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14 Chapter 1. Introduction

1.1 What is Cryptography?

�e word cryptography stems from the Greek words kryptos (“hidden”) and graphein
(“writing”) and used to be a synonym for encryption (private communication).

In the past, encryption was mainly used for military-strategic and diplomatic com-
munication. Julius Caesar already used encryption to protect messages of military
signi�cance. And in World War II, each of the opposing forces used encryption.1
Today, encryption is mainstream technology, and this is probably mainly due to the
advent of the Internet era. Modern Internet browsers, for example, support multiple
encryption standards. Examples include the Advanced Encryption Standard (AES)
[DR00], which is a method for symmetric-key encryption (meaning that encryption
and decryption are performed using the same key) and RSA [RSA78], which pro-
vides public-key encryption (explained below). RSA is widely used to, for example,
secure internet connections and to securely perform online credit-card payments.

1.1.1 Public-Key Encryption

A milestone in the post-war history of encryption is public-key cryptography, in
which each of the parties has its own pair of keys: a private key and an accompanying
public key. As its name implies, the public key is not secret, but is publicly announced.
�is public key can be used by anyone to encrypt a message that is intended for
the holder of the accompanying private key; only the latter person can decrypt
this ciphertext (i.e., the encrypted message).�e idea of public-key cryptography
is commonly attributed to Di�e and Hellman [DH76], and to Merkle [Mer78].
Di�e and Hellman’s contribution was to devise a key-agreement system based
on the presumed di�culty of computing the logarithm in a large �nite �eld (the
“discrete-log problem”).�is key-agreement system produces a shared symmetric key,
which can then be used to encrypt data using a symmetric encryption scheme. In
1977, Rivest, Adleman and Shamir invented a public-key encryption scheme that
became known as RSA [RSA78]. RSA is related to the presumed computational
di�culty of performing integer factorization.2 ElGamal [ElG85] is another widely
known public-key encryption method, which was invented in 1984 and is named
a�er its inventor.

1�e Nazis used the Enigmamachine to encrypt their strategic communications. Fortunately,
in 1932 Polish codebreakers had already found structural weaknesses in an early version of Enigma,
which gave the Allies an important advantage during the war. See also [Sin99].

2It turns out that RSA was invented already in 1973 by researchers of the Government Communi-
cation Headquarters (GCHQ) in the UK, but this remained classi�ed until 1997.
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�e idea of public-key cryptography also led to the invention of digital signatures
[DH76]. A digital signature is a publicly veri�able proof of authenticity of a message.
When a person, say Alice, wants to sign a messagem, she uses her private key to
compute the signature from the message. No one else can sign a message “under
Alice’s name,” since this requires Alice’s private key, but everyone else can verify this
signature on a messagem′ using Alice’s public key. A successful veri�cation proves
thatm′ equals the message that Alice has signed.

Another way of obtaining public-key cryptographic schemes is using elliptic curves
over large �nite �elds; this is referred to as elliptic-curve cryptography (ECC). ECC
was �rst described in 1985, independently by Koblitz [Kob87] and Miller [Mil86].
ECC requires shorter key lengths and produces shorter signatures than for instance
RSA to achieve a comparable security level.

Lattice-based encryption [AD96, MR09] uses yet another way to obtain public-key
cryptographic schemes, and is currently quite popular in the academic cryptography
community. In lattice-based encryption, security is based on the presumed com-
putational intractability of certain problems on high-dimensional integer lattices,
such as the shortest-vector problem. Although typical key sizes are quite large,
the arithmetic operations required to perform encryption and decryption are very
lightweight in comparison to, for example, ECC. Unlike RSA or ECC, lattice-based
encryption is not known to be vulnerable to quantum-computer attacks (to which
we will come back later).

1.1.2 Secure Two-Party Computation

Although the design and study of encryption schemes is still an important part of
modern cryptography, a great amount of research is dedicated to problems that are
fundamentally di�erent from encryption. An important example that we want to
discuss here is secure two-party computation (2PC), which itself is a particular case
of secure multi-party computation, which is also called secure computation or secure
function evaluation.

�e central problem in secure 2PC, as �rst described by Yao in 1982 [Yao82], is the
following. Consider two parties, Alice and Bob, and suppose that each of them
holds a piece of private information, respectivelyXA andXB . Alice and Bob have
agreed on two (possibly randomized3) functions, one for Alice (fA) and one for Bob
(fB), and both functions take as argument (XA, XB).�e goal for Alice and Bob is

3A randomized function is a function that takes an additional (but usually implicit) argument
containing independent randomness (independent from all other possible arguments to the function).
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to jointly compute their functions by means of executing an interactive protocol (i.e.,
performing a prescribed sequence of local computations and exchanging messages),
such that Alice learns fA(XA, XB) and Bob learns fB(XA, XB), and such that
they learn nothing beyond this.�at is, both functions should be computed correctly,
and we require thatXA should remain secret to Bob andXB should remain secret
to Alice, up to the information that is revealed by fB(XA, XB) and fA(XA, XB)
respectively. Moreover, this should be achieved even if one of the players is actively
trying to a) manipulate the outcome(s) of the computation and/or b) learn more
information than he or she is supposed to. Hence, unlike encryption, where one
aims to protect against a malicious outsider (the adversary), secure 2PC deals with
scenarios where one of the insiders (Alice or Bob) could be dishonest. (If both
parties are dishonest at the same time, then nothing can be achieved.)

An insightful instance of the secure-2PC problem is Yao’sMillionaires’ problem: two
millionaires want to �nd out who is richer, without revealing how rich they are
(except when they turn out to be equally rich). To be precise, the millionaires both
want to learn the function

f(X1, X2) =


−1 if X1 < X2

0 if X1 = X2
1 if X1 > X2

whereX1 andX2 represent their respective fortunes.

To formally de�ne security in secure 2PC, one considers an “ideal solution”where the
parties send their inputs to an imaginary trusted party, called the ideal functionality,
which then computes both functions and returns each output to the appropriate
party. For a protocol to be secure, we require that at the end of its execution, the
views of the players can be accurately simulated4 using the views of the players in
the ideal solution (i.e., when the users interact with the ideal functionality). Note
that there are multiple ways to measure this accuracy, but this goes beyond the
scope of this introduction.

More Instances of the Secure-2PC Problem

Suppose that Alice and Bob want to securely compute the equality function.�is
particular instance of the secure-2PC problem has a direct application to password-
based identi�cation. For example, when someone (the user) wants to withdraw
cash from an ATM (the server), the user �rst has to announce his identity to the

4Depending on themodel (see Section 1.1.3), additional complexity-theoretic requirements on
the simulation might be necessary, for example that the simulator runs in polynomial time.
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server (by means of inserting his debit card). In order to verify the user’s identity,
the server then prompts the user for a password and checks whether the password
that the user entered matches the password that the server has stored in its record
assigned to that user’s identity.

�e problem of this approach to password-based identi�cation is that in case the
user is interacting with a fake server (which does not know the user’s password in
advance), the user reveals his password to this fake server.

With the help of secure 2PC, the user and the server can compare the two passwords
without revealing them by securely computing the equality function, i.e.

f(X1, X2) =
{ 0 if X1 6= X2

1 if X1 = X2,

with the respective passwords as input. As a result, not only the server is protected
against fake users (who do not know the password), but the (honest) user is now
also protected against fake servers, which attempt to learn information about the
password by interacting with the user.

An instance of the secure-2PC problem that is of special importance is oblivious
transfer (OT) [Rab81, EGL85]. Oblivious transfer is known to be complete [Kil88]
for secure 2PC, which means that any secure-2PC functionality can be built from
su�ciently many OTs. In the most common form of OT, called “one-out-of-two”-
OT (1-2 OT, for short), Alice holds two messages, m1 andm2. Bob may choose
and view only one of the two messages; he learns nothing about the other message.
Alice, in turn, remains ignorant about which message Bob chose to view.

Coin �ipping [Blu81] is an instance of the secure-2PC problem where privacy of the
inputs is not a concern. Instead, the emphasis here is on computing the function
correctly. Alice and Bob, living far apart, are talking on the phone about their late
grandmother’s inheritance.�ey decide to �ip a coin about who gets grandmother’s
golden watch. However, since they are far apart, how can they �ip a coin such that
both of them are convinced that the coin was tossed fairly? Hence, in this instance of
the secure-2PC problem, Alice and Bob want to securely compute the randomized
function that returns a random bit. �is function does not take arguments from
the players (only the implicit argument that provides the independent randomness;
see footnote 3). We will come back to coin �ipping in the context of quantum
cryptography in Section 1.3.2.
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1.1.3 Cryptography as a Science

Claude Shannon was the �rst to approach cryptography from a mathematical
perspective [Sha49], thereby initiating the study of cryptography as a scienti�c
discipline. His work can be appreciated as an early example of what we now call
provable security. By provable security, we mean cryptographic research following
the scienti�c methodology of rigorous analysis [Gol06].�e security analysis of a
cryptographic scheme5 consists of a formal de�nition that captures what it should
mean for a scheme to be secure, amodel that speci�es what the adversary is capable
of, and a security proof, which proves that in the speci�edmodel, the scheme satis�es
the security de�nition.

Finding appropriate security de�nitions is o�en non-trivial. On the one hand,
they should be as strong as possible. On the other hand, it should still be possible
to achieve the de�nition by means of some protocol. By now, we have several
established security de�nitions for a wide range of cryptographic problems. (By
“established,” we mean generally accepted by the cryptographic community as being
“appropriate.”) However, even those established de�nitions should not be viewed
as set in stone; e.g., it may happen that a de�nition that is reasonable given the
anticipated use of the scheme, turns out to be unsuitable for the actual way in which
the scheme is used.

�e model speci�es the restrictions that we put on the adversary. Needless to
say, those restrictions should be reasonable, otherwise it would not make sense
to assume that a real adversary operates within those restrictions. Nevertheless,
the meaning of “reasonable” may change over time. Furthermore, we prefer the
restrictions to be as mild as possible. A common restriction is that the adversary
has bounded computing power. (Note that this can be formalized using complexity
theory.) When the latter restriction is the only restriction that comprises the model,
then we speak of the standard model. In Maurer’s bounded-storage model [Mau90],
we restrict the amount of data that the adversary can store. Finding alternative
restrictions is an ongoing challenge.

�e proof technique employed in the security proof o�en strongly depends on the
model. For example, in the standard model, security proofs are typically conditional
on some unproven intractability assumption (like the presumed intractability of
integer factorization), in the form of a reduction. In a reduction, one proves that
the ability to e�ciently break the cryptographic scheme can be used to e�ciently
solve the underlying mathematical problem. �e contrapositive statement then

5A cryptographic scheme is a suite of related (cryptographic) protocols.
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expresses that: “because solving the underlyingmathematical problem is assumed to
be intractable, we can assume that breaking the cryptographic scheme is intractable
as well.” In contrast, in the bounded-storage model one uses information-theoretic
techniques to prove security. Moreover, those proofs (and also the proofs presented
in this thesis) are unconditional; they do not rely on some unproven intractability
assumption.

When a cryptographic scheme has been “proven secure,” it does not mean that
the scheme is unbreakable in practice. �e main cause of this paradox is that
o�en several details of a physical implementation of the scheme are missing in the
scheme’s theoretical description for which the proof holds. �ese gaps between
the theoretical description and physical implementation of the scheme can thus
be exploited for attacks. Leakage-resilient cryptography [DP08] is a line of research
within cryptography to address a speci�c class of such attacks, called side-channel
attacks, which try to exploit leakage of private information through radiation, power
consumption, sound, time delays, etcetera.

To arrive at a scheme that is accompanied by a security proof, it is usually not a
successful approach to �rst design a “secure-looking” scheme and then attempt to
prove its security. Instead, one typically designs a cryptographic scheme “along with
its proof,” i.e., one has some proof strategy in mind, and then builds the scheme
such that this proof strategy applies.

1.2 What is QuantumMechanics?

Quantum mechanics6 describes the behavior of energy and matter on a small
(atomic and sub-atomic) scale. To illustrate why quantum mechanics can be useful
in cryptography, we will discuss some examples of typical quantum behavior.

1.2.1 Superposition

Amain concept in quantum mechanics is superposition. In this introduction, we
want to give an example of an optical experiment where the presence of superposi-
tion can be observed [SS98]. For our experiment, we use a source that is capable of
producing a single photon,7 beam splitters, mirrors and single-photon detectors.

6Quantum mechanics is sometimes called quantum dynamics or simply quantum theory.
7A photon is the elementary particle for electromagnetic radiation. Whenever we speak of a

photon in this thesis, we mean a photon with a frequency that lies in (or near) the visible spectrum.
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photon
source

beam splitter

detectorD1

detectorD2

Figure 1.1: Setup showing the particle-like behavior of photons. In this setup,
each incoming photon will be detected either atD1 orD2, both with probability
one-half; there will never be a single photon that is detected at both detectors
simultaneously. Hence, the photon behaves like a particle that randomly chooses
one of the two paths emanating from the beam splitter, and this is due to the nature
of the setup: the photon is immediately observed a�er passing though the beam
splitter.

We will actually start by analyzing a “reference” experiment where superposition
does not occur (or, is immediately destroyed before it can be observed, if you want).
Consider the setup illustrated in Figure 1.1, which will demonstrate the particle-like
behavior of light. Suppose that the source emits single photons at a constant rate
(think of one photon per second, but this is actually irrelevant for our discussion).
�ese photons pass through a beam splitter, and at each of the two outputs of the
beam splitter we have placed a detector. When performing this experiment, we will
observe that for each photon (i.e., every second) only one of the detectors “clicks”
(i.e., reports a detection of a single photon); we will never observe an event where
both detectors click simultaneously (of course, under the assumption of an idealized
noise-free setting).�is leads us to conclude that the photon behaves like a particle
that randomly takes one of the two outputs of the beam splitter.

Let us now analyze Figure 1.2, which shows aMach–Zehnder interferometer. Here,
each photon encounters two beam splitters along its path.�e two paths emanating
from the outputs of the le� beam splitter merge again at the right beam splitter.
From what we have seen in the reference experiment (see Figure 1.1), it is tempting
to conclude that the photons will behave like particles also in this setup, such that
the photon appears either atD1 orD2, both with probability 1/2.�is is however
not the case: every photon will be detected atD1! In this setup, it turns out that the
photon behaves wave-like, i.e., it takes both paths simultaneously and interferes at
the right beam splitter constructively towardsD1 (and destructively towardsD2).
�e paths are said to be in superposition. According to quantum mechanics, the
superposition exists (or, is preserved) in this experiment because the setup does
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beam splitter
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detectorD1

pathB
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Figure 1.2:Mach–Zehnder interferometer showing quantum interference: a single
photon from the source will always be detected at D1. Note that this apparent
asymmetry is due to the location of the photon source; if the photon source is
placed above the �rst beam splitter, then every photon will be detected atD2.

not reveal whether the photon traveled via path A or pathB.

If, on the other hand, we regard the photon as a particle and measure by some
means which path it takes, then the superposition collapses (gets destroyed) and
the photon will start behaving particle-like again. In this case, the probabilities
of detecting the photon at D1 and D2 will coincide with those of the reference
experiment, i.e., both equal to one-half. In short, the photon’s behavior depends on
whether it is observed or not. Note that one possible way to determine which path
the photon takes is to make the length of one of the paths longer (by an amount
much larger than the wavelength of the photon) and analyze the photon’s traveling
time.

1.2.2 Entanglement

Entanglement is a special kind of superposition of states of a joint quantum system,
where the latter is a physical system that consists of multiple subsystems (e.g.,
particles). When performing measurements on entangled particles, where these
measurements are separated in time by a space-like interval,8 the outcomes can

8By saying that measurements are separated in time by a space-like interval, we mean that for
a given distance d between the particles on which those measurements are performed, the time
interval between the two measurements is small enough to rule out a causal relationship between the
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be correlated in a stronger sense than classical (i.e., non-quantum) physics would
allow.

Beforewe try to explain how entanglement can exhibit itself, we discuss the following
reference experiment. Suppose that Charlie prepares two boxes in the following
manner. First, Charlie �ips a coin. If heads comes up, he puts a ball in each box;
otherwise he leaves both boxes empty. �en, he closes the boxes and sends one
of them to Alice and the other to Bob, who are living far apart. Now, if Alice and
Bob open their boxes, it will be no surprise that either they both see a ball (we will
call this event B) or they both see just an empty box (event E). Furthermore, if we
assume that Charlie does not tell the outcome of the coin�ip to Alice and/or Bob,
the events B and E occur randomly in their view. Nevertheless, it is important to
note that someone (in this example: Charlie) can already tell what Alice and Bob
will observe before they open the boxes themselves.

Let us now give an example of entanglement in terms of balls and boxes by means of
the following thought experiment. (It is a thought experiment because macroscopic
objects such as balls and boxes cannot be entangled in the sense described here.)
Suppose that Charlie prepares the boxes in a di�erent way: instead of �ipping a
coin to decide on whether to put a ball in each box or to leave both boxes empty, he
creates a superposition over these two options. In some sense, the (closed) boxes then
simultaneously both contain a ball and are both empty. We will now call the boxes
entangled.9 As a consequence of preparing the boxes in this peculiar way, Charlie
cannot tell anymore what Alice and Bob will observe when they open the boxes. Let
us assume that Alice �rst opens her box. Upon opening, the superposition collapses,
fully randomly, to one of the two possibilities (a ball in each box, or both boxes
empty). I.e., it is as if an imaginary coin is tossed at the moment of opening the box,
and furthermore Alice’s local operation (opening her box) has a global consequence:
Bob’s box will also change from a box that is “containing a ball and simultaneously
empty” into an ordinary box that is either containing a ball or empty, depending on
Alice’s observation.�en, even when Bob opens his box within a space-like time
interval a�er Alice, he will observe the same outcome as Alice. Since the (binary)
outcome is only determined upon the �rst measurement, it is only known to Alice
and Bob who observe their individual measurement outcome (when assuming that
the boxes were indeed entangled in the sense described above).

measurement outcomes (where “small enough” of course depends on d.)
9To be precise, not every superposition over states of a joint quantum system would be called an

entangled state. In the example, we speak of entanglement because the set of global options {bb, ee}
(where b and e represent a box with a ball and an empty box, respectively) cannot be written as a
Cartesian product of local options, i.e., {b, e} × {b, e} = {bb, be, eb, ee} 6= {bb, ee}.



1.2. What is QuantumMechanics? 23

Figure 1.3: A demonstration of Heisenberg’s uncertainty principle by means of
incompatible photon-polarization measurements. We see two instances of a situa-
tion where a vertically polarized photon encounters a polarizing beam splitter. In
both instances, we assume that single-photon detectors are placed at both outputs
of the PBS, to enforce particle-like behavior. Le�: the PBS is aligned to the pho-
ton’s polarization and hence the photon is transmitted with certainty. Right: the
PBS is oriented diagonally (rotated over 45 degrees) with respect to the photon’s
polarization, hence the photon is randomly transmitted or re�ected, which means
that the measurement outcome is maximally uncertain.

In terms of entangled particles (e.g., two photons that are entangled with respect
to their polarizations), we can say that a measurement on one particle a�ects the
outcome of a futuremeasurement on the other (remote) particle as well.�is remote
“in�uence” is instantaneous; it is not limited by the speed of light. Information, on the
other hand, cannot travel faster than light. Nonetheless, there is no contradiction
here because entanglement alone cannot be used to transmit information.

1.2.3 The Uncertainty Principle

�e uncertainty principle, as �rst described by Heisenberg, states that for any quan-
tum system there exist pairs of so-called incompatible measurements, meaning
that at least one of those measurements will produce an outcome that is somewhat
uncertain. For example, it is well known that we cannot accurately measure both
the position and the momentum of a moving particle (such as an electron).

In order to give an example of a pair of incompatible optical measurements, we �rst
need to explain one of the building blocks. A polarizing beam splitter (PBS) turns
an incoming polarized photon into a superposition of photons that are polarized
along the axes of the PBS’ own coordinate system. When a PBS is placed in a setup
like Figure 1.1, the detectors will induce an immediate collapse of the superposition.
In this case, we speak of a measurement.�e photon is then either transmitted or
re�ected, depending on the polarization of the photon relative to the alignment
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of the PBS: if the photon’s polarization is exactly parallel to the beam splitter’s
alignment, the photon is transmitted; when it is exactly perpendicular, the photon
is re�ected. For intermediary angle di�erences, the choice between transmission
and re�ection becomes random, where the probability of transmission is given by
cos2 α for angle di�erence α.�e polarization of the transmitted (re�ected) photon
will thus always be parallel (perpendicular) to the beam splitter’s alignment.

Now, let us turn to the example. Suppose that a photon with a vertical polarization
is entering a vertically-oriented PBS, see Figure 1.3 (le� illustration). We assume
that single-photon detectors are placed at both outputs of the PBS, such that we
can speak of a measurement. Because the beam splitter is perfectly aligned to the
photon’s polarization, the photon will always be transmitted though the PBS. In the
right illustration of Figure 1.3 we see the same measurement setup, but now rotated
over 45 degrees (the photon still has a vertical polarization, though). Hence, the
photon will be randomly (with equal probabilities) transmitted or re�ected. If you
are willing to accept that the optical measurements shown in Figure 1.3 indeed form
an incompatible pair (showing this is beyond the scope of this example), then we
see that the uncertainty principle supports our analysis: the measurement outcome
in the le� setup contains no uncertainty, whereas the outcome in the right setup is
maximally uncertain.

Uncertainty relations are quantitative expressions of the uncertainty principle. As
we will see later, some of these uncertainty relations are valuable tools for proving
security in (quantum) cryptography. (In Chapter 5 we will come back to these
uncertainty relations.) Although the uncertainty principle is stated for pairs of
measurements, by now multiple uncertainty relations are known which hold for
more than two measurements.

1.2.4 Implications to Information Theory and Computer Science

�e mathematical theory of information, information theory [Sha48, CT06], is
built on probability theory. Quantum mechanics gives rise to a generalization
of information theory, called quantum information theory [NC00]. In particular,
quantum mechanics generalizes the notion of information. Quantum information
has some peculiar properties by which it clearly distinguishes itself from classical
information.�e foremost example is the non-cloneability of quantum information:
while we can always copy a classical bit, we cannot in general copy an unknown
quantum state.

Richard Feynman realized in 1982 [Fey82] that quantum mechanics can also be
exploited for computation. Research indicates that computing with the help of
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quantum-mechanical e�ects, called quantum computing, solves certain problems
more e�ciently than classical computing (de�ned by the Turing-machinemodel of
computation).

As a result of theoretical research into quantum computing, we know several quan-
tum algorithms (algorithms designed for quantum computers). For example, Shor
[Sho97] has invented an e�cient quantum algorithm for integer factorization. On
the practical side, however, the technology of quantum computers is still in its
infancy. Although researchers have succeeded in building quantum computers with
just a few qubits—they even managed to run Shor’s algorithm on it, to factor the
number 15—their designs do not yet scale well to a lot of qubits. Hence, up to now
no one has succeeded in building a large enough quantum computer (with respect
to the number of qubits) to solve instances of the factoring problem that cannot yet
be solved in reasonable time using classical computers.

1.3 The Research Field of Quantum Cryptography

A�er having brie�y introduced cryptography as well as quantum mechanics, we
can now characterize quantum cryptography as a generalization of cryptography, in
which a) the classical notion of information is replaced by quantum information, and
b) the Turing-machine model of computation is replaced by quantum computation.

It will be helpful to subdivide quantum cryptography into multiple classes, based
on whether the cryptographic task, as well as the protocol that realizes this task,
is “classical” or “quantum.” An example of a cryptographic task that is “quantum”
is encrypting a quantum message; a “classical task” is for example establishing a
common classical key. �e latter is the goal of quantum key distribution (QKD)
[BB84].�e word “quantum” in QKD refers to the protocol, which uses quantum
communication to achieve the classical cryptographic task. A quantum protocol is a
protocol that uses quantum communication and typically performs one or more
measurements on these quantum states. A quantum protocol may also perform
quantum computations.

To the best of our knowledge, a quantum task necessarily requires a quantum
protocol for its realization, hence we will distinguish three classes (instead of all
four combinations). Table 1.1 shows these three classes: (1) a quantum task realized
by a quantum protocol, (2) a classical task realized by a quantum protocol, and (3)
a classical task realized by a classical protocol. In all three classes, we assume the
adversary (as well as malicious parties) to be “quantum,” i.e., capable of storing and
processing quantum information. In both the �rst and second class, the security
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“Fully Quantum” Quantum Protocols
for a Classical Task

“Post-Quantum
Cryptography”

Cryptographic Task Quantum Classical Classical
Protocol Quantum Quantum Classical
Adversary Quantum Quantum Quantum

Table 1.1: A helpful way to classify works in quantum cryptography.

is typically based on quantum-mechanical e�ects, which make it (under certain
circumstances) possible to achieve very strong security guarantees. In this thesis,
we will mainly focus on problems that belong the second class.�e third class, in
which merely the adversary is assumed to be quantum, is known as post-quantum
cryptography.

For some tasks, like key distribution, quantum cryptography can provide security
solely based on the laws of quantum mechanics, thus without further restrictions
on the adversary. For other tasks, like secure 2PC [Yao82] or position-based crypto-
graphy [KMS11], this is not the case and some restrictions have to be included in
the model, like restricting the adversary’s quantum storage capabilities. In both of
the above cases, quantum cryptography allows for unconditional security proofs,
where one does not have to rely on unproven assumptions from complexity theory.
Moreover, quantum cryptography typically provides everlasting security, which
means that the restriction need only hold during the execution of the scheme, but
not anymore a�er its execution; this is in contrast to classical cryptography based on
a computational assumption, where the security of a scheme usually breaks down
even if the attacker gains su�cient computing power only a�er the execution of the
scheme.

1.3.1 Concrete Example: Quantum Key Distribution

Let us discuss QKD on a high level to give a concrete example of quantum crypto-
graphy.

We consider two parties at di�erent locations, Alice and Bob, as well as a potential
attacker, Eve. We require that Alice and Bob can communicate over an insecure
quantum channel, as well as over a public authentic classical channel. By saying that
the (quantum) channel is insecure we mean that Eve has complete control over it:
she can capture, block, insert, modify or delay messages.�e public property of the
classical channel means that Eve can read every transmitted message sent over this
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channel, nonetheless, because it is authentic, she cannot inject or modify messages.

�e goal of QKD is to establish a common classical secure key between Alice and
Bob, where securemeans that it is (essentially) uniformly distributed on its range and
independent from Eve’s (quantum) information. A QKD protocol is called secure if,
except with negligible probability, it either aborts or establishes identical secure keys
for Alice and Bob. Note that this is the best we can hope for, since Eve can always
enforce the protocol to abort (e.g., by blocking all quantum communication).

�e security of QKD is based on a consequence of the uncertainty principle: Eve
cannot eavesdrop on the quantum channel without disturbing some of the quan-
tum states that are transmitted over this channel. Alice and Bob can detect these
disturbances, and Eve will get caught.10

Note that in case Alice and Bob merely have access to a classical channel that is not
authentic, they can turn this channel into an authentic one by, e.g., using a message
authentication code, for which they need an initial short shared key. Hence, a more
appropriate name for QKD would be quantum key expansion, because in a typical
practical setting Alice and Bob will not have an authentic classical channel and thus
need a short authentication key to start with.

BB84 Quantum Key Distribution

Weproceed by describing thewell-knownBB84 protocol due to Bennett andBrassard
[BB84]. BB84 requires an optical quantum channel between Alice and Bob and
is a so-called “prepare-and-measure” protocol. Alice is capable of preparing and
sending polarized photons. For example, she sends these photons through a �ber or
through free space. Bob has a measurement device that allows him to measure the
polarization of incoming photos in two di�erent polarization bases (characterized
below).�e BB84 protocol consists of four phases.

1. Quantum Communication: Alice sends polarized photons: for each photon
she uses two random bits to choose the polarization. �e �rst bit selects
the basis, i.e., either the rectilinear basis (consisting of polarization angles
{0◦, 90◦}) or the diagonal basis (angles {45◦, 135◦}); the second bit selects
between the two angles within the selected basis.�e latter bit will be called
the information bit, which is said to be encoded in either the rectilinear or
diagonal basis.

10Alternatively, we can say that by the no-cloning property of unknown quantum states (see
Section 2.7.6), Eve cannot make a perfect copy of the (non-orthogonal) states that are sent over the
quantum channel.
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Bob chooses a randommeasurement basis for each incoming photon, records
the classical binary measurement outcomes, and con�rms receipt.

2. Si�ing and Error Estimation: Alice and Bob announce over the public classical
channel the bases they used, so that both parties can determine for which
indices their bases coincide. For each such index (up to some errors), Bob’s
measurement outcome is supposed to coincide with the information bit; the
bits belonging to other indices (where the bases do not coincide) are discarded.
�en, Alice and Bob determine the error rate between their remaining bit
strings by publicly announcing (and thus sacri�cing) a random subset of the
positions. A high error rate is an indication of the presence of Eve: when the
error rate is above a certain threshold, the protocol aborts.

3. Information Reconciliation: Alice sends error-correction information to Bob,
which allows him to correct the errors with respect to the remaining infor-
mation bits, at the expense of leaking some information to Eve.11 �e result is
called the raw key. Note that Eve has some (quantum) side information about
this raw key: beyond the classical information leaked during information
reconciliation, Eve may have quantum information obtained from tampering
with the quantum channel.

�e following method for information reconciliation is based on the use
of a binary linear code C. Let us assume for simplicity that the codeword
length of the code equals the raw-key length. Alice computes sA, which is
the syndrome of the raw key kraw with respect to C, and sends sA to Bob.
Bob computes sB , the syndrome of his noisy version of the raw key, knoise,
with respect to C, and then computes the sum (vector addition over F2) of
the syndromes s := sA ⊕ sB . Let v be the error vector of lowest Hamming
weight corresponding to s (with respect to C). Bob computes the reconciled
raw key as knoise ⊕ v (where addition is over F2).

4. Privacy Ampli�cation: Alice and Bob have a common raw key about which
Eve has some (quantum) side information. Alice and Bob do not know what
Eve’s side information looks like: Eve may know some values of individual
bits, or certain parities of bits, her own quantum system can be entangled to
certain bits, etc. Nevertheless, Alice and Bob can compute an upper bound
on the amount of information that Eve can possibly have about the raw key,

11�ere also exist variants in which Bob sends the error-correction information to Alice (known
as reverse reconciliation), or in which Alice and Bob interactively perform information reconciliation
(e.g., the Cascade protocol [BS93]).
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as a function of: a) the amount of information leakage caused by information
reconciliation, and b) the error rate that they have determined in step 2.�is
then enables them to perform privacy ampli�cation, which converts the raw
key into a shorter key that is essentially secret to Eve. Given the amount of
randomness in the raw key conditional on Eve’s side information, the privacy
ampli�cation theorem (�eorem 2.65) relates the length of the produced secret
key to the achieved level of security.

Key Rate versus Distance

With respect to QKD over optical �ber, several experimental and �eld setups have
been demonstrated throughout the world [ECP+05, PPM08, CHZ+09, SFI+11].
Recall that the error rate is an important parameter in QKD: for a given level of
security it essentially determines the ratio between the raw-key length and the
secret-key length. �e noise inherent to an optical �ber contributes to this error
rate, and the amount of optical noise is mainly determined by the length of the
�ber. Hence, the overall performance of a QKD system is usually characterized by
a key-rate versus distance curve, including the level of security.

It is infeasible to properly compare the performance of di�erent existing QKD
experiments (like the ones cited above) for several reasons. Firstly, to obtain a
relation between the key-rate and the level of security, one needs a QKD proof that
gives a �nite-key bound,12 which is not yet available for every QKD protocol used
in those experiments. Secondly, not every experimenter uses the same security
de�nition; for example, sometimes security is merely claimed against individual
attacks,13 and o�en the inferior accessible-information-based security notion is
used, instead of the trace-distance-based notion.�irdly, most publications about
experimental QKD setups lack a thorough theoretical analysis of the achieved level
of security.

Still, to give a rough indication of the state of the art as of 2012 (without focusing on
the actual security level), key rates up to 1 Mbit/s over a distance of 50 km have been
demonstrated in the lab, and roughly 300 kbit/s over an actual 45-km link in Japan.
At larger distances of around 100 km, the key rate typically drops to the order of
1 kbit/s. Note that these �gures are extremely low compared to typical bitrates of
data networks (currently, in the order of gigabits per second). Furthermore, the

12A bound on the security of a key given in terms of parameters of the protocol, such as the key’s
length, instead of merely an asymptotic security claim.

13For a formal de�nition of individual attacks, collective attacks and coherent attacks, we refer to
[BM10].
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maximum allowable distance (for which one still gets a reasonable key rate) is in the
order of 100 km and is not expected to increase signi�cantly, because it is strongly
related to intrinsic parameters such as the attenuation of the �ber. With respect
to free-space QKD, Hughes et al. [HNDP02] have demonstrated a key-rate of 200
bits/s over 10 km.

Continuous-Variable QKD

Instead of using qubits14 as carriers of quantum information, one could make use
of higher-dimensional or in�nite-dimensional systems to build a QKD protocol.
�is is the basic idea behind continuous-variable QKD (CV-QKD). For a detailed
review of CV-QKD, we refer the reader to [WPGP+12].

An advantage of CV-QKD is that standard telecom components can be used as
detectors. More precisely, CV-QKDuses homodyne or heterodyne detection instead
of photon counting, and this enables the use of PIN photodiodes, which are both
cheaper and faster than the avalanche photodiodes that are used for single-photon
detection [Hug04, Lev09].

Existing proofs for qubit-based protocols like BB84 do not automatically apply to
the continuous-variable case. In 2009, Renner and Cirac [RC09] proved security of
CV-QKD against the most general attacks, via an extension of a de Finetti theorem
to in�nite-dimensional systems. A more recent proof by Furrer et al. [FFB+11]
gives a tighter bound on the key rate, and is based on an extension of a recently
discovered entropic uncertainty relation to in�nite-dimensional systems.

Attacks on Implementations and Device-Independent QKD

Although QKD is o�en presented as being “unconditionally secure,” in fact several
conditions need to be met to guarantee security.�e main conditions are that Alice
and Bob need to have secure laboratories, they should have complete control over
their devices, they need a trusted source of local randomness, and they can trust
their local computers [Hän10].

It is o�en implicitly assumed that those conditions are met, while this is not al-
ways the case: successful attacks on (commercial) implementations of quantum-
cryptographic protocols have already been reported.�ose attacks typically violate
one (oremore) of the conditions above, or they exploit gaps between an actual imple-

14A qubit is an elementary (two-dimensional) quantum system. An example of a qubit is the
polarization of a single photon.
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mentation of a protocol and its theoretical description, for which the mathematical
proofs hold.

An example of such a gap is the di�erence between preparing states in the BB84
protocol and in practice; in the former, the states are prepared using a single-qubit
source. At the time of this writing, the technology of single-photon sources—for
example, using spontaneous parametric down-conversion—is not very mature yet.
In many QKD implementations, the photon source is a strongly attenuated laser
pulse, which has a Poisson-distributed number of output photons.�ese photons
all have the same state, and hence a photon-number splitting attack [BLMS00] can
be performed, by which the security is compromised. Hwang [Hwa03] proposed a
method to speci�cally counter these attacks, using decoy states.

Another recent class of attacks takes full control over Bob’s detector by “blinding” it
with a laser pulse that can be injected remotely (outside Alice’s and Bob’s lab) into
the �ber [LWW+10].�e a�ected detector type is the passively-quenched avalanche
photodiode, which is o�en used in practice.15 To combat these blinding attacks,
several countermeasures have been proposed.

Of course, adding ad-hoc countermeasures each time a new attack has been found is
not a desirable approach.�is motivates research towards device-independent QKD
(DI-QKD), which aims at reducing the number of above-mentioned conditions (the
conditions mentioned at the beginning of this section) to a minimum. In particular,
the goal of DI-QKD is to remove most of the conditions related to Alice’s and
Bob’s devices, and to design QKD schemes whose security relies on experimentally
veri�able properties of the devices [Hän10].

1.3.2 Beyond QKD: Secure Two-Party Computation

In quantum key distribution, we consider two main parties that cooperate to es-
tablish a key that is secure against external parties. In this section we focus on a
situation involving two mutually-distrustful parties. As discussed before in Sec-
tion 1.1.2, the problem in secure two-party computation is to devise some protocol
that enables Alice and Bob, having inputs X1 and X2 respectively, to compute
their outputs, f1(X1, X2) and f2(X1, X2) respectively, for known and possibly
randomized functions f1 and f2, but such that neither party learns anything beyond
this.

15“Passively quenched” means that the photodiode is brought and kept in its electrical working
region by means of a series resistor. By injecting a bright light pulse into the �ber, the behavior of the
photodiode can be fully controlled, because the resulting photocurrent changes the biasing voltage
over the photodiode through the presence of the resistor.
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Impossibility of General Secure Two-Party Computation

An important fact that has been formalized and proven in several ways, is that
without restrictions on the adversary (beyond the limitations imposed by the laws
of quantum mechanics) secure quantum protocols for general secure two-party
computation cannot exist [May97, Lo97, LC97, Col07, SSS09, BCS12]. From a
theoretical point of view it is interesting to note that without any restrictions on
the adversary, a quantum protocol can achieve stronger security properties than
any classical protocol for certain functionalities (e.g., coin �ipping and oblivious
transfer). Nevertheless, those “stronger security properties” are o�en not strong
enough to be of practical use.

Circumventing the Impossibility Results

�e impossibility results mentioned above can be circumvented by adding restric-
tions to the model. �e bounded-quantum-storage model (BQSM) restricts the
adversary in the number of qubits that he can store. Given the current state of
technology, it is reasonable to assume that a real adversary stays within the limits of
this model (for an appropriately chosen upper bound). In the BQSM, it is possible to
devise protocols for several cryptographic functionalities, and with strong security
guarantees (strong enough to be of practical use). An important example is the
protocol in the BQSM for 1-2 oblivious transfer. Other examples of protocols that
have been proven secure in the BQSM include Rabin oblivious transfer,16 identi�ca-
tion, bit commitment and quantum key distribution [Sch07, DFSS07]. Although
quantum key distribution is not a protocol involving mutually distrustful parties
and can even be shown to be secure without any restrictions on the adversary, the
BQSM allows for a QKD protocol with built-in authentication, where the (separate)
authentication key can be re-used (this rules out a particular authentication-key
exhaustion attack, more about this can be found in Section 2.11.2).

Coin Flipping

Since Blum [Blu81] formulated the problem of secure coin �ipping in 1981, it has
been an active area of research in (quantum) cryptography. We distinguish two
types of coin tossing, weak and strong.

16In Rabin oblivious transfer Alice inputs a message and with probability one-half Bob receives
this message perfectly; otherwise he remains completely ignorant about it. Alice remains ignorant
about whether Bob actually received the message or not. A Rabin oblivious transfer is also called a
secure erasure channel with erasure probability one half.
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Weak coin tossing is su�cient for a setting where the two players are aware of each
other’s preferred outcome. E.g., in the example with grandmother’s golden watch
(page 17), it is known to both Alice and Bob that each of them wants to win the
watch. And moreover, they will of course not cheat in a way such that the other
party’s chance of winning increases. Strong coin tossing tries to prevent cheaters
from biasing the coin in both directions. Hence, strong coin tossing is applicable
to a scenario where the particular outcome that a player prefers is unknown to the
other player.

It is known that there cannot exist a classical protocol for weak (and hence no strong)
coin tossing that provides any kind of protection against cheating in an unconditional
setting (i.e., without assumptions) [DK02]. When relying on a computational
intractability assumption one can achieve arbitrary small bias for weak as well as
strong coin tossing.

In 2007, Mochon [Moc07] came up with a quantum protocol for weak coin �ipping
that achieves arbitrary small bias without any restrictions on the adversary. In 2009,
Chailloux and Kerenidis [CK09] gave an optimal quantum protocol for strong
coin �ipping that achieves constant bias without any restrictions on the adversary,
thereby matching an existing lower bound for strong coin �ipping by Kitaev.

1.3.3 Beyond QKD: Position-Based Quantum Cryptography

Position-based cryptography uses the geographical location of a party (Alice) as its
sole credential. A typical task in this context is position veri�cation, in which Alice
has to prove to a set of veri�ers that she is indeed present at the position where she
claims to be.

A �rst attempt to achieve position veri�cation is a protocol where the veri�ers each
send a message to the prover, the prover computes a function of those messages
and sends the result back to each veri�er. Finally, the veri�ers jointly estimate
the position of the prover from the arrival times of the messages. Note that by
special relativity, the messages sent in the protocol cannot travel faster than with
the speed of light in vacuum. For simplicity, it is usually assumed that computation
is instantaneous.

Chandran et al. [CGMO09] show that (classical) relativistic protocols for position
veri�cation cannot be unconditionally secure: coalitions of fake provers can always
break such protocols. �ey also propose a position-veri�cation protocol that is
secure under an assumption that is similar to the bounded-storage and bounded-
retrieval models, nevertheless, this assumption is not very practical.
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In the search for di�erent assumptions, researchers tried to exploit the no-cloning
property of quantum states for position veri�cation, by sending quantum messages
between the prover and the veri�er, where the prover is supposed to perform
some quantum computation on these messages. �ough, a recent impossibility
result by Buhrman et al. [BCF+11] shows that a very general class of protocols for
position-based quantum cryptography can be broken if the coalition of fake provers
pre-share a lot of entanglement: a double exponential (in the qubit size of the
joint state shared by a pair of fake provers) number of EPR pairs. Note that the
amount of entanglement required for this attack was recently reduced to single
exponential [BK11].�e main challenge is to show that this exponential amount is
really necessary to break these kind of protocols. In other words, can there exist
protocols which can be easily executed by honest parties, while dishonest provers
need at least an exponential amount of shared entanglement to break it? For initial
work into this direction, see [BFSS11].

1.3.4 A Brief History

Quantum cryptography was invented in the late sixties by Stephen Wiesner. In
his paper titled Conjugate Coding, Wiesner had come up with an idea for quantum
money, which had the bene�t of being impossible to counterfeit. Furthermore,
he described the notion of a multiplexing channel—which would be re-invented
about a decade later by Rabin under the name of oblivious transfer—as well as an
implementation for it. Wiesner tried to publish his ideas but unfortunately his
manuscript got rejected. He also told Charles Bennett about his idea, but neither
Bennett nor himself succeeded in raising other people’s interest. �is changed
when Gilles Brassard and Seth Breidbart joinedWiesner and Bennett; together they
submitted a manuscript to the CRYPTO ’82 conference [BBBW82], in which they
exposed Wiesner’s idea applied to subway tokens instead of money, and introduced
the term quantum cryptography.�is time, the paper got accepted and this led to
a renewed interest in the topic. �is in turn enabled Wiesner to also publish his
original manuscript [Wie83].

At the time, quantum cryptography was not considered to be practical: the quantum
money (or subway tokens) required tiny and robust single-photon storage registers,
which were—and still are—not available. �is changed when Bennett, together
with Gilles Brassard, realized that it would be more practical to transmit photons
between remote locations than to store them in some register. A�er this realization,
it still took them a while before they had found the “killer application,” which turned
out to be key agreement.�is lead to the famous BB84 quantum key distribution
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protocol [BB84].17

From today’s perspective, the initial description of BB84 was rather incomplete;
it did not yet include information reconciliation (error correction) and privacy
ampli�cation. �e latter was �rst described in [BBR88]. A more complete de-
scription (from today’s perspective) of BB84 appeared in [BBB+92]. Nonetheless,
a proper security proof against the most general attacks (coherent attacks) was
lacking; the authors merely claimed security against individual attacks (where the
attacker operates on transmitted photons separately).

Meanwhile, di�erent protocols for QKD had been proposed, for example Ekert’s
entanglement-based QKD protocol [Eke91], of which a simpler variant was shown
to be equivalent to BB84 with respect to its security [BBM92]. Note that another
well-known protocol for QKD is the six-state QKD protocol due to Bruss [Bru98].

Also, quantumprotocols had appeared for secure two-party computation (2PC): coin
tossing, bit commitment [BB84, BC90] and oblivious transfer [BBCS91]. Security
of some of these protocols against attacks more general than the individual attacks
was merely conjectured.

In 1996, Mayers [May97] and, independently, Lo and Chau [LC97] proved that any
quantum bit commitment protocol, or, in fact, all quantum protocols for secure
2PC can be broken by a party with unlimited quantum storage and processing
capabilities.

On the positive side, Mayers showed around the same year on the �rst security proof
for QKD against the most general attacks [May95, May96] (see also [May01]). Some
years later, Biham et al. gave a proof for QKD as well [BBB+00]. Furthermore, Lo
and Chau gave a security proof for a more complex QKD scheme (which required
the honest parties to perform quantum computations). However, none of the
proofs were fully satisfactory; the proofs of Mayers and Biham et al. were quite
complicated, whereas Lo and Chau’s proof was easier to understand but merely
covered an impractical variant of QKD. In 2000, Shor and Preskill [SP00] gave a
simple and intuitive proof for the BB84 protocol, which many regard as the �rst
satisfactory QKD proof. It is based on the proof by Lo and Chau, but adapted such
that Alice and Bob do not need quantum computers to execute the protocol, thereby
making it compatible with BB84.

Until 2005, the standard way to formally de�ne security in quantum cryptography
was in terms of the accessible information. In 2005, König and Renner [RK05] (see

17BB84 should actually have been called BB83, since the protocol was �rst mentioned on a single-
page ISIT ’83 abstract.
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also [KRBM07]) and, independently, Ben-Or et al. [BOHL+05] discovered that
security de�nitions based on the accessible information do not achieve universal
composability, due to a locking [DHL+04] property of the accessible information
notion. Both groups of authors then proposed a trace-distance based security
de�nition, which provably does guarantee universal composability. In his PhD
thesis [Ren05], Renner gave a QKD proof using the “right” trace-distance-based
security de�nition.

Also around 2005, Damgård et al., inspired by Maurer’s (classical) bounded-storage
model [Mau90], discovered that by restricting the adversary’s quantum storage
capabilities, Mayers’ and Lo and Chau’s impossibility results could be circumvented
[DFSS05]. In the so-called bounded-quantum-storage model (BQSM), various 2PC
functionalities can be proven secure, for example oblivious transfer, bit commitment
and password-based identi�cation. More recently, the BQSM was generalized to
the noisy-quantum-storage model [WST08].

1.4 Thesis Outline, Contributions and Open Problems

Below, we will introduce the remaining chapters of this thesis. Chapter 2 covers
basic results, Chapter 3, 4 and 5 are editions of work published earlier, respectively
[BF10, BF11, BFGS12]. Chapter 3 and Chapter 5 are weakly related in that they both
present a new quantum-information-theoretic tool, but apart from this the latter
three chapters are rather “orthogonal” in the sense that they cover distinct topics.

1.4.1 Chapter 2: Preliminaries

Chapter 2 provides a theoretical foundation for the remainder of the thesis: we give
introductions of probability theory, information theory, functional analysis, quan-
tum mechanics and quantum information theory. Furthermore, we discuss several
important concepts from cryptography like privacy ampli�cation, authentication,
extractors and identi�cation.

Chapter 2 mainly consists of existing results, which are (up to some exceptions)
stated without proof. Furthermore, the following results are well-known, but are
hard to �nd in the literature, hence their proof is explicitly included: Proposition 2.53,
Proposition 2.56, Proposition 2.58 and Proposition 2.62.
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1.4.2 Chapter 3: Random Sampling from a Quantum Population

Chapter 3 belongs to a line of research aimed at �nding new quantum-information-
theoretic tools. In the context of quantum cryptography, such tools give rise to new
quantum-cryptographic protocols, and are useful to rigorously18 analyze the security
of those and other quantum-cryptographic protocols. Recent examples of quantum-
information-theoretic tools include a quantum-generalization of conditional min-
entropy, a privacy ampli�cation theorem that is based on this particular generalized
min-entropy notion [Ren05, RK05] and various entropic uncertainty relations (see
also Chapter 5). In Chapter 3, we present a tool to analyze random sampling in a
quantum setting.

Random sampling allows us to learn information about a population (a collection of
objects) by inspecting only a relatively small number of objects from that population.
For example, an exit poll usually gives a very good prediction for the outcome of
an election. In fact, classical sampling theory guarantees that a sample gives an
accurate prediction for an entire population, except with a small error probability
that can o�en be shown to decrease exponentially in the sample size (provided that
the sample is selected appropriately, e.g., uniformly random over the collection).

In Chapter 3, we study the above problem in a quantum setting: when sampling
some parts from a large quantum state (where sampling here means performing
a quantum measurement on those parts), what can we conclude about the entire
state?

We present a formal analysis of this problem, from which it becomes clear what
exactly can be deduced from the measurement outcomes about the entire state. Ad-
ditionally, we show a simple relation between the “error probability” in the quantum
setting and the error probability from classical sampling theory. In particular, this
relation implies that to �nd the error probability of any quantum sampling problem,
it su�ces to �nd the error probability of corresponding classical sampling problem,
for which several good and useful bounds are known.

Many quantum-cryptographic protocolsmake use of random sampling to verify that
a quantum state has some desired property. Hence, our results can be regarded as a
useful quantum-information-theoretic tool to analyze such protocols. In particular,
we present two new rigorous security proofs that make use of our new sampling
tool: one for BB84 quantum key distribution, and one for a quantum reduction from

18With respect to QKD as well as other quantum protocols for basic cryptographic primitives
(like OT), many of the early security proofs were not rigorous, but merely consisted of handwaving
arguments.
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oblivious transfer to bit commitment, by which we mean a quantum protocol for
OT that requires black-box access to a bit-commitment primitive. Note that by the
various impossibility results for secure 2PC, it is not possible to come up with a
“stand-alone” (i.e., without relying on another primitive, such as bit commitment)
quantumOT protocol that is secure against unrestricted quantum adversaries. Both
proofs show security against coherent attacks (see footnote 13 on page 29), and
they are relatively short, easy to understand, and non-asymptotic (i.e., they provide
explicit security bounds).

1.4.3 Chapter 4: Authentication from a Weak Key with a Privacy Re-
quirement

Chapter 4 studies a problem related to message authentication. �e well-known
method for non-interactive statistically-secure message authentication as described
by Wegman and Carter requires a uniformly random authentication key. However,
such a key may not always be available; e.g., the source of randomness used to
produce the key might be imperfect, or an adversary may have gained partial
knowledge about the key. Recently, the problem of authentication from a key with
small min-entropy, also called a weak key, has received ample attention.19 Maurer
and Wolf [MW97] showed that when using a particular strongly universal family
of functions, non-interactive message authentication is secure whenever the min-
entropy rate20 of the key is larger than 1/2. On the other hand, for min-entropy
rates below 1/2, non-interactive secure message authentication is impossible [DS02,
DW09]. Renner and Wolf [RW03], however, show by construction that interactive
secure message authentication is possible for arbitrary min-entropy rates below 1/2.
�eir construction requires a linear number of rounds of interaction (linear in the bit-
length of themessage). Subsequent work focused on reducing the number of rounds,
the communication complexity and the entropy loss. Recently, this line of work has
been closed by Xin Li [Li12], who presents a two-round message-authentication
protocol with asymptotically optimal entropy loss and communication complexity.21

19 A typical de�nition of a weak key is a random variable over bit strings of some �nite length,
where this length is denoted as n, whose min-entropy (conditional on the adversary’s information) is
an arbitrarily small fraction of n.

20�emin-entropy rate of a random variableX whose range is the set of bit strings of length n, is
de�ned asHmin(X)/n.

21Actually, [Li12] presents an optimal privacy ampli�cation protocol (optimal with respect to
number of rounds, entropy loss and communication complexity). However, the protocol is actu-
ally an interactive message-authentication protocol, which is used to authenticate the seed for a
randomness extractor. It is this extractor that turns the message-authentication protocol into a
privacy-ampli�cation protocol.
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In Chapter 4, we study the problem of authentication from a weak key in a dif-
ferent but related scenario, in which the weak key is a one-time session key that is
derived from a public source of randomness with the help of a long-term key (e.g., a
password).�is scenario occurs naturally in, e.g., Maurer’s bounded-storage model
[Mau90], where the long-term key is used to select a small number of bits from the
huge bit string, which then together form the session key, as well as in the quantum
setting, where the long-term key determines the measurement basis for a quantum
measurement, whose classical outcome is used as session key. Our goal now is to
authenticate a message using the weak session key, in such a way that nearly no
information about the long-term key is leaked to the adversary. Ensuring privacy of
the long-term key is vital for the long-term key to be re-usable. Previous work has
not considered such a privacy issue, and previous solutions do not seem to satisfy
this requirement.

We propose a new four-round protocol for message authentication from a weak
(session) key. Given a secure look-ahead extractor, we prove that our protocol
satis�es security against an active adversary and long-term-key privacy, whichmeans
that the protocol leaks essentially no information about the long-term key. For the
setting where the adversary’s side information about the session key is classical, we
can use an existing construction for a secure look-ahead extractor. For the general
case, in which this side information is a quantum state, we were not able to show
the existence of a secure look-ahead extractor, and leave this as an open problem.
�e existence of the latter object has a direct implication to a problem related to
identi�cation in the bounded-quantum-storage model (this is discussed in more
detail in Section 4.8).

1.4.4 Chapter 5: Hybrid Security of Password-Based Identi�cation

In Chapter 5 we consider the task of password-based identi�cation. Since password-
based identi�cation is an instance of secure 2PC, it is well-known that it is impossible
to obtain a secure quantum protocol for identi�cation without further restrictions
on the adversary. In [DFSS07], Damgård et al. propose an identi�cation scheme in
the bounded-quantum-storage model, and show its security (see also Section 2.11).
When using a security model like the BQSM to prove a scheme’s security, a practical
question arises, namely how to set the parameter(s) of the model (in case of the
BQSM, this would be the number of qubits that the adversary can store) such that
the behavior of a real adversary is likely to stay within the model. In particular,
a wrong choice of such a model parameter might make a scheme lose all of its
security guarantees. One particular approach to partly circumvent this problem is
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to devise schemes that are secure in two or more security models simultaneously.
An example of this approach from the literature is [DFL+09], which proposes a
“compiler” which can add a layer of computational security (security based on the
presumed computational di�culty of certain problems) to any quantum protocol
for secure 2PC that consists of a BB84-quantum-communication phase followed by
classical communication.

Chapter 5 also follows this approach and proposes a new quantum identi�cation
protocol that is secure in two security models simultaneously, i.e., in the BQSM
and in a new model, called the single-qubit-operations model (SQOM).

In the BQSM, the security proof is based on a new entropic uncertainty relation,
which is another main contribution of Chapter 5. Entropic uncertainty relations are
quantitative characterizations of Heisenberg’s uncertainty principle, which make
use of an entropy measure to quantify uncertainty. In quantum cryptography, they
are o�en used as convenient tools in security proofs.�e new entropic uncertainty
relation presented in Chapter 5 is the �rst uncertainty relation that lower bounds the
uncertainty in themeasurement outcome for all but onemeasurements, chosen from
an arbitrary (and in particular an arbitrarily large) set of possible measurements.
Besides this, it uses themin-entropy as entropy measure, rather than the Shannon
entropy. �e uncertainty relation might very well be useful in other quantum-
cryptographic applications as well.

�e SQOM models an adversary that has unbounded storage capabilities but is
restricted to non-adaptive single-qubit operations. Hence, our new identi�cation
scheme also o�ers security in case the bounded-quantum-storage assumption fails
to hold.�e scheme by Damgård et al., on the other hand, is completely insecure
against an adversary in the SQOM.�e security proof in the SQOM relies on a
minimum-distance property of a random binary matrix and a XOR inequality by
Diaconis and Shahshahani (�eorem 2.8). Due to the restriction to non-adaptive op-
erations, the SQOM is not general enough to be practically relevant, hence our result
of achieving security in the SQOM should be regarded as a stepping stone towards
the open problem of achieving security in a more general restricted-operations
model (which does, in particular, not restrict to non-adaptive operations).
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2.1 Basic Notation

We use R, C, Z, N, Fq , F∗q for respectively the �eld of real numbers, the �eld of
complex numbers, the ring of rational integers, the set of strictly positive integers,
the �nite �eld of order q ∈ N, where q = pn for p, n ∈ N with p prime, and the
multiplicative group of Fq . If q = p, then we let Fq be the �eld Z/pZ. We adopt the
following notational convention from computer science: in the particular case of
F2n for arbitraryn ∈ N, we use the⊕ symbol to denote addition, andwe also use the
⊕ symbol for vector addition in the vector space Fn2 for arbitrary n ∈ N. For x ∈ R
such that x > 0, log x denotes the binary logarithm of x, unless stated otherwise.
We use e to denote the base of the natural logarithm (sometimes also called Euler’s
number). For any α ∈ C, ᾱ denotes the complex conjugate of α. Let [a, b] for any
a, b ∈ R such that b ≥ a denote the closed real interval {x ∈ R : a ≤ x ≤ b}.
For n ∈ N, we write [n] for the set of integers from 1 to n, i.e., [n] := {1, . . . , n}.
For a matrix A with entries in C, AT and A† respectively denote the transpose
and conjugate transpose of A. LetK be a �eld, let V be aK-vector space and let
S be a non-empty set of vectors from V . �e K-linear span of S is denoted as
span(S). (Usually, the �eldK will be clear from context.) For i, j ∈ Z, δij denotes
the Kronecker delta symbol: δij = 1 if i = j and δij = 0 otherwise. Let f : N→ R
and g : N→ R be arbitrary functions. We say that f = O(g) if there exists a real
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constant c > 0 and a number n0 ∈ N such that |f(n)| ≤ c · g(n) for all n ∈ N
such that n ≥ n0. We say that f = Θ(g) if there exist real constants c > 0 and
d > 0 and a number n0 ∈ N such that c · g(n) ≤ f(n) ≤ d · g(n) for all n ∈ N
such that n ≥ n0.

2.2 Probability Theory

A �nite probability space is a pair (Ω,Pr), where Ω is a non-empty �nite set called
sample space and Pr is a probability function

Pr : Ω→ [0, 1],

with
∑
ω∈Ω Pr(ω) = 1. Note that we only consider �nite probability spaces in this

thesis. Subsets in Ω are called events. For any eventA ⊆ Ω, the probability Pr[A]
of the event is given by Pr[A] :=

∑
ω∈A Pr(ω), where by convention Pr[∅] = 0.

�e probability of an event E ⊆ Ω conditioned on an event A with Pr[A] > 0 is
given by

Pr[E|A] := Pr[E ∩ A]
Pr[A] .

Sometimes, we write a comma instead of the set-intersection symbol (“∩”) to denote
a joint event, i.e., Pr[E ,A] = Pr[E ∩ A].

A consequence of the de�nition above is the product rule for events:

Pr[E ∩ A] = Pr[E|A] Pr[A].

�e following upper bound will be useful:

Pr[E|A] = Pr[A ∩ E ]
Pr[A] ≤ Pr[E ]

Pr[A] .

Another simple yet powerful inequality that we will use frequently is the union
bound. For a �nite set of events {A1, . . . ,An} where Ai ⊆ Ω for any i ∈ [n] it
holds that

Pr
[ ⋃
i∈[n]
Ai
]
≤
∑
i∈[n]

Pr[Ai].

�is means that the probability that at least one of the events Ai happens is no
greater than the sum of the probabilities of all individual events.
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2.2.1 Random Variables

Let (Ω,Pr) be a �nite probability space and let X be a non-empty �nite set. A
random variableX is a function

X : Ω→ X .

�e set X is called the range of the random variable, and we say thatX is a random
variable over X . An element x ∈ X with non-zero probability is also called an
outcome or realization of the random variableX .

�e distribution ofX is the function PX : X → [0, 1] de�ned as

PX(x) := Pr[X = x] for all x ∈ X ,

where X = x is a shorthand for the event {ω ∈ Ω : X(ω) = x} and should be
read as “the event that the random variableX takes on the value x.” Note that it
holds that

∑
x∈X PX(x) = 1; by de�nition, PX inherits this property from Pr.�e

support of a distribution is the set of elements from the range which have non-zero
probability: supp(PX) := {x ∈ X : PX(x) > 0}.

We will o�en de�ne events in terms of random variables.�e shorthand notation
X = x used above is not limited to the equality function but extends also to other
operations de�ned on X , e.g., events likeX 6= x are de�ned similarly.
Convention 2.1 In this thesis, we will o�en make a statement in which several ran-
dom variables occur. Unless stated otherwise, these random variables are de�ned in
the same probability space.

�e joint distribution of two (or more) random variables X and Y is denoted by
PXY , i.e., PXY (x, y) = Pr[X=x, Y =y].�e pairXY is the random variable

XY : Ω→ X × Y
ω 7→ (X(ω), Y (ω))

Given a joint distribution PXY , the distribution forX (resp. Y ) alone is obtained
bymarginalizing over Y (X),

PX(x) =
∑
y∈Y

PXY (x, y) for all x ∈ X ,

and PX is then called amarginal distribution, and similarly for PY .
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�e conditional distribution of X conditioned on an event A with Pr[A] > 0 is
given by

PX|A(x) := Pr[X = x,A]
Pr[A] for all x ∈ X .

IfA is the event Y = y, then we denote the conditional distribution as PX|Y=y(x)
or as PX|Y (x|y); these two forms of notation are used interchangeably.
Convention 2.2 In writing equations with distributions, we o�en shorten the nota-
tion by omitting the parentheses containing the function arguments. Note that we will
only use this shorthand if the omitted arguments can be reconstructed again without
ambiguity from the subscripts of the distributions. For example, the product rule
for distributions is written compactly as PXY = PX|Y PY , and this should be un-
derstood as PXY (x, y) = PX|Y (x|y)PY (y) for any (x, y) ∈ X × Y for which
PY (y) > 0. In case the quanti�cation is not mentioned explicitly, it is assumed to be
over all inputs for which all involved conditional probabilities are well-de�ned.

Random variablesX and Y are independent if PXY = PXPY . For n random vari-
ablesX1, X2, . . . , Xn for n integer and n > 2, we say that they are independent (or:
mutually independent) if PX1X2···Xn = PX1PX2 · · ·PXn . An ordered sequence of
random variables (X,Y, Z) forms a Markov chain, denoted as X ↔ Y ↔ Z if
PXZ|Y = PX|Y PZ|Y . It is easy to verify that the latter expression is equivalent to
PZ|XY = PZ|Y as well as to PX|Y Z = PX|Y .

We will also use the notion distributionwithout associating it to a particular random
variable. In this case, wemean any non-negative real function p : X → [0, 1], where
X is a non-empty �nite set, such that p(x) ≥ 0 for all x ∈ X and

∑
x∈X p(x) = 1.

Any distribution can be understood as a distribution of some random variableX
over X in some probability space (Ω,Pr): a trivial construction for this probability
space and random variable X is given by Ω := X , with Pr(ω) := p(ω) and
X(ω) = ω for any ω ∈ Ω. Hence, from here we will always de�ne a random
variable (or several random variables in the same probability space) by specifying
the (joint) probability distribution, and leave the probability space (Ω,Pr) implicit.

2.2.2 Some Important Distributions

LetX be a random variable over X . We say thatX is uniformly distributed over X
if its distribution PX equals

PX(x) := |X |−1 for all x ∈ X .

�e distribution PX is called the uniform distribution over X . When we say thatX
is random, we actually mean it to be uniformly distributed over X . We write x r←X
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to denote that the element x is picked independently and uniformly at random
from the set X .

More generally, for a non-empty subset I ⊆ X , we say thatX has a �at distribution
on I if for all x ∈ X

PX(x) :=
{
|I|−1 if x ∈ I,

0 otherwise.

When we say thatX “has a �at distribution” (thus without mentioning the subset
I), we mean that there exists a set I such thatX has a �at distribution on I .

We say that X is a binary random variable if its range X = F2 and we say that it
has a Bernoulli distribution with parameter p if PX(1) = p.

�e binomial distribution gives the probability that k out of n independent and
identically distributed binary random variablesXi, ∀i ∈ [n] (all having the same
parameter p) take the value one. Let S :=

∑
i∈[n]Xi (where the sum is over the

integers).�en, the binomial distribution is given by

Pr[S = k] =
(
n

k

)
pk(1− p)n−k.

2.2.3 The Bias of a Binary Random Variable

�e bias of a binary random variableX is de�ned as

bias(X) :=
∣∣PX(0)− PX(1)

∣∣.
�is also naturally de�nes the bias ofX conditioned on an event E as

bias(X|E) :=
∣∣PX|E(0)− PX|E(1)

∣∣.
�e bias thus ranges between 0 and 1 and can be understood as a degree of pre-
dictability of a bit: if the bias is small then the bit is close to random, and if the bias
is large (i.e., approaches 1) then the bit has essentially no uncertainty.
Lemma 2.3 For a sum of two independent binary random variablesX1 andX2, the
bias of the sum is the product of the individual biases:

bias(X1 ⊕X2) = bias(X1)bias(X2).
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Proof. Let us prove the case where PX1(0) ≥ PX2(1) and PX2(0) ≥ PX2(1). (�e
other cases follow similarly.)

bias(X1)bias(X2)
=
∣∣PX1(0)− PX1(1)

∣∣ · ∣∣PX2(0)− PX2(1)
∣∣

= (PX1(0)− PX1(1)) · (PX2(0)− PX2(1))
= PX1(0)PX2(0) + PX1(1)PX2(1)− PX1(0)PX2(1)− PX1(1)PX2(0)
= |PX1(0)PX2(0) + PX1(1)PX2(1)− PX1(0)PX2(1)− PX1(1)PX2(0)|
= bias(X1 ⊕X2).

2.2.4 Distance between Distributions

Let PX be the set of non-negative real-valued functions on X . Statistical distance
is the function de�ned as

SD : PX × PX → R

(p, q) 7→ 1
2
∑
x∈X
|p(x)− q(x)|.

�e name statistical distance stems from its typical use as a distance measure for
probability distributions.

For random variables X and Y that have the same range, we may also write
SD(X,Y ), where the latter should be understood as the statistical distance be-
tween their distributions PX and PY .

�e statistical distance is a metric, i.e., it has the following properties for all p, q, r ∈
PX ,

1. Non-negativity: SD(p, q) ≥ 0;
2. Identity of indiscernibles: SD(p, q) = 0 ⇐⇒ p = q;
3. Symmetry: SD(p, q) = SD(q, p);
4. Triangle inequality: SD(p, r) ≤ SD(p, q) + SD(q, r).

In the literature, the statistical distance is sometimes de�nedwithout the factor 1
2 ; we

include it deliberately because then the statistical distance equals the distinguishing
advantage, i.e., the maximum di�erence in probability that p and q assign to the
same event (where the maximum is taken over all events).
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Theorem 2.4 For all distributions p and q on X , it holds that

SD(p, q) = max
A⊆X

(
p[A]− q[A]

)
�is theorem is well known, for a proof see for example�eorem 6.15 in [Sho05].
De�nition 2.5 Let PX and PY be distributions on X . A (joint) distribution p on
X × X is a coupling of (PX , PY ) if its two marginal distributions are PX and PY
respectively, that is,∑

y∈X
p(x, y) = PX(x) ∀x ∈ X , and

∑
x∈X

p(x, y) = PY (y) ∀y ∈ X .

�e following two theorems comprise the “coupling interpretation” of statistical
distance.
Theorem 2.6 (Coupling Inequality, see, e.g., [Lin92, Ch. 1, (2.6)]) Let PX and PY
be distributions on X . For any coupling PVW of (PX , PY ) it holds that

SD(PX , PY ) ≤ Pr[V 6= W ].

Theorem 2.7 (Maximal Coupling, see, e.g., [Lin92, Ch. 1,�m. 5.2]) Let PX and
PY be distributions on X . �en there exists a unique coupling P

Ṽ W̃
of (PX , PY )

such that
SD(PX , PY ) = Pr[Ṽ 6= W̃ ],

and
P
Ṽ W̃ |Ṽ 6=W̃ = P

Ṽ |Ṽ 6=W̃PW̃ |Ṽ 6=W̃ .

�e following theorem gives a useful upper bound on the statistical distance between
a random variableX and a uniform random variable U (having the same range),
in terms of the biases of all F2 linear functions with binary outputs applied toX .
Theorem2.8 (Diaconis and Shahshahani) LetX be a random variable overX with
distribution PX , where X := Fn2 , and let UX be an independent random variable
that is uniformly distributed over X . �en, the following holds,

SD(PX , UX ) ≤ 1
2
[ ∑
f∈Fn2 \{0}

bias(f·X)2
] 1

2
.

where 0 denotes the zero vector in Fn2 and f·X means the standard inner product
on Fn2 between f andX .

�e original version of�eorem 2.8 appeared in [Dia88], where it is expressed in
the language of representation theory.�e version above is due to [NN93].
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2.2.5 Jensen’s Inequality

De�nition 2.9 A real-valued function f : I → R on an arbitrary interval1 I in R
is said to be convex if for all x1, x2 ∈ I and for all λ ∈ [0, 1] ⊂ R it holds that

λf(x1) + (1− λ)f(x2) ≥ f
(
λx1 + (1− λ)x2

)
.

�e function f is called strictly convex if equality holds only at the endpoints (i.e.,
when λ ∈ {0, 1}) or when x1 = x2. �e function f is (strictly) concave if −f is
(strictly) convex.

In other words, a function f is convex if and only if all chords lie above or on the
graph of f .

Examples of strictly concave functions include the square-root function: {x ∈
R : x ≥ 0} → {x ∈ R : x ≥ 0}, x 7→

√
x and the logarithm function:

{x ∈ R : x > 0} → R, x 7→ log x for arbitrary base strictly larger than 1. Straight
lines in the plane R2 are both convex and concave.
Theorem 2.10 (Jensen’s Inequality, see, e.g., [CT06]2) Let f : I → R be a convex
function on an arbitrary interval I ⊂ R. �en, for any x1, . . . , xn ∈ I and any
p1, . . . , pn ∈ R such that pi ≥ 0 for all i ∈ [n] and

∑
i pi = 1, it holds that∑

i

pif(xi) ≥ f
(∑

i

pixi
)
.

If f is strictly convex and pi > 0 for all i ∈ [n], then equality holds if and only if
x1 = . . . = xn. If f is concave then the inequality should be reversed.

A real random variable is a random variable whose range is contained in R. �e
expectation (or expected value) of a real random variableX is de�ned as

E[X] :=
∑
x∈X

PX(x) · x.

In this case, we can rewrite Jensen’s inequality using the expectation as follows,

E[f(X)] ≥ f(E[X]).
1open, closed, or neither.
2Although [CT06] states Jensen’s inequality for a convex function on an open interval, their proof

does not make use of this.
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2.2.6 Hoe�ding’s Inequality

When one repeatedly �ips a fair coin, it is well known that the empirical frequencies
of obtaining heads and tails, divided by the total number of coin �ips, will ultimately
both approach one half. In general, this phenomenon is known as the law of large
numbers, and is also called concentration of measure. �e phenomenon can be
formalized in many ways, in weaker and stronger forms. A particularly convenient
version, which is strong enough for us, is Hoe�ding’s inequality [Hoe63, DP09].
We will make use of it in several proofs. We state it here for mutually independent
binary random variables.
Theorem 2.11 (Hoe�ding’s Inequality, Mutually Independent Random Variables)
Let X1, X2, . . . , Xn be mutually independent binary random variables, each dis-
tributed according to the Bernoulli distribution with the same parameter µ ∈ [0, 1],
and let X̄ := 1

n

∣∣{i ∈ [n] : Xi = 1}
∣∣. �en for all t ∈ R such that 0 ≤ t ≤ 1− µ it

holds that
Pr[X̄ − µ ≥ t] ≤ exp(−2nt2).

For a proof, the reader is referred to the original paper by Hoe�ding [Hoe63], or
to a recent book on concentration of measure by Dubhashi and Panconesi [DP09].
An easy observation is that by applying�eorem 2.11 to the random variable 1−Xi,
we obtain the same upper bound as above for Pr[−X̄ + µ ≥ t]. Hence we get the
following corollary.
Corollary 2.12 (Two-Sided Version of�eorem 2.11) Let {Xi}i∈[n], X̄ , µ and t be
as in�eorem 2.11. �en, the following holds

Pr[|X̄ − µ| ≥ t] ≤ 2 exp(−2nt2).

Random Variables with a Particular Type of Dependence

Above we have stated Hoe�ding’s inequality for mutually independent random
variables. We will also make use of a version that applies to random variables that
are dependent in the following sense.
Theorem 2.13 (Hoe�ding’s Inequality, RVs with a Particular Type of Dependence)
Let b = (b1, . . . , b`) ∈ F`2 be a bit string of length ` > 0. Let n ∈ N such that n ≤ `.
Let I ⊂ [`] be a uniformly distributed random variable over all size-n subsets of [`].
Let I1 < I2 < . . . < In denote the elements of I . Let Yi := bIi for all i ∈ [n].
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Furthermore, let Ȳ := 1
n

∣∣{i ∈ [n] : Yi = 1}
∣∣ and µ := 1

`

∣∣{j ∈ [`] : bj = 1}
∣∣.

�en, for any t ∈ R such that 0 ≤ t ≤ 1− µ, it holds that

Pr[Ȳ − µ ≥ t] ≤ exp(−2nt2).

�e proof of�eorem 2.13 can be found in Section 6 of [Hoe63], and in [DP09].

Similarly to Corollary 2.12, we get the following corollary.
Corollary 2.14 (Two-Sided Version of�eorem 2.13) Let {Yi}i∈[n], Ȳ , µ and t be
as in�eorem 2.13. �en, the following holds

Pr[|Ȳ − µ| ≥ t] ≤ 2 exp(−2nt2).

Ser�ing [Ser74] proves that the bound from�eorem 2.13 can be strengthened as
follows.
Theorem 2.15 (Ser�ing’s Inequality) Let b = (b1, . . . , b`) ∈ F`2 be a bit string of
length ` > 0. Let n ∈ N such that n ≤ `. Let I ⊂ [`] be a uniformly distributed
random variable over all size-n subsets of [`]. Let I1 < I2 < . . . < In denote the
elements of I . Let Yi := bIi for all i ∈ [n]. Furthermore, let Ȳ := 1

n

∣∣{i ∈ [n] : Yi =
1}
∣∣ and µ := 1

`

∣∣{j ∈ [`] : bj = 1}
∣∣. �en for all t ∈ R such that t ≥ 0,

Pr
[
Ȳ − µ ≥ t

]
≤ exp

(
− 2t2n`
`−n+1

)
.

�is one-sided bound implies the following two-sided bound:

Pr
[
|Ȳ − µ| ≥ t

]
≤ 2 exp

(
− 2t2n`
`−n+1

)
,

which follows in the same way as Corollary 2.12.

2.3 Classical Measures of Uncertainty

In this section we de�ne some notions from classical information theory, where
“classical” means “non-quantum.” Many of these notions will be generalized to the
quantum case later, where we will also give more properties. Nonetheless, having
an understanding of the notions in the classical case helps to understand them in
the quantum case.
De�nition 2.16 �e Shannon entropy [Sha48] of a distribution p : X → [0, 1] is
de�ned as

H(p) := −
∑

x∈supp(p)
p(x) log p(x),
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Since log expresses the binary logarithm, the Shannon entropy is expressed in bits.
By the convention 0 log 0 = 0, which is justi�ed by the fact that limy→0 y log y = 0,
we can slightly simplify the de�nition of Shannon entropy and write H(p) :=
−
∑
x∈X p(x) log p(x), where X is the domain of p.

We writeH(X) for the Shannon entropy of (the distribution of) a random variable
X , i.e.,H(X) should be understood asH(PX).

One interpretation of the Shannon entropy of a random variableX is the number
of bits that are needed on average to encode an outcome x ∈ X . Note that there are
also many other important interpretations of Shannon entropy.

�e binary entropy function h : [0, 1]→ [0, 1] is de�ned as

h(p) := −
(
p log(p) + (1− p) log(1− p)

)
for 0 ≤ p ≤ 1. (Recall the convention 0 log 0 = 0.)

2.3.1 Rényi Entropies

�e Shannon entropy is a special case of a more general class of entropy measures,
called the entropies of order α [Rén61].
De�nition 2.17 For any α ∈ R such that α > 0 and α 6= 1, the Rényi entropy of
order α of a distribution p : X → [0, 1] is de�ned as

Hα(p) := 1
1− α log

∑
x∈supp(p)

p(x)α.

Similar to the Shannon entropy we writeHα(X) for the Rényi entropy of a random
variable X , but we stress that strictly speaking the entropy is a function of the
distribution PX . Below,X denotes an arbitrary random variable over arbitrary X
with arbitrary distribution PX .

When taking the limit α→ 1, we obtain the Shannon entropy:

H1(X) := lim
α→1

Hα(X) = H(X).

�e case α = 2 is called the collision entropy

H2(X) = − log
∑
x∈X

PX(x)2.

For α→∞ we obtain themin-entropy:

Hmin(X) = H∞(X) := lim
α→∞

Hα(X) = − log max
x∈X

PX(x).
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It will be convenient to de�ne the collision probability and the guessing probability
of a random variableX as respectively

pcol :=
∑
x∈X

PX(x)2 and pguess(X) := max
x∈X

PX(x),

such that we can alternatively de�ne the collision entropy and min-entropy of a
random variableX as

H2(X) := − log pcol(X) and Hmin(X) := − log pguess(X).

For α→ 0 we obtain themax-entropy,

Hmax(X) = H0(X) := lim
α→0

Hα(X) = log |supp(PX)|.

A useful operational meaning of the max-entropy of a random variableX is the
number of bits needed to store a single realization ofX .

�e following proposition states an important property of Rényi entropy.
Proposition 2.18 For all α, β ∈ R such that 0 ≤ α < β and for all random
variablesX , it holds that

Hα(X) ≥ Hβ(X),

with equality if and only ifX has a �at distribution.

A proof of this statement can be found in [Cac97].3 Applied to the notions that we
have just de�ned, we get

Hmin(X) ≤ H2(X) ≤ H(X) ≤ Hmax(X).

2.3.2 Conditional Entropy

In the following, letX and Y be random variables over X and Y respectively with
joint probability distribution PXY , and letA be an event such that Pr[A] > 0.

�e Shannon entropy naturally extends to the Shannon entropy conditional on an
eventA, i.e.,

H(X|A) = H(PX|A) = −
∑
x∈X

PX|A(x) logPX|A(x).

3In [Cac97], Proposition 2.18 is stated slightly di�erently due to a di�erent de�nition ofH0(X).
Nonetheless, the proof applies.
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Recall that Y = y for y ∈ Y represents an event, hence writingH(X|Y = y) is
now well-de�ned. Sometimes, we want to express the uncertainty of a random
variableX when given a random variable Y , without �xing that random variable
to a particular outcome y. For this purpose, the conditional entropy is de�ned as

H(X|Y ) :=
∑
y∈Y

PY (y)H(X|Y = y).

Note that we will also use the term conditional entropy for the entropy conditional
on an event. By the above, the following is also naturally de�ned,

H(X|Y,A) =
∑
y∈Y

PY |A(y)H(X|Y = y,A).

�e chain rule for Shannon entropy states that

H(XY ) = H(X) +H(Y |X),

for arbitrary random variables X and Y . Using the chain rule, the conditional
Shannon entropy can alternatively be de�ned asH(X|Y ) := H(XY )−H(Y ).

We will not de�ne a conditional version of the Rényi entropy for arbitrary order
α. Instead, we merely de�ne conditional versions of the collision entropy and min-
entropy. In order to do so, we �rst de�ne the conditional collision probability and
conditional guessing probability.�e collision probability resp. guessing probability
ofX conditional onA are naturally de�ned as

pcol(X|A) =
∑
x∈X

PX|A(x)2, and pguess(X|A) = max
x∈X

PX|A(x).

For a random variable Y , the conditional collision probability resp. conditional
guessing probability ofX given Y are de�ned as

pcol(X|Y ) :=
∑
y∈Y

PY (y) pcol(X|Y = y),

pguess(X|Y ) :=
∑
y∈Y

PY (y) pguess(X|Y = y). (2.1)

�e collision entropy conditional on an eventA and themin-entropy conditional on
an eventA are then given by, respectively

H2(X|A) = − log pcol(X|A) and Hmin(X|A) = − log pguess(X|A).
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De�nition 2.19 For a random variable Y , the conditional collision entropy resp.
conditional min-entropy4 ofX given Y are de�ned as

H2(X|Y ) := − log pcol(X|Y ), and Hmin(X|Y ) := − log pguess(X|Y ).

�e following relation always holds between the conditional versions of Shannon,
collision and min-entropy:

H(X|Y ) ≥ H2(X|Y ) ≥ Hmin(X|Y ),

for all random variables X and Y . �e proof of the le� inequality uses Jensen’s
inequality; the proof of the right inequality follows from elementary observations.

2.4 Privacy Ampli�cation

Suppose that Alice has a random variableX about which Eve has side information,
modeled by a random variable Y that depends onX . Privacy ampli�cation [BBR88,
BBM95, HILL99] provides a way to extract a random variableK that has a smaller
range thanX , such thatK is very close (in statistical distance) to a random variable
U (having the same range as K) that is uniformly distributed and independent
from Y .�e random variableK will typically serve as a secret key.

First, we will explain privacy ampli�cation in its original form, i.e., in the language
of universal hashing. Subsequently, we will give an more general description in
terms of extractors.

2.4.1 Universal Hashing

De�nition 2.20 Let G := {gi}i∈I be a family of functions gi : X → R, where I ,
X andR are �nite and non-empty sets. Let I be a random variable that is uniformly
distributed over I .�e family G is called universal [CW77] if for all x, x′ ∈ X such
that x 6= x′ it holds that

Pr[gI(x) = gI(x′)] ≤
1
|R|

.

�ere exist several constructions of universal families [CW77]. We give two con-
structions that will be used in later chapters. Let n, r ∈ N be such that r ≤ n.�e

4�e de�nition for conditional min-entropy that we use is sometimes called average conditional
min-entropy in the literature.
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�rst family, G1, is well known:

G1 := {fA : A ∈ Fr×n2 }

with

fA : Fn2 → Fr2
x 7→ Ax.

To see that it is universal, note that for any x, x′ ∈ Fn2 such that x 6= x′, the
expressionAx⊕Ax′ = A(x⊕x′), when viewed as the function Fr×n2 → Fr2, A 7→
A(x⊕x′) is linear and surjective, hence the cardinality of {A ∈ Fn×r2 : A(x⊕x′) =
y} is the same for every y ∈ Fr2. �erefore, for A chosen uniformly at random,
Pr[Ax = Ax′] = 2−r.

�e second universal family, G2, is a variant on existing constructions of universal
families, and will be of use in the proof of�eorem 4.6. In order to de�ne it, we �rst
introduce some more notation. For all n ∈ N where n ≥ 1 and all t ∈ [n] we let

[·]t : F2n → F2t

be an arbitrary but �xed F2-linear surjective function. For example, when �xing a
basis for F2n , [·]t can be de�ned as the projection on the subspace spanned by the
�rst t basis vectors. Letm, r ∈ N be such that r ≤ m.�e second family is given
by

G2 := {ha,b : a ∈ F2m , b ∈ F2r}

with

ha,b : F2m × F2r → F2r

(x, y) 7→ [a · x]r ⊕ b · y.

Proposition 2.21 �e family G2 is universal.

Proof. LetA andB be uniformly random over F2m and F2r respectively. Let (x, y),
(x′, y′) ∈ F2m × F2r such that (x, y) 6= (x′, y′) and consider

([A · x]r ⊕B · y)⊕ ([A · x′]r ⊕B · y′) = [A · (x⊕ x′)]r ⊕B · (y ⊕ y′).

Let us �nd the probability that this expression vanishes. In the following, we analyze
the expression at the RHS of the equation above. In case x = x′ ∧ y 6= y′, the le�
term vanishes and the right part is the bijective mapping B 7→ B · (y ⊕ y′), and
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vanishes with probability 2−r . In case x 6= x′ ∧ y = y′, the right term vanishes and
the le� part inside the brackets, A 7→ A · (x⊕ x′), is a bijection and hence results
in a uniformly distributed random variable over F2m . Because the map [·]r is linear
and surjective, applying this map to the latter random variable results in a uniformly
distributed random variable over F2r , which equals zero with probability 2−r. In
case both x 6= x′ and y 6= y′, condition on A = a. For any a, by the bijective
mapping B 7→ B · (y ⊕ y′) the probability that the entire expression vanishes is
2−r. In all cases, the probability that the expression vanishes equals 2−r, hence the
assertion follows.

We want to be able to apply the functions of family G2 to vectors from an F2 vector
space (bit strings). Hence, for every n ∈ N we �x a basis of F2n , by which we can
associate every vector in Fn2 with a unique �eld element in F2n , and vice versa. We
stress that the induced vector space isomorphism Fn2 → F2n is not a natural one; it
depends on the chosen basis.

The Privacy Ampli�cation Theorem

�e following theorem is a modern variant of the original treatment of privacy
ampli�cation as found in [BBR88, BBM95, HILL99].
Theorem 2.22 (Privacy Ampli�cation, Case of Classical Side Information) Let
G := {gi}i∈I be a universal family of hash functions gi : X → {0, 1}r, where X
and I are �nite and non-empty sets. LetX andY be random variables overX andY
respectively, and let I andU be uniformly distributed over I and {0, 1}r respectively,
and such that I , U andXY are mutually independent. LetK := gI(X). �en

SD(KY I;UY I) ≤ 1
2 · 2

−1
2 (H2(X|Y )−r)

�e proof can be found in [CF11].�e proof of a quantum version5 of privacy ampli�-
cation, which implies the statement above, can be found in [Ren05] (�eorem 5.5.1).

Note that the privacy ampli�cation theorem is a powerful tool; it guarantees that
the security of the extracted key increases exponentially in the gapH2(X|Y )− r.

Also note that the functions from the family G1 introduced earlier each have range
Fr2, while the privacy ampli�cation theorem is stated in terms of hash functions

5In that version, Y is a quantum system that holds quantum information aboutX .
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having range {0, 1}r.�is should however not cause any confusion because of the
elements of F2 are 0 and 1.

Let us now discuss the amount of randomness that is consumed by privacy ampli�-
cation. Beyond the primary source of randomness,X , some additional randomness,
sometimes called catalyst randomness or seed, is needed for the random variable
I , i.e., to sample a function gi ∈ G uniformly at random. Hence, for the present
construction the amount of catalyst random bits needed is logarithmic in |G|. Note
that the size of the seed is an important parameter, not only because randomness
should generally be regarded as a scarce resource, but also since the seed needs to
be communicated.

To decrease the required number of random bits (and thereby to decrease the com-
munication complexity of the privacy-ampli�cation protocol), one could make
use of a “δ-almost universal” family [Sti94]. For an appropriately chosen con-
struction, see, e.g., the proof of�eorem 10 in [TSSR10], the amount of catalyst
randomness becomes linear in the output length r, at the cost of slightly increasing
SD(KY I;UY I).

Strongly Universal Families

Here, we de�ne the related notion of a strongly universal family [CW81], which we
will need later in the context of identi�cation.
De�nition 2.23 Let G := {gi}i∈I be a family of functions gi : X → R, where I ,
X andR are �nite and non-empty sets. Let I be a random variable that is uniformly
distributed over I .�e family G is called strongly universal if for all x, x′ ∈ X such
that x 6= x′ and for all a, b ∈ R it holds that

Pr[gI(x) = a ∧ gI(x′) = b] ≤ 1
|R|2

.

2.4.2 Extractors

Amore general approach to studying the (non-interactive) privacy ampli�cation
problem is in the language of randomness extractors. Amain advantage of extractors
over universal hashing is that there exist randomness extractors that require much
shorter seed lengths.
De�nition 2.24 Let n, d,m ∈ N and let k, ε ∈ R such that k ≥ 0 and ε ≥ 0.
A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) strong extractor if for
any pair of random variables (X,Y ) such that X has range X ⊆ {0, 1}n and
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Hmin(X|Y ) ≥ k, it holds that

SD(Ext(X;S)Y S,UY S) ≤ ε,

where S (the seed) is a uniformly distributed random variable over {0, 1}d that
is independent of XY , and U is a uniformly distributed random variable over
{0, 1}m that is independent of Y S.
Remark 2.25 In De�nition 2.24, the word strong indicates that Ext(X;S) must
be close to uniform even when given the seed S. �e de�nition for an extractor
(without the adjective strong) is similar to De�nition 2.24 but merely requires that

SD(Ext(X;S)Y, UY ) ≤ ε.

Remark 2.26 In the theoretical-computer-science literature, it is common to de�ne
extractors and strong extractors with respect to the unconditionalmin-entropy.�e
formal de�nition for strong extractors with respect to unconditional min-entropy
is obtained from De�nition 2.24 by removing every occurrence of Y . In [DORS08],
extractors under thismodi�ed de�nition are calledworst-case strong extractors, and
strong extractors under De�nition 2.24 are called average-case strong extractors.

�e following theorem due to Vadhan guarantees that we can always turn any worst-
case strong extractor into an average-case strong extractor, with only a slight loss in
parameters.
Theorem 2.27 ([Vad12]) Suppose that Ext is a worst-case (k, ε) strong extractor.
�en, Ext is also an average-case (k, 3ε) strong extractor.

A proof can be found in [CP11].

�e following theorem bounds the parameters of worst-case extractors.
Theorem2.28 ([RTS00]) Suppose that f : {0, 1}n×{0, 1}d → {0, 1}m is a worst-
case (k, ε) extractor. �en, the following bounds hold for d (the seed length) andm
(the output length):

d = log(n− k) + 2 log(1/ε)−O(1),
m = d+ k − 2 log(1/ε) +O(1).

Moreover, [RTS00] show via the probabilistic method [AS00] that the bounds from
�eorem 2.28 are tight up to constant factors.
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Theorem 2.29 (�eorem 1.10 in [RTS00]) For every k, n,m ∈ N such that k ≤ n
and ε ∈ R such that ε > 0 there exists a worst-case (k, ε) extractor Ext : {0, 1}n×
{0, 1}d → {0, 1}m such that

d =
⌈
max

{
log

(
n− k
log e + 1

)
+ 2 log(1

ε ),m− k + 2 log(1
ε )− log(log e)

}⌉
.

(Recall that e denotes the base of the natural logarithm.)

It is o�en not su�cient to merely know that extractors exist. Most applications
require an explicit construction of an extractor. Informally, this means that the
extractor can be e�ciently constructed, i.e., in time polynomial in n. For a formal
de�nition, we refer to [Sha02].

�ere exist several explicit constructions for (strong) extractors. In particular, a
universal family of hash functions is an instance of an average-case6 strong extractor
and comeswith explicit constructions [CW77]. When short seed length is important,
universal hashing is not a good choice. An example of a strong extractor with much
shorter seed length is the following.
Theorem 2.30 ([GUV09]) For all α, ε ∈ R such that α > 0 and ε > 0 and all
positive integers n, k, there is an explicit construction of a worst-case (k, ε) strong
extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = O(logn + log(1/ε)) and
m ≥ (1− α)k.

By�eorem 2.27, the extractor from [GUV09] is also an average-case strong extrac-
tor with the same parameters.

In this thesis, we will solely deal with average-case strong extractors.7 Hence, we
will use the following convention.
Convention 2.31 From here, whenever we use the word extractor, we always mean
an average-case strong extractor.

6For a short proof of the fact that a universal family of hash functions is an average-case strong
extractor, see [DORS08].

7Including average-case strong extractors with additional properties, see De�nition 2.64.
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2.5 Statistically Secure Encryption and Authentication

2.5.1 The One-Time Pad

Theorem 2.32 Let M,K be independent random variables over Fn2 , where K is
uniformly distributed, and let C := M ⊕K . �en, for anym, c ∈ Fn2 it holds that

Pr[M = m|C = c] = Pr[M = m].

By viewingM as a message, andK as a secret key, then C can be understood as a
perfect encryption ofM underK : the ciphertextC does not provide any information
about the messageM , whereasC andK together determineM (by de�nition ofC).
�is (symmetric) encryption method is called the one-time pad. Shannon [Sha49]
was the �rst to formally state and prove a statement equivalent to�eorem 2.32. In
Section 2.8 (Proposition 2.53) we will give a more general version of�eorem 2.32.

�e one-time pad gets its name from the fact that a key may only be used once: if a
key is reused, the unconditional security property does no longer hold.

�e one-time pad is actually not used in practice to encrypt large messages (except
in ultra-high-security settings), because of the equal amount of key material needed.
Nonetheless, in this thesis the one-time pad is an important building block.

2.5.2 Message Authentication

Consider the setting where a sender transmits a message to a receiver. �e goal
of message authentication is to convince the receiver that the received message
is identical to the transmitted message, i.e., that it has not been modi�ed by an
adversary during transmission. A related problem that can also be solved by mes-
sage authentication is where the sender has not transmitted any message, but the
adversary injects a message into the channel instead.
De�nition 2.33 Letn, t, ` ∈ N and let δ ∈ R such that δ ≥ 0. A family of functions

{MACk : {0, 1}n → {0, 1}t}

indexed by keys k ∈ {0, 1}` is a δ-secure message authentication code if for any
pair of �xed distinct messages,m,m′ ∈ {0, 1}n such thatm 6= m′ and random
variableK uniformly distributed over {0, 1}` it holds that

pguess(MACK(m′) |MACK(m)) ≤ δ.
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A message authentication code can be used to authenticate a message in the fol-
lowing way. We require that the sender and receiver share a common secret key
K ∈ {0, 1}`.�en, to authenticate a message a messagem, the sender computes
the tag T := MACK(m) ∈ {0, 1}t and transmits it along with the message. �e
receiver will compute MACK(m′) where m′ denotes the received message, and
accepts the message if MACK(m′) = T .

�e security property of the message authentication code guarantees that an adver-
sary, who obviously knowsm and T but does not knowK , cannot select a message
m′ 6= m of his choice and at the same time producing a valid tag T̃ (such that
T̃ = MACK(m′), except with probability ≤ δ, where δ can be made arbitrarily
small.

Carter and Wegman [CW81] showed that an almost strongly universal family of
functions can be used as a secure message authentication code. An almost strongly
universal family is a relaxed version of De�nition 2.23, in that the upper bound
1/|R|2 is slightly increased. �e main bene�t of this relaxed notion is that it al-
lows for smaller families of functions, hence the required authentication-key size
decreases, while incurring only a small increase in the security parameter δ.

Similar to the key used in the one-time pad, an authentication key may generally
be used only a limited number of times, and, in case of using an almost strongly
universal family, just once.

2.6 Hilbert Spaces

Here, we recall some basic facts from functional analysis. For an in-depth intro-
duction, as well as the proofs of the statements that we present as facts, we refer to
Kreyszig’s book [Kre78].

A complex inner product space is a vector space V over the complex numbers that
is equipped with an inner product.�e latter is a map (·, ·) : V × V → C such that

1. (x, y + z) = (x, y) + (x, z)

2. (x, αy) = α(x, y)

3. (x, y) = (y, x)

4. (x, x) ≥ 0, and (x, x) = 0 ⇐⇒ x = 0,
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for all vectors x, y, z ∈ V and scalars α ∈ C. Note that the inner product de�ned
here is linear in its second argument (and conjugate-linear in its �rst argument),
as is common in physics and quantum information theory. On the other hand, in
mathematical texts it is more common to de�ne the inner product to be linear in its
�rst argument, see, e.g., [Kre78]. Nonetheless, all statements in [Kre78] still hold
with respect to our de�nition of the inner product, since both ways of de�ning the
inner product are the same up to permutation of the arguments.

A complex Hilbert space is a complete8 complex inner product space. In this thesis
we will only deal with �nite-dimensional complex Hilbert spaces, for which com-
pleteness is automatically guaranteed; this holds because every �nite-dimensional
normed space is complete, see, e.g.�eorem 2.4-2 in [Kre78].
Convention 2.34 When we speak about a “Hilbert space” in this thesis, we always
mean a complex Hilbert space of �nite dimension.
Convention 2.35 As we will never need the notion of K-linearity for a (sub-)�eld
K other than C itself, “linear” will always mean “C-linear” in this section.

2.6.1 Dirac’s Braket Notation

We will use Dirac’s “braket” notation, which is common in quantum mechanics. In
this notation, a vector in a Hilbert spaceH is denoted as

|ψ〉

and is called a ket vector.

LetH∗ denote the dual vector space ofH. For any vector |ψ〉 ∈ H, 〈ψ| ∈ H∗ is the
linear functional:

〈ψ| : H → C,
|ϕ〉 7→ 〈ψ|ϕ〉,

where 〈ψ| is called a bra vector, and 〈ψ|ϕ〉 is the inner product (|ψ〉, |ϕ〉) written
in braket notation (which we will mainly use from now). Hence, by de�nition it
holds that 〈ψ||ϕ〉 = 〈ψ|ϕ〉.

Furthermore, we de�ne the outer product |ϕ〉〈ψ| for any |ψ〉, |ϕ〉 ∈ H as the linear
operator

|ϕ〉〈ψ| : H → H,
|χ〉 7→ 〈ψ|χ〉|ϕ〉.

Hence, it holds that |ϕ〉〈ψ||χ〉 = |ϕ〉〈ψ|χ〉.
8complete in the metric that is naturally induced by the inner product.
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2.6.2 Operators

For arbitrary Hilbert spacesH andH′, let Hom(H,H′) denote the complex vector
space of linear mapsH → H′ and let End(H) denote the complex algebra of linear
operatorsH → H.�e elements inEnd(H) are also called endomorphisms.9 From
here, whenever we write operator in this thesis, we always mean linear operator.

�e identity operator, which we denote by IH, is the unique operator on H such
that for any |ϕ〉 ∈ H, it holds that IH|ϕ〉 = |ϕ〉. Note that we omit the subscript of
IH if the Hilbert space on which the identity operator acts is clear from its context.
And, for a Hilbert space namedHA, we will o�en denote the identity operator as
IA.

�e adjoint of an operator T ∈ End(H) is the unique operator

T † : H → H

such that
(|ϕ〉, T |ψ〉) = (T †|ϕ〉, |ψ〉)

holds for all |ϕ〉, |ψ〉 ∈ H.

�e bra of the vector T |ϕ〉 coincides with 〈ϕ|T †, as can easily be veri�ed. As a
consequence, the expression 〈ϕ|T |ψ〉, which can be interpreted as 〈ϕ|T ∈ H∗
applied to |ψ〉 ∈ H as well as 〈ϕ| ∈ H∗ applied to T |ψ〉 ∈ H, causes no confusion
since both interpretations give rise to the same value by de�nition of the adjoint.

We recall some special classes of operators. An operator T ∈ End(H) is

1. normal if T †T = TT †;
2. unitary if T †T = TT † = I (implies that T is normal);
3. Hermitian if T † = T (implies that T is normal);
4. positive semi-de�nite if 〈ψ|T |ψ〉 ≥ 0 for all |ψ〉 ∈ H (implies that T is

Hermitian). We also write T ≥ 0;
5. an orthogonal projector if TT = T and T † = T (implies that T ≥ 0).
9In [Kre78], most statements about operators on normed spaces also cover the in�nite-

dimensional case, and as a consequence many statements require an operator to be bounded. LetH
be a Hilbert space (recall that we always mean a �nite-dimensional complex Hilbert space). A basic
fact is that every operator T ∈ End(H) is bounded (see also�eorem 2.7-8 in [Kre78]), in that there
exists a real number c such that for every |x〉 ∈ H it holds that ‖T |x〉‖ ≤ c‖|x〉‖, where ‖ · ‖ is the
norm induced by the inner product.
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Whenever we speak of a projector, we always mean an orthogonal projector. For all
|ψ〉 ∈ H that have norm 1, the operator |ψ〉〈ψ| is the orthogonal projector on the
one-dimensional subspace spanned by |ψ〉 and has rank 1.

Every normal operator has a spectral decomposition.
Theorem 2.36 Let H be an arbitrary Hilbert space and let d denote its dimension.
For every normal operator T ∈ End(H) there exists an orthonormal basis of H,
{|ψi〉}i∈[d], such that

T =
∑
i∈[d]

λi|ψi〉〈ψi|,

where the λi ∈ C for i ∈ [d] are the eigenvalues of T . If T is Hermitian, then all
eigenvalues are real.

In general, the spectral decomposition is not unique. In fact, it is unique (and the
eigenvectors are unique up to multiplication by a complex scalar with norm 1) if
and only if all eigenvalues are distinct. Note that if T is positive semi-de�nite, all
eigenvalues are real and non-negative.

2.6.3 Tensor Products

To be able to compose quantum systems (see next section), we need the notion of a
tensor product.
De�nition 2.37 For �nite-dimensional complex vector spaces V andW , a tensor
product of V andW is a pair (U, ι), such that

• U is a �nite-dimensional complex vector space and ι : V ×W → U is a
C-bilinear map.

• For each pair (Z, f) where Z is a �nite-dimensional complex vector space
and f : V ×W → Z is a C-bilinear map, there is a unique C-linear map
f∗ : U → Z such that f = f∗ ◦ ι.10

�e latter property is called the universal property of a tensor product. Hence, the
map f∗, which uniquely corresponds to f and is induced by the universal property,

10�e “◦” symbol denotes composition of maps.
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makes the following diagram commutative:

V ×W U

Z

ι

f
f∗

Remark 2.38 �e notion of a tensor product can be de�ned more generally (e.g.,
over an arbitrary �eld, or for in�nite-dimensional spaces) in the same way as in
De�nition 2.37. However, as we do not need this generality here, we only de�ne
tensor products for �nite-dimensional complex vector spaces.

In the remainder of this section, every occurrence of “linear combination” or “linear
extension” should be read as a C-linear combination or extension.

We will now show that a tensor product exists, by giving a natural construction.
From the universal property, it follows that the tensor product is unique, up to a
unique isomorphism.�e particular tensor product that we construct below will
be de�ned as the tensor product of V andW .

For �nite-dimensional complex vector spaces V andW with respective dimensions
dV and dW , let V ⊗W denote the quotient space F (V ×W )/R, where F (V ×W )
is the freeC-vector space on V ×W , i.e., the vector space obtained by taking formal
�nite linear combinations of elements (v, w) ∈ V ×W , andR is the subspace of
F (V ×W ) spanned by all elements of the form

(v1 + v2, w)− (v1, w)− (v2, w)
(v, w1 + w2)− (v, w1)− (v, w2)
α(v, w)− (αv,w)
α(v, w)− (v, αw)

with v, v1, v2 ∈ V , w,w1, w2 ∈ W , and α ∈ C. We will call V ⊗W the tensor-
product space of V andW .�e dimension of V ⊗W is equal to dV · dW .

For v ∈ V andw ∈W , the residue class (v, w) +R in V ⊗W is denoted by v⊗w.
�e following properties hold by construction:

1. (v1 + v2)⊗ w = (v1 ⊗ w) + (v2 ⊗ w)

2. v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2

3. α(v ⊗ w) = (αv)⊗ w = v ⊗ (αw)
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for all v, v1, v2 ∈ V , for all w,w1, w2 ∈W , and for all α ∈ C.

De�ne

ϕ : V ×W → V ⊗W
(v, w) 7→ v ⊗ w.

De�nition 2.39 (V ⊗W,ϕ) is the tensor product of V andW .

We will make use of the natural isomorphism

φ : Hom(V, V ′)⊗Hom(W,W ′)→ Hom(V ⊗W,V ′ ⊗W ′) (2.2)

for all �nite-dimensional complex vector spaces V, V ′,W,W ′, given by the linear
extension of

φ(A⊗B)(v ⊗ w) = Av ⊗Bw

for all A ∈ Hom(V, V ′), for all B ∈ Hom(W,W ′), for all v ∈ V and for all
w ∈W .

�e tensor productH⊗H′ of two Hilbert spacesH andH′ is a �nite-dimensional
complex vector space, and we can turnH⊗H′ into a Hilbert space by equipping it
with an inner product.11 A natural choice for this inner product is given by

(|ϕ〉 ⊗ |ψ〉, |χ〉 ⊗ |ω〉) := 〈ϕ|χ〉 · 〈ψ|ω〉, (2.3)

for all |ϕ〉, |χ〉 ∈ H and for all |ψ〉, |ω〉 ∈ H′. By linearity, this extends to all
elements of H ⊗ H′, i.e., elements of the form

∑
i αi|ϕi〉 ⊗ |ψi〉 for αi ∈ C,

|ϕi〉 ∈ H and |ψi〉 ∈ H′ for all i.�is inner product has the property that if {|ϕi〉}i
is an orthonormal basis for H and {|ψj〉}j is an orthonormal basis for H′, then
{|ϕi〉 ⊗ |ψj〉}i,j is an orthonormal basis forH⊗H′.

We will sometimes omit the tensor-product symbol in tensor products between
Hilbert-space elements, i.e., |ϕ〉|ψ〉 for |ϕ〉 ∈ H and |ψ〉 ∈ H′ should be read as
the tensor product |ϕ〉 ⊗ |ψ〉.

By the natural isomorphism (2.2) and by the natural isomorphism C ⊗ C ∼= C
(which follows from a simple argument involving the universal property) it follows
thatH∗⊗H′∗ ∼= (H⊗H′)∗ and that the bra vector of an element |ϕ〉⊗|ψ〉 ∈ H⊗H′
is naturally identi�ed with

〈ϕ| ⊗ 〈ψ| ∈ H∗ ⊗H′∗.
11Recall that completeness is guaranteed since we are in the �nite-dimensional case.
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Indeed, the bra vector 〈ϕ| ⊗ 〈ψ| acts on a ket vector |χ〉 ⊗ |ω〉 ∈ H ⊗H′ as

(〈ϕ| ⊗ 〈ψ|)(|χ〉 ⊗ |ω〉) = 〈ϕ||χ〉 ⊗ 〈ψ||ω〉 = 〈ϕ|χ〉〈ψ|ω〉.

Similarly, it follows from (2.2) that End(H)⊗End(H′) ∼= End(H⊗H′), and that
for anyA ∈ End(H) andB ∈ End(H′),A⊗B acts on elements fromH⊗H′ as

(A⊗B)(|ϕ〉 ⊗ |ψ〉) = A|ϕ〉 ⊗B|ψ〉

for any |ϕ〉 ∈ H and for any |ψ〉 ∈ H′. By linearity, this extends to all elements of
H⊗H′.

Finally, note that the natural isomorphism End(H⊗H′) ∼= End(H)⊗ End(H′)
identi�es the outer product (|χ〉 ⊗ |ω〉)(〈ϕ| ⊗ 〈ψ|) ∈ End(H⊗H′) with |χ〉〈ϕ| ⊗
|ω〉〈ψ| ∈ End(H)⊗ End(H′).

2.6.4 Vector and Matrix Representations

For every d ∈ N, let the complex vector space Cd be equipped with the standard
inner product

〈x|y〉 = x̄1y1 + · · ·+ x̄dyd

for any |x〉 = [x1 · · · xd]T ∈ Cd and |y〉 = [y1 · · · yd]T ∈ Cd. From here, we will
view Cd as a Hilbert space.

For the sake of clarity of this section, we want to be able to indicate whether elements
from Cd should be understood as row vectors or column vectors. Hence, we will
write Cd×1 when the elements of Cd should be understood as column vectors, and
likewise C1×d when the elements of Cd should be understood as row vectors.

Let H be a Hilbert space of dimension d. Every choice of an orthonormal basis
{|i〉}i ofH induces the following vector-space isomorphisms

H → Cd×1 H∗ → C1×d End(H)→ Cd×d (2.4)

|ϕ〉 7→

ϕ1
...
ϕd

 〈ϕ| 7→
[
ϕ̄1 · · · ϕ̄d

]
T 7→

t11 · · · t1d
... . . . ...
td1 · · · tdd


with ϕi := 〈i|ϕ〉 for all i ∈ [d] and with tij := 〈i|T |j〉 for all i, j ∈ [d].�e matrix
[tij ]i,j∈[d] is the matrix representation of the operator T in the basis {|i〉}i. Note
that the le�most isomorphism is a Hilbert-space isomorphism.12

12A Hilbert-space isomorphism is a vector-space isomorphism that preserves the inner product,
i.e., for a Hilbert-space isomorphism τ : H → H′ it holds that 〈y|τ†τ |x〉 = 〈y|x〉 for all |x〉 ∈ H
and all |y〉 ∈ H′.
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Under these isomorphisms, the bra vector of a ket vector is given by the conjugate
transpose. Furthermore, the respective actions of 〈ψ| ∈ H∗ and T ∈ End(H)
on a ket vector |ϕ〉 ∈ H correspond to standard matrix multiplication, i.e., both
diagrams below commute:

H∗ ×H C1×d × Cd×1

C

∼ End(H)×H Cd×d × Cd×1

H Cd×1

∼

∼

where the ∼−→-arrows are the vector-space isomorphisms given by (2.4), and the
down arrows are given by the actions ofH∗ and End(H) onH, and by standard
matrix multiplication, respectively. Additionally, the outer product |ϕ〉〈ψ| can be
understood as the matrix product between |ϕ〉 and 〈ψ|.

Let us recall the Kronecker product. For matrices

A =

a11 . . . a1`
... . . . ...
ak1 . . . ak`

 ∈ Ck×` and B =

 b11 . . . b1n
... . . . ...

bm1 . . . bmn

 ∈ Cm×n

the Kronecker product A⊗B is the matrix given by

A⊗B =

a11B . . . a1`B
... . . . ...

ak1B . . . ak`B

 ∈ Ckm×`n

Note that the Kronecker product between two vectors follows as a special case.

LetH′ be a Hilbert space of dimension d′. Under the isomorphisms (2.4) and under
similar isomorphisms induced when �xing a basis forH′, the tensor product can
be identi�ed with the Kronecker product, in the sense that each of the following
diagrams commutes.

H×H′ Cd×1 × Cd′×1

H⊗H′ Cdd′×1

∼

⊗ ⊗ Kronecker
product

∼?

H∗ ×H′∗ C1×d × C1×d′

H∗ ⊗H′∗

(H⊗H′)∗ C1×dd′

∼

⊗

⊗ Kronecker
product

∼ isomorph. (2.2)
∼?
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End(H)× End(H′) Cd×d × Cd′×d′

End(H)⊗ End(H′)

End(H⊗H′) Cdd′×dd′

∼

⊗

⊗ Kronecker
product

∼ isomorph. (2.2)
∼?

In the diagrams above, the isomorphisms marked with a star (?) are induced by
�xing orthonormal bases forH andH′. To see this, note that by the natural choice
of the inner product (2.3), choosing orthonormal bases forH andH′ immediately
�xes an orthonormal basis forH⊗H′.�e latter basis, in turn, induces the starred
isomorphisms.

Whenever we �x a Hilbert space H, whose dimension will be denoted as d, the
isomorphisms (2.4) and the commuting diagrams from this section allow us to
implicitly assume without loss of generality thatH = Cd×1, thatH∗ = C1×d, and
that End(H) = Cd×d.

For a more in-depth treatment of the tensor product, see [Lan05].

2.7 Quantum Systems and Operations

2.7.1 Postulates of QuantumMechanics

Quantum mechanics is a mathematical model of a physical system.�e theory of
quantum mechanics is based on four postulates, from which the rest of the theory
can be derived.

We will state the set of postulates of quantum mechanics in the language of density
matrices.
De�nition 2.40 A density matrix ρ ∈ End(H) on a Hilbert spaceH is a positive-
semide�nite matrix having trace equal to 1, i.e., ρ ≥ 0 and tr(ρ) = 1. �e set of
density matrices onH is denoted asD(H).13 If a density matrix has rank equal to 1
it is said to be pure, and in this case it can be written as ρ = |ϕ〉〈ϕ|, where |ϕ〉 ∈ H
has norm 1.

Since positive-semide�niteness implies normality, any density matrix has a spectral
decomposition. Since by de�nition the trace of any density matrix equals 1, the
eigenvalues of a density matrix always sum to one.

13It is straightforward to verify that this set is convex.
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We will now state the four postulates. We basically follow [NC00], but we have
rephrased the postulates in our language and notation.

1. State: To every quantum system we can associate a Hilbert spaceH (possibly
in�nite-dimensional), the state space, such that there is a one-to-one corre-
spondence between the set of all possible states of this quantum system and
D(H).

In this thesis (as is common in quantum information theory) we restrict to �nite-
dimensional quantum systems, i.e., systems with a �nite-dimensional state space.

2. Composition: LetA andB be two �nite-dimensional quantum systems, with
state spacesHA andHB respectively. �e state space of the composite sys-
tem AB (also called the joint system) is given by the tensor product of the
individual state spaces, i.e.,HAB = HA ⊗HB .

We say that two quantum systems A and B are independent, if the density matrix
ρAB of the joint system AB can be decomposed as ρAB = ρA ⊗ ρB .

3. Evolution: Any evolution of a �nite-dimensional quantum system over a
time-interval [t0, t1] is described by a unitary transformation on the state
space of that system that, with respect to time-dependence, solely depends on
the boundary points t0 and t1. For a system with state spaceH and unitary
U ∈ End(H), let ρ ∈ D(H) be the state at time t0.�e state at time t1, ρ′, is
given by

ρ′ = UρU † ∈ D(H).

4. Measurement: Any measurement on a �nite-dimensional quantum system
with state spaceH can be described by a collection {Mx}x∈X of operators
Mx ∈ End(H) that satisfy the completeness condition:

∑
x∈X M

†
xMx = I,

for some �nite and non-empty set X .�e operatorsMx are calledmeasure-
ment operators.�e index x refers to the possible outcomes of the measure-
ment. When applying a measurement {Mx}x∈X to a system with state space
H that is in state ρ, the probability of obtaining outcome x ∈ X is given by

PX(x) = tr(M †xMxρ) for all x ∈ X , (2.5)

and the state of the system conditioned on having obtained outcome x ∈ X
is

ρx = 1
PX(x)MxρM

†
x ∈ D(H) for all x ∈ X . (2.6)
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When we say that we apply a unitary UA ∈ End(HA) to system A (having state
spaceHA) of some joint quantum systemAB (with state spaceHA⊗HB), wemean
applying the unitary UAB := UA ⊗ IB to the joint system. Similarly, when we say
that wemeasure system A using a (complete) collection of measurement operators
{MA,x}x∈X where X is a �nite and non-empty set and whereMA,x ∈ End(HA)
for every x ∈ X , we mean that we measure the joint system using the collection
of measurement operators {MAB,x}x∈X , whereMAB,x = MA,x ⊗ IB for every
x ∈ X .

2.7.2 States

In general, a state that is described by a density matrix is called amixture (another
way of saying this is to say that the state ismixed). In case this density matrix is pure,
then we will also call the corresponding state (described by that density matrix)
pure. Any pure state ρ = |ϕ〉〈ϕ| ∈ D(H) may equivalently be described by means
of the ket vector |ϕ〉 ∈ H (which has norm 1). Vice versa, any ket vector |ϕ〉 ∈ H
with norm 1 describes a pure state with density matrix ρ = |ϕ〉〈ϕ| ∈ D(H). We
will also call a ket vector with norm 1 a state vector. When dealing with pure states,
we sometimes �nd it more convenient to work with state vectors than with density
matrices.

As a disclaimer, we are sometimes a bit sloppy with the terminology and use the
term “state” not only for the state of a quantum system, but also for the quantum
system itself, as well as for the density matrix representing that state (or for the state
vector, in case the state is pure).�is should, however, cause no confusion.

An important density matrix inD(H) is the fully mixed state 1
dI with d = dim(H).

LetH be of arbitrary dimension d, and let {|i〉}i∈[d] be an orthonormal basis ofH.
A superposition |ψ〉 ∈ H is a pure state of the form

|ψ〉 =
∑
i∈[d]

αi|i〉

with αi ∈ C for every i ∈ [d] and such that
∑
i∈[d] |αi|2 = 1. �e coe�cients αi

are called amplitudes.

Let |ψ〉 ∈ H be a state vector.�e state vector eiθ|ψ〉 for any θ ∈ R represents the
same state as |ψ〉. Indeed, the corresponding density matrices coincide:

(eiθ|ψ〉)(e−iθ〈ψ|) = |ψ〉〈ψ|.
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2.7.3 Computational and Hadamard Basis

In the context of quantum information theory, the standard basis ofH = Cd is called
the computational basis. In C2, we denote the basis vectors of the computational
basis as

|0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
.

A state onH = C2 is called a qubit.

When we write |b〉 for b = (b1, · · · , bn) ∈ {0, 1}n, we mean the tensor product
|b1〉 ⊗ · · · ⊗ |bn〉 ∈ C2n, which is a member of the computational basis of C2n.

�e Hadamard matrix on C2 is de�ned as follows:

H := 1√
2

[
1 1
1 −1

]
∈ End(C2).

�e Hadamard matrix is a unitary matrix. For Cd where d = 2n, the Hadamard
matrix on Cd is de�ned as the n-fold tensor product of H , i.e., H⊗n, which is a
shorthand forH ⊗ · · · ⊗H︸ ︷︷ ︸

n times

.

By applying the Hadamard matrix (of appropriate dimension) to the basis vectors of
the computational basis, we obtain the Hadamard basis (also called diagonal basis),
which is o�en used in this thesis. On C2, we de�ne

|+〉 := H|0〉 = |0〉+ |1〉√
2

, |−〉 := H|1〉 = |0〉 − |1〉√
2

.

2.7.4 Partial Trace and Puri�cation

Consider a composite system AB with state space HA ⊗ HB . When given the
density matrix ρAB for this system, we can obtain the density matrix of system A
alone, also called the reduced density matrix ρA, by applying the partial trace, i.e.,
ρA = trB(ρAB). We also say that we obtain ρA from ρAB by “tracing out” system
B.
De�nition 2.41 �e partial trace trB : End(HA⊗HB)→ End(HA) is the unique
linear functional that satis�es

trB(|ϕA〉|ϕB〉〈ψA|〈ψB|) = trB(|ϕA〉〈ψA| ⊗ |ϕB〉〈ψB|) := 〈ψB|ϕB〉|ϕA〉〈ψA|

for any |ϕA〉, |ψA〉 ∈ HA and |ϕB〉, |ψB〉 ∈ HB .
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De�nition 2.42 LetHA andHB be Hilbert spaces, and let ρA ∈ D(HA). A pure
state |ψ〉 ∈ HA ⊗HB is a puri�cation of ρA if

ρA = trB(|ψ〉〈ψ|).

Proposition 2.43 Every mixed state ρA ∈ D(HA) has a puri�cation |ψ〉 ∈ HA ⊗
HB with dim(HB) ≤ dim(HA).

�e proof is by construction.

Proof. Let ρA =
∑
i λi|ai〉〈ai| be a spectral decomposition of ρA. Let HB be a

Hilbert space with dim(HB) = dim(HA) and let {|bi〉}i be an orthonormal basis
forHB . We claim that

|ψ〉 :=
∑
i

√
λi|ai〉|bi〉 ∈ HA ⊗HB.

is a puri�cation of ρA. To show this, we trace outB again:

trB(|ψ〉〈ψ|) =
∑
i

√
λi|ai〉|bi〉

∑
j

√
λj〈aj |〈bj | =

∑
ij

√
λiλj |ai〉|bi〉〈aj |〈bj |

=
∑
ij

√
λiλjδij |ai〉〈aj | = ρA,

thus |ψ〉 is indeed a puri�cation of ρA.

Note that the puri�cation |ψ〉 is unique up to unitary equivalence: applying an
arbitrary unitary U ∈ End(HB) to systemB cannot change the state ρA obtained
by tracing outB.

2.7.5 The Schmidt Decomposition

Every pure state of a bipartite14 system can be decomposed using the Schmidt de-
composition.
Proposition 2.44 Let HA and HB be arbitrary Hilbert spaces, and write dA and
dB for their respective dimensions. Let |ψ〉 be an arbitrary pure state onHA ⊗HB .
�en, there exist orthonormal bases for HA and HB , respectively {|ai〉}i∈[dA] and
{|bj〉}j∈[dB ], an integer r ∈ N such that r ≤ min(dA, dB) and positive real numbers
σ1, . . . , σr satisfying

∑
i∈[r] σ

2
i = 1 such that

|ψ〉 =
∑
i∈[r]

σi|ai〉|bi〉.

14composed of two subsystems.
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A consequence of Proposition 2.44 is the following. For any state |ψ〉 ∈ HAB , the
reduced density matrices ρA and ρB have exactly the same non-zero eigenvalues:

ρA = trB(|ψ〉〈ψ|) =
∑
i∈[r]

σ2
i |ai〉〈ai| and ρB = trA(|ψ〉〈ψ|) =

∑
i∈[r]

σ2
i |bi〉〈bi|.

2.7.6 QuantumOperations

�e postulates of quantum mechanics give us all the possible actions that can be
performed on a quantum state. We can also take an alternative viewpoint and study
maps between operators (sometimes called superoperators).

LetH,H′ be Hilbert spaces. A map E : End(H) → End(H′) is called positive if
E(P ) ≥ 0 for any P ∈ End(H) for which P ≥ 0.

For a Hilbert space HA, let IA : End(HA) → End(HA) denote the identity
superoperator.
De�nition 2.45 A completely positive trace-preserving map (CPTP map) is a map
E : End(H)→ End(H′) with the following properties:

1. Complete positivity: the map E ⊗ IR is positive for any Hilbert spaceHR;
2. Trace-preserving: tr

(
E(T )

)
= tr(T ) for any T ∈ End(H)

By Stinespring’s dilation theorem, any CPTP map can be represented as a unitary
transformation on a larger system, followed by a partial trace.�e unitary is applied
to a composition of the input state and an auxiliary, �xed state (usually called ancilla
state) of appropriate dimension.
Theorem 2.46 (Stinespring Dilation, see, e.g., [Pau02]) Let E : End(HA) →
End(HB) be a CPTP map. �en, there exists a Hilbert spaceHR with dim(HR) =
dim(HA) and a unitary U ∈ End(HA ⊗ HB ⊗ HR) such that for any T ∈
End(HA)

E(T ) = trAR
(
U(T ⊗ |ω◦〉〈ω◦|)U †

)
,

where |ω◦〉 = |0 . . . 0〉 ∈ HB ⊗HR.

Hence, any CPTP map can be constructed by combining actions that are provided
by the postulates, and, vice versa, any possible combination of those actions corre-
sponds to a particular CPTP map.

Furthermore, the Stinespring dilation theorem implies that a CPTPmap is the most
general physically realizable transformation between density matrices. We will also
call a CPTP map a quantum operation.
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No Cloning

�e no-cloning theorem is a fundamental result in quantum information theory. It
formally expresses the impossibility of copying an unknown quantum state.
Theorem 2.47 LetH be an arbitrary Hilbert space. �ere is no quantum operation
E : End(H)→ End(H⊗H) such that

E(|ϕ〉〈ϕ|) = |ϕ〉|ϕ〉〈ϕ|〈ϕ| (2.7)

holds for every |ϕ〉 ∈ H.

A state |ϕ〉 ∈ H can only be cloned in the sense of (2.7) if it is selected from a known
set of orthogonal states onH.

�e following proof is due to Yuen [Yue86].

Proof. Let E : End(H)→ End(H⊗H) and |ϕ〉, |ψ〉 ∈ H be such that

E(|ϕ〉〈ϕ|) = |ϕ〉|ϕ〉〈ϕ|〈ϕ| and E(|ψ〉〈ψ|) = |ψ〉|ψ〉〈ψ|〈ψ|.

In the remainder, we will show that this implies that |ϕ〉 and |ψ〉 either represent
the same state or are orthogonal states.

LetHR = H. Using Stinespring’s dilation theorem, we can represent E(|ϕ〉〈ϕ|) as

E(|ϕ〉〈ϕ|) = trR(U |ϕ〉|ω◦〉|ω◦〉〈ϕ|〈ω◦|〈ω◦|U †)
= trR(|ϕ〉|ϕ〉|χ〉〈ϕ|〈ϕ|〈χ|)
= |ϕ〉|ϕ〉〈ϕ|〈ϕ|

where U ∈ End(H ⊗H ⊗HR) is unitary, |ω◦〉 = |0 · · · 0〉 ∈ H and |χ〉 ∈ HR.
Similarly, we can represent E(|ψ〉〈ψ|) in this form, where we let |χ′〉 ∈ HR be the
ancilla state a�er applying U (instead of |χ〉).

To shorten notation, we proceed our analysis using state-vector notation, which we
may use since our analysis is based on pure states. By focusing on the expressions
inside the partial trace overR, we have the following two equations

U(|ϕ〉|ω◦〉|ω◦〉) = |ϕ〉|ϕ〉|χ〉, (2.8)
U(|ψ〉|ω◦〉|ω◦〉) = |ψ〉|ψ〉|χ′〉, (2.9)

We now take the inner product of both equations, i.e., we �rst write (2.9) as

(〈ψ|〈ω◦|〈ω◦|)U † = 〈ψ|〈ψ|〈χ′|,



2.7. Quantum Systems and Operations 77

and subsequently le�-multiply the le� and right hand side of (2.8) by respectively
the le� and right hand side of the expression above, to obtain

〈ψ|ϕ〉 = (〈ψ|ϕ〉)2〈χ′|χ〉.

�is equation is satis�ed if 〈ψ|ϕ〉 = 0, i.e., when |ψ〉 and |ϕ〉 are orthogonal. If
they are not, then we can divide at both sides by 〈ψ|ϕ〉, to obtain 1 = 〈ψ|ϕ〉〈χ′|χ〉,
which is only satis�ed when 〈ψ|ϕ〉〈χ|χ′〉 = exp(iθ) for θ ∈ R, which means that
|ϕ〉 and |ψ〉 represent the same state.

We conclude from this reasoning that only orthogonal states can be cloned, hence a
general cloning operation is impossible.

2.7.7 Alternative Descriptions of Measurements

�ere are several commonways of expressingmeasurements in quantummechanics.
We have chosen to express the fourth postulate in terms of “general measurements,”
where the latter is jargon from [NC00]. In this section, we discuss some of the
alternative descriptions.

A positive-operator-valued measure (POVM) is obtained by setting Ex := M †xMx

for all x, where {Mx}x is a complete collection of measurement operators. �e
operators Ex, which are positive semi-de�nite, are called the POVM elements and
the collection {Ex}x, which obviously satis�es the completeness condition (i.e.,∑
xEx = I), is called “the POVM.”Vice versa, every family of positive-semide�nite

matrices that add up to the identity is a POVM, since any positive-semide�nite
matrix Ex can always be decomposed as Ex = M †xMx. Note however that this
decomposition is not unique. By substituting Ex := M †xMx in (2.5) we see that
the POVM elements determine the probabilities of the outcomes of the measure-
ment. A POVM does not uniquely specify the post-measurement state, by the
non-uniqueness of the decomposition above.

A special case of the general-measurement formalism is the class of projective
measurements, where each measurement matrix is a projector.�e completeness
condition implies that these projectors project to mutually orthogonal subspaces,
i.e., for the projective measurement {Px}x, it holds that PxPx′ = δxx′Px ∀x, x′.

If x ∈ R holds for every outcome x, then a compact way of representing a projective
measurement is in the form of a Hermitian matrix called observableO, which has
the following spectral decomposition

O =
∑
x

xPx.
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A complete projective measurement is a projective measurement where all projectors
have rank 1. Let A be a subsystem of an arbitrary composite system, and denote
the state space of a by HA and its dimension by d. Let B := {|ψi〉}i∈[d] be an
orthonormal basis forHA. When we say “we measure A in a basis B,” we mean a
complete projective measurement, where the projectors are given by Pi := |ψi〉〈ψi|
for all i ∈ [d].

In particular, whenever we say that we measure an n-qubit state in the basis b,
where b = (b1, . . . , bn) ∈ {0, 1}n is a bit string, we always mean that we measure
the state qubit-wise as follows: for every i ∈ [n], we measure the ith qubit in the
computational basis (on C2) if bi = 0, and in the Hadamard basis (of C2) if bi = 1.

In case of a pure state, measuring-in-a-basis comes down to representing the state
in the measurement basis. Suppose that we want to measure a state |ψ〉 ∈ Cd in the
computational basis. Let the representation of |ψ〉 in the computational basis be
given by

|ψ〉 =
∑
x∈[d]

αx|x〉,

where αx ∈ C for all x ∈ [d]. Note that we call these coe�cients αx amplitudes.
�e probabilities of the possible measurement outcomes are given by the (absolute)
squares of the amplitudes, i.e., px = |αx|2. �e post-measurement state when
obtaining outcome x is |x〉.

2.7.8 Entanglement

From the postulates we know that if a density matrix ρAB ∈ D(HA ⊗HB) can be
written as ρAB = ρA ⊗ ρB , then the subsystems A andB are independent. In this
case, we say that the state ρAB is a product state. More generally, a state is called
separable if it can be written as a convex combination of product states,

ρAB =
∑
i

ξi σA,i ⊗ σB,i,

where σA,i ∈ HA and σB,i ∈ HB for all i and where {ξi}i is a distribution.15

If a state is not separable, it is called entangled. One of the simplest examples of
an entangled state is the EPR pair |ΦAB〉 ∈ HA ⊗ HB , whereHA = HB = C2,

15Although we de�ned a distribution to be a function, here we of course mean that the numbers
ξi are non-negative and sum up to one.
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which we de�ne to be16

|ΦAB〉 := 1√
2
(
|00〉+ |11〉

)
.

When measuring the state, the entanglement exhibits itself in the form of a peculiar
phenomenon, which Einstein called “spukha�ige Fernwirkung” (“spooky action at
a distance”). To see this, suppose that Alice measures her subsystem A �rst, in
the computational basis. Her outcome will be a random bit. Let us suppose Alice
obtained the outcome 0, which means that the joint state has collapsed to |00〉. Now,
if Bob measures in the same basis as Alice (i.e., the computational basis), he will
get the same outcome.�is e�ect is not limited to the computational basis; it also
occurs for the Hadamard basis,17 which becomes clear if we represent |ΦAB〉 in the
Hadamard basis:

|ΦAB〉 = 1√
2
(
|00〉+ |11〉

)
= 1√

2

(1
2(|+〉+ |−〉)(|+〉+ |−〉) + 1

2(|+〉 − |−〉)(|+〉 − |−〉)
)

= 1√
2
(
|+ +〉+ |− −〉

)
.

Note that because of symmetry, we may interchange the roles of Alice and Bob in
the discussion above.

A well known application of EPR pairs (or, in general, entangled states) is quantum
key distribution (QKD), which is a protocol for establishing a secret key between
two parties. See Chapter 1 for a high-level explanation of QKD, and Chapter 3 for a
technical treatment and proof.

2.7.9 Hybrid Systems

A special case of composite systems are hybrid systems, which are systems com-
posed of both quantum and non-quantum (classical) subsystems. A state of such
a hybrid system will be called a cq-state. We o�en encounter hybrid systems in
quantum cryptography. For example, cryptographic keys are typically represented
as classical subsystems, whereas the adversary’s (quantum) information is described
by a quantum subsystem.

16In the physics literature, an EPR pair is sometimes de�ned di�erently, i.e., as 1√
2 (|01〉 − |10〉),

which is also called the singlet state.
17When Alice and Bob perform their measurements on a singlet state, they will get opposite

(binary) outcomes for any basis they use, as long as they use the same basis [NC00].
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Although the behavior of the classical subsystems can be fully described in the
language of probability theory, it is possible and usually more convenient to also use
the density matrix formalism for representing the classical subsystems. LetX be a
random variable over X with distribution PX . �e density-matrix representation
of PX with respect to an orthonormal basis {|x〉}x∈X for C|X | is given by

ρX =
∑
x∈X

PX(x)|x〉〈x|.

From�eorem 2.36 it follows that the probabilities PX(x) coincide with the eigen-
values of ρX .

Following [Ren05], we say that a composite system ρXE is classical with respect to
{|x〉}x∈X if there exists a collection {ρxE}x∈X of density matrices onHE such that
ρXE can be written as

ρXE =
∑
x∈X

PX(x)|x〉〈x| ⊗ ρxE .

Moreover, by saying that ρXE is classical onHX (or simply: classical onX) wemean
that there exists a basis {|x〉}x∈X ofHX such that ρXE is classical with respect to
{|x〉}x∈X .

Tracing outX from ρXE yields

ρE = trX(ρXE) =
∑
x∈X

PX(x)ρxE ,

and the partial trace over a classical system coincides with marginalizing over that
random variable. Furthermore, the fully mixed state on a classical subsystem coin-
cides with the density-matrix representation of the uniform probability distribution
over the corresponding random variable.

For a state ρXE that is classical on X we say that X is random and independent
from E if

ρXE = 1
|X |

IX ⊗ ρE .

For example, in a cryptographic setting whereX represents a classical key and E
the quantum system held by an adversary, the above would mean that the key is
perfectly secret with respect to the adversary.

For an arbitrary state ρXE that is classical onX , we may condition on any eventA
that is de�ned by Pr[A|X = x] for all x ∈ X with PX(x) > 0, we write this as

ρXE|A =
∑
x∈X

PX|A(x)|x〉〈x| ⊗ ρxE .
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Tracing outX from this state gives

ρE|A = trX(ρXE|A) =
∑
x∈X

PX|A(x)ρxE .

IfA is de�ned as the eventX = x, then we get that ρE|A = ρE|X=x = ρxE .

Let ρXY E be cq-state of hybrid systemXY E with classicalX and Y . To express
that the random variable X is independent of the quantum subsystem E when
given the random variable Y , we say that ρXY E equals ρX↔Y↔E , where

ρX↔Y↔E :=
∑
x,y

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρyE . (2.10)

�is notion is called conditional independence and the quantum version above was
introduced in [DFSS07].

2.7.10 Distance between States

�e trace norm of a matrix A is de�ned as ‖A‖1 := tr
√
A†A, where

√
A†A is

the positive semi-de�nite square root18 of A†A. In case A is Hermitian, then the
trace norm of A simpli�es to

∑
i |λi|, where λi are the eigenvalues of A. �e

trace distance (between states) is the quantum analogue of the statistical distance
(between distributions).
De�nition 2.48 �e trace distance between two density matrices ρ, σ ∈ D(H) is
de�ned as δ(ρ, σ) := 1

2‖ρ− σ‖1.

Below, we list a number of important properties, for any ρ, σ ∈ D(H).

1. Non-negativity: 0 ≤ δ(ρ, σ);
2. Identity of indiscernibles: δ(ρ, σ) = 0 if and only if ρ = σ;
3. Symmetry: δ(ρ, σ) = δ(σ, ρ);
4. Subadditivity / triangle inequality: δ(ρ, σ) ≤ δ(ρ, τ) + δ(τ, σ) for any τ ∈
D(H);

5. Bounded from above: δ(ρ, σ) ≤ 1, with δ(ρ, σ) = 1 if and only if tr(ρσ) = 0
(i.e., when ρ and σ are orthogonal);

6. Unitary invariance: for any unitary U , δ(UρU †, UσU †) = δ(ρ, σ);
7. Subadditivity w.r.t. tensor products: δ(ρ ⊗ ρ′, σ ⊗ σ′) ≤ δ(ρ, σ) + δ(ρ′, σ′)

for any ρ′, σ′ ∈ D(H′), with “=” if and only if ρ′ = σ′;
18For a de�nition of the positive semi-de�nite square root, see Def. 9.4-1 in [Kre78].
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8. Contractive for partial trace: for bipartite density operators ρAB, σAB ∈
D(HA ⊗HB), δ

(
trB(ρAB), trB(σAB)

)
≤ δ(ρAB, σAB)

Note that properties 1–4 imply that the trace distance is a metric.

Similar to the statistical distance, the trace distance can be interpreted as the maxi-
mal distinguishing probability.
Proposition 2.49 [NC00] Let ρ, σ ∈ D(H). �en,

δ(ρ, σ) = max
{Em}

SD(p, q)

where the maximum is over all POVMs on H, and p and q are the distributions of
the outcomes of measuring ρ and σ respectively using {Em}.

For two pure states |ψ〉 and |ϕ〉, the trace distance simpli�es to

δ(|ψ〉〈ψ|, |ϕ〉〈ϕ|) =
√

1− |〈ψ|ϕ〉|2.

For two cq-states ρXE , σXE ∈ D(HX ⊗HE) with classicalX and trE(ρXE) =
trE(σXE), it holds that

δ(ρXE , σXE) =
∑
x

PX(x) δ(ρxE , σxE).

An important property of the trace distance is that it cannot increase when applying
an arbitrary CPTP map to the states.
Theorem 2.50 LetH be an arbitrary Hilbert space and let ρ, σ ∈ D(H). Let E be
an arbitrary CPTP map onH. �en,

δ
(
E(ρ), E(σ)

)
≤ δ(ρ, σ)

Proof. By Stinespring’s dilation theorem (�eorem 2.46), any quantum operation
E can be represented as the sequence: (1) composition with an ancilla, (2) unitary
transformation, and (3) partial trace. By subadditivity with respect to tensor prod-
ucts, and the fact that for ρ and σ the same ancilla is added, step (1) does not change
the trace distance. By unitary invariance, step (2) does also not change the trace
distance. By contractivity for the partial trace, step (3) cannot increase the trace
distance. Hence the assertion follows.

In quantum cryptography, we o�en want to express the statistical distance between
some state and another state thatmodels an “ideal” or “desired situation,” for example
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a state of which a subsystem is the fully mixed state and independent from the other
subsystems. For this purpose, we introduce a compact notation.
De�nition 2.51 For a density matrix ρXE ∈ D(HX ⊗HE) with classicalX , the
distance to uniform ofX given E is de�ned as

dunif(X|E) := 1
2‖ρXE − ρU ⊗ ρE‖1,

where ρU := 1
dim(HX)IX .

If also E is classical, then dunif(X|E) simpli�es to

dunif(X|E) = 1
2
∑
x,e

|PXE(x, e)− PU (x)PE(e)|

=
∑
e

PE(e) 1
2
∑
x

∣∣PX|E(x|e)− PU (x)
∣∣.

It is not too hard to show that for a tri-partite systemXY E with classicalX and Y

dunif(X|Y E) =
∑
y∈Y

PY (y) dunif(X|E, Y =y).

From this, the following lemma follows immediately.
Lemma 2.52 For any y: dunif(X|E, Y =y) ≤ dunif(X|Y E)/Pr[Y = y].

2.8 The One-Time Pad in a Quantum Setting

Proposition 2.53 Let ` ∈ N. For any classical random variables M,K over F`2
and arbitrary quantum system E, let 1

2‖ρMKE − ρM ⊗ ρU ⊗ ρE‖1 ≤ ε, where
ρMKE ∈ D(HM ⊗ HK ⊗ HE) and ρU is the fully mixed state on HK . �en, it
holds that

1
2‖ρMCE − ρM ⊗ ρU ⊗ ρE‖1 ≤ ε

where C := M ⊕K .

Proof. Follows immediately from�eorem 2.50.

2.9 Measures of Uncertainty for Density Matrices

De�nition 2.54 LetH be some Hilbert space. For a density matrix ρ ∈ D(H) the
von Neumann entropy is given by

H(ρ) := −tr(ρ log ρ),



84 Chapter 2. Preliminaries

Equivalently,H(ρ) = −
∑
i λi log λi, where λi are the eigenvalues of ρ. When ρ is

classical, then the von Neumann entropy coincides with the Shannon entropy.

�e following de�nition of conditional min-entropy is due to [Ren05].
De�nition 2.55 Let ρAB ∈ D(HA ⊗HB) and σB ∈ D(HB).�emin-entropy of
ρAB relative to σB is de�ned19 as

Hmin(ρAB|σB) := − log inf{λ ∈ R : λ · IA ⊗ σB − ρAB ≥ 0}.

�emin-entropy of ρAB when givenHB is de�ned20 as

Hmin(ρAB|B) := sup
σB

Hmin(ρAB|σB).

When the state ρAB is clear from the context, we prefer writing Hmin(A|B) for
Hmin(ρAB|B) and say “the min-entropy ofA givenB.” IfHB is the trivial spaceC,
we obtain the unconditional min-entropy of ρA, denoted asHmin(ρA), orHmin(A)
if ρA is clear from its context, which simpli�es to

Hmin(ρA) = − log λmax(ρA),

where λmax(ρA) is the largest eigenvalue of ρA.

For the special case of a hybrid state ρXE ∈ D(HX ⊗HE) with classicalX , it is
shown in [KRS09] that the conditional min-entropy of a quantum state coincides
with the negative logarithm of the guessing probability conditional on quantum side
information

pguess(X|E) := max
{Mx}

∑
x

PX(x) tr(Mxρ
x
E),

where the latter is the probability that the party holdingHE guessesX correctly
using the POVM {Mx}x onHE that maximizes pguess.�us,

Hmin(X|E) = − log pguess(X|E). (2.11)

�e following proposition guarantees that the “averaging property” of the guessing
probability (which holds by de�nition in the classical case, see (2.1) in Section 2.3.2)
still holds when additionally conditioning on a quantum system.

19�ere exist choices for σB for which the set {λ ∈ R : λ · IA ⊗ σB − ρAB ≥ 0} is empty. For
this reason, we de�ne inf ∅ :=∞.

20IfHB has �nite dimension (in this thesis, we anyway solely deal with �nite-dimensional Hilbert
spaces), then the setD(HB) is compact and hence the supremum can be replaced by a maximum
[Ren05].
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Proposition 2.56 For any state ρXY E ∈ D(HX ⊗HY ⊗HE) that is classical on
X and Y it holds that

pguess(X|Y E) =
∑
y

PY (y) pguess(X|E, Y = y).

Proof. First, note that for any matrixMx acting onHY ⊗HE , we can always write
Mx =

∑
y,y′ |y〉〈y′| ⊗My,y′

x , whereMy,y′
x acts onHE for every x, y, y′. Now, we

write

pguess(X|Y E) = max
{Mx}

∑
x

PX(x)tr(Mxρ
x
Y E)

= max
{Mx}

∑
x

PX(x)tr(Mx

∑
y

PY |X(y|x) |y〉〈y| ⊗ ρx,yE )

= max
{Mx}

∑
x,y

PXY (x, y)tr((
∑
v,w

|v〉〈w| ⊗Mv,w
x )(|y〉〈y| ⊗ ρx,yE ))

= max
{Mx}

∑
x,y

PXY (x, y)
∑
v

〈v|y〉tr(Mv,y
x ρx,yE )

= max
{Mx}

∑
x,y

PXY (x, y)tr(My,y
x ρx,yE )

=
∑
y

PY (y) max
{My,y

x }

∑
x

PX|Y (x|y)tr(My,y
x ρx,yE )

=
∑
y

PY (y) pguess(X|E, Y = y).

We also de�ne the (unconditional)max-entropy of a densitymatrix. In the literature,
one typically �nds two di�erent de�nitions for max-entropy (i.e., [Ren05] versus
[KRS09]).�e following de�nition satis�es our needs.
De�nition 2.57 Let ρ ∈ D(H).�emax-entropy of ρ is de�ned as

Hmax(ρ) := log rank(ρ).

Proposition 2.58 �e conditional min-entropy is invariant under local unitaries,
that is, for ρAB ∈ D(HA⊗HB) and an arbitrary unitary U with product structure
onHA ⊗HB , i.e., U := UA ⊗ UB , it holds that

Hmin(UρABU †|B) = Hmin(ρAB|B). (2.12)
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Furthermore, the unconditional max-entropy is unitarily invariant,

Hmax(UAρAU †A) = Hmax(ρA). (2.13)

Proof. To prove (2.12) it su�ces to show that

λ · IA ⊗ σB − ρAB ≥ 0 =⇒ ∃σ′B such that λ · IA ⊗ σ′B − UρABU † ≥ 0

Because U is unitary, it holds that

λ · IA ⊗ σB − ρAB ≥ 0 =⇒ U(λ · IA ⊗ σB − ρAB)U † ≥ 0

Finally,

U(λ · IA ⊗ σB − ρAB)U † = λ · U(IA ⊗ σB)U † − UρABU †

= λ · UAIAU †A ⊗ UBσBU
†
B − UρABU

†

= λ · IA ⊗ σ′B − UρABU †,

where σ′B = UBσBU
†
B .

For (2.13), the claim immediately follows from the fact that a unitary transformation
leaves the eigenvalues of the operator to which it is applied unchanged.

�e following proposition is known as the chain rule for min-entropy.
Proposition 2.59 ([Ren05]) �e following holds for all ρABC ∈ D(HA ⊗ HB ⊗
HC),

Hmin(A|BC) ≥ Hmin(AB|C)−Hmax(B).

�e following shows that removing a classical subsystem only reduces the min-
entropy.
Proposition 2.60 ([Ren05]) �e following holds for all ρAXC ∈ D(HA ⊗ HX ⊗
HC) with classicalX ,

Hmin(AX|C) ≥ Hmin(A|C).

As a corollary of Proposition 2.59 and 2.60, we obtain a chain rule that we will o�en
use.
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Corollary 2.61 (ChainRule for RemovingClassical Subsystems) �e following holds
for all ρAXC ∈ D(HA ⊗HX ⊗HC) with classicalX ,

Hmin(A|XC) ≥ Hmin(A|C)−Hmax(X).

�e following chain rule is particularly useful to prove security in the bounded-
quantum-storage model.
Proposition 2.62 For any ρ ∈ D(HXY E) with classicalX and Y it holds that

Hmin(X|Y E) ≥ Hmin(X|Y )−Hmax(E).

To prove Proposition 2.62, we will use the following lemma.
Lemma 2.63 For any state ρXY E ∈ D(HX ⊗ HY ⊗ HE) that is classical on X
and Y it holds that

Hmin(XE|Y = y) ≥ Hmin(X|Y = y) (2.14)

for every y ∈ Y .

Proof. Note that it su�ces to show that λmax(ρyXE) ≤ λmax(ρyX) holds for every
y ∈ Y . Because ρyXE is classical onX , there exists a unitary U acting onHX such
that ρ̃ yXE := (U ⊗ IE)ρyXE(U †⊗ IE) is classical with respect to the computational
basis {|x〉}x∈X on HX with X := [d]. In particular, this means that ρ̃ yXE has
block-diagonal structure:

ρ̃ yXE =
∑
x∈[d]

PX|Y (x|y)|x〉〈x|⊗ρx,yE =


PX|Y (1|y) ρ1,y

E 0
. . .

0 PX|Y (d|y) ρd,yE

 .
Note that because U is unitary, ρ̃ yXE has the same eigenvalues as ρyXE , where these
eigenvalues are given by the union of the eigenvalues of the blocks on the diagonal of
ρ̃ yXE . From this we see that the largest eigenvalue of ρ̃ yXE (and thus of ρyXE) cannot
be larger than the largest eigenvalue of ρ̃ yX := trE(ρ̃ yXE) (and thus of ρyX).

Proof of Proposition 2.62 . By (2.11) it is equivalent to show that

pguess(X|Y E) ≤ pguess(X|Y ) 2Hmax(E).
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Using Proposition 2.56, we write

pguess(X|EY ) =
∑
y

PY (y) pguess(X|E, Y = y) =
∑
y

PY (y) 2−Hmin(X|E,Y=y)

≤
∑
y

PY (y) 2−(Hmin(XE|Y=y)−Hmax(E))

≤ 2Hmax(E) ∑
y

PY (y)2−Hmin(X|Y=y) = 2Hmax(E) pguess(X|Y ),

where the �rst inequality is Proposition 2.59, and the second inequality follows by
Lemma 2.63. Hence, the claim follows.

2.10 Extractors against Quantum Side Information

A natural generalization of the randomness extraction problem is to allow the side
information, i.e., the random variable Y in De�nition 2.24, to be a quantum state.
De�nition 2.64 A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) strong
extractor against quantum side information, if for any bipartite quantum systemXE
with classicalX and withHmin(X|E) ≥ k, and for a uniform and independent
seed S, we have

dunif
(
Ext(X,S)

∣∣SE) ≤ ε .
Note that we �nd “extractor against quantum side information” a too cumbersome
terminology; thus we just call Ext a (strong) extractor, even though it is a stronger
notion than the standard notion of a (strong) extractor. When necessary, we distin-
guish between the two notions by saying that an extractor is or is not secure against
quantum side information.

A well-known example of a strong extractor (that is secure against quantum side
information) is a two-universal hash function.�e parameters of this extractor are
given by the privacy ampli�cation theorem for quantum adversaries due to Renner
and König [RK05].
Theorem 2.65 (Privacy Ampli�cation) Let ρXE be a hybrid state with classicalX .
Let h : {0, 1}n × {0, 1}d → {0, 1}q be a universal hash function, and let S be
uniformly distributed over {0, 1}d, independent ofX and E. �en it holds that

dunif(h(X,S)|SE) ≤ 1
2
√

2q−Hmin(X|SE) = 1
2

√
2q pguess(X|SE).



2.11. Quantum Identi�cation 89

At the time of this writing, the state of the art is described in [DPVR09], which
presents an extractor secure against quantum side information with a seed length
that is polylogarithmic in the input length (d = O(log3 n)).

2.11 Quantum Identi�cation

In Chapters 4 and 5 we present contributions to di�erent aspects of the quantum
identi�cation protocol (QID protocol) from [DFSS07]. In this section, we give an
overview of this protocol.

First of all, let us say in some more detail what we mean by the term “protocol.”
A protocol is a speci�cation of a sequence of operations (steps), to be performed
by two or more parties. At the start, the protocol may take (classical or quantum)
inputs, which may be speci�c for each party. In the following steps, the parties
perform local computations and exchange (classical or quantum) messages. At the
end, the parties produce their outputs. Whenever a party expects a message that
either never arrives or arrives in the wrong format, that party will use a default
message instead and will then continue executing the protocol.

�e goal of password-based identi�cation is to “prove” knowledge of a password w
(or some other low-entropy key, like a PIN) without giving w away. More formally,
given a user U and a server S that hold a pre-agreed password w ∈ W , U wants to
convince S that he indeed knows w, but in such a way that he gives away as little
information on w as possible in case he is actually interacting with a dishonest
server S∗ (who does not know w).

An informal behavioral description of a cryptographic task, such as the one above,
can be formalized as an ideal functionality. In the case of password-based identi�ca-
tion, the ideal functionality F computes the equality function; it takes as inputs the
passwords of U and S, and outputs to S a single bit that tells whether the passwords
are equal or not.

A contribution from [DFSS07] beyond theQIDprotocol itself are the formal security
de�nitions for quantum password-based identi�cation. As shown in [FS09], these
de�nitions are uniquely determined by the ideal functionality and guarantee a
special form of sequential composability: if QID protocol π securely implements
ideal functionality F (according to the de�nitions given below), then any classical
two-party protocol that makes sequential calls to F remains secure when the calls
to F are replaced by invocations of the QID protocol π.
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De�nition 2.66 (Correctness) An identi�cation protocol is said to be ε-correct if,
a�er an execution by honest U and honest S, S accepts with probability 1− ε.

�e following two de�nitions are a bit less obvious.�e intuition behind them is as
follows.

In the ideal world,21 a dishonest party (either U∗ or S∗, depending on which of
the two de�nitions you consider) whose view is independent of the passwordW
cannot do better than to guess this password, and learn whether this guess was
correct.22 Note that if the guess was wrong, then the dishonest party can discard
this candidate password; if it was right, then there is no security le�. It is crucial
that the security de�nition allows this guessing strategy; otherwise the de�nition
can never be achieved by any protocol. Let the adversary’s guess be modeled as
the random variableW ′. Formally, we can express the �nal state in the ideal world
(conditioned on that the guess was wrong) as ρW↔W ′↔E|W 6=W ′ .

In the real world, the parties execute a protocol to emulate the ideal functionality.
We want to show that no matter which strategy the dishonest party has, and when
given all messages exchanged during the execution of the protocol, the dishonest
party can essentially not learn more information aboutW than the dishonest party
in the ideal world. Formally, this is done by showing that, a�er the execution of the
protocol, there exists a random variableW ′ in the real world for which the joint
state ρWW ′E , conditioned on the event whereW ′ 6= W , is close to the �nal state
in the ideal world.
De�nition 2.67 (User Security) An identi�cation protocol for two parties U, S
is ε-secure for the user U against (dishonest) server S∗ if the following holds: If
the initial state of S∗ is independent ofW , then its state E a�er execution of the
protocol is such that there exists a random variableW ′ that is independent ofW
and such that

δ(ρWW ′E|W 6=W ′ , ρW↔W ′↔E|W 6=W ′) ≤ ε.

De�nition 2.68 (Server Security) An identi�cation protocol for two parties U,
S is ε-secure for the server S against (dishonest) user U∗ if the following holds:
whenever the initial state of U∗ is independent ofW , then there exists a random
variableW ′ (possibly ⊥) that is independent ofW such that ifW 6= W ′ then S

21�at is, the ideal setting where the ideal functionality is used.
22Note that in case the user is the dishonest party, he does not learn the correctness of his guess

directly from the ideal functionality, since the latter only outputs a bit to the server. However, the
dishonest user can typically deduce the correctness of his guess from subsequent behavior of the
server.
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accepts with probability at most ε, and ifW = W ′ then S accepts with certainty.23
Furthermore, the common state ρWE a�er execution of the protocol (including S’s
announcement to accept or reject) satis�es

δ(ρWW ′E|W 6=W ′ , ρW↔W ′↔E|W 6=W ′) ≤ ε.

It is well-known that these de�nitions cannot be achieved with suitable parame-
ters (i.e., exponentially small ε) without making additional assumptions (beyond
trusting the laws of quantum mechanics).

In [DFSS07], Damgård et al. show the existence of a secure identi�cation protocol
in the bounded-quantum-storage model.�e protocol involves the communication
of qubits, and is secure against an arbitrary dishonest server S∗ that has limited
quantum-storage capabilities and can only store a certain fraction of the communi-
cated qubits, whereas the security against a dishonest user U∗ holds unconditionally.

In fact, two QID protocols are proposed in [DFSS07], QID and QID+.�e former
is truly password-based but does not protect against a man-in-the-middle attack,
whereas the latter is secure against a man-in-the-middle attack but is not truly
password-based, because U and S need to additionally share a secret high-entropy
key.24

2.11.1 The Basic QID Protocol

Let C ⊂ {0, 1}n be a binary code with minimum distance d, and let c :W → C be
its encoding function. Letm := |W|, and typically,m < 2n. Let F be the class of
all linear functions from Fn2 to F`2, where ` < n, represented as `× nmatrices over
F2. Note thatF = G1 with r = `, where G1 is de�ned and shown to be universal in
Section 2.4.1. Furthermore, let G be a strongly two-universal class of hash functions
fromW to F`2. When we writeHv for any v = (v1, . . . , vn) ∈ {0, 1}n (recall that
H is the Hadamard matrix on C2), we meanHv1 ⊗ · · · ⊗Hvn . QID is shown as
Protocol 2.1.

We �nd it convenient to specify protocols in terms of �xed values (instead of random
variables). In the proofs, we then usually switch to random-variable notation. We
will not give the security proofs of QID here, they can be found in [DFSS07]. Instead,
we describe at a high level how the protocol works and why it provides security.

23�e latter clause is not present in [DFSS07], but achieves a more natural ideal functionality, as
pointed out in [FS09].

24�e high-entropy key is only needed to protect against a man-in-the-middle attack, security
against dishonest U and S only relies on the password and holds even if the dishonest party knows
the high-entropy key.
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1. U selects x r←{0, 1}n and θ r←{0, 1}n and sendsHθ|x〉 to S.
2. S measuresHθ|x〉 in basis c = c(w). Let x′ be the outcome.
3. U selects f r←F and sends θ and f to S. Both compute Iw := {i : θi =

c(w)i}.
4. S selects g r←G and sends g to U.
5. U computes and sends z := f(xIw)⊕ g(w) to S.
6. S accepts if and only if z = z′ where z′ := f(x′Iw)⊕ g(w).

Protocol 2.1: �e quantum password-based-identi�cation protocol QID from
[DFSS07].

�e protocol starts with a qubit-communication phase, in which the user sends
BB84-encoded qubits (i.e., random basis states from either the computational or
Hadamard basis) to the server. �e server measures the ith qubit for all i ∈ [n]
in the computational or the Hadamard basis, depending on the ith position in a
length-n binary codeword c, where this codeword is determined by the password
w.

A�er this communication phase, where we assume that the server measured (most
of) the qubits upon reception, the user announces the bases in which the qubits
were encoded. At this point, the parties can derive a common raw key by selecting
those positions where their bases coincide, i.e., xIw . For the security of the user, it
will be important that the server can only derive one raw key belonging to a single
choice of w. Note that the bounded-quantum-storage assumption about the server
is crucial here; if the server can delay all measurements beyond the point at which
the user announces the bases, he can measure each qubit in the correct basis, and
subsequently compute a separate raw key for each choice of w.

Next, the user sends a function f randomly chosen from a universal family to the
server, and the server sends a function g randomly chosen from a strongly universal
family to the user.�en, the user sends z := f(xIw)⊕ g(w) to the server. At the
core of the user-security proof is a lower bound on the min-entropy of xIw from
the dishonest server’s point of view, which follows from the uncertainty relation
from [DFR+07]. �e function f performs privacy ampli�cation to this raw key,
resulting in a shorter but almost uniform key f(xIw). �e latter key is used as a
one-time pad such that z will be close to independent from w, regardless of g, and
protects the user against a dishonest server.

�e purpose of g is to protect the server against a dishonest user. By the strongly
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universal property, the value of g(w) is di�erent for each w with overwhelming
probability, which makes it extremely unlikely that a dishonest user can produce a
valid z for incorrect guesses of w. Furthermore, it guarantees that the accept/reject
decision of the server cannot be exploited by the dishonest user to learn anything
beyond the correctness of his guess for w.

2.11.2 Security against Man-in-the-Middle Attacks

As mentioned above, protocol QID is only proven secure against impersonation
attacks. Moreover, QID is actually insecure in case of a man-in-the-middle attack.
For example, the attacker can measure the �rst qubit in a �xed basis and forward
the collapsed qubit. If the server subsequently rejects, then the attacker knows
that he inserted an error; hence the �rst qubit must have been encoded in a basis
opposite to the attacker’s measurement basis.�is in turn gives the attacker one bit
of information on w.

�e QID protocol that is in addition secure against man-in-the-middle attacks is
called QID+. It is obtained from a noise-tolerant version of QID, by introducing
consistency checks in the qubit communication phase and to additionally authen-
ticate all classical communication. For details about the noise-tolerant version
of protocol QID, see [DFSS07]. For the high-level discussion here, it su�ces to
know that, informally speaking, {synj}j∈J for some non-empty set J is a special
family of syndrome functions that also acts as an extractor: if a randomly selected
syndrome function is applied to a random variable with large enough min-entropy,
then the output will be close to the uniform distribution.�is property prevents
leakage of information about w.

�e task of authenticating all classical messages can be performed using a standard
information-theoretic authentication code, which requires an authentication key,
which may only be re-used a limited number of times. Hence, when using standard
authentication, the parties need to refresh the authentication key a�er a �xed
number of protocol executions, e.g., using QKD.�e main problem of this approach
is that an attacker can repeatedly enforce the QID and QKD protocols to abort, in
order to let the parties run out of keymaterial. Damgård et al. [DFSS07] circumvent
this problem by performing the authentication in the following special way such that
the authentication key can be re-used. In Protocol 2.2, MAC∗k is an extractor-MAC,
which has the following property. If the message for which the tag is computed
contains su�cient min-entropy conditioned on the adversary’s view, then the tag
is close to uniform when given the key k and the adversary’s view. Note that the
message is guaranteed to have su�cient min-entropy by including xI . Hence,
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the adversary only learns a very small amount of information about the key from
observing the tag, which allows the honest parties to reuse the key.

1. U selects x r←{0, 1}n and θ r←{0, 1}n and sendsHθ|x〉 to S.
2. S selects a test set T ⊂ [n] of size ` at random, computes c = c(w) and

replaces ci for all i ∈ T by random bits, and then measuresHθ|x〉 in basis c.
Let x′ be the outcome, and let test′ := x′T .

3. Let I := {i : θi = c(w)i}. U selects f r←F and j r←J and sends θ, j,
s := synj(xI) and f to S.

4. S selects g r←G and sends g and T to U.
5. U computes and sends test := xT , z := f(xIw) ⊕ g(w) and tag∗ :=

MAC∗k(θ, j, s, f, g, T , test, z, xI) to S.
6. S recovers xI from x′I using test and s, and accepts if and only if (1) tag∗

veri�es correctly, (2) test coincides with test′ at the positions where the bases
coincide, and (3) z = f(x′Iw)⊕ g(w).

Protocol 2.2: �e quantum identi�cation protocol QID+, which is also secure
against man-in-the-middle attacks. To achieve the latter, it requires an additional
high-entropy key, which is called k here.



3
Random Sampling from a Quantum
Population

�e content of this chapter is based on joint work with Serge Fehr [BF10].
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3.1 Introduction

Sampling allows to learn some information on a large population by merely looking
at a relatively small number of individuals. For instance it is possible to predict
the outcome of an election with very good accuracy by analyzing a relatively small
subset of all the votes. In this chapter, we study the act of sampling from a quantum
population, where we want to be able to learn information on a large quantum state
by measuring only a small part. Speci�cally, we investigate the quantum version of
the following classical sampling problem (and of variants thereof). Given a bit string
q = (q1, . . . , qn) ∈ {0, 1}n of length n, the task is to estimate the Hamming weight
of q by sampling and looking at only a few positions within q.�is classical sampling
problem is well understood. For instance the following particular sampling strategy
works well: sample (with or without replacement) a linear number of positions
uniformly at random, and compute an estimate for the Hamming weight of q by
scaling the Hamming weight of the sample accordingly; Hoe�ding’s inequality
(�eorem 2.11) guarantees that the estimate is close to the real Hamming weight
except with small probability. Such a sampling strategy in particular allows to test
whether q is close to the all-zero string (0, . . . , 0) by looking only at a relatively
small number of positions, where the test is accepted if and only if all the sample
positions are zero, i.e., the estimated Hamming weight vanishes.

In the quantum version of the above sampling problem, the string q is replaced
by a n-qubit quantum system A. It is obvious that a sampling strategy from the
classical setting can be applied to the quantum setting as well: pick a sample of
qubit positions within A, measure (in the computational basis) these sample po-
sitions, and compute the estimate as dictated by the sampling strategy from the
observed values (i.e., typically, scale the Hamming weight of the measured sample
appropriately). However, what is not clear a priori, is how to formally interpret the
computed estimate. In the special case of testing closeness to the all-zero string,
one expects that if the measurement of a random sample only produces zeros then
the initial state of Amust have been close to the all-zero state |0〉 · · · |0〉. But what
is the right way to measure closeness here? For instance it must allow for states of
the form |q〉 where q ∈ {0, 1}n has small Hamming weight, but it must also allow
for superpositions with arbitrary states that come with a very small amplitude. In
the general case of a sampling strategy that, in its classical usage, aims at estimating
the Hamming weight (rather than at testing closeness to the all-zero string), it is not
even clear what the estimate actually estimates when the sampling strategy is applied
to an n-qubit quantum system, since we cannot speak of the Hamming weight of
a quantum state. Furthermore, when applying a sampling strategy to a quantum
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population, how should we quantify its accuracy? And, when a de�nition for this
accuracy has been established, is it actually feasible to compute (good bounds on)
this accuracy? Finally, a last subtlety that is inherent to the quantum setting is
that the execution of a sampling strategy actually changes the state of A due to the
measurements.

3.1.1 Proposed Framework

In this chapter, we present a framework that answers the above questions and allows
us to fully understand how a classical sampling strategy behaves when applied to a
quantum population, i.e., to an n-qubit system or, more generally, to n copies of
an arbitrary “atomic” system. Our framework incorporates the following. First, we
specify an abstract property on the state of A (a�er the measurements done by the
sampling strategy), with the intended meaning that this is the property one should
conclude from the outcome of the sampling strategy when applied to A. We also
demonstrate that this property has useful consequences: speci�cally, that a suitable
measurement will lead to a high-entropy outcome; this is useful in particular for
quantum-cryptographic purposes.�en, we de�ne a meaningful measure, sort of a
“quantum error probability” (although technically speaking it is not a probability),
that tells how reliable it is to conclude the speci�ed property from the outcome of
the sampling strategy. Finally, we show that for any sampling strategy, the quantum
error probability of the strategy, as we de�ne it, is bounded by the square root of
its classical error probability. �is means that in order to understand how well
a sampling strategy performs in the quantum setting, it su�ces to analyze it in
the classical setting. For typical sampling strategies, such as picking the sample
uniformly at random, there are well-known good bounds on the classical error
probability.

3.1.2 Applications

We demonstrate the usefulness of our framework by proposing new and simple(r)
proofs for existing quantum-cryptographic protocols. Furthermore, we think that
our framework can be valuable in other applications as well.

Simple Proof for QuantumOblivious Transfer from Bit Commitment

�e �rst application is to quantum oblivious transfer (QOT). It is well known that
QOT is not possible from scratch; however, one can build a secure QOT scheme
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when given a bit commitment (BC) primitive “for free.”1 Like QOT, also QBC is im-
possible from scratch; nevertheless, the implication from BC to QOT is interesting
from a theoretical point of view, since the corresponding implication does not hold
in the classical setting.�e existence of a QOT scheme based on a BC was suggested
by Bennett et al. in 1991 [BBCS91];2 however, no security proof was provided. May-
ers and Salvail proved security of the QOT scheme against a restricted adversary
that only performs individualmeasurements [MS94], and �nally, in 1995, Yao gave
a security proof against a general adversary, which is allowed to do fully coherent
measurements [Yao95]. However, from today’s perspective, Yao’s proof is still not
fully satisfactory: it is very technical, without intuition and hard to follow, and it
measures the adversary’s information in terms of “accessible information,” which
has proven to be a too weak information measure [BOHL+05, RK05, KRBM07].

In Section 3.4, we show how our framework for analyzing sampling strategies in
the quantum setting leads to a conceptually very simple and easy-to-understand
security proof for QOT from BC.�e proof essentially works as follows: When
considering a puri�ed version of the QOT scheme, the commit-and-open phase of
the QOT scheme can be viewed as executing a speci�c sampling strategy. From the
framework, it then follows that some crucial piece of information has high entropy
from the adversary’s point of view. �e proof is then concluded by applying the
privacy ampli�cation theorem. Note that in [DFL+09], it is shown that the same
kind of analysis is not restricted to QOT but actually applies to a large class of two-
party quantum-cryptographic schemes which are based on a commit-and-open
phase.

Simple Proof for Quantum Key Distribution

In Section 3.5 we discuss our second application, being quantum key distribution
(QKD). Also here, our framework allows for a simple and easy-to-understand
security proof, namely for the BB84 QKD scheme.3 Similar to our proof for QOT,
we can view the checking phase of the BB84 scheme as executing a speci�c sampling
strategy (although here some additional non-trivial observation needs to be made).

1We use BC and OT as short-hands of the respective abstract primitives, bit commitment and
oblivious transfer, and we write QBC and QOT for potential schemes implementing the respective
primitives in the quantum setting.

2At that time, QBC was thought to be possible, and thus the QOT scheme was claimed to be
implementable from scratch.

3Actually, we prove security for an entanglement-based version of BB84, which was �rst proposed
by Ekert, and which implies security for the original BB84 scheme.
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From the framework, we can then conclude that the raw key has high entropy from
the adversary’s point of view, and again privacy ampli�cation �nishes the job.

As for QOT, also QKD schemes initially came without security proofs, and proving
QKD schemes rigorously secure turned out to be an extremely challenging and
subtle task. Nowadays, though, the security of QKD schemes is better understood,
and we know of various ways of proving, say, BB84 secure, ranging from Shor and
Preskill’s proof based on quantum error-correcting codes to Renner’s approach
using a quantum de Finetti theorem which allows to reduce security against general
attacks to security against the much weaker class of so-called collective attacks. As
such, our proofmay safely be viewed as “yet another BB84QKDproof.” Nevertheless,
it has some nice features: it provides an explicit and easy-to-compute expression
for the security of the scheme (in contrast to most proofs in the literature which
merely provide an asymptotic analysis), it does not require any “symmetrization
of the qubits” (e.g., by applying a random permutation) from the protocol, and it
is technically not very involved (e.g., compared to the proofs involving Renner’s
quantum de Finetti theorem). Furthermore, it gives immediately a direct security
proof, rather than a reduction to the security against collective attacks.

3.1.3 Notation

�roughout this chapter, A denotes some �xed �nite alphabet with 0 ∈ A. It is
safe to think of A as {0, 1}, but our claims also hold for larger alphabets. For a
string q = (q1, . . . , qn) ∈ An of arbitrary length n ≥ 0, theHamming weight of q
is de�ned as the number of non-zero entries in q: wt(q) :=

∣∣{i ∈ [n] : qi 6= 0}
∣∣.

We also use the notion of the relative Hamming weight of q, de�ned as η(q) :=
wt(q)/n. By convention, the relative Hamming weight of the empty string⊥ is set
to η(⊥) := 0. For a string q= (q1, . . . , qn)∈An and a subset J ⊂ [n], we write
qJ := (qi)i∈J for the restriction of q to the positions i ∈ J .

3.2 Sampling from a Classical Population

As a warm-up, and in order to study some useful examples and introduce some
convenient notation, we start with the classical sampling problem, which is rather
well-understood.

3.2.1 Sampling Strategies

Let q = (q1, . . . , qn) ∈ An be a string of given length n. We consider the problem
of estimating the relative Hamming weight η(q) by only looking at a substring qt of
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q, for a small subset t ⊂ [n].4 Actually, we are interested in the equivalent problem
of estimating the relative Hamming weight η(qt̄) of the remaining string qt̄, where
t̄ is the complement t̄ = [n] \ t of t.5 A canonical way to do so would be to sample
a uniformly random subset (say, of a certain small size) of positions, and compute
the relative Hamming weight of the sample as estimate. Very generally, we allow
any strategy that picks a subset t ⊂ [n] according to some probability distribution
and computes the estimate for η(qt̄) as some (possibly randomized) function of t
and qt, i.e., as f(t, qt, s) for a seed s that is sampled according to some probability
distribution.�is motivates the following formal de�nition.
De�nition 3.1 (Sampling Strategy) A sampling strategy Ψ is de�ned by the triple
(PT , PS , f), wherePT is a distribution over the subsets of [n],PS is a (independent)
distribution over a �nite set S , and f is a function

f : {(t, v) : t ⊂ [n], v ∈ A|t|} × S → R.

We stress that a sampling strategy Ψ, as de�ned here, speci�es how to choose the
sample subset as well as how to compute the estimate from the sample (thus a more
appropriate but lengthy name would be a “sample-and-estimate strategy”).
Remark 3.2 By de�nition, the choice of the seed s is speci�ed to be independent
of t, i.e., PTS = PTPS . Sometimes, however, it is convenient to allow s to depend
on t. We can actually do so without contradicting De�nition 3.1. Namely, to comply
with the independence requirement, we would simply choose a (typically huge)
“container” seed that contains a seed for every possible choice of t, each one chosen
with the corresponding distribution, and it is then part of f ’s task, when given t, to
select the seed that is actually needed from the container seed.6

A sampling strategy Ψ can obviously also be used to test if q (or actually qt̄) is close
to the all-zero string 0 · · · 0: compute the estimate for η(qt̄) as dictated by Ψ, and
accept if the estimate vanishes and else reject.

We brie�y discuss �ve example sampling strategies.�e examples should illustrate
the generality of the de�nition, and some of the examples will be used later on;
however, the reader is free to skip (some of) them. We start with the canonical
example mentioned in the beginning.

4More generally, we may consider the problem of estimating the Hamming distance of q to some
arbitrary reference string q◦; but this can obviously be done simply by estimating the Hamming weight
of q′ = q − q◦.

5�e reason for this, as will become clear later, is that in our applications, the sampled positions
within q will be discarded, and thus we will be interested merely in the remaining positions.

6Alternatively, we could simply drop the independence requirement in De�nition 3.1; however,
we feel it is conceptually easier to think of the seed as being independently chosen.
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Example 3.3 (Random SamplingWithout Replacement) In random sampling with-
out replacement, k distinct indices i1, . . . , ik within [n] are chosen uniformly at
random, where k is some parameter, and the relative Hamming weight of q{i1,...,ik}
is used as estimate for η(qt̄). Formally, this sampling strategy is given by Ψ =
(PT , PS , f) where PT (t) = 1/

(n
k

)
if |t| = k and else PT (t) = 0, S = {⊥} and

thus PS(⊥) = 1, and f(t, qt,⊥) = f(t, qt) = η(qt).

With the second example, we show that also sampling with replacement is captured
by our de�nition.
Example 3.4 (Random Sampling With Replacement) In random sampling with
replacement, k indices i1, . . . , ik are chosen independently uniformly at random
within [n], where k is some parameter, and the relative Hamming weight of the
string (qi1 , . . . , qik) is used as estimate for η(qt̄). Note that here i` may coincide
with i`′ for ` 6= `′, in which case (qi1 , . . . , qik) is not equal to q{i1,...,ik}. To make
this �t intoDe�nition 3.1, we set t to be {i1, . . . , ik}, andwe let f(t, qt, s) be given by
η(qj1 , . . . , qjk), where j1, . . . , jk is determined by the seed s among all possibilities
with {j1, . . . , jk} = t. It is cumbersome and of no importance to us to determine
the correct distributions PT and PS for t and s, respectively; it is su�cient to realize
that random sampling with replacement is captured by De�nition 3.1.

Next, we sample by picking a uniformly random subset (without restricting its size).
Example 3.5 (Uniformly Random Subset Sampling) �e sample set t is chosen
as a uniformly random subset of [n], and the estimate is computed as the relative
Hamming weight of the sample qt. Formally, PT (t) = 1/2n for any t ⊆ [n], and
S = {⊥} and f(t, qt,⊥) = f(t, qt) = η(qt).

As a fourth example, we consider a somewhat unnatural and in some sense non-
optimal sampling strategy.�is example, though, will be of use in our analysis of
quantum oblivious transfer in Section 3.4.
Example 3.6 (Random Sampling Without Replacement, Using Part of the Sample)
�is example can be viewed as a composition of Example 3.3 and 3.5. Namely, t is
chosen as a random subset of �xed size k, as in Example 3.3, so that PT (t) = 1/

(n
k

)
for t ⊂ [n] with |t| = k. But now, only part of the sample qt is used to compute the
estimate. Namely, the estimate is computed as

f(t, qt, s) = η(qs),

where the seed s is chosen as a uniformly random subset s of t; i.e., PS(s) = 1/2t
for any s ⊆ t. Recall from Remark 3.2 that the choice of s is allowed to depend on t.
We would like to point out that when we use Example 3.6 in Section 3.4, it is useful
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that the restriction to the subset s is part of the evaluation of f , rather than part of
the selection of the sample subset t.

In the ��h example we consider another somewhat unnatural sampling strategy,
which though will be useful for the QKD proof in Section 3.5.
Example 3.7 (Pairwise One-Out-of-Two Sampling, Using Part of the Sample) For
this example, it is convenient to consider the index set from which the subset t is
chosen, to be of the form [n]× {0, 1}. Namely, we consider the string q ∈ A2n

to be indexed by pairs of indices, q = (qij), where i ∈ [n] and j ∈ {0, 1}; in other
words, we consider q to consist of n pairs (qi0, qi1). �e subset t ⊂ [n]× {0, 1}
is chosen as t = {(1, j1), . . . , (n, jn)} where every jk is picked independently at
random in {0, 1}. In other words, t selects one element from each pair (qi0, qi1).
Furthermore, the estimate for η(qt̄) is computed from qt as f(t, qt, s) = η(qs)
where the seed s is a random subset s ⊂ t of size k.
Example 3.8 (PairwiseBiasedOne-Out-of-Two Sampling, Using Part of the Sample)
In this example we consider a similar situation as in Example 3.7, except that we now
construct t by sampling every jk according to the Bernoulli distribution (p, 1−p).
Consequently, we compute the estimate for η(qt̄) slightly di�erently, but we will
make this clear in Section 3.2.3.

3.2.2 The Error Probability

A�er having introduced the general notion of a sampling strategy, we will de�ne
a measure that captures for a given sampling strategy how well it performs. More
precisely—but still informally—this measure should be the probability that the
di�erence between the estimate f(t, qt, s) and the real value, η(qt̄), is smaller than
some given number. For the de�nition, it will be convenient to introduce the
following notation. For a given sampling strategy Ψ = (PT , PS , f), consider
arbitrary but �xed choices for the subset t ⊂ [n] and the seed s ∈ S withPT (t) > 0
and PS(s) > 0. Furthermore, �x an arbitrary δ > 0. De�neBδ

t,s(Ψ) ⊆ An as

Bδ
t,s(Ψ) := {b ∈ An : |η(bt̄)− f(t, bt, s)| < δ} ,

i.e., as the set of all strings q for which the estimate is δ-close to the real value,
assuming that subset t and seed s have been used. To simplify notation, if Ψ is clear
from the context, we simply writeBδ

t,s instead ofBδ
t,s(Ψ). By replacing the speci�c

values t and s by the corresponding (independent) random variables T and S, with
distributions PT and PS , respectively, we obtain the random variableBδ

T,S , whose
range consists of subsets ofAn. By means of this random variable, we now de�ne
the error probability of a sampling strategy as follows.
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De�nition 3.9 (Error Probability) �e classical error probability of a sampling strat-
egyΨ = (PT , PS , f) is de�ned as the following value, parameterized by 0 < δ < 1:

εδclass(Ψ) := max
q∈An

Pr
[
q /∈ Bδ

T,S(Ψ)
]
.

By de�nition of the error probability, it is guaranteed that for any string q ∈ An, the
estimated value is δ-close to the real value except with probability at most εδclass(Ψ).
When used as a sampling strategy to test closeness to the all-zero string, εδclass(Ψ)
determines the probability of accepting even though qt̄ is “not close” to the all-zero
string, in the sense that its relative Hamming weight exceeds δ. Whenever Ψ is
clear from the context, we will write εδclass instead of εδclass(Ψ).

3.2.3 Error Probabilities of the Example Sampling Strategies

Wewill now analyze the error probabilities for the sampling strategies considered in
Examples 3.3 to 3.8 (excluding Example 3.4) andwe show them all to be exponentially
small by applying Hoe�ding’s inequality in a suitable way.

Ex. 3.3: Random SamplingWithout Replacement

It follows immediately from�eorem 2.13 that the estimate is δ-close to the relative
Hamming weight η(q) of q except with probability at most 2 exp(−2δ2k). However,
we want to analyze closeness of the estimate to η(qT̄ ) (still treating T as a random
variable). �is can be derived easily as follows. We can write η(q) = αη(qT ) +
(1− α)η(qT̄ ), where α := k/n, and thus can see that

η(qT̄ )− η(qT ) = 1
1− α

(
η(q)− αη(qT )

)
− η(qT ) = 1

1− α
(
η(q)− η(qT )

)
so that

εδclass = max
q

Pr
[
q /∈ Bδ

T,S

]
= max

q
Pr
[
|η(qT̄ )− η(qT )| ≥ δ

]
= max

q
Pr
[
|η(q)− η(qT )| ≥ (1−α)δ

]
≤ 2 exp

(
−2(1−α)2δ2k

)
. (3.1)

Under assumption of k ≤ n/2, we obtain a simple bound for the latter expression,

εδclass ≤ 2 exp
(
−1

2δ
2k
)
. (3.2)

We obtain the following bound if we use the bound from [Ser74]:

εδclass = max
q

Pr
[
|η(q)− η(qT )| ≥ (1−α)δ

]
≤ 2 exp

(
−2(1−α)2δ2kn

n−k+1
)

= 2 exp
(
−2k(n−k)2δ2

n(n−k+1)
)
≤ 2 exp

(
− δ2kn
n+2

)
.
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for k ≤ n/2, because −2k(n−k)2δ2

n(n−k+1) is convex in k, and − δ2kn
2+n is linear in k and

equality holds at k = 0 and k = n/2, hence it is a tight linear upper bound.

Ex. 3.4: Random SamplingWith Replacement

Computing the error probability for Example 3.4 actually turns out to be tricky.
Although�eorem 2.11 applies and guarantees that the estimate is likely to be close
to η(q), showing that the estimate is likely to be close to η(qT̄ ) seems to be non-
trivial here. Since we make no further use of this example sampling strategy, we
refrain from analyzing its error probability.

Ex. 3.5: Uniformly Random Subset Sampling

Note that for any �xed choice k = |t|, t is obtained as in random sampling without
replacement. Because t is sampled uniformly at random, the expectation ofk is given
by E[k] = n/2. Hence, by making use of Hoe�ding’s inequality (�eorem 2.13), we
can say that for 0 < β < 1

2 , Pr[| kn −
1
2 | ≥ β] ≤ 2 exp(−2β2n).

Informally, the idea is to start o� with an upper bound on εδclass obtained for
Example 3.3 (the case of sampling without replacement), and transform it into an
upper bound that holds under the assumption that k ∈ [(1

2 −β)n, (1
2 +β)n]. Note

that we cannot use the simple bound (3.2) from Example 3.3, because that result
was obtained under the assumption that k ≤ n/2, and here this assumption does
not hold. Instead, we use bound (3.1) from Example 3.3,

εδclass ≤ 2 exp
(
− 2

(
1− k

n

)2
δ2k

)
(3.3)

which does hold for all k ∈ {0, . . . , n}.

To get an upper bound for (3.3), we replace the occurrences of k by the appropriate
boundary points of the interval [(1

2 − β)n, (1
2 + β)n]. I.e.,

2 exp
(
− 2

(
1−

(1
2 + β)n
n

)2
δ2(1

2 − β)n
)

= 2 exp
(
− 2nδ2(1

2 − β)3).
To compute εδclass, we use a union bound to combine the upper bound above, which
holds under the assumption that k lies inside the previously de�ned interval, with
the upper bound on the probability that k does not lie in this interval,

εδclass ≤ 2 exp
(
− 2nδ2(1

2 − β
)3)+ 2 exp(−2β2n).
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Settingβ = δ/4 in the expression above yields−nδ2(2−δ)3/32 for the exponent of
the �rst summand, and−nδ2/8 for the exponent of the second summand. Because
0 < δ < 1 (De�nition 3.9), a suitable upper bound for both exponents is−nδ2/32.7
�is gives the following simpler bound,

εδclass ≤ 4 exp(−nδ2/32).

Ex. 3.6: Random SamplingWithout Replacement, Using Part of the Sample

From Example 3.3 we know that Pr
[
|η(qT̄ ) − η(qT )| ≥ ξ

]
≤ 2 exp(−1

2ξ
2k), for

k < n/2. Additionally, the selection of the seed s and the computation of f(t, qt, s)
can be viewed as applying uniformly random subset sampling to qt. Hence, it
follows from Example 3.5 that maxq Pr

[
|η(qT )− η(qS)| ≥ γ

]
≤ 4 exp(−kγ2/32).

Setting δ = ξ + γ, and using triangle inequality and union bound, we obtain

εδclass = max
q

Pr
[
|η(qS)− η(qT̄ )| ≥ δ

]
≤ min

0<ξ<δ

[
2 exp

(
−1

2ξ
2k
)

+ 4 exp
(
−k(δ − ξ)2/32

)]
≤ 6 exp

(
−kδ2/50

)
,

where the last inequality follows from setting ξ = δ/5 such that the two exponents
coincide.

Ex. 3.7: Pairwise One-Out-of-Two Sampling, Using Part of the Sample

ForA = {0, 1}, a bound on the error probability εδclass is obtained as follows. Let q
be arbitrary, indexed as discussed earlier. First, we show that η(qT̄ ) is likely to be
close to η(qT ). For this, consider the pairs (qi0, qi1) for which qi0 6= qi1. Let there
be ` such pairs (where obviously ` ≤ n.) We denote the restrictions of qT and qT̄
to these indices i with qi0 6= qi1 by q̃T and q̃T̄ , respectively. It is easy to see that
wt(q̃T ) + wt(q̃T̄ ) = `. It follows that for any ε > 0 we have

Pr
[
|η(qT̄ )− η(qT )| ≥ ε

]
= Pr

[
|wt(qT )− wt(qT̄ )| ≥ nε

]
= Pr

[
|wt(q̃T )− wt(q̃T̄ )| ≥ nε

]
= Pr

[
|2wt(q̃T )− `| ≥ nε

]
≤ 2 exp

(
−2
(
nε
2`
)2
`
)

= 2 exp
(
−nε2

2 ·
n
`

)
≤ 2 exp

(
−1

2ε
2n
)
,

7Note that our goal is to �nd a short and simple expression, rather than �nding the tightest
bound.
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where the third equality follows from replacing wt(q̃T̄ ) by `−wt(q̃T ), and the �rst
inequality follows from Hoe�ding’s inequality (as each entry of wt(q̃T ) is 0 with
independent probability 1

2 ).

Furthermore, for any γ > 0 we have the following relation involving qS :

Pr
[
|η(qT )− η(qS)| ≥ γ

]
≤ 2 exp

(
−2kγ2

)
,

which follows from directly applying Hoe�ding’s inequality. Applying the union
bound and letting δ = ε+ γ, we obtain

εδclass = max
q

Pr
[
|η(qT̄ )− η(qS)| ≥ δ

]
< 2 min

0<ε<δ

[
exp

(
−1

2ε
2n
)

+ exp
(
−2k(δ − ε)2

)]
≤ 4 exp

(
− 2knδ2

(2
√
k+
√
n)2

)
≤ 4 exp

(
−1

3δ
2k
)
,

where the last line follows from choosing ε such that the two exponents coincide,
and from doing some simpli�cations while assuming k ≤ n/2.

Ex. 3.8: Pairwise Biased One-Out-of-Two Sampling, Using Part of the Sample

It will be convenient to de�ne the index set t as the union of two subsets, t0 ⊂
[n]× {0} and t1 ⊂ [n]× {1}. Note that the complements of these subsets should
now be understood as t̄0 = ([n]×{0}) \ t0 and t̄1 = ([n]×{1}) \ t1. Let t0 and t1
be constructed as follows. We �rst sample a set t̃ ⊂ [n]; for each element of [n], we
include it in t̃with probability p.�en, t0 := t̃×{0} and t1 := ([n]\ t̃)×{1}. Like
t, the seed s is also de�ned as the union of two randomly chosen sets, s = s0 ∪ s1,
where s0 ⊂ t0 and s1 ⊂ t1.8 �ese sets have �xed size; for a parameter k ∈ N,
|s0| = k

2 and |s1| = k
2 . Now, the estimate for η(qt̄) is computed as f(t, qt, s) =

1
n

(
|t̄0| η(qs0) + |t̄1| η(qs1)

)
.

We need to show that η(qT̄ ) is likely to be close to η(qS). Because we compute
an estimate for η(qT̄ ) as a function of η(qS0) and η(qS1), we will �rst show that
(with high probability) η(qT0) ≈ η(qS0) and η(qT1) ≈ η(qS1).�en, we argue that
η(qT̄0

) ≈ η(qT0) and η(qT̄1
) ≈ η(qT1), from which we can also conclude (using

the union bound) that η(qT̄0
) ≈ η(qS0) and η(qT̄1

) ≈ η(qS1). Finally, we apply
the union bound again and combine the two bounds to obtain an upper bound for
Pr
[
|η(qT̄ )− 1

n(|T̄0| η(qS0) + |T̄1| η(qS1))| ≥ δ
]
.

8Again, Remark 3.2 applies.
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�e �rst step in the proof follows directly from Hoe�ding’s inequality,

Pr
[
|η(qT0)− η(qS0)| ≥ γ

]
≤ 2 exp

(
−2|S0|γ2

)
= 2 exp

(
−kγ2), ∀γ > 0.

Trivially, this bound also applies to the relation between η(qT1) and η(qS1), if we
substitute appropriately.�e second step, showing that η(T̄0) (respectively η(T̄1)) is
likely to be close to η(T0) (resp. η(T1)), is slightly more involved. Namely, although
the sum of the sizes of T0 and T1 is constant (to be precise, |T0|+ |T1| = n), their
individual sizes are random. In Example 3.5 we have already encountered a similar,
though not identical, situation: Example 3.5 considers uniformly random one-out-
of-two sampling whereas here we analyze one-out-of-two sampling according to a
Bernoulli (p, 1−p) distribution. Nonetheless, it is straightforward to generalize the
error-probability analysis for Example 3.5 to this (more general) case.

Let X := |T0|. �e expectation of X is given by E[X] = np. Let E be the event
thatX ∈ [(p− β)n, (p+ β)n], for β > 0. From Hoe�ding’s inequality, we known
that Pr[Ē ] = Pr[|Xn − p| ≥ β] ≤ 2 exp(−2β2n). Like in Section 3.2.3, we �nd an
upper bound that holds conditioned on the event E , by substituting the boundary
points of the interval used to de�ne E in (3.3),

Pr
[
|η(qT0)− η(qT̄0

)| ≥ δ
∣∣ E] ≤ −2(p− β)n

(
1− (p+ β)n

n

)2

= 2 exp
(
−2nδ2(1− p− β)2(p− β)

)
.

Next, we apply the union bound to show that for 0 < ε < γ

Pr
[∣∣∣η(qT̄0

)− η(qS0)
∣∣∣ ≥ γ ∣∣ E]

≤ 2 exp
(
−2nε2(1− p− β)2(p− β)

)
+ 2 exp

(
−k(γ − ε)2

)
.

By substituting p by 1− p in the expression above, we also obtain

Pr
[∣∣∣η(qT̄1

)− η(qS1)
∣∣∣ ≥ γ ∣∣ E]

≤ 2 exp
(
−2nε2(p− β)2(1− p− β)

)
+ 2 exp

(
−k(γ − ε)2

)
.

Finally, we combine the two bounds and we get rid of the conditioning on E by
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adding Pr[Ē ]. For any δ > 0 and 0 < ε < δ, we may write

εδclass = max
q

Pr
[
|η(qT̄ )− 1

n
(|T̄0| η(qS0) + |T̄1| η(qS1))| ≥ δ

]
= max

q
Pr
[
|wt(qT̄ )− |T̄0| η(qS0) + |T̄1| η(qS1)| ≥ nδ

]
= max

q
Pr
[
|wt(qT̄ )− |T̄0| η(qS0) + |T̄1| η(qS1)| ≥ (|T̄0|δ + |T̄1|δ)

]
≤ max

q
Pr
[∣∣∣η(qT̄0

)− η(qS0)
∣∣∣ ≥ δ]+ Pr

[∣∣∣η(qT̄1
)− η(qS1)

∣∣∣ ≥ δ]
≤ 2 exp

(
−2nε2(1− p− β)2(p− β)

)
+ 2 exp

(
−2nε2(p− β)2(1− p− β)

)
+ 4 exp

(
−k(δ − ε)2

)
+ 2 exp(−2β2n).

3.3 Sampling from a Quantum Population

In this section, we apply a sampling strategy to a quantum population and study its
behavior. More speci�cally, let A = A1 · · ·An be an n-partite quantum system,
where the state space of each system Ai equalsHAi = Cd with d = |A|, and let
{|a〉}a∈A be a �xed orthonormal basis of Cd. We allow A to be entangled with
some additional system E with arbitrary �nite-dimensional state spaceHE . We
may assume the joint state of AE to be pure, and as such be given by a state vector
|ϕAE〉 ∈ HA ⊗HE ; if not, then it can be puri�ed by increasing the dimension of
HE .

Similar to the classical sampling problem of testing closeness to the all-zero string,
we can consider here the problem of testing if the state of A is close to the all-zero
reference state |ϕ◦A〉 = |0〉 · · · |0〉 by looking at, which here meansmeasuring, only
a few of the subsystems of A. More generally, we will be interested in the sampling
problem of estimating the “Hamming weight of the state of A,” although it is not
clear at the moment what this should mean. Actually, like in the classical case, we
are interested in testing closeness to the all-zero state, respectively estimating the
Hamming weight, of the remaining subsystems of A.

It is obvious that a sampling strategyΨ = (PT , PS , f) can be applied in a straightfor-
ward way to the setting at hand: sample t according to PT , measure the subsystems
Ai with i ∈ t in basis {|a〉}a∈A to observe qt ∈ A|t|, and compute the estimate as
f(t, qt, s) for s chosen according to PS (respectively, for testing closeness to the
all-zero state, accept or reject depending on the value of the estimate). However,
it is a-priori not clear, how to interpret the outcome. Measuring a random subset
of the subsystems of A and observing 0 all the time indeed seems to suggest that
the original state of A, and thus the remaining subsystems, must be in some sense
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close to the all-zero state; but what is the right way to formalize this? In the case
of a general sampling strategy for estimating the (relative) Hamming weight, what
does the estimate actually estimate? And, do all strategies that perform well in the
classical setting also perform well in the quantum setting?

We will give a rigorous analysis of sampling strategies when applied to an n-partite
quantum system A, which will in particular answer the questions raised above.
Later in the chapter, we demonstrate the usefulness of our analysis of sampling
strategies for studying and analyzing quantum-cryptographic schemes.

3.3.1 Analyzing Sampling Strategies in the Quantum Setting

We start by suggesting the property on the remaining subsystems of A that one
should expect to be able to conclude from the outcome of a sampling strategy. A
somewhat natural approach is as follows.
De�nition 3.10 For system AE, and similarly for any subsystem of A, we say that
the state |ϕAE〉 of AE has relative Hamming weight β within A if it is of the form
|ϕAE〉 = |b〉|ϕE〉 with b ∈ An and η(b) = β.

Now, given the outcome f(t, qt, s) of a sampling strategy when applied to A, we
want to be able to conclude that, up to a small error, the state of the remaining
subsystem At̄E is a superposition of states with relative Hamming weight close to
f(t, qt, s) within At̄. To analyze this, we extend some of the notions introduced in
the classical setting. Recall the de�nition of Bδ

t,s, consisting of all strings b ∈ An
with |η(bt̄)− f(t, bt, s)| < δ. By slightly abusing notation, we extend this notion
to the quantum setting and write

span
(
Bδ
t,s

)
:= span

(
{|b〉 : b ∈ Bδ

t,s}
)

= span
(
{|b〉 : |η(bt̄)− f(t, bt, s)| < δ}

)
.

Note that if the state |ϕAE〉 ofAE happens to be in span(Bδ
t,s)⊗HE for some t and

s, and if exactly these t and s are chosen when applying the sampling strategy to A,
then with certainty the state of At̄E (a�er the measurement) is in a superposition
of states with relative Hamming weight δ-close to f(t, qt, s) within At̄, regardless
of the measurement outcome qt.

Next, we want to extend the notion of error probability (De�nition 3.9) to the
quantum setting.�e following approach turns out to be fruitful. We consider the
hybrid system TSAE, consisting of the classical random variables T and S with
distribution PTS = PTPS , describing the choices of t and s, respectively, and of
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the actual quantum systems A and E.�e state of TSAE is given by

ρTSAE =
∑
t,s

PTS(t, s)|t, s〉〈t, s| ⊗ |ϕAE〉〈ϕAE | .

Note that TS is independent of AE: ρTSAE = ρTS ⊗ ρAE ; indeed, in a sampling
strategy t and s are chosen independently of the state of AE. We compare this real
state of TSAE with an ideal state which is of the form

ρ̃TSAE =
∑
t,s

PTS(t, s)|t, s〉〈t, s| ⊗ |ϕ̃tsAE〉〈ϕ̃tsAE | (3.4)

where |ϕ̃tsAE〉 ∈ span(Bδ
t,s)⊗HE for all (t, s) and for some given δ > 0.�us, T

andS have the same distribution as in the real state, but here we allowAE to depend
on T and S, and for each particular choice t and s for T and S, respectively, we
require the state ofAE to be in span(Bδ

t,s)⊗HE . Hence, in an “ideal world” where
the state of the hybrid system TSAE is given by ρ̃TSAE , it holds with certainty that
the state |ψAt̄E〉 of At̄E, a�er having measured At and having observed qt, is in
a superposition of states with relative Hamming weight δ-close to β := f(t, qt, s)
within At̄. We now de�ne the quantum error probability of a sampling strategy by
looking at how far away the closest ideal state ρ̃TSAE is from the real state ρTSAE .
De�nition 3.11 (Quantum Error Probability) �e quantum error probability of a
sampling strategy Ψ = (PT , PS , f) is de�ned as the following value, parameterized
by 0 < δ < 1:

εδquant(Ψ) = max
HE

max
|ϕAE〉

min
ρ̃TSAE

1
2‖ρTSAE − ρ̃TSAE‖1,

where the �rst max is over all �nite-dimensional state spacesHE , the second max
is over all state vectors |ϕAE〉 ∈ HA ⊗ HE , and the min is over all ideal states
ρ̃TSAE as in (3.4).9

As with Bδ
t,s and εδclass, we simply write εδquant when Ψ is clear from the context.

We stress the meaningfulness of the de�nition: it guarantees that on average over
the choice of t and s, the state of At̄E is εδquant-close to a superposition of states
with Hamming weight δ-close to f(t, qt, s) within At̄, and as such it behaves like a
superposition of such states, except with probability εδquant. Wewill argue below and
demonstrate in the subsequent sections that being close to a superposition of states
with given approximate (relative) Hamming weight has some useful consequences.

9It is not too hard to see, in particular a�er having gained some more insight via the proof of
�eorem 3.13 below, that the minimum and maxima exist.
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Remark 3.12 Similarly to footnote 4, also here the results of the section immediately
generalize from the all-zero reference state |0〉 · · · |0〉 to an arbitrary reference state
|ϕ◦A〉 of the form |ϕ◦A〉 = U1|0〉 ⊗ · · · ⊗ Un|0〉 for unitary operators Ui acting on
Cd. Indeed, the generalization follows simply by a suitable change of basis, de�ned
by the Ui’s. Or, in the special case whereA = {0, 1} and

|ϕ◦A〉 = H θ̂|x̂〉 = H θ̂1 |x̂1〉 ⊗ · · · ⊗H θ̂n |x̂n〉

for a �xed reference basis θ̂ ∈ {0, 1}n and a �xed reference string x̂ ∈ {0, 1}n, we
can, alternatively, replace in the de�nitions and results the computational by the
Hadamard basis whenever θ̂i = 1, and speak of the (relative) Hamming distance to
x̂ rather than of the (relative) Hamming weight.

3.3.2 The Quantum vs. the Classical Error Probability

It remains to discuss how di�cult it is to actually compute the quantum error
probability for given sampling strategies, and how the quantum error probability
εδquant relates to the corresponding classical error probability εδclass. To this end, we
show the following simple relationship between εδquant and εδclass.
Theorem 3.13 For any sampling strategy Ψ and for any δ > 0:

εδquant(Ψ) ≤
√
εδclass(Ψ).

As a consequence of this theorem, it su�ces to analyze a sampling strategy in the
classical setting, which is much easier, in order to understand how it behaves in the
quantum setting. In particular, sampling strategies that are known to behave well
in the classical setting, like examples 3.3 to 3.7, are also automatically guaranteed to
behave well in the quantum setting. We will use this in the application sections.

Our bound on εδquant is in general tight in the following sense.
Proposition 3.14 �ere exist natural sampling strategies for which equality holds in
�eorem 3.13.

Later in this section, we will characterize this class of sampling strategies (which
turns out to contain Example 3.3 and Example 3.7) and prove the proposition.

Proof of�eorem 3.13. We need to show that for any |ϕAE〉 ∈ HA⊗HE , with arbi-
traryHE , there exists a suitable ideal state ρ̃TSAE such that 1

2‖ρTSAE−ρ̃TSAE‖1 ≤
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√
εδclass. We construct ρ̃TSAE as in (3.4), where the |ϕ̃tsAE〉’s are de�ned by the fol-

lowing decomposition.

|ϕAE〉 = 〈ϕ̃tsAE |ϕAE〉|ϕ̃tsAE〉+ 〈ϕ̃ts⊥AE |ϕAE〉|ϕ̃ts⊥AE 〉,

with |ϕ̃tsAE〉 ∈ span(Bδ
t,s)⊗HE , |ϕ̃ts⊥AE 〉 ∈ span(Bδ

t,s)⊥⊗HE and |〈ϕ̃tsAE |ϕAE〉|2+
|〈ϕ̃ts⊥AE |ϕAE〉|2 = 1. In other words, |ϕ̃tsAE〉 is obtained as the re-normalized projec-
tion of |ϕAE〉 into span(Bδ

t,s)⊗HE . Note that |〈ϕ̃ts⊥AE |ϕAE〉|2 equals the probability
Pr
[
Q /∈Bδ

t,s

]
, where the random variableQ is obtained by measuring subsystemA

of |ϕAE〉 in basis {|a〉}⊗na∈A. Furthermore,∑
t,s

PTS(t, s) |〈ϕ̃ts⊥AE |ϕAE〉|2 =
∑
t,s

PTS(t, s) Pr
[
Q /∈Bδ

t,s

]
= Pr

[
Q /∈Bδ

T,S

]
=
∑
q

PQ(q) Pr
[
q /∈Bδ

T,S

]
,

where by de�nition of εδclass, the latter is bounded above by ε
δ
class. From elementary

properties of the trace distance, and using Jensen’s inequality, we can now conclude
that

1
2‖ρTSAE − ρ̃TSAE‖1 =

∑
t,s

PTS(t, s)1
2

∥∥∥|ϕAE〉〈ϕAE | − |ϕ̃tsAE〉〈ϕ̃tsAE |∥∥∥1

=
∑
t,s

PTS(t, s)
√

1− |〈ϕ̃tsAE |ϕAE〉|2 =
∑
t,s

PTS(t, s)|〈ϕ̃ts⊥AE |ϕAE〉|

≤
√∑

t,s

PTS(t, s)|〈ϕ̃ts⊥AE |ϕAE〉|2 ≤
√
εδclass,

which was to be shown.

As a side remark, we point out that the particular ideal state ρ̃TSAE constructed in
the proof minimizes the distance to ρTSAE ; this follows from the so-called Hilbert
projection theorem.

The Tightness of Theorem 3.13

We show here that in general the inequality from�eorem 3.13 is tight. Speci�cally,
we specify a natural class of sampling strategies for which�eorem 3.13 is an equality.
Informally, this class consists of sampling strategies that behave in exactly the same
way if the randomized choices T and S are replaced by �xed choices t◦ and s◦,
and instead the coordinates of q are shu�ed by means of a uniformly random
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permutation (chosen from a subgroup of all permutations).�e formal de�nition
is given below, but let us point out already here that Example 3.3 as well as the
QKD sampling strategy discussed in Example 3.7 belong to this class. Indeed, for
Example 3.3, instead of choosing a random subset T of size k one can equivalently
choose a �xed subset and randomly permute the positions of q. And, similarly for
Example 3.7, instead of choosing le� or right from each pair (qi0, qi1) at random and
then choosing a random subset of size k of the selected qij ’s, one can equivalently �x
these choices and swap each pair (qi0, qi1) with probability 1

2 and apply a random
permutation to the �rst index.

Let Sn denote the symmetric group of degree n, i.e., the group of permutations
on [n]. For any π ∈ Sn and q = (q1, . . . , qn) ∈ An, we write πq to express that π
permutes the positions of the elements of q, i.e., πq = (qπ−1(1), . . . , qπ−1(n)). If V
is a set of strings q ∈ An, then πV means that the permutation π acts element-wise
on V .
De�nition 3.15 (G-Symmetry of a Sampling Strategy) Let Ψ be a sampling strategy,
let G be a subgroup of Sn, where n is the size of the population to which Ψ is
applied, and let Π be a random permutation, uniformly distributed overG. We call
ΨG-symmetric, if there exist t◦ ⊂ [n] and s◦ ∈ S such that(

η(qT̄ ), f(T, qT , S)
)
∼
(
η((Πq)t̄◦), f(t◦, (Πq)t◦ , s◦)

)
where “∼” means that the pairs have the same probability distribution.

A direct consequence of this de�nition is the following relation, which we will apply
later in this section.

Bδ
T,S = {q ∈ {0, 1}n : |η(qT̄ )− f(T, qT , S)| < δ}
∼ {q ∈ {0, 1}n :

∣∣η((Πq)t̄◦)− f(t◦, (Πq)t◦ , s◦)
∣∣ < δ} = Π−1Bδ

t◦,s◦ .

We can now rephrase Proposition 3.14 and prove it.
Proposition 3.16 For anyG-symmetric sampling strategy Ψsym

G and any δ > 0:

εδquant(Ψ
sym
G ) =

√
εδclass(Ψ

sym
G )

Proof. We need to show that there exists a system E and a state |ϕAE〉 such that
1
2‖ρTSAE − ρ̃TSAE‖

2
1 = εδclass for ρ̃TSAE that minimizes the le� hand side. As

pointed out a�er the proof of�eorem 3.13, the particular construction of ρ̃TSAE
used in the proof of�eorem 3.13 does minimize 1

2‖ρTSAE − ρ̃TSAE‖1. Hence, it
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su�ces to show that there exists a system E and a state |ϕAE〉 (that depends onG)
such that

1
2‖ρTSAE − ρ̃TSAE‖

2
1
(3.5)=

∑
t,s

PTS(t, s)|〈ϕAE |ϕ̃ts⊥AE 〉|

2

(3.6)=
∑
t,s

PTS(t, s)|〈ϕAE |ϕ̃ts⊥AE 〉|2
(3.7)= εδclass.

where ρ̃TSAE and |ϕ̃ts⊥AE 〉 are constructed as in the proof of �eorem 3.13. �e
derivation of equality (3.5) can be found in the proof of�eorem 3.13.�e outline of
the remaining part of the proof is as follows; we �rst present a candidate for |ϕAE〉
and then we show that equalities (3.6) and (3.7) do indeed hold for this state.

We choose E to be empty. Furthermore, we de�ne

|ϕAE〉 := 1√
|G|

∑
π∈G
|πq∗〉.

where q∗ is such that Pr[q∗ /∈ Bδ
T,S ] = εδclass. It follows from the projection

construction for ρ̃TSAE that

|ϕ̃ts⊥AE 〉 = 1√
|Ht,s|

∑
π∈Ht,s

|πq∗〉,

whereHt,s ⊆ G, i.e.,Ht,s := {π ∈ G : πq∗ /∈ Bδ
t,s}.

To prove equality (3.6), we need to show that the inner product |〈ϕAE |ϕ̃ts⊥AE 〉| is in-
dependent of t and s. Because |ϕAE〉 is a uniform superposition over permutations
of q∗ and |ϕ̃ts⊥AE 〉 is a renormalized projection of |ϕAE〉, we can easily compute this
inner product,

|〈ϕAE |ϕ̃ts⊥AE 〉| = |Ht,s|/
√
|G| · |Ht,s| =

√
|Ht,s|/|G|.

It su�ces to show that |Ht,s| is independent of (t, s). It follows from the G-
symmetry that there exists a π such that Bδ

t,s = πBδ
t◦,s◦ . Furthermore, let Π

be a random permutation, uniformly distributed overG. By de�nition ofHt,s and
because Π is uniformly distributed overG, we may write

|Ht,s| = |G| · Pr[Π q∗ /∈ Bδ
t,s]

= |G| · Pr[q∗ /∈ Π−1πBδ
t◦,s◦ ] = |G| · Pr[q∗ /∈ Π−1Bδ

t◦,s◦ ], (3.8)
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where the last expression is clearly independent of (t, s).

Now, let us focus on equality (3.7). We derived in the proof of�eorem 3.13 that∑
t,s PTS(t, s) |〈ϕAE |ϕ̃ts⊥AE 〉|2 =

∑
q PQ(q) Pr

[
q /∈Bδ

T,S

]
, where the random vari-

able Q is obtained by measuring subsystem A of |ϕAE〉. By de�nition of |ϕAE〉,
PQ(q) > 0 only for q of the form πq∗ for some π ∈ G. Hence, to prove equality
(3.7), we have to show that for any π ∈ G, Pr[πq∗ /∈ Bδ

T,S ] = εδclass. �is follows
directly from theG-symmetry,

Pr[πq∗ /∈Bδ
T,S ] = Pr[πq∗ /∈Π−1Bδ

t◦,s◦ ] = Pr[q∗ /∈π−1Π−1Bδ
t◦,s◦ ]

= Pr[q∗ /∈Π−1Bδ
t◦,s◦ ] = Pr[q∗ /∈Bδ

T,S ]. (3.9)

Finally, note that (3.8) and (3.9) rely on the group structure ofG.

3.3.3 Superpositions with a Small Number of Terms

We give here an argument why being close to a superposition of states with a
given approximate Hamming weight may be a useful property in the analyses of
quantum-cryptographic schemes. For simplicity, and since this will be the case
in our applications, we now restrict to the binary case where A = {0, 1}. Our
argument is based on the following lemma, which follows from Lemma 3.1.13
in [Ren05]; for completeness, we give a direct proof of Lemma 3.17 below as well.
Informally, the lemma states that measuring (part of) a superposition of a small
number of orthogonal states produces a similar amount of uncertainty as when
measuring themixture of these orthogonal states.
Lemma3.17 LetA andE be arbitrary quantum systems, let {|i〉}i∈I and {|w〉}w∈W
be orthonormal bases ofHA, and let |ϕAE〉 and ρmix

AE be of the form

|ϕAE〉 =
∑
i∈J

αi|i〉|ϕiE〉 ∈ HA ⊗HE and ρmix
AE =

∑
i∈J
|αi|2|i〉〈i| ⊗ |ϕiE〉〈ϕiE |

for some subset J ⊆ I . Furthermore, let ρWE and ρmix
WE describe the hybrid sys-

tems obtained by measuring subsystem A of |ϕAE〉 and ρmix
AE , respectively, in basis

{|w〉}w∈W to observe outcomeW . �en,

Hmin(ρWE |E) ≥ Hmin(ρmix
WE |E)− log |J | .

�e main tool to prove this lemma is the Cauchy-Schwarz inequality.
Theorem 3.18 (Cauchy-Schwarz Inequality) LetH be a Hilbert space. �en,

|〈ϕ|ψ〉|2 ≤ 〈ϕ|ϕ〉〈ψ|ψ〉 ∀ |ϕ〉, |ψ〉 ∈ H.
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A proof can be found in any standard textbook on functional analysis. For a proof
written in Dirac’s braket notation, see [NC00, Box 2.1].

Proof of Lemma 3.17. We will show that |J |ρmix
WE ≥ ρWE . It then follows that for

any density matrix σE and for any non-negative h ∈ R

2−(h−log |J |) · IW ⊗ σE − ρWE ≥ 2−h|J | · IW ⊗ σE − |J |ρmix
WE

= |J |
(
2−h · IW ⊗ σE − ρmix

WE

)
so that if the right-hand side is positive semide�nite then so is the le�-hand side.
�e claimed boundHmin(ρWE |E) ≥ Hmin(ρmix

WE |E)− log |J | then follows by the
de�nition of the min-entropy.

Writing out the measurements explicitly yields

ρWE =
∑
w∈W

(|w〉〈w| ⊗ IE)|ϕAE〉〈ϕAE |(|w〉〈w| ⊗ IE)

=
∑
w∈W

∑
i,j∈J

αiᾱj |w〉〈w|i〉〈j|w〉〈w| ⊗ |ϕiE〉〈ϕ
j
E |

and
ρmix
WE =

∑
i∈J
|αi|2

∑
w∈W

|〈w|i〉|2|w〉〈w| ⊗ |ϕiE〉〈ϕiE |.

We want to show that 〈ξ|(|J |ρmix
WE − ρWE)|ξ〉 ≥ 0 for all |ξ〉 ∈ HA ⊗HE . By the

Schmidt decomposition, we may write |ξ〉 =
∑
w∈W βw|w〉|ψwE〉, where |ψwE〉 ∈

HE for all w ∈ W .

〈ξ|ρWE |ξ〉 =
∑

v,w,x∈W
β̄vβx

∑
i,j∈J

αiᾱj〈v|w〉〈w|i〉〈j|w〉〈w|x〉 ⊗ 〈ψvE |ϕiE〉〈ϕ
j
E |ψ

x
E〉

=
∑
w∈W

|βw|2
∑
i,j∈J

αiᾱj〈w|i〉〈j|w〉 ⊗ 〈ψwE |ϕiE〉〈ϕ
j
E |ψ

w
E〉

=
∑
w∈W

|βw|2
(∑
i∈J

αi〈w|i〉〈ψwE |ϕiE〉
)(∑

j∈J
ᾱj〈j|w〉〈ϕjE |ψ

w
E〉
)

=
∑
w∈W

|βw|2
∣∣∣∑
i∈J

αi〈w|i〉〈ψwE |ϕiE〉
∣∣∣2,

and
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〈ξ|ρmix
WE |ξ〉 =

∑
v,w,x∈W

β̄vβx
∑
i∈J
|αi|2|〈w|i〉|2〈v|w〉〈w|x〉〈ψvE |ϕiE〉〈ϕiE |ψxE〉

=
∑
w∈W

|βw|2
∑
i∈J
|αi|2|〈w|i〉|2〈ψwE |ϕiE〉〈ϕiE |ψwE〉

≥ 1
|J |

∑
w∈W

|βw|2
∣∣∣∑
i∈J

αi〈w|i〉〈ψwE |ϕiE〉
∣∣∣2 = 1

|J |
〈ξ|ρWE |ξ〉,

where the inequality follows from Cauchy-Schwarz inequality (�eorem 3.18).
Hence, the operator |J |ρmix

WE − ρWE is positive semide�nite and the claim fol-
lows.

We apply Lemma 3.17 to an n-qubit system A where |ϕAE〉 is a superposition of
states with relative Hamming weight δ-close to β within A:10

|ϕAE〉 =
∑

b∈{0,1}n
|η(b)−β|≤δ

|b〉|ϕbE〉 .

It is well known that
∣∣{b ∈ {0, 1}n : |η(b) − β| ≤ δ}

∣∣ ≤ ∣∣{b ∈ {0, 1}n : η(b) ≤
β + δ}

∣∣ ≤ 2nh(β+δ) for β + δ ≤ 1
2 , where the function h is the binary entropy

function.11

Sincemeasuring qubits within a state |b〉 in theHadamard basis produces uniformly
random bits, we can conclude the following.
Corollary 3.19 LetA be an n-qubit system, let the state |ϕAE〉 ofAE be a superpo-
sition of states with relative Hamming weight δ-close to β withinA, where β+δ ≤ 1

2 ,
and let the random variableX be obtained by measuringA in basisHθ{|0〉, |1〉}⊗n
for θ ∈ {0, 1}n. �en

Hmin(X|E) ≥ wt(θ)− nh(β + δ) .

Consider now the following quantum-cryptographic setting. Bob prepares and
hands over to Alice an n-qubit quantum system A, which ought to be in state
|ϕ◦A〉 = |0〉 · · · |0〉. However, since Bob might be dishonest, the state of A could

10SystemA considered here corresponds to the subsystemAt̄ in the previous section, a�er having
measuredAt of the ideal state.

11�ere exists a corresponding upper bound for the cardinality of a q-ary Hamming ball (with
arbitrary q), expressed in terms of the so-called q-ary entropy function; we do not elaborate on this
here, since we now focus on the binary case.
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be anything, even entangled with some system E controlled by Bob. Our results
now imply the following: Alice can apply a suitable sampling strategy to convince
herself that the joint state of the remaining subsystem of A and of E is (close to) a
superposition of states with bounded relativeHammingweight. FromCorollary 3.19,
we can then conclude that with respect to the min-entropy of the measurement
outcome, the state of A behaves similarly to the case where Bob honestly prepares
A to be in state |ϕ◦A〉. By Remark 3.12, i.e., by doing a suitable change of basis,
the same holds if |ϕ◦A〉 = H θ̂|x̂〉 for arbitrary �xed θ̂, x̂ ∈ {0, 1}n, where wt(θ) is
replaced by the Hamming distance between θ and θ̂. We will make use of this in
the applications in the upcoming sections.

3.4 A Security Proof for QuantumOblivious Transfer

In a (one-out-of-two) oblivious transfer (OT) Alice sends two messages,m0,m1 ∈
{0, 1}` to Bob. Bobmay choose to receive one of the twomessages,mc.�e security
requirements demand that Bob learns no information on the other message,m1−c,
while at the same time Alice remains ignorant about Bob’s choice bit c.

Back in 1991, Bennett et al. proposed a quantum scheme for OT, i.e., a QOT
scheme [BBCS91]. �e scheme makes use of a bit commitment (BC), which at
that point in time was believed to be implementable with unconditional security by
a quantum scheme. Bennett et al., however, merely claimed security of their scheme
without providing any proof. In 1994, Mayers and Salvail proved the QOT scheme
secure against a limited class of attacks [MS94], and, subsequently, Yao presented a
full security proof without limiting the adversary’s capabilities [Yao95]. However,
Yao’s proof is lengthy and very technical, and thus hard to understand. Furthermore,
security is phrased and proven in terms of accessible information, of which we now
know that it is a too weak information measure to guarantee security as required.

Here we show how our sampling-strategy framework naturally leads to a new
security proof for Bennett et al.’s QOT scheme. �e new proof is simple and
conceptually easy-to-understand, and security is expressed and proven by means of
a security de�nition that is currently accepted to be “the right one.” Furthermore,
it allows for an explicit bound on the imperfection of the scheme for any set of
parameters (number of transmitted qubits, length of messages etc.), rather than
merely providing an asymptotic security claim. Nowadays, we of course know that
BC (as well as QOT) cannot be implemented with unconditional security by means
of a quantum scheme: QBC is impossible [May97, LC97]. As such QOT cannot be
instantiated from scratch. Nevertheless, the existence of a QOT scheme based on a
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(hypothetical) BC is still an interesting result, since in the non-quantum world, a
BC alone does not allow to implement OT.

Below, we describe Bennett et al.’s QOT scheme (with some minor modi�cations),
which we denote as QOT. Actually, QOT corresponds to the randomized oblivious
transfer used within Bennett et al.’s QOT scheme, where the messagesm0 andm1,
called k0 and k1 in QOT, are not input by Alice (her input is empty:⊥) but randomly
produced during the course of the scheme and then output to Alice.�e desired
non-randomized OT is then obtained simply by one-time-pad encrypting Alice’s
input messagesm0 andm1 with the keys k0 and k1, respectively. Security of the
non-randomized OT follows immediately from the security of the randomized OT
by the properties of the one-time pad (see Proposition 2.53).

QOT is parameterized by parameters n, k, ` ∈ N, where n is the number of qubits
communicated, ` the bit-length of the messages/keys k0, k1, and k is the size of
the “test set” t, which we require to be at most n/2. QOT makes use of a universal
hash function g : R × {0, 1}n → {0, 1}`. For x′ ∈ {0, 1}n′ with n′ < n, we
de�ne g(r, x′) as g(r, x) where x ∈ {0, 1}n is obtained from x′ by padding it with
su�ciently many 0’s. Furthermore, the scheme makes use of a BC, which we model
as an ideal BC functionality. One can think of this ideal BC as a trusted party.�is
party accepts an input from the sender in the commit phase, and forwards this input
to the receiver in the opening phase, and neither the sender nor the receiver is able
to cheat in any way. Alternatively, at the cost of losing unconditional security against
dishonest Alice, we may use a BC implementation that is perfectly binding and
computationally hiding.12 Finally, for simplicity, we assume a noise-free quantum
channel. For the more realistic setting of noisy quantum communication, an error-
correcting code can be applied in a similar fashion as in the original scheme; this
will not signi�cantly a�ect our proof. In the upcoming protocol descriptions, we
make use of our convention to speak about a basis θ (or θ̂ ) in {0, 1}n when we
actuallymeanHθ{|0〉, |1〉}⊗n (respectivelyH θ̂{|0〉, |1〉}⊗n). Also, please recall the
general remarks made about protocols at the beginning of Section 2.11. Protocol 3.1
shows the description of QOT.

Note that our protocol, contrary to most QOT protocols given in the literature
(including [BBCS91]), uses the same seed r to compute both keys (k0 and k1). Why
we can do this will be made clear in the proof against dishonest Bob.

12Note that we do not claim any kind of composability for this computational setting. In case of a
perfectly hiding and computationally binding BC scheme, our techniques do not apply directly. A
speci�c variant of the latter case (in which the BC is required to have some additional properties) is
handled in [DFL+09].



120 Chapter 3. Random Sampling from a Quantum Population

1. Preparation: Alice choosesx r←{0, 1}n and θ r←{0, 1}n and sends then qubits
Hθ|x〉 to Bob. Bob selects θ̂ r←{0, 1}n and measures the received qubits in
basis θ̂, obtaining x̂ ∈ {0, 1}n.

2. Commitment: Bob commits bit-wise to θ̂ and x̂. Alice samples a random
subset t ⊂ [n] of cardinality k and asks Bob to open the commitments to θ̂i
and x̂i for all i ∈ t. Alice veri�es the opened commitments by checking that
x̂i = xi whenever θ̂i = θi. She internally stores the outcome of this check,
i.e., accept or reject, for later use in step 4.

3. Set partitioning: Alice sends θ to Bob. Bob partitions t̄ into the subsets
Ic = {i ∈ t̄ : θi = θ̂i} and I1−c = {i ∈ t̄ : θi 6= θ̂i} and sends I0 and I1 to
Alice.

4. Key extraction: Alice chooses r r←R and sends it to Bob. Bob computes k̂c =
g(r, x̂Ic). In case of accept, Alice computes k0 and k1 as k0 := g(r, xI0)
and k1 := g(r, xI1). Otherwise, i.e., in case of reject, she sets k0 and k1 to
random `-bit strings.

Protocol 3.1: QOT(⊥; c)

It is trivial to see that for honest Alice and Bob: k̂c = kc.

Furthermore, security against dishonest Alice, who is trying to learn information
on c, is easy to see and not the issue here: in case of a perfect BC functionality, Alice
learns no information on c no matter what she does; in case of a computationally
hiding BC implementation, all information she obtains on c is “hidden within the
commitments,” and thus computational security follows from the computational
hiding property.

Nevertheless, we will give a formal proof for the dishonest-Alice case in the sec-
tion below. �e security de�nition that we use is compatible with that of [FS09],
meaning that—when using an ideal BC functionality—sequential composability is
guaranteed when Alice is dishonest.

In Section 3.4.2, we deal with security against dishonest Bob.

3.4.1 Security against Dishonest Alice

Theorem 3.20 Consider an execution of QOT between dishonest Alice and honest
Bob. LetC ∈ {0, 1} be Bob’s input and letE be Alice’s quantum system at the end of
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the protocol. For any dishonest Alice, there exist random variablesK0 andK1 such
that K̂C = KC and

ρCK0K1E = ρC ⊗ ρK0K1E .

Proof. To analyze the security against dishonest Alice, we slightly modify QOT into
a protocol in which it is obvious that the claim holds. Nevertheless, the modi�ed
protocol remains equivalent to QOT in that both protocols produce exactly the same
�nal state ρCK̂CE .

�e �rstmodi�cation is that we change the speci�cation of the ideal BC functionality
such that it allows Bob to cheat. I.e., it provides the option for Bob to modify his
commitment in the opening phase. Bob will not yet make use of this cheating
possibility (in the context of this modi�cation). Obviously, under this modi�cation
the protocol produces exactly the same state.

�e second modi�cation is that we let Bob postpone his measurements. In step 2,
he still commits to θ̂ but commits to, say, the all-zero string in place of x̂. �en,
upon Alice’s opening request, Bob only measures the qubits indexed by t in basis θ̂t,
and uses the cheating possibility of the commitment scheme to open the correct
measurement outcomes to Alice. Bob postpones themeasurements of the remaining
qubits (indexed by t̄) to step 3, a�er Alice announces her basis θ. It is clear that
postponing these measurements does not change the �nal state.

As a third modi�cation, we let Bob measure these remaining qubits (indexed by
t̄) in Alice’s basis θ. �is means that the qubits indexed by I1−C are measured in
a basis with a di�erent distribution than in QOT. Nevertheless, Bob never uses the
outcomes of these measurements, so the �nal state ρCK̂CE is indeed exactly the
same as in the original protocol.

Because Bob measures in Alice’s basis, it holds that X̂t̄ = Xt̄ and thus he can
computeK0 := g(r,XI0) as well asK1 := g(r,XI1).�is immediately proves the
existence claim of these random variables.

�en, note that Bob’s input C is only used in step 4 when Bob computes K̂C . I.e.,
the state ρK0K1E is computed completely regardless of C and thus

ρCK0K1E = ρC ⊗ ρK0K1E .

Finally, Bob sets K̂C = KC . Hence this proves the claim.
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3.4.2 The Harder Case: Security against Dishonest Bob

Proving security against dishonest Bob is much more subtle, and is the goal of this
section. Clearly, if Bob indeed measures the qubits in the preparation phase with
respect to some choice θ̂, then security is easy to see: no matter how he partitions t̄
into I0 and I1, on at least one of xI0 and xI1 he has some lower bounded uncertainty,
and privacy ampli�cation �nishes the job.�e intuition is now that the commitment
phase forces Bob to essentially measure all qubits with respect to some choice θ̂, as
otherwise he will get caught with overwhelming probability. However, proving this
rigorously is non-trivial.

For our proof of security against dishonest Bob, we �rst introduce a slightlymodi�ed
version of the protocol, QOT∗, shown as Protocol 3.2. QOT∗ is only of proof-technical
interest because it asks Alice to perform some actions that she could not do in
practice. However, her actions are well-de�ned, and it follows from standard argu-
ments that Bob’s view of QOT is exactly the same as of QOT∗. It thus su�ces to prove
security (against dishonest Bob) for QOT∗.

QOT∗ is obtained from QOT by means of the following two modi�cations. First, for
every i ∈ [n], instead of sendingHθi |xi〉, Alice prepares an EPR pairAiBi of which
she sendsBi to Bob and measuresAi, at some later point in the protocol, in basis θi
to obtain xi. By elementary properties of EPR pairs, and since actions on di�erent
subsystems commute, this does not a�ect Bob’s view of the protocol. Second, Alice
measures her qubits At within the test subset t in Bob’s basis θ̂t (rather than in θt)
to obtain xt, but she still only veri�es correctness of Bob’s x̂i’s with i ∈ t for which
θ̂i = θi. Note that by assumption on the BC, the string θ̂ to which Bob can open
his commitments is uniquely determined at this point, and thus Alice’s action is
well-de�ned, although not feasible in real life. �is modi�cation only in�uences
Alice’s bits xi for which i ∈ t and θ̂i 6= θi; however, since these bits are not used in
the protocol, it has no e�ect on Bob’s view.

Our proof for the security of QOT∗, and thus of QOT, against dishonest Bob follows
quite easily from our treatment of sampling strategies from Section 3.3.�e proof
is given below, a�er the formal security statement in�eorem 3.21. We would like
to point out that our security guarantee implies the security de�nition proposed
and studied in [FS09] for (randomized) OT, which in particular implies sequential
composability when used as a sub-routine in a classical outer protocol.
Theorem 3.21 (Security of QOT) Consider an execution of QOT (respectively QOT∗)
between honest Alice and dishonest Bob. LetK0 andK1 be the keys in {0, 1}` output
by Alice. �en, there exists a bit c so thatK1−c is close to random-and-independent
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1. Preparation: Alice prepares n EPR pairs of the form (|0〉|0〉 + |1〉|1〉)/
√

2,
and sends one qubit of each pair to Bob, who proceeds as in the original
scheme QOT to obtain θ̂ and x̂. Alice chooses θ r←{0, 1}n, but she does not
measure her qubits yet.

2. Commitment: Bob commits to θ̂ and x̂, and Alice chooses a random subset
t ⊂ [n] of cardinality k, as in QOT. Next, Alice measures her qubits that are
indexed by t in Bob’s basis θ̂t to obtain xt. �en, Alice sends t to Bob and
they proceed as in QOT, meaning that Bob opens these commitments and
Alice veri�es them.

3. Set partitioning: As in QOT. Additionally, Alice measures her qubits corre-
sponding to I0 in basis θI0 to obtain xI0 and her qubits corresponding to I1
in basis θI1 to obtain xI1 .

4. Key extraction: Exactly as in the original scheme QOT.

Protocol 3.2: QOT∗(⊥; c)

of Bob’s view (givenKc) in that for any ε, δ > 0:
1
2‖ρK1−cKcE − 1

2` I⊗ ρKcE‖1

≤ 1
2 · 2

− 1
2

((
1
4−

ε
2−h(δ)

)
(n−k)−`

)
+
√

6 exp
(
−δ2k/100

)
+ 2 exp

(
−2ε2(n− k)

)
,

where E denotes the quantum state output by Bob, and I the identity operator on
C2` .

On a high level, the proof is as follows. Alice’s checking procedure can be understood
as applying a sampling strategy to the qubits she holds. From this we obtain that
(except with a small error) the joint state she shares with Bob is a superposition of
states with small relative Hamming weight within her subsystem At̄.�is implies
that the joint state is a superposition of states with small relative Hamming weight
also within AI1−c , where c ∈ {0, 1} is chosen such that θi 6= θ̂i for approximately
half (or more) of the indices i in I1−c. It then follows from Corollary 3.19 that xI1−c ,
obtained by measuring AI1−c in basis θI1−c , has high min-entropy, so that privacy
ampli�cation concludes the proof.�e formal proof, which takes care of the details
and keeps track of the error term, is given below.

Proof. We consider the state

|ϕAE◦〉 ∈ HA1 ⊗ · · · ⊗ HAn ⊗HE◦ ,
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shared between Alice and Bob, a�er Bob has committed to θ̂ and x̂, but before Alice
chooses the test subset t. |ϕAE◦〉 is obtained from the n EPR-pairs by an arbitrary
quantum operation (possibly involving measurements), applied only to Bob’s part.
Without loss of generality, we may assume that, given the commitments, the joint
state is indeed pure. Furthermore, we consider the strings θ̂ and x̂, to which Bob
has committed. By the perfectly binding property, these are uniquely determined.
For concreteness, and in order to have the notation �t nicely with Section 3.3, we
assume θ̂ = x̂ = (0, . . . , 0) ∈ {0, 1}n; however, by Remark 3.12, the very same
reasoning works for any θ̂ and x̂.

�e crucial observation now is that Alice’s checking procedure within the com-
mitment phase of QOT∗ can be understood as applying a sampling strategy to the
state |ϕAE◦〉 in order to test closeness of A to the all-zero state |0〉 · · · |0〉. Indeed,
Alice chooses a random subset t ⊂ [n] of cardinality k, measures At (in the com-
putational basis) to obtain xt, and decides whether to accept or reject based on xt;
speci�cally, she takes a random subset s ⊆ t, given by s = {i ∈ t : θi = θ̂i}, and
accepts if and only xs = 0 for all i ∈ s. �is is precisely the sampling strategy Ψ
studied in Example 3.6, adapted to test closeness to |0〉 · · · |0〉 by accepting if and
only if f(t, xt, s) = 0. Note that, by the random choices of the θi’s, s is indeed a
random subset of t.

�us, we can conclude that at the end of the commitment phase, for any �xed δ > 0,
the joint state of At̄E◦ has collapsed to a state |ψAt̄E◦〉 that is (on average over
Alice’s choice of t and s) εδquant-close to being a superposition of states with relative
Hamming weight at most δ within At̄ (except when Alice rejects the test, but in
that case she will output random and independent keys at the end of the protocol
and the theorem trivially holds). We proceed by assuming that the state |ψAt̄E◦〉
equals a superposition of states with small relative Hamming weight, and we take
the error εδquant into account at the end of the proof.13 Recall that by�eorem 3.13
and Example 3.6 (and its analysis in Section 3.2.3),

εδquant ≤
√
εδclass ≤

√
6 exp

(
−kδ2/100

)
.

By the random choices of the θi’s, it follows from Hoe�ding’s inequality (�eo-
rem 2.11) that the Hamming weight of θt̄ is lower bounded bywt(θt̄) ≥ (1

2−ε)(n−
k) except with probability at most 2 exp(−2ε2(n− k)).14 Below, we assume that

13It now follows immediately from Corollary 3.19 that Hmin(X0X1|E◦) is “large,” where X0
collects the bits obtained by measuringAI0 in basis θI0 , and correspondingly forX1. However, in the
end we need thatHmin(X1−c|XcE◦) is “large” for some c, which does not follow from the former.
Because of that, we need to make a small detour.

14Actually, for the one-sided bound, we could save the factor two in front of the exp.
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the bound holds; we take the error probability into account at the end of the proof.
It follows that regardless of how Bob divides t̄ into I0 and I1, there exists c ∈ {0, 1}
such that wt(θI1−c) ≥ 1

2(1
2 − ε)(n− k) (if Bob is honest, then c coincides with his

input bit).

By re-arranging Alice’s qubits, we write the state |ψAt̄E◦〉 as |ψA1−cAcE◦〉, where
A0 := AI0 and A1 := AI1 . Since |ψAt̄E◦〉 is a superposition of states with Ham-
ming weight at most (n − k)δ within At̄, it is easy to see that |ψA1−cAcE◦〉 is a
superposition of states with Hamming weight at most (n− k)δ within A1−c. Let
the random variablesX1−c andXc describe the outcome of measuring A1−c and
Ac in bases θI1−c and θIc , respectively, and let ρX1−cXcE◦ be the corresponding
hybrid state. We may think of ρX1−cXcE◦ being obtained by �rst measuring A1−c,
resulting in a hybrid state ρX1−cAcE◦ , and thenmeasuring Ac; indeed, the order in
which these measurements take place have no e�ect on the �nal state.

We can now apply Corollary 3.19 to the hybrid state ρX1−cAcE◦ obtained from
measuring subsystem A1−c within |ψA1−cAcE◦〉 and conclude that

Hmin(X1−c|AcE◦) ≥ wt(θI1−c)− h(δ) · |I1−c| ≥
(1

4 −
ε

2 − h(δ)
)
(n− k) .

By the fact that quantum operations cannot decrease min-entropy (Lemma 3.1.12 in
[Ren05]) it follows that the same bound in particular holds forHmin(X1−c|XcE◦).
Applying privacy ampli�cation15 (�eorem 2.65), incorporating the error probabili-
ties (expressed in terms of trace distance) obtained along the proof, and noting that
Bob’s processing of his information to obtain his �nal quantum state E does not
increase the trace distance, concludes the proof.

3.5 An Accessible Proof for Quantum Key Distribution

Recall that in quantum key distribution (QKD), Alice and Bob want to agree on
a secret key in the presence of an adversary Eve. Alice and Bob are assumed
to be able to communicate over a quantum channel and over an authenticated
classical channel.16 Eve may eavesdrop the classical channel (but not insert or
modify messages), and she has full control over the quantum channel. For a more
detailed introduction, see Chapter 1.

15Because we show a lower bound on the min-entropy ofX1−c when given the raw keyXc, we
simply need one hash function instead of two independently chosen ones as in, e.g., [DFSS07].

16If the classical channel between Alice and Bob is not authentic, then authenticity of the com-
munication can still be achieved by information-theoretic authentication techniques, at the cost of
requiring Alice and Bob to initially share a short secret key.
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�e �rst and still most prominent QKD scheme is the famous BB84 QKD scheme
due to Bennett and Brassard [BB84]. In this section, we show how our sampling-
strategy framework leads to a simple security proof for the BB84 QKD scheme.

3.5.1 Survey of Existing QKD Proofs

Before discussing our proof, we want to discuss two existing QKD proofs, i.e., the
proof by Shor and Preskill [SP00], as well as a more modern proof by Renner
[Ren05] based on the quantum de Finetti theorem. We will merely explain the ideas
behind those proofs on a high level, instead of discussing the proofs in detail.

Shor and Preskill’s Proof

Entanglement puri�cation is a functionality that takes as input a state that is fairly
close to a product state of n EPR pairs, and outputs a state consisting ofm perfect
EPR pairs, for some m < n. It is well known that we can obtain a “shared-key
generation protocol” from an entanglement-puri�cation protocol by appending a
step in which Alice and Bob measure their halves of the EPR pairs in a common
basis.

Shor and Preskill [SP00] show an entanglement-puri�cation protocol based on
Calderbank-Shor-Steane codes, which are error-correcting codes for quantum
states that can be used without requiring a quantum computer.�e security of this
entanglement-puri�cation protocol follows from the earlier work of Lo and Chau.

Subsequently, Shor and Preskill reduce this entanglement-puri�cation protocol to
a key distribution protocol, in which, unlike the shared-key generation protocol,
Alice samples a classical key herself and encodes it in a quantum state that she sends
to Bob. By some additional simpli�cations, the latter protocol is further reduced to
BB84.

Renner’s Proof using the Quantum de Finetti Theorem

One of the reasons why it is non-trivial to prove the security of QKD is that the
proof should hold for any input state. Renner’s approach [Ren05] to circumvent
this di�culty is to show that by performing some simple operations, the input state
can be transformed into a state that is very close to a convex combination of product
states, for which it is much easier to show security for the di�erent subprotocols.
I.e., it su�ces to show security against collective attacks.17

17A side result of this approach is that coherent attacks on QKD are not more powerful than
collective attacks.
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More precisely, the �rst step is to apply a random permutation to the qubits, which
makes the input state symmetric (i.e., permutation-invariant). Moreover, it can be
shown that there always exists a puri�cation of this state which is symmetric as
well. �en, by the �nite quantum de Finetti theorem, it holds that when tracing
out certain parts of this puri�cation, one obtains a state that is close to a convex
combination of product states.

3.5.2 Our Proof

We will now discuss our proof for the BB84 scheme based on the sampling-strategy
framework. Beyond its simplicity, our proof has some other nice features. For
instance, it allows us to explicitly state (a bound on) the error probability of the
QKD scheme for any given choices of the parameters. Additionally, our proof
does not seem to take unnecessary detours or to make use of “loose bounds,” and
therefore we feel that the bound on the error probability we obtain is rather tight
(although we have no formal argument to support this).

Our proof strategy can also be applied to other QKD schemes that are based on
the BB84 encoding. For example, Lo et al.’s QKD scheme18 [LCA05] can be proven
secure by following exactly our proof, except that one needs to analyze a slightly
di�erent sampling strategy, namely the one from Example 3.8. On the other hand,
it is yet unknown whether our framework can be used to prove, e.g., the six-state
QKD protocol [Bru98] secure.

Actually, the QKD scheme we analyze is the entanglement-based version of the
BB84 scheme (as initially suggested by Ekert [Eke91]). However, it is very well
known and not too hard to show that security of the entanglement-based version
implies security of the original BB84 QKD scheme.

�e entanglement-based QKD scheme, QKD, is parameterized by the total number n
of qubits sent in the protocol and the number k of qubits used to estimate the error
rate of the quantum channel (where we require k ≤ n/2). Additional parameters,
which are determined during the course of the protocol, are the observed error rate
β and the number ` ∈ N ∪ {0} of extracted key bits. QKD makes use of a universal
hash function g : R× {0, 1}n−k → {0, 1}` and a linear binary error correcting
code of length n − k that allows to correct up to a β′-fraction of errors (except
maybe with negligible probability) for some β′ > β.�e choice of how much β′
exceeds β is a trade-o� between keeping the probability that Alice and Bob end

18In this scheme, Alice and Bob bias the choice of the bases so that they measure a bigger fraction
of the qubits in the same basis.
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up with di�erent keys small and increasing the size of the extractable key. We will
writem for the bit size of the syndrome of this error-correcting code. Protocol QKD
can be found below.

1. Qubit distribution: Alice prepares n EPR pairs of the form (|0〉|0〉 +
|1〉|1〉)/

√
2, and sends one qubit of each pair to Bob, who con�rms the

receipt of the qubits.�en, Alice picks θ r←{0, 1}n and sends it to Bob, and
Alice and Bob measure their respective qubits in basis θ to obtain x ∈ Fn2 on
Alice’s side respectively y ∈ Fn2 on Bob’s side.

2. Error estimation: Alice chooses a random subset s ⊂ [n] of size k and sends
it to Bob. �en, Alice and Bob exchange xs and ys and compute β :=
η(xs ⊕ ys).

3. Error correction: Alice sends the syndrome syn of xs̄ to Bob with respect to
a suitable linear error correcting code (as described above). Bob uses syn to
correct the errors in ys̄ and obtains x̂s̄. Letm be the bit-size of syn.

4. Key distillation: Alice chooses a random seed r for a universal hash function
g with range {0, 1}`, where ` satis�es ` < (1−h(β))n− k −m (or ` = 0 if
the right-hand side is not positive), and sends it to Bob.�en, Alice and Bob
compute kA := g(r, xs̄) and kB := g(r, x̂s̄), respectively.

Protocol 3.3: QKD

It is not hard to see thatKA = KB except with negligible probability (in n). Further-
more, if no Eve interacts with the quantum communication in the qubit distribution
phase then x = y in case of a noise-free quantum channel, or more generally,
η(X − Y ) ≈ φ in case the quantum channel is noisy and introduces an error
probability 0 ≤ φ < 1

2 . It follows that β ≈ φ, so that using an error correct-
ing code that approaches the Shannon bound, Alice and Bob can extract close to
(1− 2h(φ))(n− k) bits of secret key, which is positive for φ smaller than approxi-
mately 11%.�e di�cult part is to prove security against an active adversary Eve.
We �rst state the formal security claim.

Note that we cannot expect that Eve has (nearly) no information onKA, i.e., that
1
2‖ρKAE − 1

|K|IKA ⊗ ρE‖1 is small, since the bit-length ` of KA is not �xed but
depends on the course of the protocol, and Eve can in�uence and thus obtain
information on ` (and thus onKA).�eorem 3.22 though guarantees that the bit-
length ` is the only information Eve learns onKA, in other words,KA is essentially
random-and-independent of E when given `.
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Theorem 3.22 (Security of QKD) Consider an execution of QKD in the presence of
an adversary Eve. LetKA be the key obtained by Alice, and let E be Eve’s quantum
system at the end of the protocol. Let K̃ be chosen uniformly at random of the same
bit-length asKA. �en, for any δ with β + δ ≤ 1

2 :

1
2‖ρKAE − ρK̃E‖1 ≤

1
2 · 2

− 1
2

(
n−nh(β+δ)−k−m−`

)
+ 2 exp

(
−1

6δ
2k
)
.

From an application point of view, the following question is of interest. Given the
parameters n and k, and given a run of the protocol with observed error rate β
and where an error-correcting code with syndrome lengthm was used, what is the
maximal size ` of the extractable keyKA if we want 1

2‖ρKAE − ρK̃E‖1 ≤ ε for a
given ε? From the bound in�eorem 3.22, it follows that for every choice of δ (with
β+ δ ≤ 1

2 ), one can easily compute a possible value for ` simply by solving for `. In
order to compute the optimal value, one needs to maximize ` over the choice of δ.

�e formal proof of�eorem 3.22 is given below. Informally, the argument goes
as follows.�e error estimation phase can be understood as applying a sampling
strategy. From this, we can conclude that the state from which the raw key, xs̄,
is obtained, is a superposition of states with bounded Hamming weight, so that
Corollary 3.19 guarantees a certain amount of min-entropy within xs̄. Privacy
ampli�cation then �nishes the proof.

To model the error estimation procedure as a sampling strategy, we will need to
consider a modi�ed but equivalent way for Alice and Bob to jointly obtain xs ∈ Fk2
and ys ∈ Fk2 from the initial joint state, which will allow them to obtain their sum
xs⊕ ys, and thus to compute β, before they measure the remaining part of the state,
whose outcome then determines xs̄. �is modi�cation is based on the so-called
cnot operation, Ucnot, acting on C2 ⊗ C2, which has the following properties for
all b, c ∈ F2:

Ucnot(|b〉|c〉) = |b〉|b⊕ c〉 and Ucnot(H|b〉H|c〉) = H|b⊕ c〉H|c〉 , (3.10)

where the �rst holds by de�nition of Ucnot, and the second is straightforward to
verify.

Proof. �roughout the proof, we use capital letters, Θ,X etc. for the random vari-
ables representing the corresponding choices of θ, x etc. in protocol QKD. Let the
state, shared by Alice, Bob and Eve right a�er the quantum communication in the
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qubit distribution phase, be denoted by |ψABE◦〉;19 without loss of generality, we
may indeed assume the shared state to be pure. For every i ∈ [n], Alice and Bob
then measure the respective qubits Ai and Bi from |ψABE◦〉 in basis Θi, obtain-
ing Xi and Yi. �is results in the hybrid state ρΘXY E◦ . For the proof, it will be
convenient to introduce the additional random variablesW = (W1, . . . ,Wn) and
Z = (Z1, . . . , Zn), de�ned by

Zi := Xi ⊕ Yi and Wi :=
{
Xi if Θi = 0
Yi if Θi = 1 . (3.11)

Note that, when given Θ, the random variablesW and Z are uniquely determined
byX and Y and vice versa, and thus we may equivalently analyze the hybrid state
ρΘWZE◦ .

...
...

|ψABE〉

E

Y2
Y3

Y1

Yn

X1
X2

Xn

X3

0
1
1

0

...

Θ

...
...

|ϕABE〉

E

X1 = W1
W2 = Y2
W3 = Y3

Xn = Wn

Z1 = X1⊕Y1
X2⊕Y2 = Z2
X3⊕Y3 = Z3

Zn = Xn⊕Yn

...
...

|ϕABE〉

E

Z1 = X1⊕Y1

Zn = Xn⊕Yn

X2⊕Y2 = Z2
X3⊕Y3 = Z3

Figure 3.1: Original and modi�ed experiments for obtaining the same state
ρΘW ZE◦ .

For the analysis, we will consider a slightly di�erent experiment for Alice and Bob
to obtain the very same state ρΘWZE◦ ; the advantage of the modi�ed experiment
is that it can be understood as a sampling strategy.�e modi�ed experiment is as
follows. First, the cnot transformation is applied to every qubit pair AiBi within
|ψABE◦〉 for i ∈ [n], such that the state |ϕABE◦〉 = (U⊗ncnot ⊗ IE◦)|ψABE◦〉 is
obtained. Next, Θ is chosen at random as in the original scheme, and for every

19Note that E◦ represents Eve’s quantum state just a�er the quantum communication stage,
whereas E represents Eve’s entire state of knowledge at the end of the protocol (i.e., the quantum
information and all classical information gathered during execution of QKD).
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i ∈ [n] the qubit pair AiBi of the transformed state is measured as in the original
scheme depending on Θi; however, if Θi = 0 then the resulting bits are denoted
byWi and Zi, respectively, and if Θi = 1 then they are denoted by Zi andWi,
respectively, such that which bit is assigned to which variable depends on Θi.�is
is illustrated in Figure 3.1 (le� and middle), where light and dark colored ovals
represent measurements in the computational and Hadamard basis, respectively. It
now follows immediately from the properties (3.10) of the CNOT transformation
and from the relation (3.11) between X,Y and W,Z that the state ρΘWZE◦ (or,
equivalently, ρΘXY E◦) obtained in this modi�ed experiment is exactly the same as
in the original.

An additional modi�cation we may do without in�uencing the �nal state is to delay
some of the measurements: we assume that �rst the qubits are measured that lead
to the Zi’s, and only at some later point, namely a�er the error estimation phase,
the qubits leading to theWi’s are measured (as illustrated in Figure 3.1, right).�is
can be done since the relative Hamming weight ofXS ⊕ YS for a random subset
S ⊂ [n] (of size k) can be computed given Z alone.

�e crucial observation is now that this modi�ed experiment can be viewed as a
particular sampling strategyΨ, as a matter of fact as the sampling strategy discussed
in Example 3.7, being applied to systemsA andB of the state |ϕABE◦〉. Indeed: �rst,
a subset of the 2n qubit positions is selected according to some probability distribu-
tion, namely of each pairAiBi one qubit is selected at random (determined by Θi).
�en, the selected qubits are measured to obtain the bit string Z = (Z1, . . . , Zn).
And, �nally, a value β is computed as a (randomized) function of Z : β = η(ZS)
for a random S ⊂ [n] of size k. We point out that here the reference basis (as
explained in Remark 3.12) is not the computational basis for all qubits, but the
Hadamard basis on the qubits in systemA and the computational basis in systemB;
however, as discussed in Remark 3.12, we may still apply the results from Section 3.3
(appropriately adapted).

It thus follows that for any �xed δ > 0, the remaining state, from whichW is then
obtained, is (on average over Θ and S) εδquant-close to a state which is (for any pos-
sible values for Θ, Z and S) a superposition of states with relative Hamming weight
in a δ-neighborhood of β. Note that the latter has to be understood with respect
to the �xed reference basis (i.e., the Hadamard basis on A and the computational
basis on B). In the following, we assume that the remaining state equals such a
superposition; we will take the error below into account at the end of the proof,

εδquant ≤
√
εδclass ≤ 2 exp

(
−1

6δ
2k
)
.
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where the bound on εδclass is derived in Section 3.2.3 (Example 3.7).

Recall thatW is now obtained by measuring the remaining qubits; however, the
basis used is opposite to the reference basis, namely the computational basis on the
qubits Ai and the Hadamard basis on the qubitsBi. Hence, by Corollary 3.19 (and
the subsequent discussion) we get a lower bound on the min-entropy ofW :

Hmin(W |ΘZSE◦) ≥ n− nh(β + δ) .

SinceW is uniquely determined byX (and vice versa) when given Θ and Z , the
same lower bound also holds forHmin(X|ΘZSE◦). Note that in QKD, the k qubit-
pairs that are used for estimating β are not used anymore in the key distillation
phase, so we are actually interested in the min-entropy of XS̄ . Additionally, we
should take into account that Alice sends anm-bit syndrome SYN during the error
correction phase. Hence, by using the chain rule, we obtain

Hmin(XS̄ |ΘZXSSYNE◦) ≥ n− nh(β + δ)− k −m.

Finally, we apply privacy ampli�cation (�eorem 2.65) which concludes the proof.

Probably, it is possible to prove the lower bound: (1−h(β+ δ))(n− k)−m using
a di�erent sampling strategy. However, for that case the error probability of the
related classical sampling strategy becomes harder to analyze. We have chosen for
the current proof strategy and bound for the sake of simplicity.

3.6 Conclusion

We have shown a framework for predicting some property (namely the approximate
Hamming weight, appropriately de�ned) of a population of quantum states, by
measuring a small sample subset.�e framework allows for new and simple security
proofs for important quantum cryptographic protocols: the Bennett et al. QOT
and the BB84 QKD scheme.

We �nd it particularly interesting that with our framework, the protocols for QOT
and QKD can be proven secure by means of very similar techniques, even though
they implement fundamentally di�erent cryptographic primitives, and are intu-
itively secure due to very di�erent reasons (namely in QOT the commitments
force Bob to measure the communicated qubits, whereas in QKD Eve disturbs the
communicated qubits when trying to observe them).20

20As pointed out by Louis Salvail, a connection between the security of QOT and QKD has also
been made by Mayers [May95, May96].
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4.1 Introduction

In this chapter, we consider the problem of achieving authentic1 communication
based on a weak key over a public channel that might be under the control of an
active adversary. A key is weak if its min-entropy is an arbitrarily small fraction of
its bit length. We study this problem in the information-theoretic setting, i.e., we
assume the adversary to be computationally unbounded.

First of all, note that because we are dealing with an active adversary, the standard
approach of using an extractor to turn the weak key into a strong one (which can
then be used to perform standard message authentication) will not work, since the
adversary can tamper with the extractor’s seed.

Speci�cally, we consider the following scenario. Alice and Bob share a long-term
keyW . When needed, Alice and Bob can extract a weak session keyXW from an
auxiliary source of randomness with the help ofW . It should be guaranteed by the
property of the auxiliary source that a potential adversary Eve who does not know
W has limited information on the weak session key XW . �is is formalized by
requiring thatHmin(XW |WE) ≥ k for some parameter k, whereE denotes Eve’s
side information.�is scenario occurs naturally in, e.g., Maurer’s bounded-storage
model [Mau90], whereW determines which part of the huge string to read, as well
as in the quantum setting, whereW determines in which basis to measure some
quantum state.

�e goal is to authenticate a message µ from Alice to Bob with the help of the weak
session key XW , while guaranteeing security, in that if Eve tampers with µ then
this will be detected, and privacy, in that Eve cannot learn information about the
long-term keyW . We stress that the privacy property is vital for Alice and Bob to
be able to re-useW . Note that once Alice and Bob can do message authentication
with a weak key, then they can also do key agreement, simply by doing standard
randomness extraction where the seed for the extractor is communicated in an
authentic way.

We want to emphasize that, by assumption, every new session keyXW for the same
long-term key W contains fresh randomness, provided by the auxiliary source.
�erefore, the goal above does not contradict the well-known impossibility result of
re-using an authentication key without refreshing. Also note that we do not specify
how exactly the auxiliary source of randomness produces XW fromW ; on the
contrary, we want security no matter howXW is obtained, as long asXW contains
enough min-entropy (given the adversary’s information andW ).

1For an introduction to message authentication, see Section 2.5.2.
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4.1.1 RelatedWork

With regard to the above security property, the problem of authentication from a
weak key in the presence of an active adversary is a fairly well-studied problem. To
the best of our knowledge, we are the �rst to study a special case of this problem
where the weak key is obtained from a long-term key and where privacy of the
long-term key needs to be guaranteed. In particular, the works that we will mention
below do not address this special case, and moreover they all fail to satisfy the
privacy property.

In the following discussion, let n be the bitsize of the key (in our case, the session
key) and k its min-entropy (in bits). It was proved by Dodis and Wichs [DW09]
that non-interactive authentication is impossible when k ≤ n/2, even when the
parties have access to local non-shared randomness, which we will assume. For a
good overview of earlier work on the case k > n/2, we refer to [DW09].

�e �rst protocol for interactive authentication from arbitrarily weak keys is due to
Renner and Wolf [RW03]. It requires Θ(`) rounds of interaction to authenticate an
`-bit message. In [DW09], an authentication protocol from arbitrarily weak keys is
described that only needs two rounds of interaction, which is optimal (in terms of
the number of rounds). Chandran et al. [CKOR10] focus on minimizing entropy
loss and describe a privacy ampli�cation protocol that is optimal with respect to
entropy loss (up to constant factors).�eir construction needs a linear number of
rounds (linear in the security parameter).

�e case where Alice and Bob share highly-correlated, but possibly unequal keys—
the “fuzzy” case—is addressed in [RW04] and improved upon by Kanukurthi and
Reyzin [KR09], but also covered by [DW09] and [CKOR10].

4.1.2 Motivation

�e main motivation for the work in this chapter comes from password-based iden-
ti�cation in the bounded-quantum-storage model (BQSM). As already mentioned
in Section 2.11, Damgård et al. [DFSS07] propose two identi�cation protocols: QID,
which is only secure against dishonest Alice or Bob, and QID+, which is also secure
against a man-in-the-middle (MITM) attack. However, only QID is truly password-
based; in QID+, Alice and Bob, in addition to the password, also need to share a
high-entropy key.

Now, the observation is that with the help of an authentication protocol with long-
term-key privacy, the protocol QID+ can be turned into a truly password-based
identi�cation protocol in the BQSM with security against MITM attacks.
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Based on QID+, Damgård et al. also propose an authenticated quantum key distribu-
tion protocol in the BQSM, which, in contrast to standard quantum key distribution
protocols, does not require authenticated communication but has the authentication
“built in.” Furthermore, in contrast to using standard quantum key distribution
in combination with standard authentication, in the authenticated quantum key
distribution protocol the authentication keys can be re-used. By making QID+ truly
password-based, Damgård et al.’s authenticated QKD protocol will become truly
password-based as well.

4.1.3 Contributions

We propose a new four-round protocol for message authentication with a weak
session keyXW .�e protocol is an extension of the two-round protocol by Dodis
and Wichs [DW09], which is based on look-ahead extraction. Given a secure look-
ahead extractor, we prove that our protocol satis�es security and long-term-key
privacy, meaning that the adversary Eve cannot tamper with the authenticated
message without being detected, nor does she learn a non-negligible amount of
information on the long-term keyW .

For the case where Eve’s side information about XW is classical, we can use the
construction for a look-ahead extractor that is given in [DW09]. Contrary to what
we have claimed in [BF11] (see Section 4.6.2 for a more detailed explanation), it
remains an open problem to construct a look-ahead extractor that is secure against
quantum side information, or, to prove that the construction given in [DW09]
(which is secure in the presence of classical side information) is also secure against
quantum side information. Hence, we cannot yet construct an authentication
protocol that is secure in the quantum setting, which would be needed for our
envisioned application, i.e., truly password-based identi�cation in the BQSM with
security against MITM attacks.

4.1.4 The Fuzzy Case

Wewill also discuss the “fuzzy case,” i.e., where there are some errors between Alice’s
and Bob’s weak session key. If Eve’s side information is classical, then our techniques
are known to be secure in the fuzzy case; in the quantum setting, however, this
remains to be shown. Precisely this latter case—the quantum setting—is relevant
for our password-based-identi�cation application.
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4.2 Security De�nition

In this chapter, an authentication protocol is understood as a classical protocol
between two parties Alice and Bob. Alice inputs a message µ and a weak session key
XW , and Bob inputs a message µ′ and the same session keyXW . At the end of the
protocol, Bob announces a Boolean decision whether to “accept” or “reject.”�e
weak session keyXW may depend arbitrarily on a long-term keyW . During the
execution of the protocol, an adversary Eve has full control over the communication
between Alice and Bob.

We require the protocol to ful�ll the following formal de�nition.
De�nition 4.1 LetE◦, E denote Eve’s respective a priori and a posteriori quantum
systems, where the latter includes Bob’s decision on whether to accept or reject.
An (n, k,m, δ, ε) message-authentication protocol with long-term-key privacy is
de�ned to satisfy the following properties:

1. Correctness: If there is no adversary Eve present, then for any message µ ∈
{0, 1}m and µ′ = µ, and for any (distribution of the) key XW ∈ {0, 1}n,
Bob accepts with certainty.

2. Security: IfHmin(XW |WE◦) ≥ k, then for anyµ, µ′ ∈ {0, 1}m withµ 6= µ′,
the probability that Bob accepts is at most δ.

3. Long-Term-Key Privacy: If ρWE◦ = ρW ⊗ ρE◦ andHmin(XW |WE◦) ≥ k,
then

1
2‖ρWE − ρW ⊗ ρE‖1 ≤ ε .

4.3 Dodis andWichs’ Authentication Protocol

In this section, we describe a slightly modi�ed version of the two-round message-
authentication protocol due to Dodis andWichs [DW09]. We will use this protocol
later as a “starting point” to construct ourmessage-authentication protocol. We start
by giving a few de�nitions that are crucial for the understanding of the protocol by
Dodis and Wichs.
De�nition 4.2 (Epsilon Look-Aheadness) Let t, ` be positive integers. Let A :=
(A1, . . . , At) andB := (B1, . . . , Bt) be random variables over ({0, 1}`)t, and let
E be a quantum system. For all i ∈ {0, . . . , t− 1} let εi be de�ned as

εi := dunif
(
Ai+1 . . . At

∣∣B1 . . . BiE
)
.

�e ordered pair (A,B) is ε-look-ahead conditioned on E if ε ≥ maxi εi.
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De�nition 4.3 (Look-Ahead Extractor) laExt : {0, 1}n × {0, 1}d → ({0, 1}`)t is
called a (k, ε)-look-ahead extractor if for any random variable X ∈ {0, 1}n and
quantum system E withHmin(X|E) ≥ k the following holds. Let S ∈ {0, 1}d be
an independent and uniformly distributed seed, and let S̃ ∈ {0, 1}d be adversarially
chosen given S and E; this may involve a (partial) measurement of E, resulting
in the new state E′. �en, the ordered pair (R, R̃) where R = (R1, . . . , Rt) :=
laExt(X;S) and R̃ = (R̃1, . . . , R̃t) := laExt(X; S̃) is ε-look-ahead conditioned
on S, S̃ and E′.

Informally, a look-ahead extractor has the property that even if the adversary is
allowed to modify the seed, when given the �rst i blocks of the key that is extracted
using the modi�ed seed, the remaining blocks of the key that is extracted using the
correct seed still look random.
De�nition 4.4 (Look-Ahead-Secure MAC) A family of functions

{MACκ : {0, 1}m → {0, 1}s},

indexed by keys κ ∈ ({0, 1}`)t is an (ε, δ) look-ahead-secureMAC if for any pair
of �xed and distinct messages µA, µB ∈ {0, 1}m, µA 6= µB, and any ordered pair
of random variables (K,K ′) ∈ ({0, 1}`)2t satisfying the look-ahead property with
parameter ε conditioned on quantum system E,

pguess
(
MACK(µB)

∣∣MACK′(µA)E
)
< δ .

We are now ready to present the Dodis and Wichs message-authentication protocol
DWMAC.�e version that we present here, Protocol 4.1, is slightly modi�ed in that
we assume that Alice has already sent her message µA to Bob, who has received it as
µB (possibly 6= µA).�is modi�cation is for simplicity, and because we do not aim
at minimizing the number of rounds. XW is the weak key, known to both Alice and
Bob. �e function laExt : {0, 1}n × {0, 1}d → ({0, 1}`)t is a (k, ε)-look-ahead
extractor and MACκ : {0, 1}m → F2s is a (ε, δ) look-ahead-secure MAC.

Security of DWMAC follows immediately from the de�nitions of the underlying
building blocks: laExt ensures that Alice and Bob’s versions of the keyK satisfy
the look-ahead property, and in this case it is guaranteed that MAC acts as a secure
MAC, even when Alice’s key was modi�ed.

However, in our setting where we additionally want to maintain privacy of the
long-term keyW , which may arbitrarily depend onXW , DWMAC does not seem to
be good enough, unless Eve remains passive. Indeed, if Eve does not manipulate the
communicated seedR, then by the assumed lower bound onHmin(XW |WE) it
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Alice(XW , µA) Bob(XW , µB)

R
r←{0, 1}d

R�

K := laExt(XW ;R) K := laExt(XW ;R)
TA := MACK(µA) TB := MACK(µB)

TA -

accept if: TA = TB
else: abort

Protocol 4.1: Dodis and Wichs’ two-round protocol DWMAC for message authenti-
cation from a weak key (XW ). When Alice wants to authenticate the message µA

to Bob, then Bob �rst sends a random seedR to Alice, upon which Alice replies
with the tag TA.

follows that the extractedK on Bob’s side is close to random and independent ofW
(and E), and thus T leaks no information onW . However, if Eve manipulates the
seedR (for instance replaces it by a value of her choice), then there is no guarantee
anymore thatK , and thus T , does not leak information onW .

Another and more subtle way for Eve to (potentially) learn information onW is by
not manipulating the message, i.e., have µA = µB, but manipulate the seedR and
try to obtain information onW by observing if Bob accepts or not.

4.3.1 Towards Achieving Key-Privacy

We give here some intuition on how we overcome the above privacy issues of
DWMAC with respect to the long-term keyW . Similarly to our notation TA and TB
to distinguish between the tag computed by Alice and by Bob, respectively, we write
RA andRB etc. to distinguish between Alice and Bob’s values ofR etc., which may
be di�erent if Eve actively manipulates communicated messages.

A �rst approach to prevent leakage through TA is to one-time-pad encrypt TA.
Let Ext : {0, 1}n × {0, 1}k → F2s be a strong extractor (since we merely give a
high-level explanation here, we do not specify all parameters of this extractor here).
�e key for the one-time pad is extracted fromXW by means of Ext, where Alice



140 Chapter 4. Authentication from a Weak Key with a Privacy Requirement

chooses the seed:

Alice Bob
R�

S
r←{0, 1}k

Z := Ext(XW ;S)
Q := TA ⊕ Z S,Q -

Z := Ext(XW ;S)
accept if: Q = TB ⊕ Z

In the above protocol (and also below), we understand TA and TB to be com-
puted as in DWMAC. Note that since it is Alice who chooses the seed S and because
Hmin(XW |WE) is su�ciently large, ZA is guaranteed to be (close to) random and
independent ofW (and E), and thus hides all information that TA might leak on
W . However, this modi�cation renders the security of the protocol invalid. For
instance, we cannot exclude that by modifying the seed S appropriately, Eve can
enforce ZB = TB, so that she only needs to sendQ = 0 to have Bob convinced.

In order to restore security while still preventing information to leak through TA,
we let Bob choose a random non-zero “multiplier” for the one-time pad key Z :

Alice Bob
R�

S
r←{0, 1}k C

r←F∗2s
Z := Ext(XW ;S)

S -
C�

abort if C = 0
Q := T ⊕ C · Z Q -

Z := Ext(XW ;S)
accept if: Q = TB ⊕ C · Z

Leakage through TA is still prevented since a non-zero multiple of a good one-
time-pad key is still a good one-time-pad key. Furthermore, for security, we can
intuitively argue as follows. Consider a snapshot of an execution of the protocol
a�er S has been communicated. We give Eve the value TA for free; this only makes
her stronger. By the security of the underlying DWMAC protocol, we know that it is
hard for Eve to guess TB. Now, assuming that there exist two distinct values for C
for which Eve can predict the corresponding valueQB = TB ⊕ C · ZB, it follows
immediately that Eve can actually predict TB; a contradiction. Hence, there can be
at most one value for Bob’s choice of C for which Eve can guessQB reasonably well.
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We point out that the above intuitive reasoning involves rewinding; this is �ne in the
classical setting, but fails when quantum information is involved due to no-cloning
(see, e.g., [VDG98]). �us, in our formal security proof where we allow Eve to
maintain a quantum state, we have to reason in a di�erent way. As a consequence,
in the actual protocol,Q is computed in a slightly di�erent way.

One issue that we have not yet addressed is that Bob’s decision to accept or reject
may also leak information onW when µA = µB and Eve modi�es one (or both)
of the seeds R and S. Note that this is not an issue if µA 6= µB because then, by
the security property, Bob rejects with (near) certainty. For instance it might be
that changing the �rst bit of S changes Z or not, depending on what the �rst bit
of XW is. �us, by changing the �rst bit of S and observing Bob’s decision, Eve
can learn the �rst bit of XW , which may give one bit of information onW . �e
solution to overcome this problem is intuitively very simple: we use MAC not only
to authenticate the actual message, but also to authenticate the two seeds R and
S.�en, like in the case µA 6= µB, if Eve changes one of the seeds then Bob’s will
reject. Note that this modi�cation introduces a circularity: the key K , which is
used to authenticate the seed R (as well as the message and S) is extracted from
XW by means of the seedR. However, it turns out that we can deal with this.

4.4 Our Construction

We now turn to our construction for the message-authentication protocol with long-
term-key privacy (De�nition 4.1). Let laExt : {0, 1}n × {0, 1}d → ({0, 1}`)t be a
(kK , εK) look-ahead extractor. Let Ext : {0, 1}n × {0, 1}v → F2q be a (kZ , εZ)-
strong extractor. LetMAC : ({0, 1}`)t×({0, 1}m×{0, 1}d×{0, 1}v)→ F2s be an
(ε, λ+ ε) look-ahead-secure MAC for any ε > 0. LetXW be the session key, shared
among Alice and Bob. We require that Hmin(XW |WE◦) ≥ max(kK + q, kZ),
and recall from De�nition 4.1 thatE◦ denotes Eve’s a priori quantum system. Recall
from Section 2.4.1 that for an element x ∈ F2n for arbitrary n ∈ N, [x]q denotes an
arbitrary linear surjective function F2n → F2q . Protocol AUTH is as Protocol 4.2.

In Section 4.6, we show how to instantiate the building blocks to obtain a protocol
with reasonable parameters that can be used in a scenario where Eve has classical
side information. For the quantum setting, we cannot yet instantiate protocol AUTH:
we currently do not have a construction for a look-ahead extractor that is provably
secure against quantum side information.

Depending on the parameters of an instantiation of AUTH and on the bitsize of µA,
it might be better (or even necessary) to authenticate a hash of the tuple (µA, R, S),
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Alice(XW , µA) Bob(XW , µB)

R
r←{0, 1}d

R�

K := laExt(XW ;R) K := laExt(XW ;R)
S

r←{0, 1}v
S -

Z := Ext(XW ;S) Z := Ext(XW ;S)
TA := MACK((µA, R, S)) TB := MACK((µB, R, S))

U
r←F2s , V

r←F∗2q
U,V�

if V = 0: abort
Q := [U · TA]q ⊕ V · Z

Q -

accept if: Q = [U · TB]q ⊕ V · Z
else: abort

Protocol 4.2: Our new four-round message-authentication protocol AUTH.

instead of authenticating the tuple itself. In this case, we let Alice choose a small
seed for an almost universal hash function and apply MACK to this seed and the
hash of the the tuple (µA, R, S) (with respect to this seed). We will actually make
use of this idea in Section 4.6.

Before going into the security proof for protocol AUTH, we resolve here the cir-
cularity issue obtained by authenticating the seed R that was used to extract the
authentication keyK .
Lemma 4.5 Consider a family of functions MACκ (indexed by keys κ ∈ ({0, 1}`)t)
that is a (ξ, λ + ξ)-look-ahead-secure MAC for any ξ. Let K , K ′, MA and MB
be arbitrary random variables and E a quantum state, and let the ordered pair
(K,K ′) ∈ ({0, 1}`)2t satisfy the look-ahead property with parameter ε conditioned
onMA,MB, E and the eventMA 6= MB. �en,

pguess
(
MACK(MB)

∣∣MACK′(MA)MAMBE,MA 6= MB
)
< λ+ tε.

Note that in the lemma above the messages may depend on the keys, whereas
De�nition 4.4 considers �xedmessages.

Proof. We condition onMA = mA andMB = mB wheremA 6= mB. Because
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(K,K ′) may depend on (MA,MB), conditioning on �xed values for the latter
implies that (K,K ′) is not necessarily ε-look-ahead anymore. Let εmA,mB be the
maximum over i ∈ [t] of the following expression,

εmA,mB,i := dunif(Ki+1 . . .Kt

∣∣K ′1 . . .K ′iE,MA =mA,MB =mB).

Hence, by De�nition 4.2, (K,K ′) is εmA,mB-look-ahead conditioned onE and the
eventsMA = mA andMB = mB. Note that averaging εmA,mB,i overmA andmB
(conditioned on them being distinct) results in

εi = dunif(Ki+1 . . .Kt|K ′1 . . .K ′iMAMBE,MA 6=MB
)
≤ ε .

Furthermore, note that by conditioning on �xed and distinct values forMA and
MB, we ful�ll the requirements for MAC look-ahead security from De�nition 4.4.
I.e. we can conclude that

pguess
(
MACK(MB)

∣∣MACK′(MA)E,MA = mA,MB = mB
)
< λ+ εmA,mB .

It now follows that

pguess
(
MACK(MB)

∣∣MACK′(MA)MAMBE,MA 6= MB
)

=
∑

mA,mB

PMAMB|MA 6=MB(mA,mB)

· pguess
(
MACK(MB)

∣∣MACK′(MA)E,MA = mA,MB = mB
)

<
∑

mA,mB

PMAMB|MA 6=MB(mA,mB) (λ+ max
i∈[t]

εmA,mB,i)

≤ λ+
∑

mA,mB

PMAMB|MA 6=MB(mA,mB)
∑
i∈[t]

εmA,mB,i

= λ+
∑
i∈[t]

∑
mA,mB

PMAMB|MA 6=MB(mA,mB) εmA,mB,i

= λ+
∑
i∈[t]

εi ≤ λ+
∑
i∈[t]

ε = λ+ tε.

�is concludes the proof.

4.5 Proofs of Security and Privacy

In this section we show that protocol AUTH ful�lls the properties listed in De�ni-
tion 4.1. First of all, note that it is easy to see from the protocol description that the
correctness property is satis�ed, we do not elaborate further on this here.
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�roughout the proofs, let E◦ be Eve’s quantum side information before executing
AUTH. Ei, where i ∈ {1, . . . , 4}, represents Eve’s (quantum) side information a�er
the ith round of communication, and hence includes the communicated random
variables up to this ith round. E represents Eve’s side information a�er executing
AUTH, including Bob’s decision to accept or reject (E4 does not include this decision).
Furthermore, like in Section 4.3.1, we write RA and RB etc. for Alice and Bob’s
respective values forR etc.
Theorem4.6 (Security) IfHmin(XW |WE◦) ≥ kK +q, then Protocol AUTH ful�lls
the security property de�ned in De�nition 4.1 with

δ ≤ 3 · 2−q + 1
2

√
2q(λ+ t εK).

In fact, we will prove a slightly stronger statement than the security statement,
which will be of use also in the proof of the key privacy statement. LetMA :=
(µA, RA, SA) andMB := (µB, RB, SB). We will prove that in protocol AUTH, if
Hmin(XW |WE◦) ≥ kK +q, and conditioned on the eventMA 6= MB, Bob rejects
except with probability

δ′ ≤ 3 · 2−q + 1
2

√
2q(λ+ t εK/Pr[MA 6= MB]).

Note that this expression reduces to the simpler expression of�eorem 4.6 when
proving security, because in that case µA 6= µB (by De�nition 4.1) which implies
that Pr[MA 6= MB] = 1.

Proof. Consider the phase in protocol AUTH a�er the second round of communica-
tion. Assume that ZA and TA are given to the adversary (this will only make her
stronger). LetKA := laExt(XW ;RA) andKB := laExt(XW ;RB). (Recall that
laExt is a (kK , εK) look-ahead extractor.)

From the chain rule, and by subsequently using that RB and SA are sampled
independently, it follows that

Hmin(XW |ZAWE2) ≥ Hmin(XW |WE2)− q ≥ Hmin(XW |WE◦)− q.

By assumption on the parameters, i.e., Hmin(XW |WE◦) ≥ kK + q, it follows
that (KB,KA) is εK-look-ahead conditioned on ZA,W and E2. In order to apply
Lemma 4.5, we additionally condition on the eventMA 6= MB. By Lemma 2.52, it
is guaranteed that εK grows at most by a factor 1/Pr[MA 6= MB] as a result of this
conditioning. We now apply Lemma 4.5 and conclude that

pguess(TB|TAZAWE2,MA 6= MB) ≤ λ+ t εK/Pr[MA 6= MB].
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�e next step is to viewQB := [UB ·TB]q⊕VB ·ZB as the output of a strong extractor,
with seed (UB, VB). Indeed, as guaranteed by Proposition 2.21,the function

h : F2s × F2q × F2s × F2q → F2q

(t, z, u, v) 7→ [u · t]q ⊕ v · z,

is a universal hash function (with random seed (u, v)).�us, we can apply privacy
ampli�cation. One subtlety is that in protocol AUTH, VB is random in F∗2q , rather
than in F2q . Nonetheless, the overall state will be 2−q-close in trace distance to a
state where VB would be random over F2q , and hence, by triangle inequality, the
distance-to-uniform increases by an additive term of at most 2 · 2−q :

dunif(QB|UBVBTAZAWE2,MA 6= MB)

≤ 1
2

√
2qpguess(TBZB|TAZAWE2,MA 6= MB) + 2 · 2−q

≤ 1
2

√
2qpguess(TB|TAZAWE2,MA 6= MB) + 2 · 2−q

≤ 1
2

√
2q(λ+ t εK/Pr[MA 6= MB]) + 2 · 2−q.

Finally, we have that

δ′ = pguess
(
QB
∣∣QAWE3,MA 6= MB

)
≤ pguess

(
QB
∣∣UBVBTAZAWE2,MA 6= MB

)
≤ 2−q + dunif(QB|UBVBTAZAWE2,MA 6= MB)

≤ 3 · 2−q + 1
2

√
2q(λ+ t εK/Pr[MA 6= MB]).

Theorem4.7 (Long-Term-Key Privacy) IfHmin(XW |WE◦) ≥ max(q+kK , kZ),
then Protocol AUTH ful�lls the long-term-key privacy property de�ned in De�ni-
tion 4.1 with

ε ≤ 6 · 2−q +
√

2q
(
λ+ t εK

)
+ εK + 2 εZ .

Proof. We �rst prove that none of the messages exchanged during the protocol
leaks information aboutW .�en, we show that in our protocol Bob’s decision on
whether to accept or reject neither leaks information aboutW .

In the �rst three rounds of AUTH, Alice and Bob solely exchange independent
randomness, so these rounds trivially leak no information aboutW . �e aim in
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this part of the proof is to show that the fourth message,Q = [U · TA]q ⊕ V · Z ,
where TA could depend onW , indeed keepsW private.

Because RB is sampled independently of XW , and by the chain rule, it follows
thatHmin(XW |WE1[UA · TA]q) ≥ Hmin(XW |WE◦)− q. By assumption on the
parameters in the statement of the theorem, i.e.,Hmin(XW |WE◦) ≥ q + kZ , and
by the properties of Ext it follows that

dunif(ZA|WE2[UA · TA]q) ≤ dunif(ZA|SAWE1[UA · TA]q) ≤ εZ .

By the fact that UB and VB are sampled independently, the following also holds

dunif(ZA|WE3[UA · TA]q) ≤ εZ .

�en, by security of the one-time pad (see Proposition 2.53), by the fact that Eve
cannot gain information onW by computingQB, and by assumption that ρWE◦ =
ρW ⊗ ρE◦ ,

1
2‖ρWE4 − ρW ⊗ ρE4‖1 ≤ 1

2‖ρWE3QA − ρW ⊗ ρE3QA‖1 ≤ εZ .

�is completes the �rst part of the proof.

It remains to show that Bob’s decision to accept or reject cannot leak (a substantial
amount of) information about W . To show this, we make the following case
distinction. In case µA 6= µB, the security proof applies and Bob rejects except
with probability δ ≤ 3 · 2−q + 1

2
√

2q(λ+ t εK). It now immediately follows that

1
2‖ρWE4 − ρWE‖1 ≤ δ, and 1

2‖ρW ⊗ ρE4 − ρW ⊗ ρE‖1 ≤ δ.

Hence, in case µA 6= µB (by the triangle inequality),

1
2‖ρWE − ρW ⊗ ρE‖1 ≤ εZ + 2δ.

We now turn to the case µA = µB and we analyze for two disjoint events. Condi-
tioned onMA 6= MB, the strengthened version of the security statement applies,
i.e.,

δ′ ≤ 3 · 2−q + 1
2

√
2q
(
λ+ t εK/Pr[MA 6= MB]

)
,

and again by applying the triangle inequality, we obtain

1
2‖ρWE|MA 6=MB − ρW ⊗ ρE|MA 6=MB‖1 ≤ εZ + 2δ′.

Secondly, we analyze for the eventMA = MB. Nevertheless, we start this anal-
ysis without conditioning onMA = MB. (We’ll condition on this event later in
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the proof.) Since SA is sampled at random and independently ofXW , and since
Hmin(XW |WE◦) > kZ , it follows that

dunif(ZA|SAWE◦) < εZ .

By the chain rule (and the independent choice of SA),

Hmin(XW |ZAWE2) ≥ Hmin(XW |WE◦)− q > kK ,

and thus
dunif(KB|RBZASAWE◦) < εK .

From the above, and the independent choices ofRB and SA, it follows that
1
2‖ρKBZARBSAWE◦ − ρU ⊗ ρU ′ ⊗ ρRB ⊗ ρSA ⊗ ρW ⊗ ρE◦‖1 ≤ εK + εZ .

where ρU is the fully mixed state onHKB and ρU ′ is the fully mixed state onHZA ,
and therefore that

1
2‖ρKBZAWE2 − ρU ⊗ ρU ′ ⊗ ρW ⊗ ρE2‖1 ≤ εK + εZ .

We now condition onMA = MB. Note that conditioned on this event,KA = KB
andZA = ZB, and therefore, from here on, we omit the subscripts for these random
variables and simply writeK and Z . From Lemma 2.52 (noting that whether the
eventMA = MB holds is determined by E2), we get

1
2‖ρKZWE2|MA=MB − ρU ⊗ ρU ′ ⊗ ρW ⊗ ρE2|MA=MB‖1 ≤

εK + εZ
Pr[MA = MB] .

UB and VB are chosen uniformly at random and independent of the rest (and also
independently of the eventMA = MB). Furthermore, since E is computed from
(KZE4) alone, it follows that

1
2‖ρWE|MA=MB − ρW ⊗ ρE|MA=MB‖1 ≤

εK + εZ
Pr[MA = MB] .

We now combine the analyses for the two disjoint events, and conclude that in case
µA = µB,
1
2‖ρWE − ρW ⊗ ρE‖1
≤ Pr[MA 6= MB] 1

2‖ρWE|MA 6=MB − ρW ⊗ ρE|MA 6=MB‖1
+ Pr[MA = MB] 1

2‖ρWE|MA=MB − ρW ⊗ ρE|MA=MB‖1
= Pr[MA 6= MB] (εZ + 2δ′) + εK + εZ

≤ Pr[MA 6= MB]
[
εZ+6·2−q+

√
2q
(
λ+ t εK/Pr[MA 6= MB]

)]
+εK+εZ

≤ 6 · 2−q +
√

2q
(
λ+ t εK

)
+ εK + 2 εZ .
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Note that we have computed two upper bounds on 1
2‖ρWE − ρW ⊗ ρE‖1, for two

distinct cases: µA 6= µB and µA = µB. Obviously, the weaker (larger) upper bound
holds in both cases, and we �nally conclude that

1
2‖ρWE − ρW ⊗ ρE‖1 ≤ 6 · 2−q +

√
2q
(
λ+ t εK

)
+ εK + 2 εZ .

4.6 Instantiating the Building Blocks

4.6.1 Look-Ahead Extractors against Classical Side Information

Dodis and Wichs [DW09] propose a construction for look-ahead extractors based
on alternating extraction [DP07]. �e construction uses two strong extractors,
which are applied in an alternating fashion (we will explain the construction in
detail later in this section).�e following theorem due to [DW09] states for this
construction how the parameters of the two extractors lead to the parameters of
the constructed look-ahead extractor.

�e security de�nition of a look-ahead extractor, De�nition 4.3, considers quantum
side information, represented by E. In this section, we consider the case where the
side information E is purely classical. To avoid confusion, we will throughout this
section write Z (instead of E) for the adversary’s classical side information. Note
that Z has arbitrary range.
Theorem 4.8 (cf.�eorem 10 in [DW09]) Given a (kw−2t`, εw)-extractor Extw :
{0, 1}nw × {0, 1}` → {0, 1}` and an (nq − 2t`, εq)-extractor Extq : {0, 1}nq ×
{0, 1}` → {0, 1}`, the construction in [DW09] yields an (kw, t2(εw + εq))-look-
ahead extractor

laExt : {0, 1}nw × {0, 1}nq+` → ({0, 1}`)t

Recently, Reyzin [RWY11] and, independently, Fehr (private communication) dis-
covered that the proof given in [DW09] of�eorem 4.8 is not fully correct, due to
a problem with Lemma 1 in [DP07].2 Fortunately, the proof (of�eorem 4.8) could
be �xed as shown in lecture notes by Reyzin [RWY11]. In the remainder of this
section, we will explain the alternating extraction construction and reprove it for
the case in which the side information is classical. Our proof of�eorem 4.9 (which
is then used to prove�eorem 4.8) is inspired by Reyzin’s proof [RWY11], but is

2To be precise, Dodis and Wichs’ proof of look-ahead extraction is also a�ected by this issue.
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Wendy:W Quentin: (Q,S1)

S1�

R1 := Extw(W ;S1) R1 -
S2� S2 := Extq(Q;R1)

R2 := Extw(W ;S2)
...

St� St := Extq(Q;Rt−1)
Rt := Extw(W ;St)

Figure 4.1: Alternating extraction explained.

more extensive (we consider auxiliary classical side information and we give formal
min-entropy analyses, which are omitted in [RWY11]). Furthermore, our proof
uses our Lemma 4.10, which we think is simpler than the corresponding Lemma 6
in [RWY11].

Look-Ahead Extractors from Alternating Extraction

�e look-ahead extractor construction is easy to explain. Following [DP07], we
identify two parties, Quentin and Wendy. With these parties, we associate the
two extractors from�eorem 4.8, Extq and Extw, as well as two random variables,
Q ∈ {0, 1}nq and W ∈ {0, 1}nw , respectively. Quentin and Wendy perform
alternating extraction as follows (see also Figure 4.1). Quentin begins by sending a
string S1 ∈ {0, 1}` to Wendy. Wendy then uses S1 as seed for her extractor: she
computesR1 := Extw(W ;S1) and sendsR1 back to Quentin. Quentin then uses
R1 as seed and computes S2 := Extq(Q;R1), and sends this to Wendy again, etc.
�e procedure stops a�er Wendy has computedRt.

�e alternating extraction procedure is a construction for a look-ahead extractor
in the following way:W is the weakly random source, the tuple S := (Q,S1) acts
as seed, and Wendy’s output values {Ri}i∈[t] form the output, i.e., (R1, . . . , Rt) =
laExt(W ;S).

De�nition 4.3 considers two instances of a look-ahead extractor: the one at Bob’s
side,3 which is provided with the original seed, and the one at Alice’s side, which is

3We consider a setting where Alice wants to use the look-ahead extractor to authenticate a
message to Bob. Recall that in such a setting Bob samples the seed.
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provided with the adversarially modi�ed seed. In terms of our alternating extrac-
tion explanation, Quentin and Wendy as described above reside on Bob’s side. On
Alice’s side, we will call the corresponding parties Q̃uentin and W̃endy. Q̃uentin’s
initial view consists of (Q̃, S̃1, Z) (where (Q̃, S̃1) equals S̃ fromDe�nition 4.3) and
W̃endy’s initial view consists of (W,Z). Q̃uentin and W̃endy exchange `-bit mes-
sages which we denote as S̃i and R̃i respectively.�esemessages are computed from
their views in iteration i, which each consists of the party’s initial view concatenated
with the messages exchanged during alternating extraction.

To prove�eorem 4.8, we let Quentin and Wendy as well as Q̃uentin and W̃endy
perform alternating extraction synchronously. In particular, we need�eorem 4.9 as
an ingredient, which informally states that the ithmessage produced byWendy looks
random from the combined view of Quentin and Q̃uentin, and vice versa. Note
that the combined view of Quentin and Q̃uentin equals the view of the (implicit)
adversary in De�nition 4.3.

We will use the following notation for collections of random variables Si andRi
(as well as S̃i and R̃i),

S[i] := (S1, . . . , Si) ∀i ∈ N \ {0},

and likewise for R[i], S̃[i] and R̃[i]. Furthermore, S[i] for any i < 1 denotes the
empty list, and likewise forR[i], etc.

Theorem 4.9 Let εq and εw as in�eorem 4.8 and letW ,Q, Q̃, Si,Ri, S̃i, R̃i and
Z be as described above. IfPS1QWZ = PUPU ′PWZ , wherePU andPU ′ are uniform
distributions on {0, 1}` and {0, 1}nq respectively and ifHmin(W |Z) ≥ kw, then the
following inequalities hold for all i ∈ [t]:

dunif(Si|WS[i−1]R[i−1]R̃[i−1]S̃[i−1]Z) ≤ (εq + εw)(i− 1) (4.1)

dunif(Ri|QR[i−1]S[i]R̃[i−1]S̃[i]Q̃Z) ≤ (εq + εw)(i− 1) + εw, (4.2)

Note that we requireQ to be uniformly distributed; this stems from the parameters
of Extq , which we adopt from�eorem 4.8. By adapting the parameters of Extq
appropriately, alternating extraction also works when Q does not have full min-
entropy (cf. [DW09, RWY11]). Nevertheless, since we anyway do not need this
more general case, we �nd it simpler to state it as above.

As in [RWY11], the proof is based on the conditional independence of Q and W
(when conditioned on the messages exchanged in the alternating-extraction proto-
col).�is independence is crucial for inequalities (4.1) and (4.2) to hold because
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Si (Ri) is extracted fromQ (W ) via a seed that is computed fromW (Q), and it is
well known that for an extractor to work properly the seed must be (essentially)
independent from the source.

Consider the general setting where two parties, holding independent random vari-
ablesX and Y respectively, interact by exchanging messages, where each message
is computed from the sender’s random variable (i.e., either X or Y ) and previously
exchanged messages. �en, it is well known (and straightforward to prove) that
X ↔M ↔ Y holds, whereM represents the collection of the exchangedmessages.
Observe that alternating extraction (when viewing Wendy and W̃endy as a single
party and Quentin and Q̃uentin as well) is a particular instance of the above general
setting. Note that the (classical) side information Z should be treated as being part
ofM ; it can be thought of an initial message that is sent from W̃endy to Q̃uentin.

To prove�eorem 4.9 we will use the following lemma, which is a corrected and
extended version of Lemma 1 from [DP07].
Lemma 4.10 Let A,B,C be arbitrary random variables over respectively A,B, C
such that A↔ B ↔ C . �en, for any function f : A× C → Z it holds that

dunif(f(A,C)|BC) ≤ dunif(f(A,U)|BU) + dunif(C|B)

where U is an independent random variable uniformly distributed over C.

Proof.

dunif(C|B) = 1
2‖ρCB − ρU ⊗ ρB‖1

= 1
2‖ρCBA − ρU ⊗ ρBA‖1

≥ 1
2‖ρf(A,C)BC − ρf(A,U)BU‖1

where the �rst equality is by de�nition of the trace distance to uniform, the second
equality follows from the Markov property, and the inequality is by the fact that
the trace distance cannot increase under quantum operations; see�eorem 2.50.
Finally, the claim follows by applying triangle inequality.

Proof of�eorem 4.9. We prove the statement by induction on i. Inequality (4.1)
obviously holds for i = 1,

dunif(Si|WS[i−1]R[i−1]S̃[i−1]R̃[i−1]Z)
∣∣
i=1 = dunif(S1|WZ) = 0.

�e �rst half of the induction step is to show that, if (4.1) holds for i (the induction
hypothesis), then (4.2) must hold for i, i.e.

dunif(Ri|QR[i−1]S[i]R̃[i−1]S̃[i]Q̃Z) ≤ (εq + εw)(i− 1) + εw.
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�e (trace) distance to uniform cannot increase when applying the same operation
to both states (in this case: removingW )

dunif(Si|S[i−1]R[i−1]R̃[i−1]S̃[i−1]Z) ≤ dunif(Si|WS[i−1]R[i−1]R̃[i−1]S̃[i−1]Z)
≤ (εq + εw)(i− 1). (4.3)

�e following bound holds on the conditional min-entropy ofW ,

Hmin(W |S[i−1]R[i−1]R̃[i−1]S̃[i−1]Z) ≥ Hmin(W |S[i−1]R[i−1]R̃[i−1]S̃[i−1]QZ)
= Hmin(W |S1R[i−1]R̃[i−1]QZ)
≥ Hmin(W |S1QZ)−Hmax(R[i−1]R̃[i−1])
= Hmin(W |Z)− 2(i− 1)`
≥ kw − 2(t− 1)`,

where the �rst inequality holds by strong subadditivity, the �rst equality holds
becauseW ↔ R[i−1]R̃[i−1]S1QZ ↔ S̃[i−1]S[i−1] \ {S1} (which holds because of
the way the Si and S̃i are computed), the second inequality is the chain rule and
the second equality holds because PWZS1Q = PWZPUPQ.�e de�nition of Extw
then guarantees that

dunif(Extw(W ;U)|US[i−1]R[i−1]S̃[i−1]R̃[i−1]Z) ≤ εw, (4.4)

for an independent and uniform seed U .

Given that W ↔ S[i−1]R[i−1]S̃[i−1]R̃[i−1]Z ↔ Q is a Markov chain (as ex-
plained before Lemma 4.10), it follows thatW ↔ S[i−1]R[i−1]S̃[i−1]R̃[i−1]Z ↔
Si holds as well, since Si is a function of Q and Ri−1. Now, given the latter
Markov chain and (4.3) and (4.4), we can apply Lemma 4.10 with A = W , B =
S[i−1]R[i−1]S̃[i−1]R̃[i−1]Z , C = Si and U = U , which guarantees that

dunif(Extw(W ;Si)|R[i−1]S[i]S̃[i−1]R̃[i−1]Z) ≤ (εq + εw)(i− 1) + εw.

Because it holds that Q ↔ S[i]R[i−1]S̃[i−1]R̃[i−1]Z ↔ W , we may additionally
condition on Q in the expression above without increasing the trace distance to
uniform. Furthermore, since both Q̃ and S̃i can be computed from the random
variables that are already being conditioned on, we can also condition on them “for
free.” SinceRi := Extw(W ;Si) we obtain

dunif(Ri|QR[i−1]S[i]Q̃S̃[i]R̃[i−1]Z) ≤ (εq + εw)(i− 1) + εw,
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which is (4.2) for i and concludes the proof of the �rst half of the induction step.

�e second half of the induction step is to take the expression above as the induction
hypothesis and show that if hypothesis is true, then (4.1) must hold for i+ 1, i.e.

dunif(Si+1|WS[i]R[i]S̃[i]R̃[i]Z) ≤ (εq + εw)i.

�is second part is essentially a “mirror image” of the above part.

By an elementary property of the trace distance, the distance to uniform cannot
increase when applying a function to both states (it this case: removing systemsQ
and Q̃):

dunif(Ri|R[i−1]S[i]R̃[i−1]S̃[i]Z) ≤ dunif(Ri|QR[i−1]S[i]Q̃S̃[i]R̃[i−1]Z) (4.5)

≤ (εq + εw)(i− 1) + εw.

�e following bound holds on the conditional min-entropy ofQ,

Hmin(Q|R[i−1]S[i]R̃[i−1]S̃[i]Z) ≥ Hmin(Q|WR[i−1]S[i]R̃[i−1]S̃[i]Z)
= Hmin(Q|WZS[i]S̃[i])
≥ Hmin(Q|WZS1)−Hmax(S̃[i]S[i] \ {S1})
= nq − (2i− 1)`
≥ nq − (2t− 1)`,

where the �rst inequality holds by strong subadditivity, the �rst equality holds
becauseQ↔WZS[i]S̃[i] ↔ R[i−1]R̃[i−1], the second inequality is the chain rule,
the second equality holds because PWZS1Q = PWZPUPU ′ and the last inequality
follows because i ≤ t.�e de�nition of Extq then guarantees that

dunif(Extq(Q;U)|UR[i−1]S[i]R̃[i−1]S̃[i]Z) ≤ εq, (4.6)

for an independent and uniform seed U .

Note that from the fact that Q ↔ R[i−1]S[i]R̃[i−1]S̃[i]Z ↔ W , it follows that
Q ↔ R[i−1]S[i]Z ↔ Ri since Ri is a function of W and Si. Given this latter
Markov chain and (4.5) and (4.6), we can apply Lemma 4.10 with A = Q, B =
S[i]R[i−1]S̃[i]R̃[i−1]Z , C = Ri and U = U , which guarantees that

dunif(Extq(Q;Ri)|R[i]S[i]R̃[i−1]S̃[i]Z) ≤ (εq + εw)i.

Because it holds that Q ↔ S[i]R[i]S̃[i]R̃[i−1]Z ↔ W , we may additionally con-
dition onW without increasing the distance to uniform. Furthermore, we may
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condition on R̃i as well since it is computed as a function ofW and S̃i,

dunif(Extq(Q;Ri)|WR[i]S[i]R̃[i]S̃[i]Z) ≤ (εq + εw)i.

Finally, we obtain (4.1) for i+1 by noting that Si+1 := Extq(Q;Ri) and this proves
the second half of the induction step.

Finally, we prove the main claim. �e proof below is essentially the same as the
proof of�eorem 9 in [DW09], but then adapted to our notation.

Proof of�eorem 4.8. We need to prove that

dunif(Ri+1 . . . Rt|R̃[i]SS̃Z) ≤ t2(εq + εw).

Note that De�nition 4.3 already requires that S1 andQ are uniformly distributed
and independent ofW and Z and thatHmin(W |Z) ≥ kw, so�eorem 4.9 applies.

Consider (4.2) from�eorem 4.9, i.e.

dunif(Ri|QR[i−1]S[i]R̃[i−1]S̃[i]Q̃Z) ≤ (εq + εw)(i− 1) + εw,

Let us remove the conditioning on S[i] and S̃[i] except for S1 and S̃1, by elementary
properties of the trace distance this cannot increase the distance. As mentioned on
page 149, S := (Q,S1) and similarly S̃ := (Q̃, S̃1), so we replace (Q,S1, Q̃, S̃1) by
(S, S̃). Furthermore, we may obviously append independent uniform randomness
without increasing the distance-to-uniform:

dunif(RiU`(t−i)|R[i−1]R̃[i−1]SS̃Z) ≤ (εq + εw)(i− 1) + εw, (4.7)

We will evaluate (4.7) using the substitutions i→ i+ 1 up to i→ t:

dunif(Ri+1U`(t−i−1)|R[i]R̃[i]SS̃Z) ≤ (εq + εw)i+ εw,

dunif(Ri+2U`(t−i−2)|R[i+1]R̃[i+1]SS̃Z) ≤ (εq + εw)(i+ 1) + εw,

...

dunif(Rt|R[t−1]R̃[t−1]SS̃Z) ≤ (εq + εw)(t− 1) + εw.

By recursively applying the triangle inequality to these expressions (a “hybrid argu-
ment”) we may conclude that

dunif(Ri+1 . . . Rt|R[i]R̃[i]SS̃Z) ≤ 1
2 t(t− 1)(εq + εw) + (t− 1)εw ≤ t2(εq + εw)

Finally, we obtain the claim simply by removing the conditioning on R̃[i]
4.

4we thus actually prove a slightly stronger statement, i.e., that the claim still holds when condi-
tioning additionally onR[i]
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Parameters of an Explicit Look-Ahead Extractor

Dodis and Wichs use the explicit strong extractor from [GUV09] (see also�eo-
rem 2.30) to instantiate the extractor in�eorem 4.8, and achieve the following
parameters.
Theorem 4.11 (�eorem 11 in [DW09]) For all integers n ≥ k and all ε > 0 there
exist (k, ε)-look-ahead extractors Ext : {0, 1}n × {0, 1}d → ({0, 1}`)t as long as

k ≥ 2(t+ 2) max(`, O(log(n) + log(t) + log(1/ε)))
≥ O(t(`+ log(n) + log(t) + log(1/ε))),

and d ≥ O(t(`+ log(n) + log(t) + log(1/ε))).

I.e., when neglecting logarithmic terms, k and d are both of order t`, the bit-size of
the range of the extractor.

4.6.2 Look-Ahead Extractors and Quantum Side Information?

In the Eurocrypt paper [BF11] on which the present chapter is based, we claimed
that one can obtain a look-ahead extractor that is secure against quantum side
information simply by replacing the classical strong extractors in the original con-
struction by extractors against quantum side information, and furthermore that
the original proof strategy can also be used in the quantum setting. Unfortunately,
during the preparation of this thesis we noticed that we have overlooked a subtle
issue that renders the original proof strategy invalid for the quantum case. Although
the alternating-extraction construction could still work in the quantum setting, we
currently do not have a proof for it. We leave it as an important open problem.

Let us brie�y explain here why the proof strategy for the classical setting does not
apply in the quantum setting. Recall that according to De�nition 4.3 the adversary
creates S̃ = (Q̃, S̃1) given S = (Q,S1) and E, and that this process may involve a
measurement onE, which then collapses to the stateE′.�is latter stateE′ may in
particular includeQ, and it typically depends onW as well. It is not clear how to
generalize Lemma 4.10 to include this quantum side information. Moreover, the
proof for the classical case makes statements about a probability space in which Z
and S̃, which is computed from Z , exist simultaneously. In the quantum setting,
however, the original quantum stateE does not exist anymore a�er it ismeasured (to
produce S̃); it collapses to the post-measurement state E′, which is not guaranteed
to have the necessary properties (like independence ofQ).
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4.6.3 Security and Instantiation of the MAC

To construct a MAC with look-ahead security, we adopt the construction given
in [DW09]. Because our look-ahead security de�nition, De�nition 4.4, is slightly
weaker than the one given in [DW09] (in that both µA and µB are �xed), we obtain
a better security parameter, as argued below.

With respect to a di�erent aspect, the requirement on theMAC for constructing our
protocol AUTH is somewhat stronger, because we need a “universal” MAC which is
(ε, λ+ ε)-look-ahead secure for any ε ≥ 0 (and some λ). (�is requirement stems
from the proof of Lemma 4.5.) It turns out that the construction from [DW09]
satis�es this property.
Proposition 4.12 For any positive integersm and `, there exists a family of functions
{MACκ : {0, 1}m → {0, 1}s}, indexed by keys κ ∈ ({0, 1}`)t, that is (ε, 2−` + ε)
look-ahead secure for any ε > 0, where t = 4m and s = 2m`.

For completeness, we very brie�y describe the idea of the construction here.�e
function MACκ(µ) outputs some of the blocks κi of the key κ = (κ1, . . . , κt);
where the choice of this subset is determined by µ. Furthermore, the construction
guarantees that for any two distinct messages µ and µ′, there exists an index i◦ < t
such thatMACκ(µ) outputs more blocks κi with i > i◦ thanMACκ(µ′) does. From
the look-ahead property, it follows that given κ′1, . . . , κ′i◦ , the remaining blocks
κi◦+1, . . . , κt are (ε-close to) random. �en, from the choice of i◦ and from the
chain rule we conclude that when given MACκ′(µ′), the tag MACκ(µ) still contains
at least (nearly) ` bits of min-entropy.

Since the security of the MAC follows more or less directly from the look-ahead
property (and an application of the chain rule), this construction is secure in the
presence of quantum side information when the underlying look-ahead extractor
is secure against quantum side information.

When comparing our Proposition 4.12 with Lemma 15 in Appendix E.3 of [DW09],
our modi�cation of �xing both µA and µB before executing DWMAC overcomes the
need for a union bound over all possible messages µB and hence saves us a factor
of 2m.

4.6.4 Instantiating Protocol AUTH

We will instantiate protocol AUTH for the case of classical side information. Before
doing so, we �rst need to slightly modify the protocol. Because the alternating-
extraction construction that we use to instantiate laExt requires a relatively large
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seed, we cannot let Alice authenticate the tuple (µA, R, S) directly. Instead, Alice
will sample a seed and for an almost universal hash function, and authenticates the
seed and the hash of (µA, R, S). We will make use of the well-known polynomial
construction for an almost universal hash function (see, e.g., [TSSR10]); for some
�eld F and b a positive integer, let

h : Fb × F → F
(x1, . . . , xb;α) 7→

∑b
i=1 xiα

b−i.

For α, the seed, randomly chosen from F, the probability that two distinct inputs
x, x′ ∈ Fb collide is pcol := (b− 1)/|F|.

�is hashing-modi�cation to AUTH will a�ect its security and privacy. We take care
of this simply by adding pcol to the security and 2 pcol to the privacy upper bound.
�e latter factor of two comes from the triangle inequality, which appears because
privacy (as de�ned in De�nition 4.1) is a distance between two states.

We now combine �eorem 4.6, �eorem 4.7, �eorem 2.30, �eorem 4.11 and
Proposition 4.12 and make use of the hashing modi�cation explained above in order
to obtain a lower bound on k, themin-entropy required by AUTH, in terms of desired
security and privacy parameters and the bitsize of the message to be authenticated.
Corollary 4.13 For any integers n ≥ k,m and any ε > 0 and any 0 < δ ≤ ε/8, we
can construct an e�cient four-round (n, k,m, δ, ε)message-authentication protocol
with long-term-key privacy as long as (asymptotically)

k = O
(

log(1/ε) +
(

log(1/δ) + log(m′)
)
·
(

log(1/δ) + log(m′) + log(n)
))
,

where

m′ = m+O
(

log(1/ε)+
(

log(1/δ)+log(m′)
)
·
(

log(1/δ)+log(m′)+log(n)
))
.

Proof. We start by computing suitable parameters for the almost universal hash
function. Let F := F2c for a positive integer c, and letm′ be the bitsize of the tuple
(µ,R, S), i.e.,m′ = m+ d+ v. Hence, b = m′/c,5 and pcol = 2−c(m′/c− 1) ≤
2−cm′.

As required by the security and privacy proofs, k > max(q + kK , kZ). We �rst
analyze kK . Let δ′ := 3 · 2−q + 1

2

√
2q(2−` + t εK) + 2−cm′ (this expression

5Here, we assume thatm′ is an integer multiple of c. Note that this can always be achieved by
zero-paddingm′.
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originates from combining�eorem 4.6, Proposition 4.12 and pcol). To simplify
matters, we choose q = `/2, c = `/2 + logm′ and εK = 2−`/t and we obtain

δ′ = 3 · 2−`/2 + 1
2

√
2`/2(2 · 2−`) + 2−(`/2+logm′)m′

= 3 · 2−`/2 + 2−
1
2−

`
4 + 2−`/2 / 2−`/4 (for large enough `).

Because δ′ is an upper bound for the security of AUTH, a su�cient condition to
achieve the desired security level δ is when δ′ ≤ δ. Hence, we choose

` ≥ 4 log(1/δ).

�e actual message to be authenticated consists of the seed and the hash value and
therefore has bit-length 2c. �en, by Proposition 4.12 we have that t = 4(2c) =
4`+ 8 logm′ ≥ 16 log(1/δ) + 8 logm′. We substitute this into the expression for
εK :

εK ≤ δ4/(16 log(1/δ) + 8 logm′).

Next, we plug this into the bound for k from�eorem 4.11.�is yields

kK = O
((

log(1/δ) + log(m′)
)
·
(

log(1/δ) + log(m′) + log(n)
))
.

We now analyze kZ . Let

ε′ := 6 · 2−q +
√

2q(2−` + t εK) + εK + 2 εZ + 2−c+1m′

= 2δ′ + δ′4/t+ 2εZ + 2−c+1m′

be the upper bound on the privacy of AUTH (the expression follows from combining
�eorem 4.7, Proposition 4.12 and pcol). To achieve the desired privacy ε, it su�ces
that ε′ ≤ ε. By substituting δ′ = δ and solving for εZ , we obtain εZ ≤ 1

2ε −
δ − 1

2tδ
4 − 2−`/2 ≤ 1

2ε− δ −
1
2tδ

4 − δ2. From the latter expression, we see why
we cannot choose δ arbitrarily large, compared to ε, because an upper bound for
εZ should of course not be negative. Note that this parameter-dependency is not
surprising; it stems from the fact that the privacy proof makes use of the security
proof. �erefore, we choose 0 < δ ≤ ε/8, such that εZ ≤ ε

2 −
ε
8 −

ε4

213t −
ε2

64 .
Lower bounding the RHS yields the simpler expression

εZ ≤ ε/4.

Substituting this into the bound for k from�eorem 4.11 gives

kZ = O
(

log(1/δ) + log(n) + log(1/ε)
)
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We upper-bound max(q + kK , kZ) by the sum q + kK + kZ :

k ≥ 2 log 1/δ + kK + kZ

= O
(

log(1/ε) +
(

log(1/δ) + log(m′)
)
·
(

log(1/δ) + log(m′) + log(n)
))
.

Remember that m′ = (m + d + v), where v = O
(

log(n) + log(1/εZ)
)

=
O
(

log(n) + log(1/ε)
)
and

d = O
((

log(1/δ) + log(m′)
)
·
(

log(1/δ) + log(m′) + log(n)
))
.

4.7 The Fuzzy Case

Up to here, we assumed a scenario where Alice and Bob share identical copies of
the session keyXW . Let us now consider the “fuzzy” case, where Alice and Bob
hold keys that are only close in some sense, but not necessarily equal. �is kind
of scenario naturally arises when Alice and Bob obtain their session keys in the
presence of noise. For simplicity and with our application (Section 4.8) in mind, we
use the Hamming distance to measure closeness between keys.

Consider the following simple approach. Let Bob’s key be called XW . Before
executing the authentication protocol, Bob sends some error-correcting information
(like the syndrome ofXW with respect to some error-correcting code) to Alice, so
that she can correct the errors in her key,X ′W . Since Eve has full control over the
communication channel, she can also modify this error-correction information.
In this case Alice might not correctX ′W successfully, in which case our protocol
is not guaranteed to be secure. However, as stated in�eorem 22 in [DW09], this
approach is secure (in the classical setting) if one uses alternating-extraction-based
instantiations of look-ahead extractors. (Note that the parameters change slightly
compared to the non-fuzzy case, to take into account the min-entropy loss due to
the error correction information.) For this solution to work it is important that
XW has su�cient min-entropy when given Eve’s (classical) side information, and
that Bob sends the error-correcting information to Alice (i.e., the error-correction
information must be sent in the same direction as the seed for the look-ahead
extractor).

Because we currently do not have a provably secure construction for a look-ahead
extractor against quantum side information, we cannot say whether the approach
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above also works in the setting where Eve is allowed to have quantum side informa-
tion.�is remains an open question that needs to be solved before protocol AUTH
can be used to improve the quantum protocol QID+.

One subtlety is that the error-correcting information must not leak information
about W , to preserve the privacy property. Exactly this problem is addressed
in [DS05], and is generalized to the quantum setting in [FS09]. Note that it is
straightforward to upper bound themin-entropy loss inXW due to error correction:
by the chain rule this is at most the bitsize of the error-correction information.

Finally, we want to make a remark about how this min-entropy loss (caused by
sending the error-correction information) is incorporated in the parameters of
�eorem 22 in [DW09]: Extq needs to be an (nq− (2`+α)t, εq)-extractor,6 where
α is the bitsize of the error-correction information. In words, there is a loss of αt in
the �rst parameter, where one would expect only a loss of α. To us it seems that
the factor t in front of α is not necessary; it is merely a consequence of the proof
strategy of�eorem 22, which uses the alternating-extraction theorem (�eorem 9
in [DW09]) as a black box.

Furthermore, it seems that the requirement on the conditional min-entropy ofWA

in�eorem 22 (from [DW09]) is not necessary; it is also not used in the proof.

4.8 Application: Password-Based Identi�cation

We sketch here how an instantiation of protocol AUTH that a) is secure when Eve
has quantum side information about the weak key, and b) is still secure in the fuzzy
case, would lead to a truly password-based identi�cation protocol in the bounded
quantum storage model with security against man-in-the-middle attacks. We want
to stress that to achieve a) and to be able to verify b), we still miss one building
block, i.e., look-ahead extractors against quantum side information. Furthermore,
recall that the protocols QID and QID+ are brie�y explained in Section 2.11 (for
details, the reader is referred to [DFSS07]). In particular, recall that the need for
an additional high-entropy key in QID+ stems from the use of an extractor MAC,
which is used to authenticate all classical communication.

Our idea of obtaining security against man-in-the-middle attacks without a high-
entropy key is now simply to do the authentication of the classical communication by
applying protocol AUTH when using xIw as weak session key. Our privacy property
guarantees that the authentication does not leak information on the password w.

6For comparison: in�eorem 4.8, the non-fuzzy case, Extq is a (nq − 2`t, εq)-extractor.
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We stress that previous protocols for authentication based on weak keys would
(potentially) leak here information on w.

As in Section 2.11, we abbreviate the user and server by U and S respectively. If
the quantum communication is noisy (which it is in realistic scenarios) or if the
man-in-the-middle attacker modi�es some of the qubits (but few enough so that
he is not detected) or θ, then U’s and S’s version of xIw are not identical.�us, we
indeed require that AUTH is secure in the fuzzy case.

If the analysis of the fuzzy case for the case of classical side information would
more or less directly carry over to the quantum setting, then this would mean
that we need a lower bound on the min-entropy of S’s version of xIw (when given
the adversary’s side information). Although the analysis of Damgård et al. only
guarantees min-entropy in U’s version, we can slightly modify the protocol to also
guarantee lower-bounded min-entropy on S’s side. Instead of measuring the BB84
qubits in basis c(w), S measures them in a random basis θ̂ and announces the
di�erence r = c(w)⊕ θ̂.�en, U and S update the code c by shi�ing every code
word by r, so that with respect to the updated code c′, S has actually measured the
BB84 qubits in basis c′(w).�is trick has also been used in [DFL+09], though for
a di�erent reason, and has no real e�ect on the analysis of the protocol. However,
since S now also measures in a random basis, we can apply the uncertainty relation
of [DFR+07] to get a lower bound on the min-entropy on S’s side.

4.9 Open Problem

�e main open problem of this chapter is showing the existence of (e�cient) look-
ahead extractors that are secure against quantum side information. It remains
possible that the alternating-extraction construction also works against quantum
side information, but it might also be the case that totally di�erent techniques are
needed.





5
Hybrid Security of Password-Based
Identi�cation

�e content of this chapter is based on joint work with Serge Fehr, Carlos González-
Guillén and Christian Scha�ner [BFGS12].
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5.1 Introduction

In this chapter, we propose a new entropic uncertainty relation. Furthermore, we
present amodi�ed version of the quantum identi�cation protocol QID introduced in
Section 2.11, that we will refer to as NEWQID. We will show how the new uncertainty
relation can be used to prove NEWQID secure in the bounded-quantum-storage
model (BQSM). Moreover, we will introduce another security model in this chapter,
which we call the single-qubit-operations model (SQOM), and show that NEWQID is
also secure in this model.

5.1.1 A New Uncertainty Relation

Uncertainty relations are quantitative characterizations of the uncertainty principle
of quantum mechanics, which expresses that for certain pairs of measurements,
there exists no state for which the measurement outcome is determined for both
measurements: at least one of the outcomes must be somewhat uncertain. Entropic
uncertainty relations express this uncertainty in at least one of the measurement
outcomes by means of an entropy measure, usually the Shannon entropy. Our new
entropic uncertainty relation distinguishes itself from previously known uncertainty
relations by the following collection of features:

1. It uses themin-entropy as entropy measure, rather than the Shannon entropy.
Such an uncertainty relation is sometimes also called a high-order entropic
uncertainty relation.1 Since privacy ampli�cation needs a lower bound on
the min-entropy, high-order entropic uncertainty relations are useful tools
in quantum cryptography.

2. It lower bounds the uncertainty in the measurement outcome for all but one
measurements, chosen from an arbitrary (and arbitrarily large) family of pos-
sible measurements.�is is clearly stronger than typical entropic uncertainty
relations that lower bound the uncertainty on average (over the choice of the
measurement).

3. �e measurements can be chosen to be qubit-wise measurements, in the com-
putational or Hadamard basis, and thus the uncertainty relation is applicable
to settings that can be implemented using current technology.

1�is is because the min-entropy coincides with the Rényi entropyHα of high(est) order α =∞
(see Section 2.3.1).
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To the best of our knowledge, no previous entropic uncertainty relation satis�es (1)
and (2) simultaneously, let alone in combination with (3). Indeed, as pointed out
in a recent overview article by Wehner and Winter [WW10], little is known about
entropic uncertainty relations for more than two measurement outcomes, and even
less when additionally considering min-entropy.

Explanation by means of a Simpler Entropic Uncertainty Relation

To explain our new uncertainty relation, we �nd it helpful to �rst discuss a simpler
variant, which does not satisfy (1), and which follows trivially from known results.
Fix an arbitrary family {B1, . . . ,Bm} of bases for a given quantum system, and let
us denote the state space of this given system byH.�emaximum overlap of such
a family is de�ned as the real number

c := max{|〈φ|ψ〉| : |φ〉 ∈ Bj , |ψ〉 ∈ Bk, 1≤j<k≤m}.

Let d := − log(c2). Furthermore, let ρ ∈ D(H) be an arbitrary quantum state, and
letX denote the measurement outcome when ρ is measured in one of the bases. We
model the choice of the basis by a random variable J , so thatH(X|J=j) denotes
the Shannon entropy of the measurement outcome when ρ is measured in basis Bj .
It follows immediately fromMaassen and U�nk’s uncertainty relation [MU88] that

H(X|J = j) +H(X|J = k) ≥ − log(c2) = d ∀j 6= k.

As a direct consequence, there exists a choice j′ for the measurement so that
H(X|J=j) ≥ d

2 for all j ∈ {1, . . . ,m} with j 6= j′. In other words, for any state
ρ there exists j′ so that unless the choice for the measurement coincides with j′,
which happens with probability at most maxj PJ(j), there is at least d/2 bits of
entropy in the outcomeX .

Our new high-order entropic uncertainty relation shows that this very statement
essentially still holds when we replace Shannon by min-entropy, except that j′
becomes randomized: for any ρ, there exists a random variable J ′, independent of
J , such that2

Hmin(X|J=j, J ′=j′) & d

2 ∀ j, j′ ∈ [m] such that j 6= j′

no matter what the distribution of J is.�us, unless the measurement J coincides
with J ′, there is roughly d/2 bits of min-entropy in the outcomeX . Furthermore,

2�e rigorous version of the approximate inequality& is stated in�eorem 5.3.
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since J ′ is independent of J , the probability that J coincides with J ′ is at most
maxj PJ(j), as is the case for a �xed J ′.

Note that we have no control over (the distribution of) J ′. We can merely guarantee
that it exists and is independent of J . It may be insightful to interpret J ′ as a
virtual guess for J , guessed by the party that prepares ρ, and whose goal is to
have little uncertainty in the measurement outcomeX .�e reader may think of
the following speci�c way of preparing ρ: sample j′ according to some arbitrary
distribution J ′, and then prepare the state as the, say, �rst basis vector of Bj′ . If
the resulting mixture ρ is then measured in some basis Bj , sampled according to
an arbitrary (independent) distribution J , then unless j = j′ (i.e., our guess for
j was correct), there is obviously lower bounded uncertainty in the measurement
outcomeX (assuming a non-trivial maximum overlap). Our uncertainty relation
can be understood as saying that for any state ρ, no matter how it is prepared, there
exists such a (virtual) guess J ′, which exhibits this very behavior: if it di�ers from
the actual choice for the measurement then there is lower bounded uncertainty in
the measurement outcomeX . As an immediate consequence, we can for instance
say thatX has min-entropy at least d/2, except with a probability that is given by
the probability of guessing J , e.g., except with probability 1/m if the measurement
is chosen uniformly at random from the family.�is is clearly the best we can hope
for.

We stress that because the min-entropy is more conservative than the Shannon
entropy, our high-order entropic uncertainty relation does not follow from its
simpler Shannon-entropy version. Neither can it be deduced in an analogue way;
the main reason being that for �xed pairs j 6= k, there is no strong lower bound
onHmin(X|J=j) +Hmin(X|J=k), in contrast to the case of Shannon entropy.
More precisely and more generally, the average uncertainty 1

|J |
∑
j Hmin(X|J=j)

does not allow a lower bound higher than log |J |. To see this, consider the following
example for |J | = 2 (the example can easily be extended to arbitrary |J |). Suppose
that ρ is the uniform mixture of two pure states, one giving no uncertainty when
measured in basis j, and the other giving no uncertainty when measured in basis k.
�en, 1

2Hmin(X|J=j) + 1
2Hmin(X|J=k) = 1. Because of a similar reason, we

cannot hope to get a good bound for all but a �xed choice of j′; the probabilistic
nature of J ′ is necessary (in general). Hence, compared to bounding the average
uncertainty, the all-but-one form of our uncertainty relation not only makes our
uncertainty relation stronger in that uncertainty for all-but-one implies uncertainty
on average (yet not vice versa), but it also allows formore uncertainty.

By using asymptotically good error-correcting codes, one can construct families
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{B1, . . . ,Bm} of bases that have a large value of d, and thus for which our uncer-
tainty relation guarantees a large amount of min-entropy (we discuss this in more
detail in Section 5.2.1).�ese families consist of qubit-wise measurements in the
computational or the Hadamard basis, and thus are implementable with current
technology.

�e proof of our new uncertainty relation comprises a rather involved probability
reasoning to prove the existence of the random variable J ′ and builds on earlier
work presented in [Sch07].

Quantum Identi�cation with Hybrid Security

As an application of our entropic uncertainty relation, we propose a new quan-
tum identi�cation protocol (for an introduction into quantum identi�cation, see
Section 2.11). Our uncertainty relation gives us the right tool to prove security of the
new quantum identi�cation protocol in the BQSM.�e distinguishing feature of our
new protocol is that it also o�ers some security in case the assumption underlying
the BQSM fails to hold. Indeed, we additionally prove security of our new protocol
against a dishonest server that has unbounded quantum storage capabilities and can
reliably store all the qubits communicated during an execution of the protocol, but
is restricted to non-adaptive single-qubit operations and measurements. 3 �is is in
sharp contrast to protocol QID by Damgård et al. (Section 2.11.1), which completely
breaks down against a dishonest server that can store all the communicated qubits
in a quantum memory and postpone the measurements until the user announces
the correct measurement bases. On the downside, our protocol only o�ers security
in case of a perfect single-qubit (e.g., single-photon) source, because multi-qubit
emissions reveal information about w. Hence, given the immature state of single-
qubit-source technology (as of 2012), our protocol is currently mainly of theoretical
interest.

Wewant to stress that proving security of our protocol in this single-qubit-operations
model (SQOM) is non-trivial. Indeed, as we will see, standard tools like privacy am-
pli�cation are not applicable. Our proof involves certain properties of random linear
codes and makes use of Diaconis and Shahshahani’s XOR inequality (�eorem 2.8,
see also [Dia88]).

3Because secure identi�cation belongs to the class of secure 2PC functionalities, it is well known
that some restriction is necessary (for references, see Section 1.3.2).
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5.1.2 RelatedWork

�e study of entropic uncertainty relations, whose origin dates back to 1957 with
the work of Hirschman [Hir57], has received a lot of attention over the last decade
due to their various applications in quantum information processing. We refer the
reader to [WW10] for a recent overview on entropic uncertainty relations. Most of
the known entropic uncertainty relations are of the form

1
|J |

∑
j

Hα(X|J=j) ≥ h ,

whereHα is the Rényi entropy.4 I.e., most uncertainty relations only give a lower
bound on the entropy of the measurement outcome X on average over the (ran-
dom) choice of the measurement. As argued in Section 5.1.1, the bound h on the
min-entropy can be at most log |J |, no matter the range of X . Furthermore, an
uncertainty relation of this form only guarantees that there is uncertainty inX for
somemeasurement(s), but does not specify precisely for how many, and certainly
it does not guarantee uncertainty for all but onemeasurements. �e same holds
for the high-order entropic uncertainty relation from [DFR+07], which considers
an exponential number of measurement settings and guarantees that except with
negligible probability over the (random) choice of the measurement, there is lower-
bounded min-entropy in the outcome. On the other hand, the high-order entropic
uncertainty relation from [DFSS05] only considers twomeasurement settings and
guarantees lower-bounded min-entropy with probability (close to) 1

2 .

�e uncertainty relation we know of that comes closest to ours is Lemma 2.13
in [FHS11]. Using our notation, it shows thatX is ε-close to having roughly d/2
bits of min-entropy (i.e., the same bound we get), but only for all but an ε-fraction
of all them possible choices for the measurement j, where ε is about

√
2/m.

With respect to our application, backing up the security of the identi�cation protocol
by Damgård et al. [DFSS07] against an adversary that can overcome the quantum-
memory bound assumed by the BQSMwas also the goal of [DFL+09]. However, the
solution proposed there relies on an unproven computational hardness assumption,
and as such, strictly speaking, can be broken by an adversary in the SQOM, i.e.,
by storing qubits and measuring them later qubit-wise and performing (possibly
infeasible) classical computations. On the other hand, by assuming a lower bound on
the hardness of the underlying computational problem against quantum machines,
the security of the protocol in [DFL+09] holds against an adversary with much

4See Section 2.3.1 for the de�nition ofHα. Nevertheless, for most known uncertainty relations
α = 1, i.e., the Shannon entropy.
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more quantum computing power than our protocol in the SQOM, which restricts
the adversary to single-qubit operations.

We hope that with future research on this topic, new quantum identi�cation (or
other cryptographic) protocols will be developed with security in the same spirit
as our protocol, but with a more relaxed restriction on the adversary’s quantum
computation capabilities, for instance that he can only perform a limited number of
quantum computation steps, and in every step he can only act on a limited number
of qubits coherently.

5.2 An All-But-One Entropic Uncertainty Relation

�roughout this section, {B1, . . . ,Bm} is an arbitrary but �xed family of bases for
the state spaceH of a quantum system. For simplicity, we restrict our attention to
an n-qubit system, such thatH = (C2)⊗n for n ∈ N, but our results immediately
generalize to arbitrary quantum systems. We write the 2n basis vectors of the
j-th basis Bj as Bj = {|x〉j : x ∈ {0, 1}n}. Let c be the maximum overlap of
{B1, . . . ,Bm} as de�ned in Section 5.1.1.

In order to obtain our entropic uncertainty relation that lower bounds the min-
entropy of the measurement outcome for all but one measurement, we �rst state an
uncertainty relation that expresses uncertainty by means of the probability measure
of given sets.
Theorem 5.1 (cf. �m. 4.18 in [Sch07]) Let ρ be an arbitrary state of n qubits.
For j ∈ [m], let Qj(·) be the distribution of the outcome when ρ is measured in
the Bj-basis, i.e., Qj(x) := 〈x|j ρ |x〉j for any x ∈ {0, 1}n. And for all subsets
X ⊂ {0, 1}n, let Qj(X ) :=

∑
x∈X Q

j(x). �en, for any family {Lj}j∈[m] of
subsets Lj ⊂ {0, 1}n, it holds that∑

j∈[m]
Qj(Lj) ≤ 1 + c (m− 1) · max

j,k∈[m]
j 6=k

√
|Lj ||Lk|.

A special case of�eorem 5.1, obtained by restricting the family of bases to the
speci�c choice {B+,B×} with B+ = {|x〉 : x ∈ {0, 1}n} and B× = {H⊗n|x〉 :
x ∈ {0, 1}n} (i.e., either the computational or Hadamard basis for all qubits), is
an uncertainty relation that was proven and used in the original paper about the
BQSM [DFSS05].�e proof of�eorem 5.1 goes along similar lines as the proof in
the journal version of [DFSS05] for the special case outlined above.�e proof of
�eorem 5.1 can be found in [Sch07], as well as in [BFGS12].



170 Chapter 5. Hybrid Security of Password-Based Identi�cation

In the same spirit as Corollary 4.17 in [Sch07] (see also the full version of [DFSS05]),
we reformulate above uncertainty relation in terms of a “good event” E , which occurs
with reasonable probability, and if it occurs, then the measurement outcomes have
high min-entropy.�e statement is obtained by choosing the setsLj in�eorem 5.1
appropriately.

Because we now switch to entropy notation, it will be convenient to work with a
measure of overlap between bases that is logarithmic in nature and relative to the
number n of qubits. Hence, we de�ne

δ := − 1
n

log c2 .

We will later see that for “good” choices of bases, δ stays constant for growing n.
Corollary 5.2 Let ρ be an arbitrary n-qubit state, let J be a random variable over
[m] (with arbitrary distribution PJ ), and letX be the outcome when measuring ρ in
basis BJ .5 �en, for any ε ∈ R such that 0 < ε < δ/4, there exists an event E such
that ∑

j∈[m]
Pr[E|J=j] ≥ (m− 1)− (2m− 1) · 2−εn

and
Hmin(X|J=j, E) ≥

(δ
2 − 2ε

)
n

for j ∈ [m] with PJ |E(j) > 0.

Proof. For j ∈ [m] de�ne

Sj :=
{
x ∈ {0, 1}n : Qj(x) ≤ 2−(δ/2−ε)n}

to be the sets of strings with small probabilities and denote by Lj := Sj their
complements.6 Note that for all x ∈ Lj , we have that Qj(x) > 2−(δ/2−ε)n and
therefore |Lj | < 2(δ/2−ε)n. It follows from�eorem 5.1 that∑

j∈[m]
Qj(Sj) =

∑
j∈[m]

(1−Qj(Lj)) ≥ m− (1 + (m− 1) · 2−εn)

= (m− 1)− (m− 1)2−εn.

We de�ne E := {X ∈ SJ ∧ QJ(SJ) ≥ 2−εn} to be the event thatX ∈ SJ and
at the same time the probability that this happens is not too small.�en Pr[E|J=

5I.e., PX|J(x|j) = Qj(x), using the notation from�eorem 5.1.
6Here’s the mnemonic: S for the strings with small probabilities, L for large.
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j] = Pr[X ∈ Sj ∧Qj(Sj) ≥ 2−εn|J= j] either vanishes (ifQj(Sj) < 2−εn) or
else equalsQj(Sj). In either case, Pr[E|J=j] ≥ Qj(Sj)− 2−εn holds and thus
the �rst claim follows by summing over j ∈ [m] and using the derivation above.
Furthermore, let p = maxj PJ(j), then Pr[Ē ] =

∑
j∈[m] PJ(j) Pr[Ē |J = j] ≤

p
∑
j∈[m] Pr[Ē |J=j] ≤ p(m−(

∑
j∈[m]Q

j(Sj)−2−εn)) ≤ p(1+(2m−1)·2−εn),
and Pr[E ] ≥ (1− p)− p(2m− 1) · 2−εn

Regarding the second claim, in case J = j, we have

Hmin(X|J=j, E) = − log
(

max
x∈Sj

Qj(x)
Qj(Sj)

)
≥ − log

(
2−(δ/2−ε)n

Qj(Sj)

)
= (δ/2− ε)n+ log(Qj(Sj)).

As Qj(Sj) ≥ 2−εn by de�nition of E , we have Hmin(X|J = j, E) ≥ (δ/2 −
2ε)n.

We are now ready to state and prove our new all-but-one entropic uncertainty
relation.
Theorem 5.3 Let ρ be an arbitrary n-qubit state, let J be a random variable over
[m] (with arbitrary distribution PJ ), and letX be the outcome when measuring ρ in
basisBJ . �en, for any ε ∈ R such that 0 < ε < δ/4, there exists a random variable
J ′ with joint distributionPJJ ′X such that (1) J and J ′ are independent and (2) there
exists an event Ω with Pr[Ω] ≥ 1− 2 · 2−εn such that7

Hmin(X|J = j, J ′ = j′,Ω) ≥
(δ

2 − 2ε
)
n− 1

for all j, j′ ∈ [m] with j 6= j′ and PJJ ′|Ω(j, j′) > 0.

Note that, as phrased,�eorem 5.3 requires that J is �xed and known, and only then
the existence of J ′ can be guaranteed.�is is actually not necessary. By looking at
the proof, we see that J ′ can be de�ned simultaneously in allm probability spaces
PX|J=j with j ∈ [m], without having assigned a probability distribution to J yet, so
that the resulting random variable J ′ we obtain by assigning an arbitrary probability
distribution PJ to J , satis�es the claimed properties.�is in particular implies that
the (marginal) distribution of J ′ is fully determined by ρ.

�e idea of the proof of �eorem 5.3 is to (try to) de�ne the random variable
J ′ in such a way that the event J 6= J ′ coincides with the “good event” E from

7Instead of introducing such an event Ω, we could also express the min-entropy bound by means
of the smoothmin-entropy ofX given J = j and J ′ = j′.
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Corollary 5.2. It then follows immediately from Corollary 5.2 that Hmin(X|J =
j, J ′ 6= J) ≥ (δ/2− 2ε)n, which is already close to the actual min-entropy bound
we need to prove.�is approach dictates that if the event E does not occur, then J ′
needs to coincide with J . Vice versa, if E does occur, then J ′ needs to be di�erent
to J . However, it is a priori unclear how to choose J ′ di�erent from J in case E
occurs.�ere is only one way to set J ′ to be equal to J , but there are many ways to
set J ′ to be di�erent from J (unlessm = 2). It needs to be done in such a way that
without conditioning on E or its complement, J and J ′ are independent.

Somewhat surprisingly, it turns out that the following does the job. To simplify this
informal discussion, we assume that the sum of them probabilities Pr[E|J = j]
from Corollary 5.2 equalsm − 1 exactly. It then follows that the corresponding
complementary probabilities, Pr[Ē |J = j] for them di�erent choices of j ∈ [m],
add up to 1 and thus form a probability distribution. J ′ is now chosen, in the above
spirit depending on the event E , so that its marginal distribution PJ ′ coincides with
this probability distribution: PJ ′(j′) = Pr[Ē |J=j′] for all j′ ∈ [m].�us, in case
the event E occurs, J ′ is chosen according to this distribution but conditioned on
being di�erent from the value j, taken on by J .�e technical details, and how to
massage the argument in case the sum of the Pr[E|J=j]’s is not exactlym− 1, are
worked out in the proof below.

Proof of�eorem 5.3. From Corollary 5.2 we know that for any 0 < ε < δ/4,
there exists an event E such that

∑
j∈[m] Pr[E|J = j] = m − 1 − α, and thus∑

j∈[m] Pr[Ē |J = j] = 1 + α, for α ∈ R such that−1 ≤ α ≤ (2m− 1)2−εn. We
make the case distinction between α = 0, α > 0 and α < 0. We start with case
α = 0, we subsequently prove the other two cases by reducing them to the case
α = 0 by “in�ating” and “de�ating” the event E appropriately. �e approach for
the case α = 0 is to de�ne J ′ in such way that E ⇐⇒ J 6= J ′, i.e., the event
J 6= J ′ coincides with the event E . �e min-entropy bound from Corollary 5.2
then immediately translates to Hmin(X|J = j, J ′ 6= J) ≥ (δ/2 − 2ε)n, and to
Hmin(X|J = j, J ′ = j′) ≥ (δ/2 − 2ε)n for j′ 6= j with PJJ ′(j, j′) > 0, as we
will show. What is not obvious about the approach is how to de�ne J ′ when it is
supposed to be di�erent from J , i.e., when the event E occurs, so that in the end J
and J ′ are independent.

Formally, we de�ne J ′ by means of the following conditional probability distribu-
tions:

PJ ′|JXĒ(j
′|j, x) :=

{
1 if j = j′

0 if j 6= j′
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and

PJ ′|JXE(j′|j, x) :=


0 if j = j′

Pr[Ē |J = j′]
Pr[E|J = j] if j 6= j′

We assume for the moment that the denominator in the latter expression does not
vanish for any j; we take care of the case where it does later. Trivially, PJ ′|JXĒ is a
proper distribution, with non-negative probabilities that add up to 1, and the same
holds for PJ ′|JXE :

∑
j′∈[m]

PJ ′|JXĒ =
∑

j′∈[m]\{j}
PJ ′|JXĒ =

∑
j′∈[m]\{j}

Pr[Ē |J = j′]
Pr[E|J = j] = 1

where we used that
∑
j∈[m] Pr[Ē |J = j] = 1 (because α = 0) in the last equality.

Furthermore, it follows immediately from the de�nition of J ′ that Ē =⇒ J = J ′

and E =⇒ J 6= J ′. Hence, E ⇐⇒ J 6= J ′, and thus the bound from
Corollary 5.2 translates toHmin(X|J = j, J ′ 6= J) ≥ (δ/2− 2ε)n. It remains to
argue that J ′ is independent of J , and that the bound also holds forHmin(X|J =
j, J ′ = j′) whenever j 6= j′.

�e latter follows immediately from the fact that conditioned on J 6= J ′ (which is
equivalent to E),X, J and J ′ form a Markov chainX ↔ J ↔ J ′, and thus, given
J = j, additionally conditioning on J ′ = j′ does not change the distribution ofX .
For the independence of J and J ′, consider the joint probability distribution of J
and J ′, given by

PJJ ′(j, j′) = PJ ′JE(j′, j) + PJ ′J Ē(j
′, j)

= PJ(j) Pr[E|J = j]PJ ′|JE(j′|j) + PJ(j) Pr[Ē |J = j]PJ ′|J Ē(j
′|j)

= PJ(j) Pr[Ē |J = j′],

where the last equality follows by separately analyzing the cases j = j′ and j 6= j′.
It follows immediately that the marginal distribution of J ′ is

PJ ′(j′) =
∑
j

PJJ ′(j, j′) = Pr[Ē |J = j′],

and thus PJJ ′ = PJ · PJ ′ .

What is le� to do for the caseα = 0 is to deal with the case where there exists j∗ with
Pr[E|J = j∗] = 0. Since

∑
j∈[m] Pr[Ē |J = j] = 1, it holds that Pr[Ē |J = j] = 0

for j 6= j∗. �is motivates to de�ne J ′ as J ′ := j∗ with probability 1. Note that
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this de�nition directly implies that J ′ is independent from J . Furthermore, by the
above observations: E ⇐⇒ J 6= J ′.�is concludes the case α = 0.

Next, we consider the case α > 0. �e idea is to “in�ate” the event E so that α
becomes 0, i.e., to de�ne an event E ′ that contains E (meaning that E =⇒ E ′) so
that

∑
j∈[m] Pr[E ′|J = j] = m− 1, and to de�ne J ′ as in the case α = 0 (but now

using E ′). Formally, we de�ne E ′ as the disjoint union E ′ = E ∨ E◦ of E and an
event E◦.�e event E◦ is de�ned by means of Pr[E◦|E , J = j,X = x] = 0, so that
E and E◦ are indeed disjoint, and Pr[E◦|J = j,X = x] = α/m, so that indeed∑

j∈[m]
Pr[E ′|J = j] =

∑
j∈[m]

(Pr[E|J = j] + Pr[E◦|J = j])

= (m− 1− α) + α = m− 1 .

We can now apply the analysis of the case α = 0 to conclude the existence of J ′,
independent of J , such that J 6= J ′ ⇐⇒ E ′ and thus (J 6= J ′) ∧ Ē◦ ⇐⇒
E ′ ∧ Ē◦ ⇐⇒ E . Setting Ω := Ē◦, it follows that

Hmin(X|J = j, J 6= J ′,Ω) = Hmin(X|J = j, E) ≥ (δ/2− 2ε)n ,

where Pr[Ω] = 1− Pr[E◦] = 1− α/m ≥ 1− (2m− 1)2−εn/m ≥ 1− 2 · 2−εn.
Finally, using similar reasoning as in the case α = 0, it follows that the same bound
holds for Hmin(X|J = j, J ′ = j′,Ω) whenever j 6= j′. �is concludes the case
α > 0.

Finally, we consider the case α < 0.�e approach is the same as above, but now
E ′ is obtained by “de�ating” E . Speci�cally, we de�ne E ′ by means of Pr[E ′|Ē , J =
j,X = x] = Pr[E ′|Ē ] = 0, so that E ′ is contained in E , and Pr[E ′|E , J = j,X =
x] = Pr[E ′|E ] = m−1

m−1−α , so that∑
j∈[m]

Pr[E ′|J = j] =
∑
j∈[m]

Pr[E ′|E ] · Pr[E|J = j] = m− 1 .

Again, from the α = 0 case we obtain J ′, independent of J , such that the event
J 6= J ′ is equivalent to the event E ′.

It follows that

Hmin(X|J = j, J 6= J ′) = Hmin(X|J = j, E ′) = Hmin(X|J = j, E ′, E)
≥ Hmin(X|J = j, E)− log(P [E ′|E , J = j]) ≥ (δ/2− 2ε)n− 1 ,

where the second equality holds because E ′ =⇒ E , the �rst inequality holds
because additionally conditioning on E ′ increases the probabilities ofX conditioned
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on J = j and E by at most a factor 1/P [E ′|E , J = j]), and the last inequality holds
by Corollary 5.2) and because P [E ′|E , J = j]) = m−1

m−1−α ≥
1
2 , where the latter

holds since α ≥ −1. Finally, using similar reasoning as in the previous cases, it
follows that the same bound holds forHmin(X|J = j, J ′ = j′) whenever j 6= j′.
�is concludes the proof.

5.2.1 Constructing Good Families of Bases

Here, we discuss some interesting choices for the family {B1, . . . ,Bm} of bases. We
say that such a family is “good” if δ = − 1

n log(c2) converges to a strictly positive
constant as n tends to in�nity.�ere are various ways to construct such families.
For example, a family obtained through sampling according to the Haar measure
will be good with overwhelming probability (a precise statement, in which “good”
means δ = 0.9, can be found at the very end of the proof of�eorem 2.5 of [FHS11]).
�e best possible constant δ = 1 is achieved for a family ofmutually unbiased bases.
However, for arbitrary quantum systems (i.e., not necessarily multi-qubit systems)
it is not well understood how large such a family may be, beyond that its size cannot
exceed the dimension plus 1.

In the upcoming section, we will use the following simple and well-known con-
struction. For an arbitrary binary code C ⊂ Fn2 of sizem, minimum distance d and
encoding function c : [m]→ C, we can construct a family {B1, . . . ,Bm} of bases
as follows. We identify the jth codeword, i.e., c(j) = (c1, . . . , cn) for j ∈ [m], with
the basis Bj = {Hc(j)|x〉 : x ∈ Fn2} = {(Hc1⊗ · · · ⊗Hcn)|x〉 : x ∈ Fn2}. In
other words, Bj measures qubit-wise in the computational or the Hadamard basis,
depending on the corresponding coordinate of c(j). It is easy to see that the maxi-
mum overlap c of the family obtained this way is directly related to the minimum
distance of C, namely δ = − 1

n log(c2) coincides with the relative minimal distance
d/n of C. Hence, choosing an asymptotically good code immediately yields a good
family of bases.

5.3 A New Quantum Identi�cation Protocol

Our main application of the new uncertainty relation is in proving security of a
new password-based identi�cation protocol in the quantum setting. Recall that in
password-based identi�cation, a user U wants to convince a server S that he (U)
knows a password w, in such a way that only a negligible amount of information
is leaked about w in case U is interacting with a dishonest server S∗. Vice versa, a
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dishonest user U∗ (who does not know w) should not be able to gain information
about w by interacting with S.

It is known that without any restriction on (one of) the dishonest participants, se-
cure identi�cation is impossible (even in the quantum setting). Indeed, if a quantum
protocol is unconditionally secure against a dishonest user, then unavoidably it can
be broken by a dishonest server with unbounded quantum storage and unbounded
quantum computing power; this follows essentially from [Lo97] (see also [DFSS07]).
�us, the best one can hope for (for a protocol that is unconditionally secure against
a dishonest user) is that in order to break it, unbounded quantum storage and
unbounded quantum computing power are necessary for the dishonest server. Note
that this is not the case for the existing quantum identi�cation protocol QID, which
we reviewed in Section 2.11.1: a dishonest server who can postpone the measure-
ments of (most of) the qubits until the user announces the bases—by temporarily
storing the qubits in a quantummemory—completely breaks the protocol.�us, no
quantum computing power at all is necessary to break QID, only su�cient quantum
storage.

In this section, we propose a new identi�cation protocol, NEWQID, which can be
regarded as a �rst step towards closing the above gap. Like QID, our new protocol
is secure against an unbounded dishonest user and against a dishonest server
with limited quantum storage capabilities. Furthermore, and in contrast to QID, a
minimal amount of quantum computation power is necessary to break the protocol,
beyond su�cient quantum storage. Indeed, in addition to the security against a
dishonest server with bounded quantum storage, we also prove security against
a dishonest server that can store all the communicated qubits, but is restricted
to measure them qubit-wise (in arbitrary qubit bases) at the end of the protocol
execution. �us, beyond su�cient quantum storage, quantum computation that
involves pairs of qubits is necessary (and in fact su�cient) to break the new protocol.

Restricting the dishonest server to qubit-wise measurements may look restrictive;
however, we stress that in order to break the protocol, the dishonest server needs
to store many qubits and perform quantum operations on them that go beyond
single-qubit operations; this may indeed be considerably more challenging than
storing many qubits and measuring them qubit-wise. Furthermore, it turns out
that proving security against such a dishonest server that is restricted to qubit-wise
measurements is already challenging; indeed, standard techniques (e.g., privacy
ampli�cation) do not seem applicable here.�erefore, handling a dishonest server
that can, say, act on blocks of qubits, must be le� to future research.

�e security properties that we want to achieve are given in Section 2.11. Similar to
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QID, the new protocol will be shown to be unconditionally secure against dishonest
users. �e new uncertainty relation is the main ingredient for proving security
against a dishonest server with bounded quantum storage. Our security proof
against a dishonest server (having unbounded quantum storage) that is restricted
to non-adaptive qubit-wise measurements uses very di�erent techniques.

5.3.1 Description of Our New Protocol

Let C ⊂ Fn2 be a binary code with minimum distance d, and let c :W → C be its
encoding function. Letm := |W|, and typically,m < 2n. Let F be the class of all
linear functions from {0, 1}n to F`2, where ` < n, represented as ` × nmatrices
over F2. Note that F is two-universal and coincides with the family G1 de�ned—
and proved to be two-universal—in Section 2.4.1. Furthermore, let G be a strongly
two-universal class of hash functions fromW to F`2. Protocol NEWQID is shown
below.

1. U picks x r←{0, 1}n and sendsHc(w)|x〉 to S.
2. S measures in basis c(w). Let x′ be the outcome.
3. U picks f r←F and sends it to S
4. S picks g r←G and sends it to U
5. U computes and sends z := f(x)⊕ g(w) to S
6. S accepts if and only if z = z′ where z′ := f(x′)⊕ g(w)

Protocol 5.1: Our new quantum password-based-identi�cation protocol NEWQID.
�e di�erence between this new protocol and the existing protocol QID by
Damgård et al. (see Protocol 2.1) is the way how the user prepares the state in
step (1): in the new protocol the basis is chosen as a function of the password w,
whereas in QID it is chosen at random and communicated in a later step in the
protocol.

Note that our protocol is quite similar to QID (Section 2.11.1).�e di�erence is that
in our protocol, both parties, i.e.,U and S, use c(w) as basis for preparing/measuring
the qubits in step (1) and (2), whereas in QID only S uses c(w) and U uses a random
basis θ ∈ {0, 1}n instead, and then U communicates θ to S and all the positions
where θ and c(w) di�er are dismissed. �us, in some sense, our new protocol is
more natural since why should U use a random basis when he knows the right basis
(i.e., the one that S uses)? In [DFSS07], using a random basis (for U) was crucial for
their proof technique, which is based on an entropic uncertainty relation of a certain
form, which asks for a random basis. However, using a random basis, which then
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needs to be announced, renders the protocol insecure against a dishonest server S∗
that is capable of storing all the communicated qubits and then measure them in
the right basis once it has been announced. Our new uncertainty relation applies to
the case where an n-qubit state is measured in a basis that is sampled from a code
C, and thus is applicable to the new protocol where U uses basis c(w) ∈ C. Since
this basis is common knowledge (to the honest participants), it does not have to be
communicated, and as such a straightforward store-and-then-measure attack as
above does not apply.

A downside of our protocol is that security only holds in case of a perfect quantum
source, which emits exactly one qubit when triggered. Indeed, a multi-photon
emission enables a dishonest server S∗ to learn information on the basis used, and
thus gives away information on the password w in our protocol. As such, our
protocol is currently mainly of theoretical interest.

It is straightforward to verify that (in the ideal setting with perfect sources, no noise,
etc.) NEWQID satis�es the correctness property (De�nition 2.66) perfectly. In the
upcoming sections, we give proofs for server and user security.

5.4 (Unconditional) Server Security

First, we argue security of NEWQID against an arbitrary dishonest user U∗ (that is
merely restricted by the laws of quantum mechanics).
Theorem 5.4 NEWQID is ε-secure for the server with ε =

(m
2
)
2−`.

Proof. Clearly, from the steps (1) to (5) in the protocol NEWQID, U∗ learns no infor-
mation onW at all.�e only information he may learn is by observing whether S
accepts or not in step (6).�erefore, in order to prove server security, it su�ces to
show the existence of a random variableW ′, independent ofW , with the property
that S rejects wheneverW ′ 6= W (except with probability 1

2m(m − 1)2−`) and
that S accepts wheneverW ′ = W .

Wemay assume thatW = [m]. Let ρWX′FGZE be the state describing the password
W , the variablesX ′, F,G and Z occurring in the protocol from the server’s point
of view, and U∗’s quantum state E before observing S’s decision to accept or reject.
For any w ∈ W , consider the state ρwX′FGZE := ρX′FGZE|W=w. Note that the
reduced state ρwFGZE is the same for any w ∈ W ; this follows from the assumption
that U∗’s initial state is independent ofW and because F,G and Z are produced
independently ofW . We may thus write ρwX′FGZE as ρX′wFGZE , and we can “glue
together” the states ρX′wFGZE for all choices of w.�is means, there exists a state
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ρX′1···X′mFGZE1···Em that correctly reduces to ρX′wFGZEw = ρX′wFGZE for any
w ∈ W , and conditioned on FGZ , we have that X ′iEi is independent of X ′jEj
for any i 6= j ∈ W . It is easy to see that for any i 6= j ∈ W , G is independent of
X ′i, X

′
j and F .�erefore, by the strong two-universality ofG, for any i 6= j it holds

that Z ′i 6= Z ′j except with probability 2−`, where Z ′w = F (X ′w) +G(w) for any w.
�erefore, by the union bound, Z ′1, . . . , Z ′m are pairwise distinct and thus Z can
coincide with at most one of the Z ′w’s, except with probability ε = 1

2m(m− 1)2−`.
LetW ′ be de�ned such that Z = Z ′W ′ ; if there is no such Z

′
w then we letW ′ =⊥,

and if there are more than one then we let it be the �rst. Recall, the latter can
happen with probability at most ε. We now extend the state ρX′1···X′mFGZW ′E1···Em
byW , chosen independently according to PW . ClearlyW ′ is independent ofW .
Furthermore, except with probability at most ε, ifW 6= W ′ then Z 6= Z ′W . Also
note that ρX′WFGZW ′WEW is such that

ρX′WFGZWEW =
∑
w

PW (w)ρX′wFGZEw ⊗ |w〉〈w|

=
∑
w

PW (w)ρwX′FGZE ⊗ |w〉〈w| = ρX′FGZWE .

�us, also with respect to the state ρX′FGZWE there existW ′, independent ofW ,
such that if W ′ 6= W then Z 6= Z ′ except with probability at most ε. Finally,
wheneverW = W ′ it follows by construction that Z = Z ′ and S will always accept
in this case.�is was to be shown.

5.5 User Security in the BQSM

Next, we consider a dishonest server S∗, and �rst prove security of NEWQID in the
bounded-quantum-storage model. In this model, as introduced in [DFSS05], it is
assumed that the adversary (here S∗) cannot store more than a �xed number of
qubits, say q.�e security proof of NEWQID in the bounded quantum storage model
is very similar to the corresponding proof in [DFSS07] for their protocol, except
that we use the new uncertainty relation from Section 5.2. Furthermore, since our
uncertainty relation (�eorem 5.3) already guarantees the existence of the random
variableW ′ as required by the security property, no entropy-splitting as in [DFSS07]
is needed.

In the following, let δ := d/n, i.e., the relative minimum distance of C.
Theorem 5.5 Let S∗ be a dishonest server whose quantum memory is at most q
qubits at step 3 of NEWQID. �en, for any 0 < κ < δ/4, NEWQID is ε-secure for the
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user with
ε = 2−

1
2 ((δ/2−2κ)n−1−q−`) + 4 · 2−κn.

Proof. We consider and analyze a puri�ed version of NEWQID where in step (1)
instead of sendingHc(W )|X〉 to S∗ for a uniformly distributedX ,U prepares a fully
entangled state 2−n/2

∑
x |x〉|x〉 and sends the second register to S∗ while keeping

the �rst. �en, in step (3) when the memory bound has applied, U measures his
register in the basis c(W ) in order to obtainX . Note that this procedure produces
exactly the same common state as in the original (non-puri�ed) version of NEWQID.
�us, we may just as well analyze this puri�ed version.

�e state of S∗ consists of his initial state and his part of the EPR pairs, and may
include an additional ancilla register. Before the memory bound applies, S∗ may
perform any unitary transformation on his composite system. When the memory
bound is applied (just before step (3) is executed in NEWQID), S∗ has to measure
all but q qubits of his system. Let the classical outcome of this measurement be
denoted by y, and let E′ be the remaining quantum state of at most q qubits.�e
common state has collapsed to a (n+ q)-qubit state and depends on y; the analysis
below holds for any y. Next, U measures his n-qubit part of the common state
in basis c(W ); let X denote the classical outcome of this measurement. By our
new uncertainty relation (�eorem 5.3) and subsequently applying the min-entropy
chain rule that is given in Proposition 2.62 (to take the q stored qubits into account)
it follows that there existsW ′, independent ofW , and an event Ω that occurs at
least with probability 1− 2 · 2−κn, such that

Hmin(X|E′,W = w,W ′ = w′,Ω) ≥ (δ/2− 2κ)n− 1− q.

for any w,w′ such that w 6= w′. Because U chooses F independently at random
from a 2-universal family, privacy ampli�cation guarantees that

dunif(F (X)|E′F,W = w,W ′ = w′) ≤ ε′ := 1
2 ·2
− 1

2 ((δ/2−2κ)n−1−q−`)+2·2−κn,

for any w,w′ such that w 6= w′. Recall that Z = F (X) ⊕ G(W ). By security of
the one-time pad it follows that

dunif(Z|E′FG,W = w,W ′ = w′) ≤ ε′, (5.1)
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for any w,w′ such that w 6= w′. To prove the claim, we need to bound,

δ(ρWW ′E|W 6=W ′ , ρW↔W ′↔E|W 6=W ′)
= 1

2‖ρWW ′E′FGZ|W 6=W ′ − ρW↔W ′↔E′FGZ|W 6=W ′‖1
≤ 1

2‖ρWW ′E′FGZ|W 6=W ′ − ρWW ′E′FG|W 6=W ′ ⊗ 2−`I‖1
+ 1

2‖ρWW ′E′FG|W 6=W ′ ⊗ 2−`I− ρW↔W ′↔E′FGZ|W 6=W ′‖1 (5.2)

where the equality follows by de�nition of trace distance (De�nition 2.48) and the
fact that the output state E is obtained by applying a unitary transformation to the
set of registers (E′, F ,G,W ′, Z).�e inequality is the triangle inequality; in the
remainder of the proof, we will show that both terms in (5.2) are upper bounded by
ε′.

1
2‖ρWW ′E′FGZ|W 6=W ′ − ρWW ′E′FG|W 6=W ′ ⊗ 2−`I‖1

=
∑
w 6=w′

PWW ′|W 6=W ′(w,w′) dunif(Z|E′FG,W = w,W ′ = w′) ≤ ε′,

where the latter inequality follows from (5.1).For the other term, we reason as
follows:

1
2‖ρWW ′E′FG|W 6=W ′ ⊗ 2−`I− ρW↔W ′↔E′FGZ|W 6=W ′‖1

= 1
2
∑
w 6=w′

PWW ′|W 6=W ′(w,w′) ‖ρ
w,w′

E′FG|W 6=W ′ ⊗ 2−`I− ρw′E′FGZ|W 6=W ′‖1

= 1
2
∑
w 6=w′

PWW ′|W 6=W ′(w,w′) ‖ρ
w,w′

E′FG|W 6=W ′ ⊗ 2−`I

−
∑
w′′

s.t. w′′ 6=w′

PW |W ′,W 6=W ′(w′′|w′)ρ
w′′,w′

E′FGZ|W 6=W ′‖1

= 1
2
∑
w′

PW ′|W 6=W ′(w′) ‖
∑
w

s.t. w 6=w′

PW |W ′,W 6=W ′(w|w′)ρ
w,w′

E′FG|W 6=W ′ ⊗ 2−`I

−
∑
w′′

s.t. w′′ 6=w′

PW |W ′,W 6=W ′(w′′|w′)ρ
w′′,w′

E′FGZ|W 6=W ′
∑
w

s.t. w 6=w′

PW |W ′,W 6=W ′(w|w′)‖1

= 1
2
∑
w 6=w′

PWW ′|W 6=W ′(w,w′) ‖ρ
w,w′

E′FG|W 6=W ′ ⊗ 2−`I− ρw,w
′

E′FGZ|W 6=W ′‖1

=
∑
w 6=w′

PWW ′|W 6=W ′(w,w′) dunif(Z|E′FG,W = w,W ′ = w′) ≤ ε′,
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where the �rst equality follows by de�nition of conditional independence (the
quantum version, see (2.10) on page 81) and by a basic property of the trace distance;
the third and fourth equality follow by linearity of the trace distance.�e inequality
on the last line follows from (5.1).�is proves the claim.

5.6 User Security in the Single-Qubit-Operations Model

We now consider a dishonest server S∗ that can store an unbounded number of
qubits. Clearly, against such a S∗, �eorem 5.5 provides no security guarantee
anymore. We show here that there is still some level of security le�. Speci�cally, we
show that NEWQID is still secure against a dishonest server S∗ that can reliably store
all the communicated qubits and measure them qubit-wise and non-adaptively at
the end of the protocol.�is feature distinguishes our identi�cation protocol from
the protocol from [DFSS07], which completely breaks down against such an attack.

5.6.1 The Model

Formally, a dishonest server S∗ in the SQOM is modeled as follows.

1. S∗ may reliably store the n-qubit state Hc(w)|x〉 = Hc(w)1 |x1〉 ⊗ · · · ⊗
Hc(w)n |xn〉 received in step (1) of NEWQID.

2. At the end of the protocol, in step (5), S∗ chooses an arbitrary sequence
θ = (θ1, . . . , θn), where each θi describes an arbitrary orthonormal basis
of C2, and measures each qubit Hc(w)i |xi〉 in basis θi to observe Yi ∈ F2.
Hence, we assume that S∗ measures all qubits at the end of the protocol.

3. �e choice of θ may depend on all the classical information gathered during
the execution of the protocol, but we assume a non-adaptive setting where
θi does not depend on Yj for i 6= j, i.e., S∗ has to choose θ entirely before
performing any measurement.

Considering complete projective measurements acting on individual qubits, rather
than general single-qubit POVMs, may be considered a restriction of our model.
Nonetheless, general POVMmeasurements can always be described by projective
measurements on a bigger system. In this sense, restricting to projective mea-
surements is consistent with the requirement of single-qubit operations. It seems
non-trivial to extend our security proof to general single-qubit POVMs.
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�e restriction to non-adaptive measurements (item 3) is rather strong, even though
the protocol from [DFSS07] already breaks down in this non-adaptive setting.�e
restriction was introduced as a stepping stone towards proving the adaptive case.
Up to now, we have unfortunately not yet succeeded in doing so, hence we leave
the adaptive case for future research.

We also leave for future research the case of a less restricted dishonest server S∗ that
can do measurements on blocks that are less stringently bounded in size. Whereas
the adaptive versus non-adaptive issue appears to be a proof-technical problem
(NEWQID looks secure also against an adaptive S∗), allowingmeasurements on larger
blocks will require a new protocol, since NEWQID becomes insecure when S∗ can
do measurements on blocks of size 2, as we show in Section 5.6.5.

5.6.2 No Privacy Ampli�cation

One might expect that proving security of NEWQID in the SQOM, i.e., against a
dishonest server S∗ that is restricted to single-qubit operations should be straight-
forward, but actually the opposite is true, for the following reason. Even though it
is not hard to show that a�er his measurements, S∗ has lower bounded uncertainty
in x (except if he was able to guess w), it is not clear how to conclude that f(x) is
close to random so that z does not reveal a signi�cant amount of information about
w. �e reason is that standard privacy ampli�cation fails to apply here. Indeed,
the model allows S∗ to postpone the measurement of all qubits to step (5) of the
protocol. �e hash function f , however, is chosen and sent already in step (3).
�is means that S∗ can choose his measurements in step (5) depending on f . As
a consequence, the distribution of x from the point of view of S∗ may depend on
the choice of the hash function f , in which case the privacy-ampli�cation theorem
does not give any guarantees.

5.6.3 Single-Qubit Measurements

Consider an arbitrary sequence θ = (θ1, . . . , θn) where each θi describes an or-
thonormal basis of C2. Let |ψ〉 be an n-qubit system of the form

|ψ〉 = Hb1 |x1〉 ⊗ · · · ⊗Hbn |xn〉,

where x and b are arbitrary in Fn2 . Measuring |ψ〉 qubit-wise in basis θ results in
a measurement outcome Y = (Y1, . . . , Yn) ∈ Fn2 . Suppose that x, b and θ are
in fact realizations of the random variables X , B and Θ respectively. It follows
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immediately from the product structure of the state |ψ〉 that

PY |XBΘ(y|x, b, θ) =
n∏
i=0

PYi|XiBiΘi(yi|xi, bi, θi),

i.e., the random variables Yi are statistically independent conditioned on arbitrary
�xed values forXi,Bi and Θi but such that PXiBiΘi(xi, bi, θi) > 0.
Lemma5.6 �e distributionPYi|XiBiΘi(yi|xi, bi, θi) exhibits the following symme-
tries:

PYi|XiBiΘi(0|0, bi, θi) = PYi|XiBiΘi(1|1, bi, θi)
and

PYi|XiBiΘi(0|1, bi, θi) = PYi|XiBiΘi(1|0, bi, θi)
for all i ∈ [n], for all bi and θi with PXiBiΘi(ξ, bi, θi) > 0 for all ξ ∈ F2.

Proof. Letα, β ∈ C be such that θi := {ᾱ|0〉+ β̄|1〉, β̄|0〉− ᾱ|1〉}. (We can always
�nd such α and β.) Writing out the measurement explicitly gives

PYi|XiBiΘi(0|xi, bi, θi) = |(α〈0|+ β〈1|)Hbi |xi〉|2 and

PYi|XiBiΘi(1|xi, bi, θi) = |(β〈0| − α〈1|)Hbi |xi〉|2.

Hence, it su�ces to prove that

|(α〈0|+ β〈1|)Hbi |xi〉|2 = |(β〈0| − α〈1|)Hbi |xi ⊕ 1〉|2 (5.3)

for every xi, bi ∈ F2.

We �rst show (5.3) for bi = 0. Let σ1 be the �rst Pauli matrix de�ned by σ1|a〉 =
|a ⊕ 1〉 for every a ∈ F2. It follows immediately from the de�nition that σ1 is a
unitary matrix and it is easy to see that σ1 is Hermitian.�en,

|(α〈0|+ β〈1|)|xi〉|2 = |(α〈0|+ β〈1|)σ1σ1|xi〉|2 = |(α〈1|+ β〈0|)|xi ⊕ 1〉|2

= |(β〈0| − α〈1|)|xi ⊕ 1〉|2

�e last equation follows because the expression equals either |α|2 or |β|2 (de-
pending on xi ∈ F2), hence we may freely change the sign of α. For bi = 1, we
have

|(α〈0|+ β〈1|)H|xi〉|2 = |(α〈0|+ β〈1|)(|0〉+ (−1)xi |1〉)|2 = |α+ (−1)xiβ|2

and

|(β〈0|−α〈1|)H|xi⊕1〉|2 = |(β〈0|−α〈1|)(|0〉−(−1)xi |1〉)|2 = |β+(−1)xiα|2.

We see that those expressions are equal for every xi ∈ F2.
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�e symmetry characterized in Lemma 5.6 coincides with that of the binary symmet-
ric channel, i.e., we can viewY as a “noisy version” ofX , where this noise—produced
by the measurement—is independent ofX .

Formally, we can write Y as
Y = X ⊕∆, (5.4)

where the random variable ∆ = (∆1, . . . ,∆n) ∈ Fn2 thus represents the error
between the random variableX ∈ Fn2 that is “encoded” in the quantum state and
the measurement outcome Y ∈ Fn2 . By substituting (5.4) in Lemma 5.6, we get the
following corollary.
Corollary 5.7 (Independence Between ∆ andX) For every i ∈ [n] it holds that

P∆i|XiBiΘi(δi|xi, bi, θi) = P∆i|BiΘi(δi|bi, θi)

for all δi ∈ {0, 1} and for all xi, bi and θi such that PXiBiΘi(xi, bi, θi) > 0.

Furthermore, since the random variables Yi are statistically independent condi-
tioned on �xed values for Xi, Bi and Θi, it follows that the ∆i are statistically
independent conditioned on �xed values forBi and Θi.
De�nition 5.8 (Quantized Basis) For any orthonormal basis θi = {|v1〉, |v2〉} on
C2, we de�ne the quantized basis of θi as

θ̂i := j∗ ∈ F2, where j∗ ∈ arg max
j∈F2

max
k∈{1,2}

|〈vk|Hj |0〉|.

If both j ∈ F2 attain the maximum, then j∗ is chosen arbitrarily from F2. �e
quantized basis of the sequence θ = (θ1, . . . , θn) is naturally de�ned as the element-
wise application of the above, resulting in θ̂ ∈ Fn2 .

We will use the bias (see Section 2.2.3) as a measure for the predictability of ∆i.
Theorem 5.9 When measuring the qubit Hbi |xi〉 for any xi, bi ∈ F2 in any or-
thonormal basis θi on C2 for which the quantized basis θ̂i is the complement of bi,
i.e., θ̂i = bi ⊕ 1, then the bias of ∆i ∈ F2, where ∆i = Yi ⊕ xi and Yi ∈ F2 is the
measurement outcome, is upper bounded by

bias(∆i) ≤
1√
2
.

Since the theorem holds for any xi ∈ F2 and since Corollary 5.7 guarantees that
∆i is independent from an arbitrary random variableXi, the theorem also applies
when we replace xi by the random variableXi.
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In order to prove�eorem 5.9, we need the following lemma.
Lemma 5.10 If, for any orthonormal basis θi onC2, there exists a bit bi ∈ F2 so that
when measuring the qubitHbi |xi〉 for any xi ∈ F2 in the basis θi to obtain Zi ∈ F2
it holds that

bias(Zi) ≥ 1/
√

2,

then it holds that when measuring the qubit Hbi⊕1|xi〉 in the basis θi to obtain
Yi ∈ F2,

bias(Yi) ≤ 1/
√

2.

Proof. First note that for any xi, bi ∈ F2 and any orthonormal basis θi on C2,
measuring a stateHbi |xi〉 in θi = {|v〉, |w〉} where |v〉 = α|0〉+ β|1〉 and |w〉 =
β|0〉 − α|1〉 gives the same outcome distribution (up to permutations) as when
measuring one of the basis states of θi (when viewed as a quantum state), say |w〉,
using the basis {Hbi |xi〉, Hbi |xi ⊕ 1〉}. To see why this holds, note that it follows
immediately that |〈w|Hbi |xi〉|2 = |〈xi|Hbi |w〉|2. Furthermore, we have already
shown in the proof of Lemma 5.6 that

|〈v|Hbi |xi〉|2 = |〈w|Hbi |xi ⊕ 1〉|2

holds.

Hence, we can apply �eorem 5.1 with ρ = |w〉〈w| (this implies that n = 1),
m = 2 and B0 and B1 are the computational and Hadamard basis respectively.
�e maximum overlap between those bases is c = 1/

√
2.�eorem 5.1 gives us that

p{|0〉,|1〉}max + p{|+〉,|−〉}max ≤ 1 + 1√
2
,

where p{|0〉,|1〉}max and p{|+〉,|−〉}max respectively denote the maximum probability in the
distribution obtained by measuring in the computational and Hadamard basis. By
simple manipulations we can write this as a bound on the sum of the biases:

2√
2
≥ (2p{|0〉,|1〉}max − 1) + (2p{|+〉,|−〉}max − 1)

= bias(Yi) + bias(Zi). (5.5)

From this relation, the claim follows immediately.

Following [Sch07], we want to remark that both biases in (5.5) are equal to 1/
√

2
when θi is the Breidbart basis, which is the basis that is precisely “in between” the
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computational and the Hadamard basis:8

|v〉 = cos(π8 )|0〉+ sin(π8 )|1〉 and |w〉 = sin(π8 )|0〉 − cos(π8 )|1〉.

Proof of�eorem 5.9 . Let θi = {|v0〉, |v1〉}. We will make a case distinction based
on the value of

µ := max
k∈F2
|〈vk|H θ̂i |0〉|. (5.6)

If µ ≤ cos(π/8), then we also have that maxk∈F2 |〈vk|Hbi |xi〉| ≤ cos(π/8) where
bi = θ̂i⊕1, this holds by de�nition of the quantized basis (De�nition 5.8).�en, the
probability of obtaining outcome Yi = k∗, where k∗ ∈ F2 achieves the maximum
in (5.6), is bounded by

PYi(k∗) = |〈vk∗ |Hbi |xi〉|2 ≤ cos2(π/8) = 1
2 + 1

2
√

2 .

Hence,

bias(∆i) = bias(Yi) = |PYi(k∗)− (1− PYi(k∗))| = |2PYi(k∗)− 1| ≤ 1√
2 .

If µ > cos(π/8), then when measuring the stateH θ̂i |xi〉 in θi to obtain Zi ∈ F2,
we have that bias(Zi) > 1/

√
2 (this follows from similar computations as per-

formed above). We now invoke Lemma 5.10 to conclude that when measuring the
stateHbi |xi〉 in θi to obtain Yi, bias(∆i) = bias(Yi) < 1√

2 .

5.6.4 User Security of NEWQID

We are now ready to state and prove the security of NEWQID against a dishonest
user in the SQOM.
Theorem 5.11 (User Security) Let S∗ be a dishonest server with unbounded quan-
tum storage that is restricted to non-adaptive single-qubit operations, as speci�ed in
Section 5.6.1. �en, for any β ∈ R such that 0 < β < 1

4 , user security (as de�ned in
De�nition 2.67) holds with

ε ≤ 1
22

1
2 `−

1
4 ( 1

4−β)d +
(m

2
)
22` exp(−2dβ2)

Note that d is typically linear in n whereas ` is chosen independently of n, hence
the expression above is negligible in d.

8In [Sch07], the corresponding state is called the “Hadamard-invariant state.”



188 Chapter 5. Hybrid Security of Password-Based Identi�cation

To prove�eorem 5.11 we need the following technical lemma and corollary. Recall
that F denotes the class of all linear functions from Fn2 to F`2, where ` < n, repre-
sented as ` × n matrices over F2. When F ∈ F acts on an n-bit vector x ∈ Fn2 ,
we prefer the notation F (x) over matrix-product notation Fx.9 Furthermore, we
write span(F ) for the row span of F : the set of vectors obtained by making all
possible F2 linear combinations of the rows of F , i.e., the set {sF : ∀s ∈ F`2},
where s should be interpreted as a row vector and sF denotes a vector-matrix prod-
uct. For two vectors v, w ∈ Fn2 , the Schur product is de�ned as the element-wise
product v � w := (v1w1, v2w2, . . . , vnwn) ∈ Fn2 , and the inner product between
v and w is given by v·w := v1w1 ⊕ · · · ⊕ vnwn ∈ F2. For an n-bit vector vec-
tor v = (v1, . . . , vn) in Fn2 , we write |v| for its Hamming weight (as de�ned in
Section 3.1.3), and, for any subset I ⊆ [n], we write vI for the restricted vector
(vi)i∈I ∈ F|I|2 .
Lemma 5.12 Let n, k and ` be arbitrary positive integers, let 0 < β < 1

4 and let
I ⊂ [n] such that |I| ≥ k, and let F be uniform over F = F`×n2 . �en, it holds
except with probability 22` exp(−2kβ2) (the probability is over the random matrix
F ) that ∣∣(f � g)I

∣∣ > (1
4 − β)k ∀f, g ∈ span(F ) \ {0}

Proof. Without loss of generality, we will assume that |I| = k. Now take arbitrary
but non-zero vectors r, s ∈ F`2 and let V := rF andW := sF . We will analyze
the case r 6= s; the case r = s is similar but simpler. Because each element of
F is an independent random bit, and r and s are non-zero and r 6= s, V andW
are independent and uniformly distributed n-bit vectors with expected relative
Hamming weight 1/2. Hence, on average |(V �W )I | equals k/4. Furthermore,
using Hoe�ding’s inequality (�eorem 2.11), we may conclude that

Pr
[
k

4 − |(V �W )I | > βk

]
= Pr

[
|(V �W )I | <

(1
4 − β

)
k

]
≤ exp(−2kβ2) .

Finally, the claim follows by applying the union bound over the choice of r and s
(each 2` possibilities).

Recall that C ⊂ Fn2 is a binary code with minimum distance d, c(·) its encoding
function, and thatm := |W|.

9When using matrix-product notation ambiguities could arise, e.g., in subscripts of probability
distributions like PFX : then it is not clear whether this means the joint distribution of F andX or
the distribution of F acting onX?
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Corollary 5.13 Let 0 < β < 1
4 , and let F be uniformly distributed over F . �en,

F has the following property except with probability
(m

2
)
22` exp(−2dβ2): for any

string s ∈ Fn2 (possibly depending on the choice of F ), there exists at most one c̃ ∈ C
such that for any code word c ∈ C di�erent from c̃, it holds that

|f � (c⊕ s)| ≥ 1
2(1

4 − β)d ∀f ∈ span(F ) \ {0}

We prove the statement by arguing for two c̃’s and showing that they must be
identical. In the proof, we will make use of elementary properties of the Schur
product and the Hamming weight:

1. |a| ≥ |a� b| for all a, b ∈ Fn2 . (Follows immediately.)

2. |a� b|+ |a� c| ≥ |a� (b⊕ c)| for all a, b, c ∈ Fn2 .
Proof. |a� (b⊕ c)| = |a� b⊕a� c| ≤ |a� b|+ |a� c|, where the equality
is the distributivity of the Schur product, and the inequality is the triangle
inequality for the Hamming weight.

Proof. By Lemma 5.12 with I := {i ∈ [n] : ci 6= c′i} for c, c′ ∈ C, and by applying
the union bound over all possible pairs (c, c′), we obtain that except with probability(m

2
)
22` exp(−2dβ2) (over the choice of F ), it holds that

|f � g � (c⊕ c′)| > (1
4 − β)d (5.7)

for all f, g ∈ span(F ) \ {0} and all c, c′ ∈ C with c 6= c′.

Now, for such an F , and for every choice of s ∈ Fn2 , consider c̃1, c̃2 ∈ C and
f1, f2 ∈ span(F ) \ {0} such that

|f1 � (c̃1 ⊕ s)| < 1
2(1

4 − β)d and |f2 � (c̃2 ⊕ s)| < 1
2(1

4 − β)d.

We will show that this implies c̃1 = c̃2, which proves the claim. Indeed, we can
write

(1
4 − β)d > |f1 � (c̃1 ⊕ s)|+ |f2 � (c̃2 ⊕ s)|

≥ |f1 � f2 � (c̃1 ⊕ s)|+ |f1 � f2 � (c̃2 ⊕ s)| ≥ |f1 � f2 � (c̃1⊕c̃2)|

where the second inequality is property (1) from above applied twice and the third
inequality is property (2).�is contradicts (5.7) unless c̃1 = c̃2.
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Proof of�eorem 5.11. Consider an execution of NEWQID, with a dishonest server
S∗ as described in Section 5.6.1. We letW,X and Z be the random variables that
describe the values w, x and z occurring in the protocol.

From NEWQID’s description, we see that F is uniform over F . Hence, by Corol-
lary 5.13 it will be “good” (in the sense that the bound from Corollary 5.13 holds)
except with probability

(m
2
)
22` exp(−2dβ2). From here, we consider a �xed choice

for F and condition on the event that it is “good,” we will take the probability that
F is “bad” into account at the end of the analysis. Although we have �xed F , we
will keep using capital notation for it, to emphasize that F is a matrix. We also �x
G = g for an arbitrary g; the analysis below holds for any such choice.

Let Θ describe the qubit-wise measurement performed by S∗ at the end of the
execution, and Y the corresponding measurement outcome. By the non-adaptivity
restriction and by the requirement in De�nition 2.67 that S∗ is initially independent
ofW , we may conclude that, onceG and F are �xed, Θ is a function of Z . (Recall
that Z = F (X)⊕ g(W ).)

We will de�neW ′ with the help of Corollary 5.13. Let Θ̂ be the quantized basis
of Θ, as de�ned in De�nition 5.8. Given a �xed value θ for Θ, and thus a �xed
value θ̂ for Θ̂, we set s, which is a variable that occurs in Corollary 5.13, to s = θ̂.
Corollary 5.13 now guarantees that there exists at most one c̃. If c̃ indeed exists, then
we choose w′ such that c(w′) = c̃. Otherwise, we pick w′ ∈ W arbitrarily (any
choice will do). Note that this de�nes the random variableW ′, and furthermore
note that Z → Θ → Θ̂ → W ′ forms a Markov chain. Moreover, by the choice
of w′ it immediately follows from Corollary 5.13 that for all w 6= w′ and for all
f ∈ span(F ) \ {0} it holds that∣∣f � (c(w)⊕ θ̂)

∣∣ ≥ 1
2(1

4 − β)d. (5.8)

We will make use of this bound later in the proof.

Since the model (Section 5.6.1) enforces the dishonest server to measure all qubits
at the end of the protocol, the system E = (Y,Z,Θ) is classical and hence the
trace-distance-based user-security de�nition (De�nition 2.67) simpli�es to a bound
on the statistical distance between distributions. I.e., it is su�cient to prove that

SD(PEW |W ′=w′,W ′ 6=W , PW |W ′=w′,W 6=W ′PE|W ′=w′,W 6=W ′) ≤ ε

holds for any w′. Consider the distribution that appears above as the �rst argument
to the statistical distance, i.e., PEW |W ′=w′,W ′ 6=W . By substituting E = (Y,Z,Θ),
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it factors as follows10

PY ZΘW |W ′,W 6=W ′ = PW |W ′,W 6=W ′ PZΘ|WW ′,W 6=W ′ PY |ZΘWW ′,W 6=W ′

= PW |W ′,W 6=W ′ PZΘ|W ′,W 6=W ′ PY |F (X)ΘWW ′,W 6=W ′ ,

(5.9)

where the equality PZΘ|WW ′,W 6=W ′ = PZΘ|W ′,W 6=W ′ holds by the following argu-
ment: Z is independent ofW (sinceF (X) acts as one-time pad) andZ → Θ→W ′

is a Markov chain, and S∗ (who computes Θ from Z) is initially independent of
W by De�nition 2.67, henceW is independent of Z , Θ andW ′, which implies the
above equality.�e equality PY |ZΘWW ′,W 6=W ′ = PY |F (X)ΘWW ′,W 6=W ′ holds by
the observation that givenW , Z is uniquely determined by F (X) and vice versa.

In the remainder of this proof we will show that

dunif(Y |F (X) = u,Θ = v,W = w,W ′ = w′) ≤ 1
22

`
2−

1
4 ( 1

4−β)d,

for all u, v, w such that w 6= w′, where w′ is determined by v. �is then implies
that the rightmost factor in (5.9) is essentially independent ofW , and concludes
the proof.

To simplify notation, we de�ne E to be the event

E := {F (X) = u,Θ = v,W = w,W ′ = w′}

for �xed but arbitrary choices u, v andw such thatw 6= w′, wherew′ is determined
by v. We show closeness to the uniform distribution by using the XOR inequality
from Diaconis et al. (�eorem 2.8), i.e., we use the inequality

dunif(Y |E) ≤ 1
2

[∑
α

bias(α·Y |E)2
] 1

2
,

where the sum is over all α in Fn2 \ {0}. We split this sum into two parts, one for
α ∈ span(F ) and one for α not in span(F ), and analyze the two parts separately.

SinceX is uniformly distributed, it follows that for any α /∈ span(F ), it holds that
P
α·X|F (X)(·|u) = 1

2 (for any u). We conclude that

1
2 = P

α·X|F (X) = P
α·X|F (X)W = P

α·X|F (X)ΘWW ′

= P
α·Y |F (X)ΘWW ′

= P
α·Y |E ∀α /∈ span(F ).

10Note that Convention 2.2 applies here.
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�e second equality follows sinceW is independent ofX .�e third equality holds
by the fact that Θ is computed from F (X) ⊕ g(W ) andW ′ is determined by Θ.
�e fourth equality follows by the security of the one-time pad, i.e., recall that
Y = X ⊕ ∆, where by Corollary 5.7 it holds that ∆ ∈ Fn2 is independent of X
when conditioned on �xed values for B = c(W ) and Θ. Hence, it follows that
bias(α·Y |E) = 0 for α /∈ span(F ).

For any non-zero α ∈ span(F ), we can write

bias(α·Y |E) = bias(α·(X ⊕∆)|E)
= bias(α·X ⊕ α·∆|E) (distributivity of dot product)
= bias(α·X|E)bias(α·∆|E) (Corollary 5.7)
≤ bias(α·∆|E) (bias(α·X) ≤ 1)
=
∏
i∈[n]

bias(αi ·∆i|E) (∆i independent)

=
∏

i∈[n]:αi=1
bias(∆i|E)

≤
∏

i∈[n]:αi=1
θ̂i=c(w)i⊕1

2−
1
2 (�eorem 5.9)

= 2−
1
2 |α�(c(w)⊕θ̂)| ≤ 2−

1
4 ( 1

4−β)d (by (5.8))

Combining the two parts, we get

dunif(Y |E) ≤ 1
2

[∑
α

bias(α·Y |E)2
] 1

2

= 1
2

[ ∑
α∈span(F )\{0}

bias(α·Y |E)2 + 0
] 1

2 ≤ 1
22

`
2−

1
4 ( 1

4−β)d .

Incorporating the error probability of having a “bad” F completes the proof.

5.6.5 Attack against NEWQID using Operations on Pairs of Qubits

We present an attack with which the dishonest server S∗ can discard two passwords
in one execution of NEWQID using coherent operations on pairs of qubits.

Before discussing this attack, we �rst explain a straightforward strategy by which S∗
can discard one password per execution: S∗ chooses a candidate password ŵ ∈ W
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and measures the stateHc(W )|X〉 qubit-wise in the basisHc(ŵ) to obtain Y ∈ Fn2 .
S∗ then computes F (Y )⊕ g(ŵ) and compares this to Z = F (X)⊕ g(W ), which
he received from the user. If indeed Z = F (Y )⊕ g(ŵ), then it is very likely that
W = ŵ, i.e., that S∗ guessed the password correctly.

Let us now explain the attack, which is obtained by modifying the above strategy.
�e attack is based on the following observation [DFSS05]: if S∗ can perform Bell
measurements on qubit pairs Ha|x1〉 ⊗Ha|x2〉, for a, x1, x2 ∈ F2, then he can
learn the parity of x1 ⊕ x2 for both choices of a simultaneously. �is strategy
can also be adapted to determine both parities of a pair in which the �rst qubit is
encoded in a basis that is opposite to that of the second qubit, i.e., by appropriately
applying a Hadamard gate prior to applying the Bell measurement.

Let the �rst bit of Z be equal to f·X ⊕ g(W )1,11 where f ∈ span(F ) \ {0}.
Let ŵ1, ŵ2 ∈ W be two candidate passwords. With the trick from above, S∗ can
measure the positions in the set

P := {i ∈ [n] : fi = 1, c(ŵ1)i = 1⊕ c(ŵ2)i}

pairwise (assuming |P| to be even) using Bell measurements, while measuring
the positions where c(ŵ1) and c(ŵ2) coincide using ordinary single-qubit mea-
surements. �is allows him to compute both “check bits” corresponding to both
passwords simultaneously, i.e., those check bits coincide with f·Y1 ⊕ g(ŵ1)1 and
f·Y2 ⊕ g(ŵ2)1, where Y1 ∈ Fn2 and Y2 ∈ Fn2 are the outcomes that S∗ would
have obtained if he had measured all qubits qubit-wise in either c(ŵ1) or c(ŵ2),
respectively. If both these check bits are di�erent from the bit Z1, then S∗ can
discard both w1 and w2.

We have seen that in the worst case, the attack is capable of discarding two pass-
words in one execution, and hence clearly violates the security de�nition. On
average, however, the attack seems to discard just one password per execution, i.e.,
a candidate password cannot be discarded if its check bit is consistent with Z1,
which essentially happens with probability 1/2.�is raises the question whether
the security de�nition is unnecessarily strong, because it seems that not being able
to discard more than one password on average would be su�cient. Apart from this,
it might be possible to improve the attack, e.g., by selecting the positions where to
measure pairwise in a more clever way, as to obtain multiple check bits (correspond-
ing to multiple fs in the span of F ) per candidate password, thereby increasing the
probability of discarding a wrong candidate password.

11By g(W )1 we mean the �rst bit of g(W ).
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5.7 Conclusion

We view our work related to NEWQID as a �rst step in a promising line of research,
aimed at achieving security in multiple models simultaneously. �e main open
problem in the context of the SQOM is to reprove our results in a more general
model in which the dishonest server S∗ can choose his basis adaptively. Also, it
would be interesting to see whether similar results can be obtained in amodel where
the adversary is restricted to performing quantum operations on blocks of several
qubits.



A
Notation

Symbol Description Page

R �eld of the real numbers
C �eld of the complex numbers
Z ring of rational integers
N set of strictly positive integers
Fq �nite �eld of order q 42
F∗q multiplicative group of Fq 42
0 zero vector in an F2 vector space of arbitrary dimension 48

O(·) Bachmann–Landau Big-Oh notation 43
Θ(·) Bachmann–Landau Big-�eta notation 43

[n] set of integers {1, . . . , n}
[a, b] interval {x ∈ R : a ≤ x ≤ b}

log binary logarithm
e base of the natural logithm (2.718 . . .)
ā complex conjugate of a ∈ C
|a| absolute value of a ∈ C
|X | cardinality of the set X
|v| Hamming weight of v ∈ {0, 1}n (used exclusively in

Chapter 5)
wt(v) Hamming weight of v ∈ {0, 1}n (used exclusively in

Chapter 3)
99

span(S) linear span of the elements in the set S
span(A) linear span of the rows of matrix A

AT transpose of matrix A
A† Hermitian transpose of complex matrix A

A ≥ 0 matrix A is positive semi-de�nite
δij Kronecker delta symbol 42
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196 Appendix A. Notation

⊕ addition operator in Fn2 and F2n

⊗ tensor product / Kronecker matrix product 65
A⊗n n-fold Kronecker product of matrix A 73
H⊗n n-fold tensor product of Hilbert spaceH
� Schur product 188· standard inner product on Fn2 188

x
r←X x is picked independently and uniformly at random from

the set X
supp(PX) support of the distribution PX 44

h(p) binary entropy function of p 52
Hmin(X) min-entropy ofX 52

pguess(X|E) conditional guessing probability ofX given E 84
Hmin(A|B) conditional min-entropy of A givenB 84
Hmax(A) max-entropy of A 85

H 2× 2 Hadamard matrix 73
dim(H) dimension ofH
rank(ρ) rank of ρ

tr(ρ) trace of ρ
trB(ρAB) partial trace overB 73

I identity operator 64
Hom(H,H′) complex vector space of linear mapsH → H′

End(H) complex algebra of operatorsH → H
D(H) set of density operators onH 70
|ϕ〉 ket vector 63
〈ϕ| bra vector 63

〈ϕ|ψ〉 inner product between |ϕ〉 and |ψ〉 63
|ϕ〉〈ψ| outer product between |ϕ〉 and |ψ〉 63
|ϕ〉〈ϕ| rank-1 projector (if and only if |ϕ〉 has norm 1) 65
‖ρ‖1 trace norm of ρ 81

δ(ρ, σ) trace distance between ρ and σ 81
SD(p, q) statistical distance between p and q 47

dunif(X|E) distance-to-uniform ofX when given E 83
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In de kwantumcryptogra�e wordt onderzoek gedaan naar het benutten van kwan-
tummechanische e�ecten voor cryptogra�sche toepassingen, alsmede naar de vei-
ligheid van bestaande en nieuwe cryptogra�sche protocollen wanneer een kwaad-
aardige partij (“de vijand”) berekeningen kan uitvoeren op een kwantumcomputer,
en/of kwantuminformatie bezit over stochastische variabelen (bijv. cryptogra�sche
sleutels) die in deze protocollen een rol spelen.

Een bekende toepassing uit de kwantumcryptogra�e is sleuteldistributie (Engelse
afkorting: QKD).Met behulp van dit protocol kunnen twee samenwerkende partijen
via een onveilige kwantumverbinding (bijv. een optische vezel die gemanipuleerd
kan worden door de vijand) en een geauthenticeerd klassiek communicatiekanaal
op afstand een gezamenlijke en zeer veilige cryptogra�sche sleutel genereren.

Hoewel de werking van het QKD-protocol op een intuïtief niveau vrij eenvoudig te
begrijpen is, is het verre van triviaal om formeel te bewijzen dat de door het protocol
geproduceerde sleutel daadwerkelijk veilig is. In dit proefschri� wordt een nieuwe
bewijsmethode geïntroduceerd, die vervolgens succesvol wordt toegepast op het
zgn. BB84-QKD protocol. Het resulterende bewijs is eenvoudiger dan de meeste
bestaande QKD-veiligheidsbewijzen, en gee� een inzichtelijke, niet-asymptotische
uitdrukking voor het bereikte veiligheidsniveau als functie van de protocolparame-
ters. De nieuwe methode blijkt ook toepasbaar om de veiligheid te bewijzen van een
kwantumprotocol voor het reduceren van oblivious transfer naar bit commitment.
Het is goed mogelijk dat de bewijsmethode nog meer toepassingen hee�.

In een ander deel van dit proefschri� wordt de taak van berichtenauthenticatie in
een nieuw scenario onderzocht. In dit scenario wordt aangenomen dat de vijand
een beperkte hoeveelheid kwantuminformatie hee� over de cryptogra�sche sleutel
die gebruikt wordt voor authenticatie. Bovendien—en hiermee onderscheidt het
scenario zich van eerder werk op dit gebied—wordt aangenomen dat de authenti-
catiesleutel in feite een sessie-sleutel is, die steeds opnieuw wordt afgeleid van een
bron van randomnessmet behulp van een herbruikbare sleutel.

Het is onvermijdelijk dat een signi�cante hoeveelheid informatie over de sessie-
sleutel openbaar wordt tijdens het uitvoeren van het authenticatieprotocol (en dus
tevens in handen komt van de vijand). Het doel van dit onderzoek is om een
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authenticatiemethode te vinden die voorkomt dat er ook een signi�cante hoeveel-
heid informatie over de herbruikbare sleutel vrijkomt. In dit proefschri� wordt
een oplossing gepresenteerd voor het geval waarin de vijand louter klassieke infor-
matie over de sessie-sleutel bezit. Voor het generieke geval waarin de vijand ook
kwantuminformatie bezit is het voorgestelde protocol niet compleet.

Entropische onzekerheidrelaties zijn formele uitdrukkingen van het onzekerheids-
principe van Heisenberg, die gebruik maken van een entropiemaat om de onze-
kerheid te kwanti�ceren. In dit proefschri� wordt een nieuwe entropische onze-
kerheidsrelatie gepresenteerd en bewezen. Het is de eerste onzekerheidsrelatie
die een ondergrens gee� voor de min-entropie in het meetresultaat,1 waarbij deze
ondergrens geldt voor op één na allemetingen, gekozen uit een willekeurige (en
willekeurig grote) familie vanmogelijke metingen. Het gebruik van demin-entropie
als onzekerheidsmaat maakt de onzekerheidsrelatie bijzonder geschikt voor gebruik
in de kwantumcryptogra�e.

Als toepassing wordt een nieuw kwantum-identi�catieprotocol gepresenteerd in
het bounded-quantum-storagemodel; de nieuwe onzekerheidsrelatie vormt de kern
van het formele veiligheidsbewijs voor dit protocol. In tegenstelling tot het oor-
spronkelijke kwantum-identi�catieprotocol van Damgård et al. biedt het nieuwe
identi�catieprotocol ook enige mate van bescherming in het geval dat de bounded-
quantum-storage-aanname niet geldt. Het protocol is nl. bestand tegen een vijand
die een ongelimiteerde kwantum-opslagcapaciteit hee�, maar enkel (niet-adaptieve)
operaties en metingen op afzonderlijke qubits kan uitvoeren. Het protocol van
Damgård et al. biedt geen enkele bescherming tegen een dergelijke vijand.

1Verkregen door het meten van een willekeurige kwantumtoestand van een bepaalde dimensie.
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