ¢
ap eﬂf;i Pc — P
G Ve — v
subject to the dynamics
Pa — DY 0 I]0 0[]0 0 pa—pE ol oo
I 0 0|0 O[O0 O v, — vl I|-1]0 a
Py — DY 0 0[O0 I[0 O Py — DI 0l 0O d
"R = R |t ay |,
Up — Uy 0O 00 0|0 O vy — U o I |-1I o
P — PE 0 0/0 0[0 I || p._pF ofofo ¢
e — OF 0 0/0 0|0 O Ve — vF ol o |1
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with initial condition

Pa — DY Pa,0 — Pbo — Da
Vq — Uf Va,0 — Vb0
Dy — P% (0) = Db,0 — Pe,0 — Ay
vy — v} Vb0 — Ve,0
pe —pE peo - Pl
ve — vl Ve,0 — vfo

This problem is not dynamics-invariant, and it is not a hierarchical system in the
sense of this chapter, since V, is an indirect (but not a direct) follower of V.. We
can still apply the control procedure, by only taking into account direct followers
for each subsystem.

We solve the control problem as described in Procedure 6.3.6, again choosing
the initial state

0 0 1

{pa,o —Dvo — Aa:| _ - [pb,o —Peo — Ab:| _ . [pc,o - p%o} — 10
Va,0 — Ub,0 |’ Up,0 — Ve,0 |7 |[eo - Ve, )
0 0 1

o The solution of the local tracking problem for V,, is given by

Xaa = [\/f’[ \/%I] s Foa = [-1 —V3I].

o We restrict attention to the leader-follower system involving V, and V}, and
use Procedure 6.2.8 to find Fy;, and Fjy; Since the initial state for this prob-
lem is zero, the algorithm terminates at the initial value F, = Fgg“i, and

hence
-05 0 0 -1.15 0 0
0 -05 0 0 -1.15 0
Fa| ] O 0 -05 0 0 -1.15
{be}N -1 0 0 -1.73 0 0
0 -1 0 0 -1.73 0
0 0 -1 0 0 -1.73

o Finally, we restrict attention to the leader-follower system involving V;, and
Ve, and again use Procedure 6.2.8 to solve for F,. and Fj., given Fy;, from
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the previous step. In this case, the initial state is not zero, and numerical
optimization gives

1.39 -1.65 -0.16 -532 155 2.66
1.87 -2.22 —0.07 -3.30 -0.20 2.40
Fie| _ | 254 -1.93 -1.04 -474 206 1.58
[FCC]“ _0.80 -4.34 435 -2.82 -4.72 585
475 -838 286  6.93 -11.38 2.75
~3.10 -1.70 4.00 -10.43  1.48 7.29

The overall cost corresponding to the control law found above is
J(zo, Fx(-)) = 2730.82.

Comparison of formations From this example, we derive the following conclu-
sions:

e Even though all vehicles have the same dynamics and the same local cost
functions, the optimal feedback for each vehicle differs, depending on the
number and formation of its followers.

o A disadvantage of Formation 2, compared to Formation 1, is that the non-
zero initial state of V. had no effect on the control problem for V. This may
also be the reason for the higher costs: While the costs corresponding to For-
mation 1 are very close to the centralized optimum, the costs corresponding
to Formation 2 are significantly higher. The total amounts of communica-
tion needed, and hence also possible communication costs, are the same for
both formations.

e Formation 1 is more robust with respect to noise, communication delays,
package drops, etc.: In contrast to Formation 2, possible delays and distur-
bances in the communication between the leading vehicle and one follower
will not propagate to the other follower.

e Formation 2 is more scalable with respect to the number of vehicles in the
formation: If a large number of vehicles are following the coordinating ve-
hicle V, in Formation 1 then the problem of finding the optimal coordinator
feedback, to be solved by V,, will get computationally more involved. A
large number of vehicles arranged in a chain formation will lead to more
control problems to be solved numerically (one for each vehicle), but the
size of each problem remains the same.
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LQ Control with Event-based Feedback

As an alternative to the control synthesis procedure developed in the previous
chapter, we now introduce and analyze a control law which uses event-based
bottom-to-top feedback.

This chapter was published as [26].

7.1 Introduction

In this chapter, we derive a control law for coordinated linear systems which com-
bines linear state feedbacks with event-based feedbacks. While the linear feed-
backs respect the system’s top-to-bottom information structure, the event-based
feedbacks correspond to occasional bottom-to-top communication. In Section 7.2
the control problem we consider is formulated for the special case involving only
one subsystem. Our control law with event-based feedback is introduced in Sec-
tion 7.3, and its extension to larger hierarchical systems is discussed in Section
7.4. Finally, the performance of the control law is illustrated in an example in
Section 7.5.

7.2 Problem formulation

We will first restrict our attention to leader-follower systems, i.e. coordinated lin-
ear systems with only one subsystem, of the form

is _ Ass Asc T Bss Bsc Us T (tO) _ IS,O

l:xc:| - |: 0 Acc:| |:xc:| * |: 0 Bcc:| |:uc ’ xc(tO) - xc,O ' (71)
The subscript ¢ stands for ‘coordinator’, and s stands for ‘subsystem’. The exten-
sion of our results to larger hierarchical systems is discussed in Section 7.4.

For a system of the form (7.1), we define the following infinite-horizon
quadratic cost function:

s = [ ([ (% g - ] [ ) ) o

where () = {Qgs QO ] >0and R = [Rgs P? } > 0.
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We consider the following sets of admissible control laws:

(g (t, z4(t )] . . . .
Lluz{ us(, 25(t), 2c(t)) U, U, Plecewise contmuousmt},

", = { [us(t 5 (t), ze

U, U, Pilecewise continuous in t} ,
o 5m { st 24(1), e

Tsj = x4(t5), tj <t, {to,t1,...,tn} C [to,00)

) |
)) Ug, U, Plecewise continuous in ¢,
)

The subscripts r and 3 are used here to comply with our notation in Section 7.3,
where we introduce a control law with event-based feedback {z; ;}0,... n, using
a guard condition which depends on two parameters r and 5. Note that {{;
ﬂ" B < ﬂT 1

In this chapter, we will consider the following problem:

7.2.1. Problem. Let a system of the form (7.1) and a cost function of the form (7.2)
be given. Assume that
ASS ASC BSS BSC
(e [ 52))

is a stabilizable pair and that

QSS 0 ASS ASC
0 QCC ’ 0 ACC
is a detectable pair. Minimize the cost over i, 3, i.e. find

Lmin (o, u() 7.3)

In Section 7.3 we introduce a piecewise-linear control law in i, 3 which leads
to a finite cost for all » > 0, and approximates the centralized optimum (and hence
also the solution of (7.3)) for » — 0.

7.3 Control with event-based feedback

For the purpose of the following derivation, we assume that z.(t) # 0 for all
t> to. Set
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coordinator
Tp = [Ace_BccGec‘f'Becc:csT)xe

. | if guard > re—Ft:
o
| -
__ TaT,
I T = 2Tz,
!

subsystem

Tg= [Aee +BeoGos )1—'9 +BeeGos Tz
‘HASC _Bss Gsc + BseGec)'-Ee

Figure 7.1: Closed-loop system using event-based feedback

then z,4(t) = T'(t)z.(t), and applying the centralized feedback G found in Section
2.4 to the system in (7.1) leads to the closed-loop system

i‘s _ ASS ASC BSS BSC GSS Gsc xs
Ze N 0 A * 0 Bee| |Ges Gee Lc

_ |:ASS + BSSGSS + BSCGCS ASC + BSSGSC + BSCGCC:| |:x8:|

BCCGCS ACC + BCCGCC xC
_ Ass + BssGss Asc + BssGsc + BSC(GCST(t) + Gcc) Tg
o 0 Ace + Bee (GesT(t) + Gee) Tel|”

Note that T'(t) still depends on z(t). We will approximate 7'(t) by a piecewise-
constant function of ¢.

7.3.1 Piecewise-constant approximation of 7'(%)

Instead of sending the current subsystem state to the coordinator at all times (as
in the centralized case), we define the guard condition

[Ges (2s(t) = Ty yae(t)) || < re ™, (7.4)

with real parameters » > 0 and $ > 0, and with a piecewise-constant approxima-
tion 7)) of T'(t). We let the subsystem send its current state to the coordinator
at all time points at which the guard condition is violated. At those time points,
x4(t) is used to reset our approximation T of T'(t) to its current value. Note
that the subsystem observes both z; and z., and hence it has all the information
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necessary to check the guard condition at each step. Whenever the guard con-
dition is satisfied, the coordinator uses the most recent approximation of 7'(¢),
which was computed the last time the subsystem sent its state to the coordinator
(or at tg). The control law resulting from this approximation is of the form

_ Gssms(t) + GSC!Ec(t)
gr,ﬁ(iﬂ(t)) = [(GcsTj(t) JrGCC) xc(t) s

where T} is given by

T} 2. (Dl ()

T if guard < re f
S T if guard > re P’

and the guard is given by
guard = ||Ges (24(t) — Ty we(t))]| -

This control law is illustrated in Figure 7.1.

7.3.2 Results on the performance of g, g

Our first result on the performance of the control law g, 3 states that it leads to an
exponentially stable system.

7.3.1. Proposition. For any r > 0 and 8 > 0, applying the control law g, g(x(-)) to
(7.1) leads to an exponentially stable closed-loop system.

Proof. Applying g, (z(-)) leads to the closed-loop system

. Bsc
&= (A + BG + {BCJ Ges [-1 Tﬂ) @

BSC} Ges (Tjme — x5)

= (A+BGQ)zx + [Bcc

and hence the state trajectory is described by

t
oft) = BN gy [ B0 [ G (150 (r) ()

to cc
Since A + BG is stable, there exist constants M > 0 and « > 0 such that

He(A+BG)At < Me ™ WA, > 0.
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We pick a # 5. Now we have

[loll

t
4 / He(AJrBG')(t—T) Bsc
to B

‘ |Ges (Tj(rywe(r) - ws(r)) || dr
¢
< M- (t-to) lzol + / Me-at-7) By,
to Bcc
B T
= Me (1) |lwo|| + M == (e’ﬂt - e’o‘(t’to)’ﬁto)
a-pf ’

Hx(t)H < He(AJrBG)(t—to)

re PTdr

which goes to 0 exponentially as t — oco. O

The following result states that the increase in the total cost, resulting from
using a piecewise-constant approximation for 7'(t) instead of its exact value, is
bounded.

7.3.2. Proposition. Foranyr > 0and 8 > 0, the difference between the cost correspond-
ing to g, g and the centralized cost is bounded by

o250
28

Proof. For simplicity, we denote the difference of the control feedbacks by

2 2
r

I (@0, 9r,5(2(-))) = J (20, G(-)) < HR%

(7.5)

~ 0 0
Gj N |:Gcs GcsTj:| ’

Let t > t;, and suppose that the most recent feedback from the subsystem was
sent at time ¢;. Then the system dynamics over [¢;, t] are linear and time-invariant,
and hence the cost corresponding to the control law g, g over the interval [t;, ]
is given by z7 (t,;)Y;z(t;) — 2 (t)Y;z(t), where Y} is the solution of the Lyapunov
equation

(A+B(G+Gj))TYj+Yj (4+B(G+65)) +Q+(G+éj)TR(G+Gj) —0.

The cost corresponding to the centralized control law u(-) = Gz(-) was derived
in Section 2.4: We have J(z, Gz(+)) = 2] Xz, where X is the unique solution of
XBR'BTX - ATX - XA - Q = 0such that G = —-R"'BT X is stabilizing (i.e.
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A - BR1BTX is stable). Using B X = —RG, and in analogy with the proof of
Theorem 2.4.1, we now derive a Lyapunov equation for Y; — X:

<A+B(G+G"))T(Yj—X)+(Yj—X) (4+B(G+6y))
:—Q—(G+G) (G+G;) - (4+B&)"X - X (A+ BG) - GIBTX - XBG;
(G+G) (¢+G;) + G"RG + GTRG + GTRG,

= -G] RG;.

Using this, we can now derive an expression for the difference in cost over
[t t]+1]

(2" (t;) Vi (t;) — 2" (tjn) Viw (1)) - (27 () Xz () - 27 (tj0) X (4.1))
=" (t;) (V- X)x (t;) — 2" (tj1) (V; - X) @ (1)

t7<1d
- [ G E O -

J

_ /t ("0 ((a+B(6+6))r-X)+ (v-x) (44 B (G+6)) ) ) 2 (1)) at

_ /t t (" () GTRG (1)) at

/tjd
tj

where z(-) is the state trajectory of the closed-loop system obtained from applying

the control law g, 5 = G + G;. Since z(-) is exponentially stable by Proposition
7.3.1, the last derivation also holds over [t,.1, 00]. Now

- 2
RY?Gjx (t)H dt

J (20, 9r,p(x())) = J (20, G ()

J+1
72/ RiGu [ T )] dt+/ |BECe -1 L] o] ar
<Z o R® gy [ RE|7 r2e 28t
T’ e + ; rYe
n+1l

Rl 2 e 2/3750 O
= 3 .

H "8
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Note that Proposition 7.3.2 also implies that
lim (0, g6 (2()) = J(w, (),

i.e. for any 5 > 0 the cost corresponding to g, g approaches the optimal central-
ized cost for r — 0.

For r — oo, we have i, 3 — 4, but g g((-)) is not the optimal control law
over | (in fact, it is not even the optimal linear control law over i, see Chapter
6). Hence, while g, s leads to a good closed-loop performance for small r, there
are better options for large r.

The following proposition verifies a property one would intuitively require of
a coordination control law: If the different parts of a system are fully decoupled
(i.e. the coordinator state and input do not influence the subsystem state) then the
control law g, 3 reduces to the optimal control law of the centralized case.

7.3.3. Proposition. If A, = 0and Bs. = 0 then g, g(x(t)) = Gx(t) for all t > ¢,
r>0and 8 > 0.

Proof. For A;. = 0 and B;. = 0, the open-loop system is completely decoupled.
Since @ and R are also chosen block-diagonal in (7.2), the solution of the Ricatti
equation (2.10) is block-diagonal, and hence so is G = —~R ' BT X. But then Gs =
0, which gives ||Ges(24(t) — Tyt yzc(t))|| = 0, and hence

Uc(t7 Ts,jy ij(t)) = Gccxc(t) = uc(ta Ts,0, xr(t))
for all r and S. O

The following result concerning the time span between two subsequent re-
sets of T; has been observed for many randomly generated control problems in
simulations, but has not yet been proven:

7.3.4. Conjecture. Let a system of the form (7.1) and a cost function of the form (7.2) be
given, and let
a = min {|Re(N)||]X e 0(4A + BG)}.

(a) Forall v > O0and 8 € (0, ) there exists e > O such that ||t; ;1 — ;|| > € for all
7 =>0.

(b) Forall v > 0 there exist fmax € (0, ) and tn > to such that the guard condition
is satisfied for all 8 € (0, Biax) and t > ty.

Part (a) excludes infinite resets in finite time, and part (b) states that for S
small enough, there are only finitely many resets. Assuming that Conjecture 7.3.4
holds, we have that g, g3 € i, g. While part (a) is crucial in establishing that g, 5 is
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useful in practice, part (b) can easily be circumvented by redefining the set i, g
to allow for countably many resets.!

7.4 Extension to hierarchical systems

This section explains how to extend the results of Section 7.3 to more general
hierarchical systems with a top-to-bottom information structure. The cases of a
system with two subsystems and a system with three layers are discussed below.
Control laws for other hierarchical systems can then be derived by combining
these cases.

7.4.1 Systems with several subsystems

In the following, we illustrate how to extend the control law g, g introduced in

Section 7.3 to a coordinated linear system with two subsystems and a coordinator.
We will consider the following system and cost function:

Ty A 0 A (o Bii 0 Bief |w x1(to) 1,0
Zo| = | 0 A Age| |x2| +| 0 DBaog Bac| |ua|, |z2(to)| = |220],
T 0 0 A.| |z 0 0 Bl |ue z.(to) Ze,0
J (20, u("))
T T

oo [ |21 Qi 0 0 T Uy Ry 00 Uy
= / T2 0 Q22 0 To| + |U2 0 RQQ 0 U2 dt.
to Te 0 0 Qe |Zc U 0 0 Ref [ue

The optimal centralized control law Gz(-) € 4 is again linear and time-
invariant, with G an unstructured matrix. We again approximate Gz(-) by
a structure-preserving piecewise-linear feedback, i.e. a feedback of the form

* 0 %
0 * *| z(-), by using piecewise-constant approximations of the matrices
0 0 %
HOEAG
Ty = 20T D poi
ag (t)xe(t)

In fact, if part (a) is false then applying g,. 5 may lead to Zeno behavior in theory — in practice
the system will be unable to execute the control law, and will lose stability. Since no application
is designed to run for infinite time, part (b) is irrelevant in practice; it may however be useful for
bounding the long-run communication costs.



7.4 Extension to hierarchical systems

This control law is of the form

Guxl(t) + (G12T27j2(t) + Glc) xc(t)
gr5(@(t)) = | Gaawa(t) + (Ga1Th j, (1) + Gac) e(t) |
(GaTjy 1) + GeaTo jy (1) + Gee) wel(t)

where T; ;, is the most recent feedback sent by subsystem i, for i = 1, 2:
T, Tij)  if guard, <re
i,ji(t) = % if guardi S reBt’

with

guard, = H {gﬂ (a2(t) - Tl’jl(t)xc(t))H ,
guard, = H {giz] (w2(t) - Tz,jQ(t)wc(t))H -

Note that, in addition to regularly sending its own state z., the coordinator also
needs to send 7} j;, to subsystem 2 and 75 ;, to subsystem 1, whenever they are
updated. The indices j; and j> are used to distinguish between the time points
at which subsystem 1 and subsystem 2 send feedback to the coordinator, respec-

tively. The closed-loop system corresponding to the control law g, s is illustrated
in Figure 7.2.

coordinator system
Ty = (Ace+Bce(Gec+c-:clTl_GCZTZJJI:E
if gnard, > re= % * B B *if guard, > re=Pt:
| Le, Le, | -
_ mzl | | _ Tazg
Ti= o e | T> T, | T2 wlwe
] ]
subsystem 1 subsystem 2
i = A iy = Agara
HB11G11+B1:Ge1 )y HB2Go+B2.Gen )z
‘HAIE+Blcc:cc)~fc ‘HAQC+BZEC:CCJ~UC
+B11(G12T2+ G )z, +B22 (G T1 +Gac ),
+Blc(Gc1Tl +Gc2T2)~L'c +BZE(GEIT1 +Gc2T2)~L'c

Figure 7.2: Closed-loop system with two subsystems
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Proposition 7.3.1 can easily be extended to show that this closed-loop system
is exponentially stable. Let x(t) describe the state trajectory obtained by applying

.5, then we can bound ||Gz(t) - g, 3(x(t))||* in a similar manner as in Proposi-

tion 7.3.2:
0 -Gz G12T3 ?
IGz(t) - grp(@®)* = || |-G 0 Go1Th x(t)
|-G -G GaTi +GeTh
[0 G1z ?
= |G| [T 0 Th]z(t)+ | O | [0 -I Tp]x(t)
Gcl GC2
X 2 2
<2 [gﬂ} (21(t) - Ty () +2Mg”] (22(t) - Towe(t)
cl c2
< 4o2e720¢,

Using this bound and the same argument as in the proof of Proposition 7.3.2, we
find that
2 e 2Bt

I(w0,9r,2(2()) - I (w0, Ga()) < 4||RE |72 5

7.4.2 Systems with several layers
We consider the following system and cost function:

1 A Ap Ags x Bi1 Bi2 Bis Ui
To| = | 0 Aoy Aoz| |z2| + | 0O Bay Bos| |uaf,
1‘3 0 0 A33 I3 0 0 333 us

J($0, ’LL())
T

o [ |21 g Quu 0 0 T Uy Ry 00 Uy
= / T2 0 Q22 0 T2 | + |U2 0 R22 0 (%) dt,
to T3 0 0 Qs3] [73 u3 0 0 Rs3| |us

z1(to) Z1,0

with initial state |x2(fp)| = |x2,0|. Each subsystem now corresponds to one
x3(to) 3,0

layer in the hierarchy. We define the functions

xlacg !Eﬂl’g .’EQ(E?
T12 - T ) 13— ~ 7 ) 23 — )
TH T2 T3 T3 T3 T3
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which satisfy Tiozo = 21, Tiszs = 1 and Thzzs = z2. We again find
piecewise-constant approximations to these functions by resetting T;j_ j, when-
ever guard,, > re !, where

The resulting control law is given by

Grix1(t) + Grawa(t) + Ghzxs(t)
9r,8(x(t)) = | (Gaz + Ga1Th2,5,,)22(t) + Gaszs(t) |,
(G31T13,5,5 + G213 j,s + Gag)3(t)

and illustrated in Figure 7.3.

subsystem 3
iy = (Asz+Bag(Ga1Tis + GaaTa3 + Gag))as

T3, A *
Tis I Tog I
|

|

iy = (Asg+Bao(Gao+Go1Th2))xo :
|

|

|

|

|

|

|

subsystem 2

1
HAz3+ B22Gas)xs
+B23(G31T13+ G213 + Gag)as

T L2,
N Tos
subsystem 1

i = (A1 +B1Gi )y
L HA1+B1G 1+ Bia(Go Tia+Gap))an = —
HA13+B11G13+B12Gag)rs
+B13(G1T13+Ga2To3+Gas)xs

A

Tl 2 TL 3

Figure 7.3: Closed-loop system with three layers

Exponential stability of the closed-loop system follows from a slight modifi-
cation of Proposition 7.3.1. The difference between the corresponding cost and
the centralized cost is bounded by

2 28t

J(x0, 9r5(x(-))) — J(z0, Ga()) <5 HR% .
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Figure 7.4: Closed-loop state trajectories for different values of r

which follows from the proof of Proposition 7.3.2, and from

0 0 0 2

|Gz (t) ~ grp(x(®)]* = || |-G GarTha 0 x(t)
-G31 -Gz G113 + G213

= HGQl [7[ T12 0} x(t)”2+ HG31 [7] 0 Tlg] x(t) +G32 [0 -1 7T23] Z‘(t)HQ
< HG21 [7[ T12 0] :c(t)”2+2 ||G3,1 [71 0 T13] l‘(t)H2+2 HG32 [0 -1 7T23] l‘(t)H

< 5r2e 20t

2

7.5 Simulation results

In order to illustrate the performance of the control law g, 35, we simulate the
behavior of the corresponding closed-loop system for the following simple ex-

U |
= ([ B BT BT



7.5 Simulation results

with initial state zy = . For the simulation we use Matlab, with 5 * 10* time

1
4
steps of size 10~* each (choosing smaller time steps had no influence on the cost,
up to 5 significant digits).

For 8 = 107%, the results for different r are given in the table below. The
column ‘resets’ gives the number of time points at which 7); was reset, upon re-

ceiving feedback from the subsystem.

r 8 J(zo,grp3) resets

0 10* 73674 5% 10%
0.01 10*% 7.3674 798
01 104 7.3690 116
1 10% 7.5441 17

10 10* 7.6883 0

The first row with r = 0 corresponds to the centralized case, with feedback
from the subsystem at each time step. The second and third row show that we
can achieve the same cost (up to 5 significant digits) with 798 resets, and an only
slightly higher cost with 116 resets. The cost increases with increasing r, with an
upper bound of 7.6883, which is achieved if T} is not reset after ¢o.

The corresponding state trajectories are shown in Figure 7.4. The state trajec-
tories for r = 0.01 and u = G are very similar to the case r = 0.1. Changing 3
leads to a comparable cost/resets ratio. For smaller values of 5, most resets occur
earlier than for larger 3. If 8 € (0, ) is chosen too large then it is not apparent
from our simulations whether the total number of resets will be finite.

Concluding remarks

A coordination control law was introduced, in which the bottom-to-top commu-
nication necessary for implementing the optimal centralized control law was re-
placed by event-based feedback, with a guard condition on the corresponding
approximation error. Further research should focus on the proof of Conjecture
7.3.4, and a direct relation between the total cost and the number of resets.
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Case Studies

In this chapter, two case studies for coordination control are described: Section
8.1 deals with a formation flying problem for autonomous underwater vehicles,
and Section 8.2 discusses a coordination problem for two ramp metering devices
at neighboring highway on-ramps.

8.1 Formation flying for AUVs

This section describes a coordination control approach to formation flying for
AUVs, and was published as [24].

8.1.1 Introduction

This section describes a case study for coordination control, involving several
autonomous underwater vehicles (AUVs): One AUV or surface vehicle should
track an external reference signal, and two AUVs should follow the first vehicle
in formation. This case study is strongly related to the problem statement of for-
mation flying for AUVs formulated in [59]. The similar problem of coordinated
path following control for AUVs is discussed in e.g. [11], and other approaches
to formation flying using leader-follower structures are found in e.g. [7], [32].

The purpose of this case study is, on the one hand, to illustrate the theory of
coordination control developed in this thesis, and on the other hand, to provide
a computationally efficient control algorithm for the problem of formation flying
for AUVs.

The control problem considered in this paper consists of three tracking prob-
lems, coupled by the formation to be kept, and subject to fixed bounds on the
speed and acceleration of each vehicle, random waves and currents, and errors
and delays in the communication among the vehicles.

Our approach adopts the linearized version of the model from [59]. In [59],
a more general version of this problem is formulated, and solved using moving-
horizon model predictive control on a linearized version of the model. While this
approach leads to very good control laws, the on-line computations necessary for
implementing these control laws exceed the on-board processing power of the
AUVs considered in this setting.

The novelty of our approach lies in restricting the communication among the
AUVs to a minimum by imposing a hierarchical structure on the set of vehicles,
and then using LQ optimal control to solve each tracking problem separately. The
navigation and communication constraints are taken into account after finding
the optimal control laws. This leads to a control law which can be implemented
with very little computational effort.
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In a simulation study, we compare the performance of our control law to
the centralized case, in which the communication among the vehicles is not re-
stricted. Our approach leads to a slightly higher total cost for the overall tracking
problem, while decreasing the total amount of information to be communicated
considerably. Moreover, our approach is easily extendable to larger groups of
AUVs because the total amount of information communicated among the vehi-
cles increases linearly with the number of vehicles, while this increase is expo-
nential in the centralized approach.

8.1.2 Description of the setting

The setting considered here concerns three vehicles, two of which are AUVs, and
one may be either an AUV or a surface vehicle. The main goal is to have one
vehicle track an externally given reference signal, while the other two vehicles
(the AUVs) follow this vehicle in a fixed formation. This setting is illustrated in
Figure 8.1.

__Bventhased
(T teedback

cormmunicagon
Lone2IUnwLIn:
Jpouad

periodic

Figure 8.1: Setting

The external reference signal may belong to a fourth vehicle, or be the solution
of another control problem, e.g. a search mission. In the setting considered here,
the vehicle following this signal can observe the current reference position at all
times.

The vehicle following the external reference signal will be called the coordi-
nating vehicle (V). Vi regularly sends its position to the other two vehicles (V;
and V3). These vehicles use this information to follow V¢ - this is modeled as a
tracking problem for each follower vehicle, with as reference signal the trajectory
of V¢, shifted in space by a fixed amount.



8.1 Formation flying for AUVs

All vehicles are subject to currents and disturbances, and their velocities and
accelerations are bounded in norm. Because of these restrictions, it may not al-
ways be possible for the vehicles to successfully track their reference trajectories.
This leads to two possible problems: The follower vehicles V; and V, might fail to
stay in formation (in the worst case, they might get lost), or the vehicles might col-
lide. These two problems necessitate some form of communication from V; and
V» to Vi in the case that the control objectives cannot be met. Since underwater
communication is extremely limited, we opt for a form of event-based commu-
nication from V; and V5 to V¢ in exceptional circumstances: At each time step,
each follower vehicle checks whether its distance to its reference position exceeds
a fixed limit. This can be done internally and without additional communication
since their reference position is communicated by Vi anyway. In the event that
a vehicle exceeds the limit, it sends its actual position to the coordinating vehi-
cle V¢, which then takes measures to avoid collisions, or one vehicle being left
behind.

Underwater communication is modeled as being subject to random delays
and packet losses. All messages sent are time-stamped, which means that at the
time a message is received, the recipient knows when the message was sent. The
corresponding observer can then recompute its current estimate, starting from
the time given in the time stamp. The clock drift among the different vehicles is
bounded for missions of limited duration, and will be ignored here.

In the setting described here, the coordinating vehicle V¢ has to communicate
its position regularly, while the other vehicles V; and V5 do not. This means that
Ve needs to use much more of its resources for communication. One possible
option for ensuring that the resources of all vehicles are used in a more balanced
way is to switch roles among the vehicles from time to time. In the case that
Ve is a different type of vehicle than V; and V3 (e.g. Vo is a ship, or an under-
water vehicle with more energy available), this imbalance in the communication
requirements is actually desirable.

For the purpose of comparing performances, a second setting will be con-
sidered, in which all vehicles can communicate with one another at all times.
However, the communication is subject to the same delays and packet losses as
described above.

8.1.3 Model with communication constraints

For ease of implementation, all dynamics involved will be approximated by
discrete-time! linear dynamical systems, as derived in [59]. To justify this choice,
we note that a linearizing feedback is commonly applied to the AUVs by a lower-
level controller. The approximation errors are modeled as disturbances, together

IThe discrete-time approximation of a coordinated linear system is obtained by replacing & with
x(t + 1) — z(t). The sparsity structure of the system matrices, which characterizes coordinated linear
systems, remains unchanged.
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with possible currents and other external disturbances. All disturbances are mod-
eled as being zero-mean disturbances in the long run.
The following notation will be used:

e Vc: coordinating vehicle
e V1, Va: vehicles following Vi

o R(: external reference signal to be tracked by Vi

Ry, Ry: reference signals to be tracked by V; and V3

p € R3: position

s e R3: velocity

a € R3: acceleration

w ¢ R3: disturbances

e p, § € R3: observer estimates for position and velocity

A1, Ay € R3: desired relative positions of V; and V, with respect to the
position of Ve

e 7 ¢ (1,00) : a time constant

For each vehicle, the acceleration is the control input. The disturbances are mod-
eled as velocities, and affect only the change in position, not the change in veloc-
ity.

These variables and their interconnections, in the case with communication
constraints, are illustrated in Figure 8.2.

For the external reference system R¢, we use an internal model with the fol-
lowing dynamics:

[Zgj (t+1) = {é TTIlI] [2;22] (t) + {10[} ape(t) + {é} Wre (t).

T

The state variables of this internal model are the position pr. and velocity sz,
of R¢, and the acceleration ap,, is the control input. The disturbance wg,, is an
uncontrollable input; including wg,, in the dynamics of the reference system is
realistic if R¢ is an actual vehicle or target to be tracked, it does not make sense
if R¢ is a virtual system (e.g. the solution of a control problem).

All vehicles V3, V; and Vi have the following dynamics, derived in [59]:

Paleen =g L] ] @ [ ) e+ |g] oo,

SV SV .
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Figure 8.2: Modeling scheme

with j = 1,2,C. Again, the state consists of the position and velocity of the
vehicle (thus the state space is RY), the acceleration is the control input, and the
disturbance is the uncontrollable input.

At each time step, Ve observes the current position pr,, (t) = [I 0] []S) Rc] (t)
Rc

of the external reference signal. The reference trajectories R and R, are related
to the position of the coordinating vehicle V¢ as follows:

PR, (t) = pve(t) + A1, pr,(t) = pve(t) + Asg.

The observer dynamics for all three observers are

PR, I1-G* 1 R, G%
o=y ] o e me
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J = 1,2,C, with pr, denoting the observations of the actual reference positions.
The error dynamics are

err T — GP I err
TR R 08 O
where ar, and wg,, are the acceleration and disturbance of the external reference
signal, and ar, = ar, = ay, and wr, = wgr, = wy, because the reference sys-
tems of the follower vehicles have the same dynamics as the coordinating vehicle.
aR,, OR,, Wr, and wg, only play a role in the observer errors; they are not used
on-board by V; or V. G%j and G% are appropriate observer gains.

Combining these variables and dynamics, we arrive at the open-loop system
given in Table 8.1. This is an affine system because the last term, involving A,
and A, is constant.

The state variables pv,, sv,, Pr,, v, belong to vehicle V;, the variables py;,
SVy, PR,s SR, are the state variables of vehicle V5, and the state variables py,, sy,
Dve, Sv.. belong to the coordinating vehicle V. For each vehicle, the state space
dimension is 12, and the state space of the overall system has dimension 36.

The internal model used for the external reference signal is not included in
this open-loop system because the state variables of the external reference signal
are not located in either of the vehicles. The accelerations ay,, ay,, ay, are the
control inputs, the variables wy,, wy,, wv,, pr. are the external inputs, and Ay,
A, are fixed parameters.

The open-loop system in Table 8.1 is a coordinated affine system. The coor-
dinating vehicle corresponds to the coordinator of a coordinated system, and the
follower vehicles correspond to the subsystems. Coordinated systems have the
property that the coordinator influences the subsystems, while the subsystems
have no influence on the coordinator, or on each other. In this case study, this
corresponds to the coordinating vehicle sending its position to the other vehicles
regularly. The event-based feedback from the other vehicles to the coordinating
vehicle does not comply with the structure of a coordinated system, and hence
the closed-loop system will only correspond to a coordinated system during the
time intervals between two occurrences of this event-based feedback.

8.1.4 Control

In the formulation of the control problem, we have to consider the following con-
trol objectives:

e For each vehicle we have a tracking problem: for j = 1,2,C, vehicle V}
should track its reference signal R;.

e The vehicles should never collide.



8.1 Formation flying for AUVs

Table 8.1: The open-loop system
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Possible solutions of the control problem are constrained by the fact that in prac-
tice, the velocities and accelerations of all vehicles are bounded in norm. The po-
sitions of the vehicles may also be constrained, e.g. by obstacles or if they should
stay within a certain region. This will not be taken into account here.

The combined consideration of both control objectives and the constraint
leads to a very difficult control problem. Finding an optimal control law (if one
exists) would involve on-line computations of a complexity that is not feasible for
the type of vehicles considered here (see [59]). Hence, our approach is to treat the
objectives and constraint one-by-one; this does not lead to an optimal control law,
but to an admissible control law that performs well, and that can be implemented
with limited on-board computing power.

In the following, we start by solving the tracking problems for the vehicles,
first for the setting with communication constraints, and then for the setting with-
out communication constraints. We then augment the optimal control law found
for the tracking problem in such a way that the bounds on the speed and accel-
eration are achieved. Finally we consider the problems of stability and collision:
In the case with communication constraints, we have to utilize the event-based
feedback from V; and V5 to Vi in order to avoid collisions.

8.1.4.1 The tracking problem, with communication constraints

First we only look at the tracking problem, ignoring the collision problem and
bounds. Each vehicle V; tries to track its observed reference position, while avoid-
ing excessive control efforts. The tracking problem for each vehicle V; can be
formulated as an LQ optimal control problem (see e.g. [63]):

o0
min Y [lpy; (1) = o, (0)]|” + @ flav, O, 5 =1,2,C.

7 t=tg

Here, a € R is a parameter weighing the cost of acceleration against the cost of
deviating from the reference trajectory.

The infinite-horizon formulation is chosen for simplicity, and all disturbances
are ignored for now, since otherwise and without discounting, the cost would be
infinite.

Pv; — DR;

The difference vector [ } has dynamics
Sv; — SR,
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where pg, denote the observations of the actual reference position. Since 7 > 1,
this system is controllable (see e.g. [63]).

Now the tracking problem for each vehicle can easily be solved off-line, lead-
ing to an optimal feedback

av, (t) = [F7 F’] [2’3 iﬁf} :
J 3

The corresponding closed-loop system for each vehicle is then

i) = Lk arlae [0 0
{(ﬂ w; (0 + [gp ](pRJ - pr,)(b).

For the treatment of the constraints in Section 8.1.4.3, we need to rewrite the
closed-loop system in terms of the original state variables:

e 12 II LR 1OFT’ 10F b
Sy, |7 +; s -7 -7 s Sy,
iﬁRZ» (=D = 1" 0 I-GR 1 ﬁR; Q
SR, 0 0 —szj %1[ 3R,

I 0

0 0

+ 1o v, (t) + G PR, ().
0 G”‘

The matrices characterizing the tracking problem are the same for all vehicles,
and hence the feedback matrices F? and F'® are also the same for all vehicles.

Since the reference trajectories pr, and pr, depend on the closed-loop dy-
namics of V¢, and observer estimates of these reference trajectories influence the
control problems for V; and V5, solving the tracking problem for each vehicle in-
dependently does not lead to a centralized optimum: The sum of the tracking
costs for all vehicles can be decreased further by solving the combined optimiza-
tion problem for all vehicles at once. However, for implementing the centralized
optimum, the current states of all vehicles would need to be communicated. This
alternative is used for testing the performance of our approach, and is described
in the following subsection.
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8.1.4.2 The tracking problem, without communication constraints

In this subsection, the same open-loop system for the motion of the vehicles is
used. All communications are subject to the same uncertainties as in the setting
with communication constraints. However, in this setting we do not impose any
constraints on the communication of the local state observations among the ve-
hicles. We include this setting for comparison purposes — this will allow us to
quantify the costs and benefits of communication in our simulation.

In this setting, each vehicle has observers for the states of all other vehicles, so
in other words each vehicle keeps a copy of the whole system in memory, with
exact values for its own state, and observers for the states of the other vehicles.
The control feedback for the tracking problem is the same for all vehicles: They
all solve the combined tracking problem

2 2

o< || {pva(t) = pve (t) — Aq av, (1)
o, min Dol Pva () = pve(t) - Ao ||| +alf [av,(t)
LEY2C p—g, Pve (t) - ﬁRc (t) aAve (t)

The solution of this LQ-problem is

pV] _pVC - Al

av, Fi1 Fig Fiz Fiy Fis Fig e 75VCA
ay, | = Fyy Fyy Foz Foy Fos Fhog P = bvo = 52 s
ave F31 F3y Fz3 F3y P35 F NG
PVe — PRe
SVC — §RO
where Fi1, ..., Fys € R33 can be found off-line.

Each vehicle has its own copy of the overall closed-loop system, with observer
estimates for the states of the other vehicles.

8.1.4.3 The bounds on velocity and acceleration

Since the norm of the acceleration for each vehicle is penalized in the cost function
of the tracking problem, the accelerations found from the state feedbacks for the
two settings above will usually be small in norm. However, this does not guaran-
tee that they stay within fixed bounds. Moreover, the velocities of the vehicles are
not bounded as a result of the state feedbacks found above, and we might need a
fixed bound on the speed of each vehicle for a realistic model of the settings.

With upper bounds amax € R and spmax € R on the acceleration and speed of
each vehicle, we define A\; € R by
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1

s :W ((1 - T)ag;jsvj + \/(T - 1)2a‘T,j (svja‘T/j - avjs‘T/j)SVj + 7252 lav; || ) .
J

This variable is used for limiting the speed of the vehicle, and is derived from
requiring that the velocity sy, (¢ + 1) obtained by applying the corrected input
Asay, (t) satisfies

T-1

_ 1
[5v; (¢ + DIP = ll—=sv; (#) + = Asa; (]* = shax

A simple (but not necessarily optimal) way of implementing a fixed upper bound
on the acceleration and speed of each vehicle is to use the following control input:

amax
ay, (t) = min {)\S, —_— 1} *ay, (t),
' llav; @] '

where ay;, (t) is the optimal control feedback found in the previous two subsec-
tions, depending on the setting. This control law satisfies the bounds [|ay, ()| <
Amax and ||5y; (£ + 1)|| < Smax-

8.1.4.4 Stability and the collision constraint

In practice the speed and the acceleration of an AUV are bounded. This means
that, even though both of the closed-loop systems derived in the previous sub-
sections are output stable with respect to the output

v, (1) = pve (1) — Ay
y(t) = |pva(t) —pve(t) — Az,
Pve (t) - ﬁRc (t)

the closed-loop systems together with the constraints ||a|| < @max and ||s]| < Smax
might not be output stable.

This is interpreted as follows: If the external reference signal moves at a speed
higher than sy.x then V¢ is not able to track the reference signal, and pv, - pr
increases. There is nothing that can be done about this. Another possibility is that
the followers V; and V> cannot track their reference positions, because they are
subjected to strong disturbances and cannot accelerate enough to compensate for
that. This may lead to a follower being left behind, or a collision of two vehicles.
This can be avoided if V- is informed about the positions of V; and V5, at least in
the case that V; or V5 are deviating too much from their reference positions. For
this potential problem, we suggest three possible solutions:
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o V¢ receives feedback from V; and V5 regularly, and includes these positions
into its local tracking problem. The deviation from the formation will be
small, but this involves more communication than necessary.

o V¢ receives feedback from V; or V5 only in the case that a follower vehicle
is too far from its reference position, i.e. if ||py, — (pv.. + Aj)|| > r for some
fixed r > 0. In this way, the communication from V; and V, to V¢ is kept
minimal. If the safety regions of radius r around V; and V5 are chosen far
enough from each other then this approach avoids collision.

o We set the maximum speed of V¢ well below the actual maximum speed
of V1 and V,. The follower vehicles have a better chance at tracking their
reference signal. No additional communication is necessary, however V¢
cannot fly at its maximum speed, and hence might have more difficulties
tracking the external reference signal.

In this case study we choose the second option: At each time instant, the fol-
lower vehicles check whether their position deviates from their observed refer-
ence position by more than r. If that is the case, they send their position py, to
Ve.

There are several possibilities for V¢ to use this information in order to help
the follower vehicle get back into formation. One option, which turned out to be
successful in simulations, is to have the V¢ track the signal

Pr 4 (Pvy — A1 —pve) i+ (Pvy — A2 =y )a
Re W

instead of the signal pr., where I; = 1 if V¢ received py, from V; during this
time step, and I; = 0 otherwise. The second term is a weighted average of the
deviations of the vehicle positions from their reference positions, with weight pa-
rameter W > 0. This average deviation has to be computed by V. At most times,
Ve does not know the positions of the follower vehicles because the follower ve-
hicles are within a radius r of their reference positions. In this case, the tracking
signal is PRr,..

The collision problem is automatically solved by our approach if the distance
between the uncertainty regions D, (py,) for the two follower vehicles is large
enough - this can be made more precise by taking into account the maximum
speed and acceleration.

8.1.4.5 The control algorithm

We summarize the control algorithm described in the previous subsections:
For the case with communication constraints, we have
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ay, = [Fr Fo] |2V " DR =12,
J S‘/j _ SRj
Py, - P, - (ﬁvl7A1—pvc)ulv+v(ﬁv2¢27pvc)b

ave = [FP F*]

For the case without communication constraints, we found

pV1 7pVC - Al
av, Fyy Fig Fiz Fiy Fis Fie M _SVCA
av, | = |Fo1 Fog Faz Foy Fos Fag b, =Pve =52 )
avg F3y F3p F33 F34 F35 F3g GG
PvVe — PRe
SVe — ‘§RC

with observer values where actual values are not available.
For both cases, the control feedback to be implemented is then given by

a‘InaX .
av.(t):min{)\s,,1}*av,(t), ji=1,2,C.
! llav, (@)l !

As discussed in the previous subsections, this control law meets the control
objectives and satisfies the constraint. Since the feedback and observer gains can
be computed offline, the computational burden on the AUVs is very low.

8.1.5 Simulation results

We test the performance of the control law and communication scheme described
above using MATLAB simulations. Simulation 1 implements the control law
with communication constraints, on the linearized version of the model and with
noise. Simulation 2 implements the system without communication constraints.

8.1.5.1 Settings and parameters

Our simulations ran over 1000 time steps, each of length 1s. For the external
reference trajectory we chose a circular path, starting at a distance of 40m from
the vehicles. For the vehicles, we used sy = 3m/8, max = 0.3m/s? and 7 = 5.
The disturbances were chosen to be Gaussian with mean 0 and ¢ = 0.3, and we
used uncertainty radius r = 7m around the follower vehicles. Messages were
modeled to arrive with a probability of 0.9, and with an average delay of 2.4s.
The weights for the tracking problems were chosen tobe o = 10 and W = 7.
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8.1.5.2 Performance and comparison

Both simulations show that the control objectives and constraints are met. Figure
8.3 illustrates this for Simulation 1: While the distances of the vehicles to their
observed reference positions quickly drop below 10m, the distances between the
three vehicles stay between 20m and 40m at all times. Feedback from V; and V;
occurred at 110 time steps.

55 T T T T T T T
" ||Pv1 - ﬁRi”
S0r ® ||Pvz - ﬁRz”
451 lleve — frcl|
7”1-‘71/1 - pVQH
||Pv1 - pvc”
—||PV2 - :OVCH

N
A o g A
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0 | | | | L | | | |
0 100 200 300 400 500 600 700 800 900 1000
time in sec

Figure 8.3: Simulation results

For comparing performances, we evaluate the cost function from the tracking
problems (note that the cost function is the same in both cases). Based on one
representative run, we found that the total costs are:

e Simulation 1: 1.37 % 105,
e Simulation 2: 1.23 % 10°.

This means that our control law with communication constraints leads to an in-
crease by around 11%, compared to the control law with unconstrained commu-
nication.

We can take into account communication costs by specifying a fixed cost C¢
per message broadcast by the coordinating vehicle V¢ (a message is an element
of R? or R?), and a fixed cost Cr per message broadcast by one of the follower
vehicles V; and V5. Now the total communication costs are:

e Simulation 1: 1000C¢ + 110CF,



8.2 Coordinated ramp metering

e Simulation 2: 2000C¢ + 2000CF.

The communication costs for Simulation 1 depend strongly on the disturbances,
and on the radius r of the uncertainty regions.

8.1.6 Concluding remarks

In this section, we described a control algorithm and a communication scheme for
the problem of formation flying for AUVs. This approach is implementable with
low on-board computing power, and it requires very little communication among
the vehicles. In a simulation, we compared the performances of this approach and
a similar approach with unlimited communication. While the total cost increased
slightly with our communication scheme, the total amount of communication
decreased considerably.

Another case study was worked out for the problem of collision avoidance
for several unmanned aerial vehicles, coordinated by a control tower. Since the
approaches and results are very similar to the case study discussed in this section,
the case study for unmanned aerial vehicles is not included here.

8.2 Coordinated ramp metering

This section describes an application of coordination control, concerning the co-
ordinated control of several ramp metering devices at highway on-ramps.

8.2.1 Introduction

Ramp metering devices are traffic lights at the on-ramps of a highway, which al-
low one vehicle to get onto the highway every s seconds, where s € [0, c0) can be
chosen by the controller (i.e. the road authorities). Ramp metering is employed
in order to achieve two control objectives: flow control and temporization. Flow
control concerns the regulation of the on-flow onto the highway in the case that
the overall demand exceeds the highway capacity: it is used to avoid traffic jams
on the highway, at the expense of creating queues at the on-ramp. The rationale
behind this choice is based on a hierarchical ordering of — possibly conflicting —
control objectives: If the overall traffic in a network exceeds the overall capacity,
queues cannot be avoided. Our first priority in that case is to keep the largest
roads, the highways, queue-free, at the expense of the smaller roads. Temporiza-
tion is a process which ‘evens out’ the traffic flow: In the city network, vehicles
typically move in batches (or platoons) from intersection to intersection. By let-
ting vehicles onto the highway at equally-spaced time points, the ramp metering
device removes this effect, thus reducing the variance of the traffic flow on the
highway. In the following, we will only consider the objective of flow control.

163



164

Chapter 8: Case Studies

The need for coordination of different ramp metering devices arises when sev-
eral neighboring on-ramps, leading vehicles onto the same direction of the high-
way, have a combined demand exceeding the downstream capacity of the high-
way - in that case, local control would lead to long queues at the downstream
on-ramps since the upstream on-ramps ignore downstream demand when deter-
mining their on-flow?.

Coordination schemes for ramp metering were first implemented in Los An-
geles and Delft. Later, research on coordinated ramp metering has focused on the
highway rings of Amsterdam and Paris, for which historical traffic data is avail-
able. The highway traffic on the Amsterdam ring is currently monitored and con-
trolled from the traffic control center of North-Holland. In [30, 42], a centralized
approach (i.e. all on-ramp flows are determined by the traffic control center) to
coordinated ramp metering was tested on several non-linear traffic models, and
applied in simulations to the highway rings of Amsterdam and Paris. The control
objectives were to minimize the total time spent by all drivers in the network, and
to have equal queue lengths at the on-ramps. The centralized approach used was
computationally feasible for the simulation studies®, but did not necessarily lead
to a global optimum.

A decentralized approach to coordinated ramp metering was suggested in
[73-75], and applied in simulations to the Amsterdam ring: Each on-ramp used a
local controller, and only when its local maximum queue length was exceeded, it
would tell the next upstream on-ramp to reduce its on-flow accordingly. During
peak hours, this coordination process would then naturally propagate upstream.
This approach has the advantage of high scalability, but does not perform well in
all situations (e.g. if there is no demand at the next upstream on-ramp).

In the following, we will apply the concepts of coordination control derived in
earlier chapters to this problem, using a simple linear traffic model. The purpose
of this section is to illustrate the theory of coordinated linear systems, but also
to give some insight into the separation of this problem into global and local
subproblems.

8.2.2 Modeling

For the purpose of this case study, we use a strongly simplified linear version of
the traffic model found in [66]. In particular, we make the following modeling
assumptions:

o the speed is constant for all vehicles and at all times,

e we restrict attention to two neighboring on-ramps,

2In urban areas, this can lead to vehicles driving back to the next upstream on-ramp via the city
network — a detour on their part, and an unnecessary load on city traffic.

3Extendability is of course limited in the centralized approach — a national highway network may
be too large.
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o the system dynamics are modeled by a discrete-time linear system, using
the different flows and queue lengths as state variables,

e all in-flows into the system are estimated from historical data.

The discrete-time formulation of the problem is chosen because the system con-
tains considerable delays (i.e. the travel times from one on-ramp to another etc.):
These delays are intrinsic to the problem, and with the assumption of constant
speeds they can easily be handled by a finite-dimensional discrete-time system
(but not by its continuous-time counterpart). Moreover, in practice the measure-
ments from the detection loops are sent in aggregated form once every minute,
rather than being continuously available.
For each on-ramp i = 1,2, our model involves the following variables:

vehicles
time unit

g™ € [0, 00) is the in-flow into the ramp area from upstream, in

out

¢S ¢ [0, 00) is the out-flow from the ramp area to downstream, in Yehicles

time unit

vehicles

g™ € [0, 00) is the on-flow onto the highway at the on-ramp, in ==

@9 € [0, 00) is the off-flow off the highway via the off-ramp, in Jehides

time unit

arr

q;

. . : .~ vehicles
€ [0, 00) is the arrival flow to the queue at the on-ramp, in FEoees

Qi € [0,00) is the length of the queue formed at the on-ramp, measured in
number of vehicles

These variables are illustrated in Figure 8.4.

1
qiin q?ut _:9
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Figure 8.4: Setting and state variables for one on-ramp

Considering each on-ramp separately for now, we have that ¢ and ¢ are
external inputs to our system: They correspond to the in-flows into the ramp
area from other parts of the highway and the city network, and while we cannot
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measure them directly, we assume that historical estimates of these quantities are
available at the traffic control center (i.e. the centralized controller).

The state variables of the system will be ¢?*, ¢f and Q;: For the out-flow ¢¢*,
regular up-to-date measurements from the detection loops downstream of the on-
ramp are available locally, at the ramp metering device. The off-flow ¢¢f cannot
be measured directly, and we assume that it is a certain fraction of the in-flow, and
that historical estimates of this fraction exist. The queue length is assumed to be
measurable at the traffic control center (via cameras); this assumption is necessary
since we would otherwise need to rely entirely on the historical predictions for
the arrival flow, and any form of closed-loop control for the queue length would
be impossible. If the queue lengths were observable locally at the on-ramps, the
local problems could be to regulate the on-flow such that a target queue length,
prescribed by the traffic control center, is not exceeded.

The on-flow ¢ onto the highway is the control input: provided that the de-
mand at the on-ramp is high enough, we can determine the on-flow by setting
the time period s between two successive cars being let onto the highway accord-
ingly. If the demand (i.e. the arrival flow ¢i™) is lower than our target on-flow
then we can still bound the on-flow from above by setting s accordingly, but we
need to use the downstream detection loop measurements to estimate the actual
on-flow.*

Since part of our control objective is to avoid exceeding the highway capac-
ity, we will need an estimate of the downstream capacity. This estimate will be
denoted by ¢ (¢) € [0,0), and can be obtained from historical data at the traf-
fic control center. It is modeled as time-varying because the highway capacity
strongly depends on the weather conditions.

For a highway stretch with several on-ramps, the in-flows and out-flows of the
different on-ramps are related by the fact that all vehicles which are on the high-
way after passing an upstream on-ramp will enter the section containing the next
downstream on-ramp a fixed number of time steps later.”> Thus only the in-flow
into the first upstream on-ramp is an external input to the system, which we will
denote by ¢Y.

For simplicity of notation, and in line with the other parts of this thesis, we
limit attention to highway stretches with two on-ramps, and point out that an
extension to more on-ramps is conceptually straightforward. Since each on-ramp
is only related to the next upstream and downstream on-ramps via its in-flow
and out-flow, a model for a highway stretch with n on-ramps would have the
form of a nearest-neighbor system with n subsystems, as described in Section 3.3.

41f there is less demand than the highway capacity would allow for, then there is no risk of con-
gestion in that region, and traffic control measures such as ramp metering are unnecessary.

5This is due to the principle of conservation of vehicles —no vehicles can enter or leave the highway
between successive on-ramps.
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Moreover, we always restrict attention to one direction of the highway: The two
different directions of a highway are modeled as independent.
The different state and input variables are illustrated in Figure 8.5.
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Figure 8.5: Setting and state variables for the coordinated ramp metering problem

For the evolution of the state variables of the system with two on-ramps
shown in Figure 8.5, and for a fixed delay T' € N, we derive the following set
of equations:

g (t+1) = q%(t) - (1) + g™ (1) (82)
g™ (t+ 1) = g™ (t) — g8 (¢) + g3™(t) (8.3)
¢t +1) = B1g"(1) (8.4)
@3 (t+1) = Bags'(t) (8.5)
Qu(t+1) = Qu(t) + Ay(¢§™(t) - g™ (1)) (8.6)
Qa(t + 1) = Qa(t) + Ar(g3™ (1) — 5" (1)) (87)
g3 (t+T) = ¢§™(t) (8.8)

We choose our time steps A, in such a way that it takes exactly one time step to
pass an on-ramp area, and assume for simplicity that all on-ramp areas have the
same length. On the Amsterdam ring, the detection loops in the road are roughly
equally-spaced at 500m, so a natural choice would be to define an on-ramp area
to consist of the highway section between the nearest detection loops upstream
and downstream of the on-ramp.

Equations (8.2) and (8.3) describe the out-flows out of the two ramp areas:
These are given by adding up the upstream inflow one time step earlier (qV for
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ramp 1 and ¢i' for ramp 2) and the on-flow via the respective on-ramp (¢™), and
deducting the off-flow at the respective off-ramp (¢*).

The off-flows ¢ and ¢3ff are modeled as fixed fractions of the in-flows into
the respective ramp areas. The parameters /31, 55 € [0, c0) appearing in equations
(8.4) and (8.5) were assumed to be estimated from historical data; they are treated
as time-invariant in our setting, but may in principle be slowly time-varying (e.g.
they may differ for the morning and evening rush hours).

In equations (8.6) and (8.7), the queue lengths at the two ramp metering de-
vices are described to grow by the number of new vehicles arriving at the on-
ramp over one time step, and to shrink by the number of vehicles which were let
onto the highway by the ramp metering device over the same time period. Since
A is the length of one time step, these two quantities can easily be estimated by
Ayg™(t) and A.g§"(t). Note that these equations do not account for the fact that
queue lengths can never be negative in practice — again we justify this choice by
arguing that if the demand is far below the highway capacity then there is no risk
of congestion, and the ramp metering device does not need to restrict the on-flow.

Equation (8.8) models the interconnection between the two on-ramps, as de-
scribed above: Under the assumption of constant speed, the out-flow out of ramp
area 1 will reach ramp area 2 7" time units later. Incorporating equation (8.8) into
our system requires us to keep the last T — 1 values for ¢I' in memory: Suppose
T = 3, then the equation can be rewritten in the form

q;n,+2 00 0 q;n,+2 1
gttt 1) ={1 0 0f |g ] (1) + |0 g™ (), (8.9)
q12n 0 1 0 q12n 0

with auxiliary variables g% and ¢i"*! satisfying

a5 (t) = @'(t+2) and gy (8) = a@5'(t+ 1).

Combining equations (8.2)-(8.8) and (8.9), and re-ordering the state and input
variables according to their locations (i.e. ramp 1 or ramp 2), we arrive at the
open-loop system given in Table 8.2.2. This system is a nearest-neighbor system
with a directed information structure, or equivalently, a hierarchical system with
a chain structure. In order to incorporate in the model which state variable is

(7A1
observable from which location, we define an output vector |y |, where y; con-
Ye
sists of all variables which are observable at ramp ¢ (i = 1,2), and y. contains all
observations available at the traffic control center.
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out

s 0 -1 0/0 0 0]0 0 O qs
@t 0 0 0/l00 0/l0 0 0 "t
Q1 0 0 1/0 0 0|0 0 O Q1
g I 0 0/0 0 00 0 O a5
¢t (t+)=[0 0 01 0 0[]0 0 0 b (1)
g 0 0 0/01 0]0 0 0 g
e 0 0 0/0 0 1]0 -1 0 o
e 0 0 0/0 0 B|0 0 0 gt
0 0 0/0 0 0]0 0 1
- (”?2 - - ) oot @ (8.10)
1 0 0 0 1 0
B 0 0 0 0 0
0 A, 0 0 U A |0
0 0 0 0 ; 0] o0 o
+l 0 0o 0 o0 q}m t)+1] 0 0 [ q}m } (t)
0 0 0 0 2 0 0 2
0 0 0 0 q 0 | 1
0 0 0 0 0 0
L 0 0 At 0 i L 0 _At

Table 8.2: The open-loop system, for two on-ramps

We arrive at the output equation

41 ] [100[000[/000] ((1]1c>ff 0000 ]
Yo 000[000[100 0, 0000
Yer 001(000[000 T2 0000 qv
vea | | 000[000]001 || %, 0000 || @™
ves | 000000000 || |T|l1000 || "
Yeu 000[000[000 7 0100 [[ ¢
Ye,5 000{000f000 || % 0010
| Yes ] L0O00|000 000_?@2 | 0001 |
L 2

8.2.3 Control problem

As already mentioned above, our control objective will be to have equal queue
lengths while ensuring that the downstream flow does not exceed the highway
capacity. In the following we justify this choice, discuss possible ways of for-
malizing this objective, and split the overall objective into local control problems
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for the ramp metering devices, and a coordination control problem for the traffic
control center.

8.2.3.1 Discussion of possible control objectives

A common control objective in traffic control is to minimize the tofal time spent
by all drivers in the network. In our setting, this would not lead to equal queue
lengths: The queue at ramp 1 would be kept shorter than the queue at ramp 2
since —according to the model- a fraction of 3, of the vehicles entering the high-
way at ramp 1 will leave the highway at ramp 2. Hence the total time spent can
be decreased by having a higher on-flow at ramp 1, without exceeding ¢“P(t)
downstream of ramp 2. In practice, however, vehicles are unlikely to leave the
highway right after entering it.

Another alternative to the objective of equal queue lengths is to have equal
waiting times at the on-ramps: The waiting time 7;(¢) for each vehicle can be esti-

mated from the queue length at the time of arrival in the queue, and the on-flow,
Qi(t)
a3 (1)
control law, and is hence not considered here.

For the objective of equal queue lengths, we need to choose at which times we

compare the queue lengths:

ie 7i(t) = at ramp 4. This control objective would lead to a non-linear

o On the one hand, a good option would be to compare Q1 (t) with Q2(t +T'),
since the vehicles entering the highway via ramp 1 at time ¢ will pass ramp
area 2 at time ¢ + 7', and will thus pass the detection loops downstream of
ramp 2 at the same time as the vehicles entering the highway via ramp 2
at time ¢ + 7". This objective would, however, require the controller to have
predictions of the state variables up to 7" time units ahead — since many vari-
ables are estimated from historical data this may not be a problem for the
setting with two on-ramps; for larger networks with several on-ramps and
larger delays this may be impractical, and for networks with loops (such as
highway rings) this would be impossible.

o A comparison of Q1 (t) with Q2(¢), on the other hand, is feasible at time ¢
since all required data is available at that time, and hence we will choose
this option for this case study. However, in some situations this objective
may perform worse than the first option: If many vehicles want to reach
the same downstream destination at the same time, then the queue at ramp
1 will have a peak T' time units before the queue at ramp 2, and hence a
comparison of the peak values at ¢t and ¢ + 7" would be preferable.

To summarize, our control objective at time ¢ is to choose ¢"(¢) and ¢9"(¢) in such
a way that
Qult +1) = Qs(t +1) and g2(t+ 1) = ¢P(t), (8.11)
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if the overall demand at time ¢ exceeds the highway capacity.

In practice, it may also be of interest to keep the queue lengths below a fixed
threshold value (denoted by Q"™ and Q5 in Figure 8.5): Incorporating this
bound, we could avoid that the queues become so long that upstream intersec-
tions in the city network may get blocked. In particular, if long queues would
have a strong effect on city traffic at one on-ramp but not on the other on-ramp,
it may be preferable to allow for longer queues at one ramp, rather than keeping
the queue lengths equal. Since this additional constraint may conflict with both
objectives given in (8.11) and depends strongly on the topology of the city net-
work, we will not take this additional consideration into account in our control
problem.

8.2.3.2 Separation into two layers

We suggest the following distribution of the overall control task over the different
locations:

e The traffic control center assigns target out-flows "' and ¢3", such that
the control objective is achieved, based on its historical estimates for the in-
and out-flows into and out of the network, and its estimate for the highway
capacity.

e Each local controller then tracks the target out-flow assigned by the traffic
control center, based on its local measurements at the downstream detection
loops.

Since the queue lengths are only measured at the traffic control center, and since
coordination is required for the objective of keeping the queues equally long, de-
termining the target flows to be tracked by the local systems is the task of the
traffic control center. Note that the traffic control center could in principle also
assign target on-flows directly, instead of assigning target out-flows and leaving
the problem of choosing appropriate on-flows to the local systems; however, the
estimates from historical data used at the traffic control center will be less accu-
rate than the direct measurements at the on-ramps. For this reason we opt for a
feedback loop at each on-ramp, using the local measurements.

8.2.4 Control synthesis and the closed-loop system

Having settled on the control objective of keeping the queue lengths at the two
on-ramps equally long at each given time, we can now derive the corresponding
control laws and the closed-loop system.
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8.2.4.1 Control law for the coordinator

The target out-flows ¢{"* and 3" to be determined by the traffic control center

can be derived dlrectly from the objectives given in (8.11). The variables which

are observable at the traffic control center are illustrated in Figure 8.6. We get
takes 1 time unit takes T times units | takes 1 ime unit

—\ Y o \ Y o~
o |l i [

| —

1O l

a; Q "

T T

Figure 8.6: Variables observable at the traffic control center

@ (t + 1) = ¢*P(t), and g*(¢ + 1) can be derived from the objective Q; (¢t + 1) =
Q2(t + 1), using the system dynamics: Noting that

g™ (1) = @ (t+1) - ¢ (8) + ¢ (1) = g (t+ 1) - (1= Bi)a" (1)
and ¢i'(t) = Ut - T), we get

Ql(t + 1) = Qg(t + 1)
& Qut) + A (@7 (1) - (1) = Qa(t) + Ar (27 (1) ~ ¢3"(¢)
& Qut) + A¢ (@™ (t) - @ (t+ 1) + (1 - B (1))
= Qa(t )""Af( S() — @ (t+ 1) + (1 - B2)a3'(t))
& @r(t+1) = (Ql( ) = Q2(t)) + (a1 (1) — 637 (1)) + (1 - B1)g" (1)
—(1- 52 )fi‘f‘“( =T)+qP(t).

Implementing this control law will require us to keep the last T' target out-flows
" in memory. The control law for the traffic control center can be rewritten as



8.2 Coordinated ramp metering

Figure 8.7: Variables observable at on-ramp ¢

qU

—out 11 _ _ arr _
=[5 3] @] o0 0] [ o[ aen.
qP

8.2.4.2 Control law for the local systems

The task of the local controllers is to choose ¢ (t) in such a way that ¢?*(¢ + 1) =
@ (t + 1). The variables which are observable at the on-ramp are illustrated in
Figure 8.7. For qi“ we do not have local measurements; instead, we will estimate
¢"(t) by ¢"(t-1), which in turn can be derived from the measured quantity ¢" ()

and the last control input ¢?"(¢ - 1), using the system dynamics. Our estimate ¢\
of ¢;" is then given by

Gt =a"(t-1) = 5 _1& (@) — g™ (t - 1)) .

Plugging the requirement ¢ (¢ + 1) = (¢ + 1) into the system dynamics, and
using the estimate §;", we arrive at

@ (t+1) = G (t) - g () + ¢ (1)
& @ t+1) = (1-B)d") + ¢ (¢)
& gt =¢"() - ¢t - 1)+ ¢"(1)

& ") ="t +1) - ¢ (t) + ¢t - D).

Thus the on-flow to be allowed onto the highway by the local ramp metering de-
vice is given by the difference between the target out-flow and the last measured
out-flow, and by the on-flow that was allowed onto the highway during the last
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time step. For implementing this, the most recent value of the on-flow, ¢ (¢ - 1),
needs to be kept in memory at the local on-ramp controller.

8.2.4.3 Closed-loop system

In the previous subsection, the variables g?"(¢+1) and g3"'(¢ + 1) were introduced
as auxiliary control inputs for the subsystems, and the variables ¢{"(t-1), g5 (t-1)
and ¢°"(¢t — T') denote the past values of the corresponding state variables to be
keptin memory at ramp 1, ramp 2 and the coordinator, respectively. The variables
¢'" and their past values can now be replaced by ¢"!(¢—T). Using these additional
variables, we can rewrite the open-loop system (8.10) as

gout 0-10]000 [ ¢ 1000
goft 000/000 ¢St Br 0 00 [[qY
o} 001|000 o} 0A; 00 [|g™
qgut (t+1) - 000]|0=10 q(Q)ut (t)+ 00 00 qgrr (t)
gt 000/000 ¢St 00 00 |[¢g?
000[001 0 0 A0
@2 @2 ! (8.12)
1 0 |00 olo| o
0 0 [00 g™ (t) 0/0] 0 on
— @ (t-1
. “A;| 0 |00 " (1) 0(0| 0 ﬁ
0 L (00 || @"(t+1) olo] 1 ﬂfut(t T
0| 0 |00 || gut+1) 0fo0|p [LY
0 |-A |00 0(0| o0

We first close the subsystem loops, using the local control laws
" (1) = g (t+ 1) - ¢ (1) + "t - 1)

for i = 1, 2. The system is then given by

g5t “1-10]0 0 0[] ¢ 1 0 00
¢t 0 00| 0 00O ¢t Br 0 0 0 |[qY
Q A, 0010 001 Q 0 Ay 0 0 ||
s | ) = |5 oo || |04 00 0 0 || g |
g 0 00| 0 00/ ¢f 0 0 0 0 [[¢g°P
Q2 0 00|A 01 Q2 | 0 0 A O

1 0 ] 1 0 |0

0 0 0 0 | 0 |F on

t-1

I I I (R VI B BV B B %

0 0 0| 0 |g [LOT VT

0 -A; | 0 -A; | O
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Plugging in the coordinator control law, we arrive at the closed-loop system

out out

@ -1 -1 A% 0 0 —A% q

¢t 00 0|0 0 0 g

Q1 A 0 0]0 0 1 o}

qgut (t+1) - 0 0 O 71 71 O qgut (t)

S 00 0|0 0 0 gt

Q2 00 0]A 0 1 || Q

2.6 1 -1 1 1 0 By —1

b1 00 0 qv 0 0 0 F (1) T

At(ﬁl — 1) O At —At qirr —At 0 At(l — BQ) })Il 1

+ 0 00 1 qgrr (t)Jr 0 1 1 45 (t_ ) .

0 00 0 |[g 0| 0 g (LT
0 0 A Ay 0 | -A; 0

Note that the local dynamics at the two on-ramps are no longer independent: The
dynamics at ramp 1 now depends on Q2(t). Since Q2 (%) is observable at the traffic
control center, we can include the measured value Q,(t) of Q5(t) in the vector
of estimates available at the traffic control center. This leads to the coordinated
linear system

g5t -1 -1 %[0 007 ¢
@t 00 00 00/ ¢f
Q1 A, 0 0|0 00 Q1
q(Q)ut (t 1) - O 0 0 _1 _1 0 qgut (t)
gt 00 00 00| ¢f
Q- 0 0 0 |A 01 Q2
[ 2-/ 11 1 -4 U
B 00 0 0 51
At(ﬂl - ]-) 0 At *At 1 arr
t 8.13
" 0 00 1 0 g?ap ®) (8.13)
0 00 0 0 A
i 0 0A -A, 0 |L¢
1 0 Ba—1
0 0 0 on
“Ar | 0 | Ay(1-59) q(lm(t =)
+ 0 1 1 ds (t - 1)
%Jut(tiT)
0 | 0 Ba o
| 0 | -A 0
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8.2.5 Concluding remarks

In this section, we motivated and discussed a coordinated ramp metering prob-
lem. The traffic flows and queue lengths in the on-ramp areas were modeled as a
linear system, and the control objective was discussed and formalized.

Whether the control objective can be achieved in a decentralized manner de-
pends on which partial observations are available at which locations. For one
possible setting, we derived a suitable coordination control law and the corre-
sponding closed-loop system.
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In this concluding chapter, we briefly summarize the main contributions of this
thesis, and discuss several possible extensions.

9.1 Summary of the main results

One of the main contributions of this thesis is the derivation of explicit proce-
dures for the transformation of interconnected or monolithic linear systems into
coordinated linear systems in Chapter 4: Finding appropriate system decompo-
sitions if no a priori decomposition is given (as in the monolithic case) or the
given decomposition is unsuitable for control purposes (as in the interconnected
case) is a major problem in decentralized control. Three concepts of minimality of
decompositions were introduced in order to identify decompositions which are
‘as decentralized as possible’, and many of our decomposition procedures were
shown to produce such minimal decompositions.

Another relevant contribution to decentralized control theory is the refine-
ment of the standard concepts of reachability and indistinguishability to reflect
which input/output is used, and which part of the system is affected, and the sub-
sequent distinction between jointly and independently reachable subspaces, and
between completely and independently indistinguishable subspaces in Chapter
5. These concepts helped us identify and characterize concepts of controllability
and observability which are more meaningful for coordination control than the
corresponding standard concepts for monolithic systems.

The main result of this thesis is Theorem 6.2.7, together with its immediate
consequences for coordinated and hierarchical linear systems: When restrict-
ing the set of admissible control laws for an LQ control problem to structure-
preserving static state feedback, the optimal feedback for each subsystem only
depends on the subsystem itself, and on its followers, but not on the rest of the
hierarchy. This result allows us to approach the problem in a bottom-to-top man-
ner, finding the optimal feedback for each subsystem numerically, at each step
using an algorithm derived from Theorem 6.2.7 and the optimal feedbacks found
for its follower systems in previous steps.

Finally, this control synthesis procedure for LQ control problems is adjusted
to allow for event-based bottom-to-top feedback and to significantly reduce its
computational complexity, in Chapter 7. The cost corresponding to this control
law approximates the centralized optimum arbitrarily well, at the expense of an
increased need for bottom-to-top feedback.
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9.2 Extensions

In the following, we discuss some possible extensions of the concepts and results
derived in this thesis.

Coordinated non-linear systems

A straightforward generalization of the definition of coordinated linear systems
to the non-linear setting is given by the following:

9.2.1. Definition. Given a system of the form

&= f(z,u),
Y= h(x7u)v

and given decompositions X = X1+Xo+X., U = Ui +Us+U; and Y = Y1+Y24Y,

of the state, input and output spaces, we call this system a coordinated system if
there exists a representation of the form

Z1 fi(zy, we, ur, ue)
Bo | = | fa(we, e, uz,ue) |
[T | felmesue)

Y1 h1($17$C7U1,Uc)
Y2 | = |ha(w2, e, uz, ue)
e | he(Te,ue)

The information available to each subsystem is restricted in the same way as for
coordinated linear systems: The coordinator receives no information from the
subsystems, and each subsystem only has its own local information and infor-
mation about the coordinator state and input, but no information about the other

subsystem.
If the coordinated non-linear system of Definition 9.2.1 is linearizable around
1 Uy
a point (z,u) = To| , |2 then its local linearization around this point is
Ze U
given by
oh g Ofe oh g Ofe
L1 Oz, of g? T Ouy of (gzjfl Uy
'1_:2 ~ 0 Twz Tw; T2 | + 0 auz 6u; U2
e 0 0 S| |z 0 0 St fu
T, Ou,
where gf ; , J,k = 1,2, c stands for the total derivative of f; with respect to z;, at

the point (Z,a). Thus the coordinated non-linear system is approximated by a
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coordinated linear system in a neighborhood of the point (z, %), and our results
concerning minimality, controllability, observability and optimal control apply
locally around this point.

Extendability to hierarchical linear systems

The extendability of various results to hierarchical systems with more subsystems
and/or several layers was already discussed in the previous chapters; in particu-
lar, Sections 6.3 and 7.4 are devoted to the extension of the LQ control synthesis
algorithms developed in this thesis to more general hierarchies.

Further work is needed on the generalization of the construction procedures
in Sections 4.1 and 4.2 to interconnections of several subsystems or hierarchical
systems with several layers — the most straightforward extension would be to
apply the existing procedures repeatedly, for the different interconnections or the
different parts of the system. The concept of minimal communication introduced
in Section 4.3 can be straightforwardly extended to hierarchical systems, but the
concept of a minimal coordinator would have to be changed, taking into account
the coordinating systems on all levels of the hierarchy.

An extension of the concepts of local observability and local controllability
amounts to a mere reformulation of the existing concepts, and the related con-
cepts of local stabilizability and local detectability are equivalent to the existence
of structured stabilizing state feedbacks and converging state observers for any
hierarchical linear system with a top-to-bottom information structure.

While our refinement of the concept of reachability is easily extendable to hi-
erarchical systems, with each local input affecting the corresponding local system
and all its followers, a controllability decomposition of the system according to
independent and jointly reachable subspaces as in Section 5.2 will in general be
infeasible. In how far the different concepts of controllability can be extended to
hierarchical systems, is an open question. The same considerations apply to the
concepts of indistinguishability and observability in Section 5.3.

Almost coordinated linear systems

In practice, and in particular if the model parameters are estimated from numer-
ical data, it may be impossible to find a non-trivial system decomposition with
conditionally independent subsystems, corresponding to zero blocks in the sys-
tem matrices. Instead, one may want to extend the concept of a coordinated linear
system to structured systems in which the corresponding blocks are not required
to be exactly zero, but very small in norm. The concept of an almost invariant
subspace provides such a generalization from exact invariance to approximate
invariance.

Almost invariant subspaces were first introduced in [69], and can be defined
as follows:
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Given a linear system of the form & = Az, z(ty) = zo, we call a sub-
space V, of the state space X an almost invariant subspace if for
all zp € V, and € > 0 we have d(z(t), V,) < e for all ¢ > t,.

Replacing the invariance and independence conditions imposed on the state,
input and output spaces of a coordinated linear system in Definition 3.1.1 by
almost-invariance and almost-independence conditions may help in finding a
meaningful definition of an almost coordinated linear system.

Coordinated differential-algebraic equations

Differential-algebraic equations provide a framework for the combined consid-
eration of dynamical systems and algebraic constraints (see [31]). Non-linear
differential-algebraic equations are of the form

F(t,z(t),z(t)) =0, x(tg) = xo,

with state trajectory z(-) : [tp,00) — X and initial state o € X, and with ¢ ¢
[to,00) and F: (X x X x R) — R™,

Given such a system, and given a decomposition X = X;+X,+X,. with di-
mensions dim X; = ni, dim X5 = ny and dim X. = n., we call it a coordinated
differential-algebraic equation if there exists a representation of the form

Fl(t,xl,(lfc,ftl,fifc) 0 X1 xo,l
FQ(ﬁ)$27xc7j:c;i‘c) = {0 ) Z2 (to) = xO,Q 9
Fc(tyxcaj:c) 0 Te Z0o,c

with Fi: ([t(), OO) x X1 xXoxX1 XXC) — R™, Fy ([to, OO)XXQXXCXXQXXC) — Rz
and F. : ([tg,0) x X x X.) — R,

If we have a coordinated differential-algebraic equation, and F is differen-
tiable with respect to (¢,z, %) in a point (¢, Z, ) then the equation can be locally
approximated by its linearization around (¢, z, 3):

t

1
OF, OF, 0 OF; OF; 0 OF,
ot Ox1 Oz, o0 0L T2 0
oF, | o 9F2 OF; | o oR 0OF; " — o
A0 | %o ||| T
ot | 0 0 =] 0 0 & 1 0

)

. x.c -
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9Fy _oF . OF, OFy IF
T 01 0 o Z1 oz 0 Oz, Ea atl
N O _ OF, _ BFS SL O OF, OFy T OFs t
e di, 2 dry Oz 2 ot |
Joi ; oF, IF,
0 0 L Le 0 0 ox Le ot
OF; OF;

with 9w 05, € R™*" for j = 1,2,c. If the matrix on the left is invertible then
our system is locally approximated by a coordinated affine system (i.e. a coor-
dinated linear system with an additional affine term which only depends on ¢).
This special case motivates the consideration that this class of systems may show
a similar behavior as coordinated linear systems, in the sense that some of the
results of this thesis may be extendable to the differential-algebraic case.

Other possible extensions

Another direction in which the theory of coordinated linear systems may be ex-
tended is the introduction of disturbances into the system dynamics: The case of
coordinated linear systems with Gaussian disturbances was considered in [41],
where some of the results of this thesis were already shown to carry over to the
stochastic case. Other types of stochastic disturbances, especially related to com-
munication errors and communication delays among the different parts of the
system, may also be interesting to consider.

Moreover, in this thesis we restricted attention to LQ optimal control prob-
lems. Other types of control problems, such as robust control or an optimal con-
trol formulation which includes communication costs in the objective function,
could also be useful for practical purposes. In particular, an interesting question
is whether the separation of the overall problem into conditionally-independent
subproblems shown in Theorem 6.2.7 carries over to these classes of control prob-
lems.
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Gecoordineerde regeling van lineaire systemen

Gecoordineerde lineaire systemen zijn decentrale lineaire systemen met een spe-
cifieke structuur: Zij bestaan uit drie of meer deelsystemen, waarvan er één de rol
van een codrdinator speelt voor de andere deelsystemen. De communicatiestruc-
tuur weerspiegelt deze rolverdeling: De codrdinator kan de andere deelsystemen
beinvloeden, maar de andere deelsystemen hebben geen invloed op de coordi-
nator of op elkaar. Een gecotrdineerd lineair systeem representeert dus één af-
takking in een hierarchisch lineair systeem, met een gerichtte boom als commu-
nicatiestructuur.

Mogelijke toepassingen van gecodrdineerde lineaire systemen omvatten de-
centrale systemen met een inherente hierarchische structuur, zoals verkeers-
netwerken of elektriciteitsnetwerken, maar ook andere decentrale systemen die
een hierarchische aanpak toelaten, zoals groepen of formaties van gedeeltelijk-
autonome voertuigen. Bovendien kunnen ongestructureerde lineaire systemen
vaak in meerdere deelsystemen met een hierarchische structuur worden ontbon-
den, om de complexiteit van bijbehorende regelproblemen to reduceren.

Het in dit proefschrift beschreven onderzoek focust op de volgende vragen:

(1) Hoe kunnen ongestructureerde lineaire systemen, of decentrale systemen
met een niet-hierarchische communicatiestructuur, in gecodrdineerde lin-
eaire systemen worden onbonden of getransformeerd? Is een gegeven
gecoordineerd lineair systeem ‘zo decentraal mogelijk’, of kan het —binnen
de hierarchische structuur— nog verder worden ontbonden?

(2) Welk deelsysteem is regelbaar door welke ingangsvariabele — is een lokale
regelaar voldoende, of is er codrdinatie nodig om het gewenste regelge-
drag te bereiken? Zijn alle voor de implementatie van de gewenste regelaar
nodige meetwaardes lokaal waarneembaar, of is communicatie van deze
meetwaardes vereist?

(3) Kunnen wij voor een gegeven gecodrdineerd lineair systeem een rege-
laar vinden die tot het gewenste regelgedrag leidt maar ook de hier-
archische communicatiestructuur respecteert? Hoe presteert deze rege-
laar, vergeleken met ongestructureerde regelaars? Kan de prestatie verbe-
terd worden door gebeurtenis-gebaseerde terugkoppeling van de gecoordi-
neerde deelsystemen naar de codrdinator toe te laten?

In de hoofdstukken 1 en 2 wordt het onderwerp van gecéordineerde lineaire
systemen gemotiveerd en geintroduceerd, en relevante concepten en resultaten
uit de klassieke systeem- en regeltheorie worden samengevat. De definitie en
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sommige basiseigenschappen van gecoordineerde lineaire systemen worden in
hoofdstuk 3 beschreven en met gerelateerde decentrale systemen vergeleken.

Vraag (1) is het onderwerp van hoofdstuk 4: Hier worden expliciete proce-
dures voor de transformatie van ongestructureerde of niet-hierarchische lineaire
systemen naar gecoordineerde lineaire systemen gegeven. Mogelijke definities
van minimaliteit van een gecodrdineerd lineair systeem worden voorgesteld, om
het concept van een ‘zo decentraal mogelijk’ systeem te formaliseren.

De in vraag (2) bedoelde verdere onderverdeling van de klassieke con-
cepten van regelbaarheid en waarneembaarheid ten opzichte van de verschil-
lende deelsystemen, ingangsvariabelen en uitgangsvariabelen wordt in hoofd-
stuk 5 beschreven. Hierbij onderscheiden wij tussen onafhankelijk en gezamen-
lijk regelbare en waarneembare deelruimtes, om ook het niet-bedoelde effekt van
de codrdinator op de andere deelsystemen te identificeren. Decomposities van de
toestandsruimtes van de deelsystemen volgens deze verfijnde concepten geven
inzicht in de vraag welke delen lokaal regelbaar of waarneembaar zijn, en waar
coordinatie of communicatie vereist is.

Vanwege de algemeenheid van de formulering, is vraag (3) makkelijker
gesteld dan beantwoord: een wiskundige analyse van het regelgedrag is alleen
voor bepaalde regelproblemen mogelijk. Hoofdstukken 6 en 7 behandelen de
beperking van vraag (3) tot LQ (lineair-kwadratische) regelproblemen: In hoofd-
stuk 6 construéren wij een lineaire terugkoppeling voor een gecoordineerd lin-
eair systeem die een kwadratisch kostenkriterium minimaliseert maar ook de
communicatiestructuur respecteert. De uitbreiding van de toelaatbare regelaars
naar lineaire terugkoppelingen die, naast de binnen het raam van de communi-
catiestructuur beschikbare toestandswaardes, ook over stuksgewijs-konstante be-
naderingen van de andere toestandswaardes beschikken, is het onderwerp van
hoofdstuk 7. De hierarchische structuur van het systeem heeft ten gevolg dat
de lokale regelproblemen voor de deelsystemen onafhankelijk van elkaar op te
lossen zijn; alleen voor het regelprobleem voor de codrdinator is de rest van het
systeem van belang.

Ter illustratie van de in dit proefschrift ontwikkelde theorie zijn in hoofdstuk
8 twee toepassingen uitgewerkt: Eén betreft de formatievlucht van drie onbe-
mande onderwatervoertuigen — vanwege de hoge kosten en beperking van on-
derwatercommunicatie, is het voordelig één voertuig de rol van de cotrdinator
toe te wijzen, die zijn positie regelmatig aan de andere twee voetuigen stuurt.
Het formatieprobleem is een voorbeeld van het in hoofdstuk 6 besproken LQ
probleem. Om de robuustheid tegen storingen en communicatieproblemen te
verbeteren, is het voor de andere twee deelsystemen mogelijk feedback aan de
coordinator te sturen als zij het referentiesignaal niet kunnen volgen.

De andere toepassing betreft de coordinatie van instroombeperkingen aan
naburige opritten van een snelweg: Als de gezamenlijke toestroom de capaciteit
overschrijdt, leidt de instroombeperking tot wachtrijen bij de oprit. Bij een uit-
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sluitend lokale regeling van de instroom kunnen de wachttijden bij naburige
opritten uiteenlopen — een effect dat door codrdinatie te voorkomen is.
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