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Abstract. In this paper existence and stability of subharmonic solutions of the
Volterra-Verhulst equations with a periodic coefficient are analyzed by the
method of Urabe. The study supports the view that the observed 4- and 10-yr
cycles of prey-predator systems are due to seasonal tluctuations.
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1. Introduction

In ecology there are many examples of populations having a prey-predator relation
for which the densities fluctuate with a more or less fixed period. The example of the
snowshoe hare and Canadian lynx with 1its 10-yr cycle 1s classical. For other
examples, such as the 4-yr cycle of the coloured fox, we refer to Bulmer [3]. For the
analysis of density fluctuations use 1s made of mathematical models such as svstems
of differential equations describing the dynamics of interacting populations. The
Volterra-Lotka equations are known as the simplest model of a prey-predator
system with periodic solutions. Let x and y denote, respectively, the prey- and
predator density. Then the system of Volterra-Lotka equations reads

dx
= = ax — bxy, (1.1a)
dy
- = cy + dxy, (1.1b)

where a, b, c and d denote the parameters of the system. Equations (1.1) have a one
parameter family of periodic solutions depending on the initial values of the system.
At this point we touch upon one of the shortcomings of this model: the amplitude
and period of a solution depend upon the initial values, which 1s unnatural in view
of the ecological background of the problem. Furthermore, the solutions turn out
to be neutrally stable. As a result of this the system will not return into its cycle after
some perturbation. It 1s clear that this model cannot explain the observed well
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defined period of prey-predator oscillations. A third objection against the model
concerns its structural instability. Structural stability 1s a mathematical concept
that can be understood by extending the model (1.1) with a Verhulst term as follows

ax
— = ax — bxy — ex?, .22
o X ¥y (1.2a)
d
._2;; = — cy + dxy. (1.2b)

Then for e # 0, the solution behaves qualitatively different and, therefore, the
system 1s called structurally unstable for e = 0.

The objective of this paper is to formulate a model for prey-predator oscillations
that comes as close as possible to the Volterra-Lotka equations and that meets the
above objections. Bulmer [3] gives conditions for the system

dx

— = xf(x, y), 1.3a
- xf(x,y) (1.3a)
dy .
— T ",, 13b
7 yg(x, y) (1.3b)

in order to satisfy a set of ecological constraints with relation to prey-predator
interaction. These conditions are violated by (1.1); the Volterra-Verhulst system
(1.2) with positive parameter values meets all requirements. However, oscillating
solutions of (1.2) tend to damp out, so that the model in this form is unsuitable for
our study.

It 1s suggested that the answer to this problem may lie in the existence of a cycle
due to the interaction of the prey with its food, e.g. a plant-herbivore relation, see
[3]. However, this argument means a shift of the problem to a lower level, since
such a system has the same interaction mechanism as a prey-predator system. After
analyzing a series of alternatives for (1.2), Roughgarden [9, p. 449 ] concludes: ““So
the 1ssue of exactly what mix of mechanisms causes the lynx oscillations is still
open,...” . In this paper we will continue the mathematical investigations on the
system (1.2) and consider the case where one of the parameters 1s periodic 1n time.
Our aim 1s to prove the existence of asymptotically stable periodic solutions with a
period being a multiple of the period of the driving term. A biological motivation
for choosing periodically varying parameters is found in the influence of seasonal
conditions. Let us assume that the growth rate of the prey is periodic with period 1.
Since we are mainly interested in qualitative features of the system we take

a = ag + a; cos 2nt, (1.4)

instead of constructing a periodic function fitting data of observations. Thus, we
consider the system (1.2) with the parameter a given by (1.4), that i1s we have a
system driven by an external periodic force.

It has been proved, that in general systems of periodically forced differential
equations have a periodic solution with a period equal to the driving period. It is,
however, not commonly known that such systems may have stable subharmonic
solutions with a period being a multiple of the driving period. In certain cases stable
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subharmonics with a different period may be found for the same set of parameter
values. By taking such a parameter set and a specific initial point and by integrating
the system numerically one will find a solution which over a large time interval will
tend to a stable oscillatory state. From this approach it is not clear, however, that
for other initial values the solution will tend to the same or a different oscillatory
state. In order to eliminate such arbitrariness and to trace more subharmonics at the
same time, we will handle the problem more systematically and integrate the
equations for a sufficiently large set of initial points in the positive quadrant of the
phase-plane. However, numerical integration of the system for each initial point
over a large time interval 1s practically impossible, and, as we will see, also not
necessary. Integration of the system over one period of the driving force relates an
initial point to an end point. This mapping of the phase plane into itself, the so-
called Poincaré mapping, will be studied 1n the next section. There, we construct an
approximation of this mapping by which we are able to find, in an efficient
numerical way, approximations to various subharmonics.

In section 3 the existence of periodic solutions near such approximations will be
investigated by making use of a theorem of Urabe [10]. This theorem yields a
practical method of proving the existence of isolated periodic solutions in the
neighbourhood of periodic functions satistying the differential system with a
sufficient accuracy. The theorem provides us with error bounds for these
approximations and gives also a decisive answer on the stability of the periodic
solutions. In section 4 the method i1s worked out for two specific examples.

In section 5 we discuss possible implications of these results in the modelling of
periodic phenomena in population dynamics. Besides the prey-predator oscil-
lations mentioned above we refer to the observed cycles in the densities of rodent
populations and the periodic outbursts of epidemic diseases.

2. The Poincare Mapping

By an appropriate scaling of the dependent variables the system (1.2), (1.4) is
transformed into

dx1

7 = axi(l + ycos2mt — x; — nx,), (2.1a)
dXz _
dr == ﬁxz( — 1 + xl). (2'1b)

In order to trace periodic solutions of this system for a specific choice of the
parameters we consider the Poincaré mapping

P: x(0) — x(1). (2.2)

Furthermore, we introduce the sequence of functionals
V.(x)=|P'x —x|, n=12,..., - (2.3)
where || - || denotes the Euclidean norm of a vector. Apparently V, is positive semi-

definite and vanishes at a fixed point of P", which corresponds to a periodic solution
of period k with k such that n/k is a positive integer. Comparing the occurrence of
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zeroes of V, for different values of n one may conclude about the period of a
solution at such a point. For the approximation of V, 1n a certain domain of the
phase plane we adapted the following strategy. Let A, = R, be a compact domain
and define

B, ={y|ly = Px,xeA;. (2.4)

If we let A;., = A; N B,, then for a given domain A, we compute V, (x) for xe A4,
from a numerical approximation of P on A4;. This approximation of P1s based on a
numerical integration of the system over the interval (0, 1] for a set of initial points
X, On a lattice . covering A,. Sinceforn > 1 P'x,i=1,2,...,n — 1 1snot a point
of the lattice .# we interpolate P over the points of the lattice nearest to P'x to find
Pi*1x. Thus the construction of Pi*1x from P'x for i > 0 is completely based on
interpolation, so that expensive numerical integration of the system 1s avoided.
Once we have a global picture of V, from its values on the lattice &, we approximate
the fixed points of P" more accurately as follows. Near a minimum of ¥V, on the
lattice we step locally along the path of steepest descent to trace the possible zero of
V,. In this process the stepsize is taken sufficiently small and the numerical
integration sufficiently accurate in order to attain the accuracy required for a
successful application of Urabe’s method. The value of V, in the last point is a
measure for the accuracy in approximating the initial point of the corresponding
periodic solution.

3. Existence and Stability of Subharmonic Solutions

For the proof of existence of a periodic solution in the neighbourhood of an
approximate solution we use a method developed by Urabe [10]. Let us sketch how
we apply this method to the class of problems (2.1). We consider the periodic
nonlinear system of differential equations

%{; = f(x, t), f(x,t) = f(x,t + 2m), (3.1)

and assume that f(x,¢) and its partial derivatives with respect to x and ¢ are
continuously differentiable in a region D x L, where D is a bounded closed set 1n
the state space and L the r-axis. The following theorem (Proposition 3 of [10])
enables us to investigate, in a numerical way, the existence of a 2n-periodic solution.
For that purpose we determine a 27z-periodic approximate solution of (3.1) being a
2mn-periodic vector function that satisfies (3.1) with a given accuracy. The conditions
under which the theorem applies are such that one and only one periodic solution

will lie in a neighbourhood of the approximate solution, so the theorem only deals
with 1solated periodic solutions.

Theorem 3.1. Let x = x(t), lying within D, be a 2n-periodic approximate solution of
(3.1). Let A(t) be some continuous 2n-periodic matrix such that the multipliers of
y' = A(t)y are all different from one. Let ®(t) be its fundamental matrix satisfying
®(0) = E, E the unit matrix, and define H(t, s) as the piecewise continuous matrix

H(t,s) = O()[E — &(2n)]~ 1d~ (s) for 0
H(t,s) = ¢(H)[E — dQ2n)] ' oQ2n)P~*(s) for O

N

s<t<2n, (3.2a)
< s<2n. (3.2b)

IN
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Let|| - || denote the Euclidean norm, and further, let M and r be positive constants such
that
2m 2
”
max y H? (t,5)ds < —, (3.3)
0<1€2nJ 0 p,g 27
max ||X(1) — f(X(2), D)l <, (3.4)

Ot 2

where H, , are the elements of the matrix H. Finally, let ¥(x,t) = f(x,t). Now, if
there exist constants 0 > 0 and 0 < k < 1 such that

D; = {x|||lx — x(t)|| <o forall te L} < D, (3.5a)
1P (x,t) — A(D|| < k/M for tel andall xeDs (3.5b)
Mr/(1 — k) €0, (3.5¢)

then (3.1) has a unique 2n-periodic solution x = Xx(t) in Dsand this solution is isolated.
Further, we have

max ||x(t) — x(2)|| < Mr/(1 — k). 1 (3.6)
Ot 2n
It is noted that this theorem yields an error bound for the approximation x(z).
Because of the fact that the theorem requires a 2z-periodic system we transform our
prey-predator equations (2.1) to

dx1 ol

= —x;(1 + ycos(Tt) — nx; — x,), (3.7a)
drt 2T
dXz ﬁT

where T'e IN™. Obviously this system of differential equations is 2n-periodic in ¢
and 1f it has a 2n-periodic solution x = X(¢) then x = x(2nt/T) is a periodic solution
of (2.1) with period T, that is, a subharmonic of order 7.

The conditions (3.5) are veritfied for the system (3.7) as follows. Let the matrix
A(t) be given by

A(t) = VY(x,(2), x2(2), 1) (3.8)
with ¥ being the Jacobian matrix of (3.7). An elementary calculation yields
Hq](xla X2, t) T ql(fl(t)a 552(1‘), r)||2
= (4n%) "' T*{o*2n(xy — X,1(2)) + X2 — X5(2))?
+ (o + B2)(x; — X1(2))* + B*(xy — X5(2))%}
< (An?) "1 T? max(2o® + B2, 0% + B* + 8n-a®)
X {(x; — X1(2))* + (x5 — X,(2))*}.
Consequently, for any (x;, x;) lying in

Ds = {(x1,x2)|(x; — X1(2))* + (x5 — X,(2))* < 6%}, o>0
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we have

1P(x, 1) — P(R(), Il < @n) " 6T /q, ¢ =max(2e® + B2,0> + B> + 8n%x?)
If we succeed in finding a 6 > 0 and a x, 0 < k < 1, such that

Qn) " 6T /g<k/M and  Mr/(l — k)<, (3.92,b)

then we have completed the proof of existence of a unique 1solated subharmonic
solution of (2.1), provided the condition on the multipliers 1s satisfied. For
convenience we set

0 = Mr/(1 — K). (3.10)
Then condition (3.9a) reads
Qm)~'rTM?/q < k(1 — k). (3.11)
Hence, this condition is satisfied if
E=(Qn) " rTM?*/q <1t (3.12)

It is observed that for a given set of parameters the magnitude of rAM“ is of crucial
importance. Since the accuracy of the approximation x(¢) determines the magni-
tude of the residual constant r, a successful application of Urabe’s theorem can only
be realized if the approximation is sufficiently accurate.

To conclude this section we now discuss some computational aspects of Urabe’s
theorem. For a 2n-periodic approximation of the 2z-periodic solution of (3.7) we
use the trigonometric vector polynomial

X(t;m)=ay + Y a,,_,sinnt + a,,cosnt. (3.13)
n=1

By application of quadrature rules (see [ 12]) its Fourier coefficients are determined
from the numerical solution that starts in the fixed point of the iterated Poincare
mapping (see foregoing section). Substitution of (3.13) into (3.1) gives us, 1n
principle, the possibility of computing the Fourier coefficients with the method of
Galerkin, see [11, p. 108]. However, for the corresponding system of nonlinear
algebraic equations the roots related with the subharmonic solutions are hard to

find if one has no good initial estimate. In order to obtain an estimate for M, the
initial value problem

d' = Y(x(t;m), )P, $(0) = E, 0<t<2n (3.14a, b)

is solved numerically and the integration of (3.3) 1s carried out. As proposed by
Urabe and Reiter, the standard 4th-order Runge-Kutta method and the quadrature
rule of Simpson are used. The bound r i1s estimated from the maximum of the
residual function over a sufficiently large number of points. Since in general the
maximum will lie somewhere in between, we choose a safe, larger value for r. Since
(3.14) approximates the first variational equation of the exact solution, we can
investigate the asymptotic stability of a periodic solution from this equation. The

eigenvalues of the matrix @¢(27) are the multipliers of the linear system (3.14), see
Hale [6, p. 117].
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Fig. 1. (a) Damped oscillatory solution of autonomous Volterra-Verhulst system. (b) Stable sub-
harmonic solutions of forced Volterra-Verhulst system
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Table 1. The parameter values for the two examples
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Fig. 3. Domains of attraction of the subharmonic solutions in the phase plane at time ¢t = 0
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I'=1,k,k + 1,k + 2,...with k depending on the value of the product «f (see Fig.
1). We computed such periodic solutions for two specific examples (see Table 1).
The results are presented in Tables 2 and 3.

In Fig. 2 we depicted the tunctional (2.3) for Example I. By the method of
Hayashi [7] we constructed the domains of attraction of the stable periodic
solutions for the two examples, see Fig. 3. Asymptotically stable periodic solutions
of Example II are given as a function of time in Fig. 4.

(t)
_ g
1 A‘A"A‘A‘A‘A‘A‘A'AVA'A,’A‘A‘A‘

x(t

15

x, (t)

x, (t)

O 5 10 £t 15

Fig. 4. Stable (sub)harmonic solutions of Example II
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Table 3. Initial values of 4 approximate periodic solutions of Example II. In
all 4 cases the existence of an exact solution has been established

T e A v

x1(0)

T %.(0) Multipliers M . E(< _i.)

] 0.99486771 — 0.08 + 0.99; 10 10° 7810~ S
0.9791929 stable

4 0.68244°7607 0.93 + 0.32i 145 107 6.610— 3
1.528681362 stable

4 0.447779739 1.32, 0.73 162 107° 1.610—4
1.306031262 unstable

5 0.0415914697 0.20 + 0.96/ 657 510~ 9 8.410~ 3
0.5085066681 stable

In the foregoing sections we have established the existence of asymptotically stable
subharmonic solutions of the Volterra-Verhulst system (1.2) with the parameter a
satisfying (1.4). This model 1s proposed for describing the existence of fluctuations
in the densities of interacting preys and predators with a well defined period. In the
model we incorporated the changing influence of the season acting upon the growth
rate of the prey. The existence of asymptotically stable subharmonic solutions
supports the view that the observed 4- and 10-yr cycles in prey-predator systems
arise as a result of seasonal effects. Similarly, the model may explain the 5-yr cycle of
the hare (a plant-herbivore interaction), see [3, p. 1487]. From our mathematical
investigations we conclude that for given parameter values several stable solutions
with different periods are possible. This result meets Bulmer’s objections against a
model with a driving periodic force as it gives a possible explanation for the
existence of different lynx cycles in European Russia (8-yr) and Siberia (10-yr).
We expect a similar qualitative behaviour of the system if other parameters are
varied periodically as well. For example, if we let a and ¢ of (1.2) be periodic in time,
we arrive at a model studied by Dekker [ 4] describing the existence of rodent cycles.
Dekker explains the possible lengthening of the period from a critical passage in the
phase plane. Taking the parameters b and d periodic in time the model (1.2) may be
of use for describing the periodic outbursts of epidemical diseases in populations.
For this type of problem x and y denote, respectively, the densities of the susceptible
and the infective population. The periodicity in b and 4 account for seasonal
variations in the contagion. In this respect the 2-yr cycle in the occurrence of
measles [5] and the 3-yr cycle of rabies in foxes [ 1, p. 91] should be mentioned.

6. Concluding Remarks

In our mathematical analysis we left several interesting aspects of the mathematical
problem untouched. First of all it is worth to investigate the way in which the lower
subharmonics of (2.1) disappear near the equilibrium of the autonomous system as

the product aff decreases and the expression 27/, /aff passes an integer value. The
KBM-method [2] of analyzing almost linear systems would provide the appropri-
ate tools for such a study. Furthermore, one may compute the conditions on y
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and » in order to have existency and stability of subharmonic solutions. Besides the
periodic solutions with an integer rotation number, see Hale [ 6, p. 66], there may
also exist solutions with a fractional rotation number. As an 1illustration one may
consider example I of section 4 and look for solutions of period 7 consisting of one
cycle of about 3 years which, instead of closing its orbit, first makes another cycle of
4 years. Such a solution may explain the existence of 3.5-yr cycles. However, since it
is expected that these solutions have a small domain of attraction we should also
take into consideration the influence of stochastic effects making the system switch
between the 3-yr cycle and the 4-yr cycle. Such arguments also apply to the 10-yr
cycle of the Canadian lynx, as its observed period actually comes closer to a 9.5-yr
cycle. Kannan [8] has studied the influence of small stochastic effects upon the
system (1.2) with periodic coefficients near the harmonic solution. Since solutions
of such a system will leave any bounded domain with probability one in a finite
time, it is also worthwhile to concentrate on global results for stochastic systems for
which the corresponding deterministic system has several stable periodic solutions
with different periods.
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