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Call a stochastic matrix (i.e. a square matrix of order n with elements
p;x>0 for all 7, ke {1,2,...,n} and D} _, pjr=1 for all j e {1,2,...,%}) a
P-matrix. Then the following problem (further called Elfving's problem)
is a specialization of a problem posed in CHUNG [1958] and CHUNG [1960]
and due to ELrviNG (cf. KinamanN [1962], where an alternative approach
to this problem is given).

Errving’s problem: Find conditions in order that to a given [-matrix
P there exists a matrix function P(f) such that P(f) is a P-matrix for
each ¢>0, for which 2)

(1)

For n=2 Elfving’s problem has been solved by Frrcuer [1952], page
255, and BELLMAN [1960]. In my thesis (RUNNENBURG [1960]) the case
n=3 was considered.

It is well-known (cf. Doos [1953], BiIrkHOFF and Varca [1958]), that
if P(t) exists, then

(2) P(t)=e@%! for all real i >0,

where ()1 is a ¢J-matrix (l.e. a square matrix of order n with elements ¢;;
satisfying q;: >0 if 7%k for all 4,k e{l,2,...,n} and
all 7 {1, 2, ..., n}).

Furthermore, if pi, pe, ..., un are the eigenvalues of ¢, then by the
Lévy-Hadamard theorem (ci. Boprwia [1959], page 67) these eigen-
values lie inside the closed domain G consisting of all circles K; with

> 1 qir="0 for

1)  Report S 299 of the Statistical Department, Mathematical Centre, Amsterdam.
2} I 18 the n X n identity matrix.
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centres ¢;; and radii —q;. Hence in particular Re u;<0 for all j. The
eigenvalues Ai(t), Aa(t), -.., An(t) of P(t) are given by

(3) A5(t) =e#it for all real t>0 and all .

For any Q-matrix @; and any real {>0 we always have that P(f)=e@1?
is a F-matrix.

According to GaNTMACHER [1959], in 1938 Kolmogorov posed the
problem: Characterize the complex numbers z with |2|<1 which can
occur as eigenvalues of an nth order stochastic matrix. This problem was
partly solved in DviTrRIEV and DYNKIN [1946] and definitely in KARPELE-
wiTscH [1951]. Making use of their results, the next theorem can be
proved.

Theorem: The eigenvalues u, us, ..., un of a @-matrix (of order
n>3) satisty

1 1 1 :
(4) (;+-)ngargp;g(gm-ﬁ>n for 1 <9 < n;

the only @-matrices ¢1* (with elements ¢;;*) with at least one u;#0 on
the boundary of this region are given (after a suitable renumbering of
states, i.e. rows and columns at the same time) by

S’ — o for § = k,

(5) qix* = o for ) =k—1 (mod n),

0 otherwise,
where o« is an arbitrary positive number.

Remark 1: From this theorem we conclude, that for n>3 all eigen-
values A;(f) of P(f)=e@1? gatisty

(6) ]'f(t) = H'ﬂw

where H, is a heart-shaped region in the complex plane, contained in
the unit circle and symmetric with respect to the real axis, with the curve

P . . 27 7T
(7) e:xp( + cOS -~ 417 sIn n) (Where 0< i< 5 Qaz:/n)

as boundary in the region Im z> 0. Hence Elfving’s problem can only be
solved for those P; for which all eigenvalues belong to the region H,.
The only matrices e9: with a @-matrix ¢; for which at least one eigenvalue
A1 lies on the boundary curve of the region H, are given by

(8) PJ_* === BQI*.

Proof of the theorem: If P; is a P-matrix, then Q;=P;—7 is
a Q-matrix; if ¢; is a ¢-matrix, then P, =1+ ¢ (where 8> 0 is chosen
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In such a way that 0<1+fg;;<1 for 1<j<n, eg. B=—( min ¢;)1
1<isn
Hence if for an arbitrary Q-matrix Q; we

if some ¢;; < 0) is a P-matrix.
have

(9) det (G1—ul) = 0,
then
(10) det (P, s—(fu+1)1)=0.

Now Karpelewitsch has shown that the roots of the characteristic
equation

(11) det (Pl--*ﬂ.l) = 0

for an arbitrary P-matrix P satisty

Y(’ Z (L

(12) (é+i)ng&rg(lwl)g<§ml)n

for n>3, and so with A=pfu+1, because of >0 we have

(13) (i%—i)ngargpcg(w%“i)m

2 n 2 n

If ¢1* has an eigenvalue u; for which arg u;=(1/2+ 1/n) n with u;0,
ie. uj=yp(e®™m™—-1) with a >0, then P, ,;* has an eigenvalue A; with
arg (1, —1)=(1/2+1/n)x and A;—15#0. As Dmitriev and Dynkin have
shown, in that case the elements p;™ of P, z* satisfy (after a suitable
renumbering of the rows and columns at the same time)

/

(14) viE* = - x; for 9= k—1 (mod n),
e 0 otherwise,

g 11—« for j = £k,

where 0<o; <1 for each j e€{l, 2, ..., n}. Therefore the elements g;;*
of ()1* are given by

S — X for 7 = £k,
(15) qix* = x; for 9 =k—1 (mod n),
2 0 otherwise,

where we have written «; instead of «;'/f, and so «;>0 for each
je{l,2,..,n}.
For the characteristic equation of @;* we obtain

(16) (o1 +p)(oxa+p) ... (kn+p)=0o102 ... &n.

In order that u=y(e*/»—1), with a constant y>0, is a root of this
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equation, all a; must be positive. We shall prove that

(17) x;j=1 for all j {1, 2, ..., n},

for which it is sufficient to consider y =1.
If we introduce the finite positive numbers 0;=1/x; in (16) and sub-
stitute >/ —1 for u, we obtain

(18) {0y e/ (1—01)} {0z €2/ 4 (1 —03)} ... {0 €+ (1—0n)}=1.

p—

(‘onsider a line in the complex plane which does not pass through the
origin. Let r(¢p) be the absolute value of the complex number on this line
with argument @. Then log r(¢) is a strictly convex analytic function of
@ for finite 7(p). Hence if ¢ # g, we have for any pi, p2>0 with p1 +pe=1

(19) p1 log 7(g1) -+ p2 log 7(gz) > log r(p1e1 -+ pap2).
Theretore

(20) 1) riga) .. rlgn) > 7 (BT
unless g1=g@a= ... =@y.

Now consider for n>3 the points 0;-e*™™+ (1 —0;)-1 for finite 6;>0,
which lie on the line passing through 1 and e>™”. Then 0 <q@;<(1/2+1/n) .
Under the restriction @;+g@o+ ... +¢@, =0 (mod 2x), the product
r(gp1)r(@s) ... 7(p,) assumes its smallest value for g1 =@o= ... =@, =_2x/n.
Any other choice of values for the ¢; leads to a larger value for the product.
Hence if we introduce polar coordinates im (18) by writing

(21) 07 € + 1 —0;=1(qy) €%,

we find that under the condition “all 6; are finite positive numbers’ the
left-hand side of (18) has smallest positive value 1, where the wvalue 1
is only obtained if ¢;=2z/n for all j. Therefore, if equation (18) holds, we
must have 0;=1 for all j or xy=00= ... == 1.

Remark 2: For n=3 one may easily verify that

has characteristic equation
(23) (A= {2+AQ—ac—B—y)+1—a—B—y+ap+py+ya}=0.

If we take o+ f+y=1, then A1=1 and As 3= 4+ &}/By+(B+7)(1—B—y).
Hence A1, 42 and 43 lie inside H3 it § and y are sufficiently small positive
numbers. From Doos [1953], page 239, we know that if Elfving’s problem
can be solved for a Pi, then py;(f) for ++7 either vanishes identically or



040

never, except when t=0. Now here ps1(1) =0 and pa1(2) = (1 —p)(1 —y) >0
for small positive f and y. Thus there exists a P; of order 3 for which
Eltving’s problem can not be solved even though all eigenvalues lie
inside H 3,

remark 3: Any P-matrix of order 3 which is also a circulant can
be written

L 9Dy 9k 1 4 9 L e,
. L T ¥ 4 ) ) PR ¥ SO S P
(24) (' = 5 - 20 y —20—20 % -2 ,
L2 1o L 2q—2)

where > — %, b> —1% and «-+b<1. This matrix has eigenvalues

\ A2,3 = —3(w-D) & i(a—b)3.

Hence ¢ always has one eigenvalue 1 and two conjugate eigenvalues.
It we prescribe these eigenvalues and choose them inside Hs, then there
are exactly two matrices (; with these eigenvalues, if «#b. Otherwise
there 1s exactly one. The second one can be obtained from the first by
exchanging the values of « and b.

If we compute e9:, where

26 20
(...36) ()1 = — 2 — lﬁ 20
20 — 2o — 2H

with « >0 and p>0, then we obtain a FP-matrix of type ) with
) = 1 p=3@+0 ane 2 1D 4 — B) V3
4 = e 3@HA cog (—2x/3 4+ (o — ) V3),

h = Le=3@+0 cos (27/3 4 (x—p) V3).

We must have det (>0 (FrEcHET [1952], footnote 2 on page 210) for
this C; and hence 9(« - 0)2 + 3(a —b)2> 0. Therefore « =b =0 can not occur.

2

Now (1 has eigenvalues 1=0, wussz= —3(x-+p)+ i(x—p)3. In-
dependentl,” we may verify that u;, us and us are always inside Hs. 1t is
easy to see that a suitable choice of x and g leads to A;=¢% for 1=1, 2, 3,
where the A; are prescribed eigenvalues inside Hs (with A1=1, A and A3
conjugate, As540). Hence for that choice of x and p we obtain one of the
matrices ¢; upon computing e?: If there is a second one, i.e. if ¢ #b,
then that matrix is obtained by exchanging « and 8 in ;. Clearly a=10
1f «x=pf, but a=0 may occur if xp.

We conclude that to every P-matrix P; of order 3 which is a circulant
and has its eigenvalues inside H3, Klfving’s problem has at least one
solution P(f) =e@Qt where @)1 is a circulant (!), except for the one P-matrix
having all its elements equal to 1. The number of solutions of this kind
can also be found.
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1. The problem, considered in the preceding note (RUNNENBURG [1]),
of finding a domain /, to which the eigenvalues of a matrix of transition
probabilities of a continuous parameter Markov chain must necessarily
belong, is solved there by using a result in the corresponding problem for
discrete parameter Markov chains, obtained by Dyirriev and DyNKIN [2]
and KARPELEWITSCH [3]. For a detailed statement of the problem we
refer to [1].

n this note we want to show that the domain #, can be found by
using only the characterization of a Markov matrix given by (1) below.

We use the fact that a Markov-chain on a finite set consisting of =
states A4;, As, .... 4,, Induces an abelian semi-group G of real linear
transtormations on an R,: with the Markov matrix (p;z) (where pjj;=
= P{xn1 = Aglx, - A;}) corresponds the linear transformation = defined by

e = (Pj1, Pj2. ---+ Pin),

where ¢; is the j'th unit vector.
A necessary and sufficient condition that the matrix of a given linear
transformation ¢ is a Markov matrix is

(1) oW C W,

where W 1s the set of all probability distributions on {41, 4z, ..., Ay}

T

(2) W ={x|r = (&1, &, ..., &n); V&5 = 0; E; = 1}.

ity

j=1

2. Now let G be a continuous one-parameter abelian semi-group of
linear transformations satisfying (1) (¢ is the identical transformation
on fiy)

G = {(Ptlt & (0, CXD); Vﬁ(o'm)(pt W C W; Vtm' m)VS(O‘m)(pg(pS == @Pt+8 liln Qr — L}ﬁ
£y 0

1t 1s well-known (ctf. e.g. FRECHET [4]) that under these conditions the
eigenvalues of @; are 1, A1¢, Aaf, ..., Ant (M =n—1), where 1, 43, A2, ..., 4, are
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cigenvalues of ¢, for some choice of the arguments of 41, ..., 4. Moreover
there is at least one vector p € W, which is invariant under .
Let 2 0e? (0=o0:=1) be an eigenvalue of ¢;. We suppose that 1

= rrroa

Sy

. -‘ Tty 8 > : . - S u “ q AV V4
chosen in such a way that ofel® is, for all £ 0. an eigenvalue of ¢, We

shall show below that

(<\) [ T e Wetsalin

oy

holds, where

i.e. o Is the minimum of all non-negative arguments ot 4 and A. It 1s
easy to verify that the set of all complex numbers satisfying (4) is equal
to the set A, defined by (7) in [1]. Therefore () is equivalent to (6) in |1 ].
Furthermore (A4) is trivially satistied for =0 (for then yo=0 also) and

Ll
i,

set of real numbers). Finally we assume n=3.
Let

where wy and ¥y are real vectors, be an eigenvector of ¢; belonging to
the eigenvalue 4. As 1 ¢ R, it follows that xy and yo are independent.
1then the two-dimensional subspace V' spanned by a2y and g

V= {ulnw = oo + pByo; o, ff real]

1s invariant under ¢, and the movement induced by ¢ in V is easily seen
to be described by the equations

(3) \ ¢exo = of(xo cOs Ly — yo sin ty),

( @i yo = of(xo sin ty + yo cos ty).

Introduci ng

Wo={xwelW; ;5 = 0},

U =Wn{p+}) ,
Us=Wo N (p+7V) ,

(—1) 'V;(O'm) @It U C Uu

As U ds a closed convex polygon 1) in the plane p + V and U its boundary

i ot e e el ) AL AME e

1} 1t might seem that this statement is false for n = 3. However in that case
our hypothesis 4 ¢ R entails that 1 is the only real eigenvalue of ¢t (and hence of
the adjoint transformation). Therefore {x|&1 + & -+ & = 0} is the only possible
real Invariant two-dimensional subspace and thus 1 = |1 + &2 - &3 == O,
mmplying W Cp + 17, whence U = W and Uy = W,.
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the condition (4) is satisfied if and only if
(5) V?'t(U. o0) Q¢ L’IO C (‘r

18 satisfied.
re ; — N . ~ 3t 3o | DM A Fumm .y ey - . . e o SRR B : . |
I'o derive a geometric condition equivalent with (5), consider a vecto

r

w e Ug. The curve {gaw|t -0} must, on account of (5), be 1 7. Hence

of U. To make this condition more precise consider a vector pomting
from w along Uy in such a way that »; lies inside the angle 2) formed 1 Y
p—w and wve.

If now we define

(6) 0 T -c:;: ( f) — l("ﬁ A 1.) ; ( )0’ TN k;L (1) s N"‘_ () :z) .
then it is easily seen that (5) is satistied if and only if
(7) F" wel, 0 24 0() , 14

1S true.

3. It does not seem possible to deduce useful results directly from
(7), as 0, 1s In general a complicated expression depending on w. The
only case in which 0, is independent of 2w obtains when |xg| = |yo! and
the inner product (xo, 70)=0, which will be shown below. The general
case can be reduced to this case by means of the following considerations:

Let o be a real non-singular linear transformation on R,. Then the

semi-group

consists of those linear transformations ¢;* for which

Pt = o @ioL,

These ¢:* have the same eigenvalues as ¢; and eigenvectors
¥ = oz, with z¥ = 2™ 4+ w™; ¢* = ox; y* = oy,

where z=x -ty is an eigenvector of g;.

Application of the transformation o to W, p.xe, yo, V, U U,, vy, ve
vields W™*, p*, xo™, yo*, V*, U™, Up*, v1*, v2™, 1.e. W*=clW, etc

We can now repeat the argument of 2 and arrive at equivalent con-
clusions. In particular, if we define

(6%) Op = <L (p™ —w, 017); 05, = <L (p7 —w, »27),

- af
1) Where @o = .

2)  There is a slight difficulty here on account of the fact that p may be i Ulp.
This case does not occur if v £ 0,0 7%= 0: On account of (3) any vector w — p
performs a complete rotation around p in the time interval (0,2n/y], and does not
vanish in this time interval. Hence (5) and p € Up are inconsistent.
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hen
- B K 3
<7m} 1vuwsU.;.’i* 0“’ = Q,w
is equivalent with (7). |
In view of the remark at the beginning of this section, We qhoose g

in such a way that

(8) 20*] = [yo*| and (x0*, Yo*) = O.

{

Lt

QY 3+ 3 : * 3
Using (8) it is easy to calculate 0,,*. For an arbitrary w € p~ + V* we have
(9) w = p* +a(xe™ sin ¥+ yo™ cos ) (x, v real).
“onsider {pqa0lt=0}. A vector tangent to this curve In w 1s glven by

o
| . op W—W
10 ‘Ul* = lim ———————
(10) o 7

Substitution of (9) and
(3%) ( @* o™ = ot(wo™ cos ty —yo™ sin ty)
| ( @ yo* = pt(xo™ sin typ4-yo™ cos ty)

in (10) gives after some calculation

(11) n* = —xA[x* sin (y —yx)+yo™ cos (y—x)].
where
(12) A2 = y2+log2p; O<y<m and cin ¥y = —yp~1 log c.

Then, using (8), (11) and (9), it follows that

(p* —w, n™)

13 cos 0,,* =
1) < = 1pF wl o]

= COS ¥,

and hence (as 0,* and y are both in [0, x])

(14) O™ = 7-

ey

We thus see that 6,* 1s indeed independent of w. Our condition (7*) yields
(15) y = Int 63 ,.

w € Uyk

4. As o 1s non-singular, W* is like W an (n—1)-simplex. Hence Ujy*,
being the boundary of the intersection of W* with a plane that has at
least one point (namely p*) in common with W*, is a convex polygon
with at most n vertices, say ai, as, ..., a,. It is then easy to see, that the
infinum in the right-hand side of (15) is reached if w is in one of the
vertices of Up*. Therefore, if we introduce 1)

xp = < praj@i+1

> (7=1,2, ..., n; indices taken mod n)

3 LT i T TR T

'} For any three vectors a, b and ¢ we use the following notation:
df

L abc =< (a — b, ¢ — b).
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then

(16) inf 65, = min «; or min «;’.
we Uu*

depending on whether the sense of rotation in p* -+ V* given by p*, w, v, *
In that order is the same as the rotational sense given by ay, as, ..., ay
or that given by a,, an-1, ..., 11 respectively.

In 5 we shall give a proof of the fact that
n— 2 n— 2

(17) Hlin X g ;i‘.g 5 T ; '_['nin “j" .
j <n j 21

I\

with equality in at least one of these two relations if and only if the
polygon under consideration is regular and p* its centre.
Combination of (15), (16) and (17) yields

_on—2
Y = T,
X 2n
from which it follows that
(18) 0 S e VAN

oy

Now v is of the form wo' + 2kx with 0 <y <27 and k an integer. As 4 is
also an eigenvalue of ¢;, we may conclude

(19) Hk Q é e“(lf’ﬂf"i"gkﬂ) tg n/n &Ild Q i e""“("""u’o’“‘"ﬂkﬂ) t-gﬂ/?t'

If we put
Yo = min {’lp,()’:, 271 — lpo’} ;

than either o' + 2kn=ywo or —wo' — 2kx =y, hence (A) holds for all eigen-
values 4 of ¢; for which v 0, p5 0, and therefore for all eigenvalues of
¢1 (cf. the remarks at the beginning of section 2).

5. It remains to prove (17). To this purpose suppose, with the notation
of section 4
n— 2

JT.

Then it is possible to find vectorsl) p1 e {(p*, a1y, P2 € {P™, az,, ...,
pr € {P*, an> in such a way that

L pranpr = L p*pipz = ... = L P Pu-aPn = 45— 7.

Then, as p, € (p*ay)

xR |

PPl _
An — P |

Al T

1) We denote by (b, b, ..., bxy the closed convex hull of {bi, ..., bx}:
k
(b1, bg, ..., by = {®|x = x1b1 4+ xab2 + ... xxbr; Ty = 0; D> x5 = 1j.

J =1
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with equality if and only it Vip; = ;. Introducing «;” = < p*p;p;—1
(j=2,...,n) and 1" = < p*p1a,, we find

RSt -2 B N T St L R Sl -

IFUR| L AR

. R _ %] " Ry
| Pn-1—P*| | Pun-—2—p" an —P

Sy "

ay —p

Hence
N KLU . n—2
(22) | | sIn ;" = sin® — 7T,
_ .) s.)

with equality it and only if Vjx;" = «y'.
On the other hand, as the sum of the angles (nz) of the n triangles
s P1, PTY, <P1, P2, P* s s {Pn-1, Pu, P 18 equal to

n ?lf — ")
N a2 -
2 X AT N T
we have
S o 5 =2 1% — 2
N oS g — 20 —n - —— = ——— .
i1 2N 2

As —log sin x 18 a convex function for 0 <x <z, we have

N B ” . 102 , . o n—2
(23) [] sinoy” =sin? — > ;" = sin® ——a
ja=1 ({/ j=1 S

with equality it and only if

n— 2
H
Vj Xg == 50 JT
Combination of (22) and (23) yields:
. n—2
(24 Vixi =i = — 7T,
( ) J “vJ J In,

We can now repeat this argument, starting from

s ¥ V 1~ n— 2 .
(“‘)) j & = on 7T,

which follows from (24). We then arrive at the conclusion

n— 2
p

(26) Vioj = 7T.

Hence, either of (21) or (25) entails (24) and (26). In other words
Kither

/
Vjocjmmj =



H4 8

in which case {aj, aq, ..., a,> is regular with centre p*, or

n— 2 n— 2
. . | v 7
min «; < —— v and min «;’ < 7T,
; 2n 2N
which proves (17).
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