MATHEMATICS

ON ELFVING'S PROBLEM OF IMBEDDING A TIME-DISCRETE MARKOV-CHAIN IN A TIME-CONTINUOUS ONE FOR FINITELY MANY STATES. I

 $\mathbf{B}\mathbf{Y}$

J. TH. RUNNENBURG 1)

(Communicated by Prof. J. Popken at the meeting of May 26, 1962)

Call a stochastic matrix (i.e. a square matrix of order n with elements $p_{jk} \ge 0$ for all $j, k \in \{1, 2, ..., n\}$ and $\sum_{k=1}^{n} p_{jk} = 1$ for all $j \in \{1, 2, ..., n\}$) a P-matrix. Then the following problem (further called Elfving's problem) is a specialization of a problem posed in Chung [1958] and Chung [1960] and due to Elfving (cf. Kingman [1962], where an alternative approach to this problem is given).

ELFVING's problem: Find conditions in order that to a given P-matrix P_1 there exists a matrix function P(t) such that P(t) is a P-matrix for each $t \ge 0$, for which 2

(1)
$$\begin{cases} \lim_{t \to 0} P(t) = I, \\ P(s+t) = P(s)P(t) \text{ for all real } s, t > 0, \\ P(1) = P_1. \end{cases}$$

For n=2 Elfving's problem has been solved by Fréchet [1952], page 255, and Bellman [1960]. In my thesis (Runnenburg [1960]) the case n=3 was considered.

It is well-known (cf. Doob [1953], Birkhoff and Varga [1958]), that if P(t) exists, then

(2)
$$P(t) = e^{Q_1 t} \quad \text{for all real } t > 0,$$

where Q_1 is a Q-matrix (i.e. a square matrix of order n with elements q_{jk} satisfying $q_{jk} \ge 0$ if $j \ne k$ for all $j, k \in \{1, 2, ..., n\}$ and $\sum_{k=1}^{n} q_{jk} = 0$ for all $j \in \{1, 2, ..., n\}$).

Furthermore, if $\mu_1, \mu_2, ..., \mu_n$ are the eigenvalues of Q_1 , then by the Lévy-Hadamard theorem (cf. Bodewig [1959], page 67) these eigenvalues lie inside the closed domain G consisting of all circles K_i with

¹⁾ Report S 299 of the Statistical Department, Mathematical Centre, Amsterdam.

 $^{^{2}}$) I is the $n \times n$ identity matrix.

centres q_{jj} and radii $-q_{jj}$. Hence in particular Re $\mu_j \leq 0$ for all j. The eigenvalues $\lambda_1(t), \lambda_2(t), ..., \lambda_n(t)$ of P(t) are given by

(3)
$$\lambda_j(t) = e^{\mu_j t} \text{ for all real } t \ge 0 \text{ and all } j.$$

For any Q-matrix Q_1 and any real $t \ge 0$ we always have that $P(t) = e^{Q_1 t}$ is a P-matrix.

According to Gantmacher [1959], in 1938 Kolmogorov posed the problem: Characterize the complex numbers z with $|z| \le 1$ which can occur as eigenvalues of an nth order stochastic matrix. This problem was partly solved in Dmitriev and Dynkin [1946] and definitely in Karpelewitsch [1951]. Making use of their results, the next theorem can be proved.

Theorem: The eigenvalues $\mu, \mu_2, ..., \mu_n$ of a Q-matrix (of order $n \ge 3$) satisfy

(4)
$$\left(\frac{1}{2} + \frac{1}{n}\right)\pi \leqslant \arg \mu_{j} \leqslant \left(\frac{3}{2} - \frac{1}{n}\right)\pi \quad \text{for } 1 \leqslant j \leqslant n;$$

the only Q-matrices Q_1^* (with elements q_{jk}^*) with at least one $\mu_j \neq 0$ on the boundary of this region are given (after a suitable renumbering of states, i.e. rows and columns at the same time) by

(5)
$$q_{jk}^* = \begin{cases} -\alpha \text{ for } j = k, \\ \alpha \text{ for } j \equiv k-1 \pmod{n}, \\ 0 \text{ otherwise,} \end{cases}$$

where α is an arbitrary positive number.

Remark 1: From this theorem we conclude, that for $n \ge 3$ all eigenvalues $\lambda_j(t)$ of $P(t) = e^{Q_1 t}$ satisfy

$$\lambda_{j}(t) \in H_{n},$$

where H_n is a heart-shaped region in the complex plane, contained in the unit circle and symmetric with respect to the real axis, with the curve

(7)
$$\exp\left(-1+\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}\right)t$$
 $\left(\text{where }0\leqslant t\leqslant\frac{\pi}{\sin\frac{2\pi}{n}}\right)$

as boundary in the region Im $z \ge 0$. Hence Elfving's problem can only be solved for those P_1 for which all eigenvalues belong to the region H_n . The only matrices e^{Q_1} with a Q-matrix Q_1 for which at least one eigenvalue $\lambda \ne 1$ lies on the boundary curve of the region H_n are given by

$$(8) P_1^* = e^{Q_1^*}.$$

Proof of the theorem: If P_1 is a P-matrix, then $Q_1 = P_1 - I$ is a Q-matrix; if Q_1 is a Q-matrix, then $P_{1,\beta} = I + \beta Q_1$ (where $\beta > 0$ is chosen

in such a way that $0 \le 1 + \beta q_{jj} \le 1$ for $1 \le j \le n$, e.g. $\beta = -(\min_{1 \le j \le n} q_{jj})^{-1}$ if some $q_{jj} < 0$) is a P-matrix. Hence if for an arbitrary Q-matrix Q_1 we have

(9)
$$\det(Q_1 - \mu I) = 0,$$

then

(10)
$$\det (P_{1,\beta} - (\beta \mu + 1) I) = 0.$$

Now Karpelewitsch has shown that the roots of the characteristic equation

(11)
$$\det (P_1 - \lambda I) = 0$$

for an arbitrary P-matrix P_1 satisfy

(12)
$$\left(\frac{1}{2} + \frac{1}{n}\right)\pi \leqslant \arg(\lambda - 1) \leqslant \left(\frac{3}{2} - \frac{1}{n}\right)\pi$$

for $n \ge 3$, and so with $\lambda = \beta \mu + 1$, because of $\beta > 0$ we have

(13)
$$\left(\frac{1}{2} + \frac{1}{n}\right) \pi \leqslant \arg \mu \leqslant \left(\frac{3}{2} - \frac{1}{n}\right) \pi.$$

If Q_1^* has an eigenvalue μ_j for which $\arg \mu_j = (1/2 + 1/n) \pi$ with $\mu_j \neq 0$, i.e. $\mu_j = \gamma(e^{2\pi i/n} - 1)$ with a $\gamma > 0$, then $P_{1,\beta}^*$ has an eigenvalue λ_j with $\arg (\lambda_j - 1) = (1/2 + 1/n) \pi$ and $\lambda_j - 1 \neq 0$. As Dmitriev and Dynkin have shown, in that case the elements p_{jk}^* of $P_{1,\beta}^*$ satisfy (after a suitable renumbering of the rows and columns at the same time)

(14)
$$p_{jk}^* = \begin{cases} 1 - \alpha_j' & \text{for } j = k, \\ \alpha_j' & \text{for } j \equiv k - 1 \pmod{n}, \\ 0 & \text{otherwise,} \end{cases}$$

where $0 \le \alpha_j' \le 1$ for each $j \in \{1, 2, ..., n\}$. Therefore the elements q_{jk}^* of Q_1^* are given by

(15)
$$q_{jk}^* = \begin{cases} -\alpha_j & \text{for } j = k, \\ \alpha_j & \text{for } j \equiv k-1 \pmod{n}, \\ 0 & \text{otherwise,} \end{cases}$$

where we have written α_j instead of α_j'/β , and so $\alpha_j \ge 0$ for each $j \in \{1, 2, ..., n\}$.

For the characteristic equation of Q_1^* we obtain

(16)
$$(\alpha_1 + \mu)(\alpha_2 + \mu) \dots (\alpha_n + \mu) = \alpha_1 \alpha_2 \dots \alpha_n.$$

In order that $\mu = \gamma(e^{2\pi i/n} - 1)$, with a constant $\gamma > 0$, is a root of this

equation, all α_i must be positive. We shall prove that

(17)
$$\alpha_{j} = \gamma \text{ for all } j \in \{1, 2, ..., n\},$$

for which it is sufficient to consider $\gamma = 1$.

If we introduce the finite positive numbers $\theta_j = 1/\alpha_j$ in (16) and substitute $e^{2\pi i/n} - 1$ for μ , we obtain

(18)
$$\{\theta_1 e^{2\pi i/n} + (1-\theta_1)\} \{\theta_2 e^{2\pi i/n} + (1-\theta_2)\} \dots \{\theta_n e^{2\pi i/n} + (1-\theta_n)\} = 1.$$

Consider a line in the complex plane which does not pass through the origin. Let $r(\varphi)$ be the absolute value of the complex number on this line with argument φ . Then $\log r(\varphi)$ is a strictly convex analytic function of φ for finite $r(\varphi)$. Hence if $\varphi_1 \neq \varphi_2$, we have for any p_1 , $p_2 > 0$ with $p_1 + p_2 = 1$

(19)
$$p_1 \log r(\varphi_1) + p_2 \log r(\varphi_2) > \log r(p_1\varphi_1 + p_2\varphi_2).$$

Therefore

(20)
$$r(\varphi_1) \ r(\varphi_2) \dots r(\varphi_n) > r\left(\frac{\varphi_1 + \varphi_2 + \dots + \varphi_n}{n}\right)^n,$$

unless $\varphi_1 = \varphi_2 = \dots = \varphi_n$.

Now consider for $n \ge 3$ the points $\theta_j \cdot e^{2\pi i/n} + (1-\theta_j) \cdot 1$ for finite $\theta_j > 0$, which lie on the line passing through 1 and $e^{2\pi i/n}$. Then $0 < \varphi_j < (1/2 + 1/n)\pi$. Under the restriction $\varphi_1 + \varphi_2 + \ldots + \varphi_n \equiv 0 \pmod{2\pi}$, the product $r(\varphi_1)r(\varphi_2) \ldots r(\varphi_n)$ assumes its smallest value for $\varphi_1 = \varphi_2 = \ldots = \varphi_n = 2\pi/n$. Any other choice of values for the φ_j leads to a larger value for the product. Hence if we introduce polar coordinates in (18) by writing

(21)
$$\theta_j e^{2\pi i/n} + 1 - \theta_j = r(\varphi_j) e^{i\varphi_j},$$

we find that under the condition "all θ_j are finite positive numbers" the left-hand side of (18) has smallest positive value 1, where the value 1 is only obtained if $\varphi_j = 2\pi/n$ for all j. Therefore, if equation (18) holds, we must have $\theta_j = 1$ for all j or $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 1$.

Remark 2: For n=3 one may easily verify that

(22)
$$P_{1} = \begin{pmatrix} \alpha & 1-\alpha & 0 \\ 0 & \beta & 1-\beta \\ 1-\gamma & 0 & \gamma \end{pmatrix}$$

has characteristic equation

(23)
$$(1-\lambda)\left\{\lambda^2 + \lambda(1-\alpha-\beta-\gamma) + 1 - \alpha - \beta - \gamma + \alpha\beta + \beta\gamma + \gamma\alpha\right\} = 0.$$

If we take $\alpha + \beta + \gamma = 1$, then $\lambda_1 = 1$ and $\lambda_{2,3} = \pm i \sqrt{\beta \gamma + (\beta + \gamma)(1 - \beta - \gamma)}$. Hence λ_1 , λ_2 and λ_3 lie inside H_3 if β and γ are sufficiently small positive numbers. From Doob [1953], page 239, we know that if Elfving's problem can be solved for a P_1 , then $p_{ij}(t)$ for $i \neq j$ either vanishes identically or never, except when t=0. Now here $p_{21}(1)=0$ and $p_{21}(2)=(1-\beta)(1-\gamma)>0$ for small positive β and γ . Thus there exists a P_1 of order 3 for which Elfving's problem can not be solved even though all eigenvalues lie inside H_3 .

Remark 3: Any P-matrix of order 3 which is also a circulant can be written

(24)
$$C_{1} = \begin{pmatrix} \frac{1}{3} - 2a - 2b & \frac{1}{3} + 2a & \frac{1}{3} + 2b \\ \frac{1}{3} + 2b & \frac{1}{3} - 2a - 2b & \frac{1}{3} + 2a \\ \frac{1}{3} + 2a & \frac{1}{3} + 2b & \frac{1}{3} - 2a - 2b \end{pmatrix},$$

where $a \ge -\frac{1}{6}$, $b \ge -\frac{1}{6}$ and $a+b \le \frac{1}{6}$. This matrix has eigenvalues

(25)
$$\begin{cases} \lambda_1 = 1, \\ \lambda_{2,3} = -3(a+b) \pm i(a-b)\sqrt{3}. \end{cases}$$

Hence C_1 always has one eigenvalue 1 and two conjugate eigenvalues. If we prescribe these eigenvalues and choose them inside H_3 , then there are exactly two matrices C_1 with these eigenvalues, if $a \neq b$. Otherwise there is exactly one. The second one can be obtained from the first by exchanging the values of a and b.

If we compute e^{Q_1} , where

(26)
$$Q_{1} = \begin{pmatrix} -2\alpha - 2\beta & 2\alpha & 2\beta \\ 2\beta & -2\alpha - 2\beta & 2\alpha \\ 2\alpha & 2\beta & -2\alpha - 2\beta \end{pmatrix}$$

with $\alpha \geqslant 0$ and $\beta \geqslant 0$, then we obtain a P-matrix of type C_1 with

(27)
$$\begin{cases} a = \frac{1}{3} e^{-3(\alpha+\beta)} \cos(-2\pi/3 + (\alpha-\beta)\sqrt{3}), \\ b = \frac{1}{3} e^{-3(\alpha+\beta)} \cos(2\pi/3 + (\alpha-\beta)\sqrt{3}). \end{cases}$$

We must have $\det C_1 > 0$ (Fréchet [1952], footnote 2 on page 210) for this C_1 and hence $9(a+b)^2 + 3(a-b)^2 > 0$. Therefore a=b=0 can not occur.

Now Q_1 has eigenvalues $\mu_1 = 0$, $\mu_{2,3} = -3(\alpha + \beta) \pm i(\alpha - \beta)\sqrt{3}$. Independently we may verify that μ_1 , μ_2 and μ_3 are always inside H_3 . It is easy to see that a suitable choice of α and β leads to $\lambda_i = e^{\mu_i}$ for i = 1, 2, 3, where the λ_i are prescribed eigenvalues inside H_3 (with $\lambda_1 = 1$, λ_2 and λ_3 conjugate, $\lambda_2 \neq 0$). Hence for that choice of α and β we obtain one of the matrices C_1 upon computing e^{Q_1} . If there is a second one, i.e. if $a \neq b$, then that matrix is obtained by exchanging α and β in Q_1 . Clearly a = b if $\alpha = \beta$, but a = b may occur if $\alpha \neq \beta$.

We conclude that to every P-matrix P_1 of order 3 which is a circulant and has its eigenvalues inside H_3 , Elfving's problem has at least one solution $P(t) = e^{Q_1 t}$ where Q_1 is a circulant (!), except for the one P-matrix having all its elements equal to $\frac{1}{3}$. The number of solutions of this kind can also be found.

REFERENCES

- Bellman, R., Introduction to Matrix Analysis, Mc Graw-Hill, New York, p. 268, 1960.
- Birkhoff and Varga, G and R.S., Reactor Criticality and Nonnegative Matrices, Journ. of Ind. and Appl. Math. 6, 354-377 (1958).
- Bodewig, E., Matrix Calculus, second edition, North-Holland Publishing Company, Amsterdam, 1959.
- Chung, K. L., Continuous parameter Markov chains, Proc. Int. Congr. Math. Edinburgh, p. 516, 1958.
- ————, Markov Chains with Stationary Transition Probabilities, Springer, Berlin, p. 203, 1960.
- DMITRIEV and DYNKIN, N. and E., On characteristic roots of stochastic matrices, Isvestij a, ser. mat. 10, 167-194 (1946).
- Doob, J. L., Stochastic Processes, John Wiley, New York, Chapter VI, § 1, 1953. Fréchet, M., Traité du Calcul des Probabilités et ses Applications, Tome I, Fascicule III, Second Livre, Méthode des Fonctions Arbitraires, Gauthier-Villars, Paris, 1952.
- Gantmacher, F. R., Matrizenrechnung II, Deutscher Verlag der Wissenschaften, Berlin, p. 76, 1959.
- KARPELEWITSCH, F. I., On the characteristic roots of a matrix with nonnegative elements, Isvestija, ser. mat. 15, 361-383 (1951).
- KINGMAN, J. F. C., The imbedding problem for finite Markov chains, Z. Wahrscheinlichkeitstheorie 1, 14-24 (1962).
- Runnenburg, J. Th., On the Use of Markov Processes in One-Server Waiting-Time Problems and Renewal Theory, Thesis, Poortpers, Amsterdam, Stellingen XII and XIII, 1960.

ON ELFVING'S PROBLEM OF IMBEDDING A TIME-DISCRETE MARKOV CHAIN IN A TIME-CONTINUOUS ONE FOR FINITELY MANY STATES. II

ВУ

C. L. SCHEFFER

(Communicated by Prof. J. Popken at the meeting of June 30, 1962)

1. The problem, considered in the preceding note (Runnenburg [1]), of finding a domain H_n to which the eigenvalues of a matrix of transition probabilities of a continuous parameter Markov chain must necessarily belong, is solved there by using a result in the corresponding problem for discrete parameter Markov chains, obtained by DMITRIEV and DYNKIN [2] and KARPELEWITSCH [3]. For a detailed statement of the problem we refer to [1].

n this note we want to show that the domain H_n can be found by using only the characterization of a Markov matrix given by (1) below.

We use the fact that a Markov-chain on a finite set consisting of n states $A_1, A_2, ..., A_n$, induces an abelian semi-group G of real linear transformations on an R_n : with the Markov matrix (p_{jk}) (where $p_{jk} = P\{x_{n+1} = A_k | x_n = A_j\}$) corresponds the linear transformation π defined by

$$\pi e_j = (p_{j1}, p_{j2}, \dots, p_{in}),$$

where e_j is the j'th unit vector.

A necessary and sufficient condition that the matrix of a given linear transformation φ is a Markov matrix is

$$\varphi W \subset W,$$

where W is the set of all probability distributions on $\{A_1, A_2, ..., A_n\}$

(2)
$$W = \{x | x = (\xi_1, \xi_2, ..., \xi_n); \ V_j \xi_j \ge 0; \ \sum_{j=1}^n \xi_j = 1\}.$$

2. Now let G be a continuous one-parameter abelian semi-group of linear transformations satisfying (1) (ι is the identical transformation on R_n)

$$G = \{ \varphi_t | t \in (0, \infty); \, \mathcal{V}_t^{(0, \infty)} \varphi_t W \subset W; \, \mathcal{V}_t^{(0, \infty)} \mathcal{V}_s^{(0, \infty)} \varphi_t \varphi_s = \varphi_{t+s}; \, \lim_{t \downarrow 0} \varphi_t = \iota \}.$$

It is well-known (cf. e.g. Fréchet [4]) that under these conditions the eigenvalues of φ_t are $1, \lambda_1^t, \lambda_2^t, ..., \lambda_m^t$ ($m \le n-1$), where $1, \lambda_1, \lambda_2, ..., \lambda_m$ are

eigenvalues of q_1 , for some choice of the arguments of $\lambda_1, \ldots, \lambda_m$. Moreover there is at least one vector $p \in W$, which is invariant under G.

Let $\lambda = \varrho e^{i\psi}$ ($0 \le \varrho \le 1$) be an eigenvalue of φ_1 . We suppose that ψ is chosen in such a way that $\varrho^t e^{it\psi}$ is, for all t > 0, an eigenvalue of φ_t . We shall show below that

$$Q = e^{-\gamma_0 \operatorname{tg} \pi/n}$$

holds, where

$$\psi_0 = \min \{ \psi_0', 2\pi - \psi_0' \}$$
 and $\psi_0' = \psi - [\psi/2\pi] 2\pi$,

i.e. ψ_0 is the minimum of all non-negative arguments of λ and $\bar{\lambda}$. It is easy to verify that the set of all complex numbers satisfying (A) is equal to the set H_n defined by (7) in [1]. Therefore (A) is equivalent to (6) in [1]. Furthermore (A) is trivially satisfied for $\psi = 0$ (for then $\psi_0 = 0$ also) and for $\varrho = 0$. Therefore we suppose henceforward $\psi \neq 0$ and $\varrho \neq 0$. As changing the unit of time amounts to multiplying ψ by a positive number we can always choose this unit in such a way that $\psi \neq 0$ entails $\lambda \notin R$ (R is the set of real numbers). Finally we assume $n \geq 3$.

Let

$$z_0 = x_0 + iy_0,$$

where x_0 and y_0 are real vectors, be an eigenvector of φ_1 belonging to the eigenvalue λ . As $\lambda \notin R$, it follows that x_0 and y_0 are independent. Then the two-dimensional subspace V spanned by x_0 and y_0

$$V = \{u | u = \alpha x_0 + \beta y_0; \alpha, \beta \text{ real}\}$$

is invariant under G, and the movement induced by G in V is easily seen to be described by the equations

(3)
$$\begin{cases} \varphi_t x_0 = \varrho^t (x_0 \cos t \psi - y_0 \sin t \psi), \\ \varphi_t y_0 = \varrho^t (x_0 \sin t \psi + y_0 \cos t \psi). \end{cases}$$

Introducing

$$W_0 = \{x | x \in W; \mathcal{A}_j \xi_j = 0\},$$

$$U = W \cap (p+V),$$

$$U_0 = W_0 \cap (p+V),$$

the condition (1) together with the invariance op p and V yields

$$\mathcal{V}_t^{(0,\infty)} \varphi_t U \subset U.$$

As U is a closed convex polygon 1) in the plane p + V and U_0 its boundary

¹⁾ It might seem that this statement is false for n = 3. However in that case our hypothesis $\lambda \notin R$ entails that 1 is the only real eigenvalue of φ_t (and hence of the adjoint transformation). Therefore $\{x|\xi_1+\xi_2+\xi_3=0\}$ is the only possible real invariant two-dimensional subspace and thus $V = \{x|\xi_1+\xi_2+\xi_3=0\}$, implying $W \subset p + V$, whence U = W and $U_0 = W_0$.

the condition (4) is satisfied if and only if

$$\mathcal{V}_t^{(0,\infty)} \varphi_t U_0 \subset U$$

is satisfied.

To derive a geometric condition equivalent with (5), consider a vector $w \in U_0$. The curve $\{\varphi_t w | t > 0\}$ must, on account of (5), be in U. Hence a vector v_1 tangent to 1) $\{\varphi_t w | t \ge 0\}$ in w must point from w to the interior of U. To make this condition more precise consider a vector v_2 pointing from w along U_0 in such a way that v_1 lies inside the angle 2) formed by p-w and v_2 .

If now we define

(6)
$$\theta_w = \not\preceq (p-w, v_1); \theta_{0,w} = \not\preceq (p-w, v_2),$$

then it is easily seen that (5) is satisfied if and only if

$$V_{w \in U_0} \theta_w \leq \theta_{0, w}$$

is true.

3. It does not seem possible to deduce useful results directly from (7), as θ_w is in general a complicated expression depending on w. The only case in which θ_w is independent of w obtains when $|x_0| = |y_0|$ and the inner product $(x_0, y_0) = 0$, which will be shown below. The general case can be reduced to this case by means of the following considerations:

Let σ be a real non-singular linear transformation on R_n . Then the semi-group

$$G^* = \sigma G \sigma^{-1}$$

consists of those linear transformations φ_t^* for which

$$\varphi_t^* = \sigma \varphi_t \sigma^{-1}.$$

These φ_t^* have the same eigenvalues as φ_t and eigenvectors

$$z^* = \sigma z$$
, with $z^* = x^* + iy^*$; $x^* = \sigma x$; $y^* = \sigma y$,

where z = x + iy is an eigenvector of φ_t .

Application of the transformation σ to W, p, x_0, y_0, V, U U_0, v_1, v_2 yields $W^*, p^*, x_0^*, y_0^*, V^*, U^*, U_0^*, v_1^*, v_2^*$, i.e. $W^* = \sigma W$, etc

We can now repeat the argument of 2 and arrive at equivalent conclusions. In particular, if we define

(6*)
$$\theta_w^* = \not \subset (p^* - w, v_1^*); \ \theta_{0,w}^* = \not \subset (p^* - w, v_2^*).$$

¹⁾ Where $\varphi_0 \stackrel{\mathrm{df}}{=} \iota$.

²⁾ There is a slight difficulty here on account of the fact that p may be in U_0 . This case does not occur if $\psi \neq 0$, $\varrho \neq 0$: On account of (3) any vector w - p performs a complete rotation around p in the time interval $(0,2\pi/\psi]$, and does not vanish in this time interval. Hence (5) and $p \in U_0$ are inconsistent.

hen

$$(7^*) \qquad \qquad F_{w \in U_0^*} \theta_{w^*} \leq \theta_{0,w}^*$$

is equivalent with (7).

In view of the remark at the beginning of this section, we choose σ in such a way that

(8)
$$|x_0^*| = |y_0^*| \text{ and } (x_0^*, y_0^*) = 0.$$

Using (8) it is easy to calculate θ_w^* . For an arbitrary $w \in p^* + V^*$ we have

(9)
$$w = p^* + \alpha(x_0^* \sin \gamma + y_0^* \cos \gamma)$$
 (\alpha, \gamma real).

Consider $\{\varphi_t w | t \ge 0\}$. A vector tangent to this curve in w is given by

$$(10) v_1^* = \lim_{h \downarrow 0} \frac{\varphi_h^* w - w}{h}.$$

Substitution of (9) and

in (10) gives after some calculation

(11)
$$v_1^* = -\alpha A[x_0^* \sin(\gamma - \chi) + y_0^* \cos(\gamma - \chi)],$$

where

(12)
$$A^2 = \psi^2 + \log^2 \varrho; \ 0 < \chi < \pi \ \text{ and } \ ctn \ \chi = -\psi^{-1} \log \varrho.$$

Then, using (8), (11) and (9), it follows that

(13)
$$\cos \theta_w^* = \frac{(p^* - w, v_1^*)}{|p^* - w| \cdot |v_1^*|} = \cos \chi,$$

and hence (as θ_w^* and χ are both in $[0, \pi]$)

$$\theta_w^* = \chi.$$

We thus see that θ_w^* is indeed independent of w. Our condition (7*) yields

$$\chi \leq \inf_{w \in U_0 *} \theta_{0,w}^*.$$

4. As σ is non-singular, W^* is like W an (n-1)-simplex. Hence U_0^* , being the boundary of the intersection of W^* with a plane that has at least one point (namely p^*) in common with W^* , is a convex polygon with at most n vertices, say a_1, a_2, \ldots, a_n . It is then easy to see, that the infinum in the right-hand side of (15) is reached if w is in one of the vertices of U_0^* . Therefore, if we introduce 1)

$$\left. egin{array}{l} lpha_j = \langle p^* a_j a_{j+1} \ lpha_j' = \langle p^* a_j a_{j-1} \ \end{array}
ight. \ (j=1,\,2,\,...,\,n\,; \ {
m indices \ taken \ mod \ } n). \end{array}$$

¹) For any three vectors a, b and c we use the following notation:

then

(16)
$$\inf_{w \in U_0 *} \theta_{0,w}^* = \min \alpha_j \text{ or } \min \alpha_{j'},$$

depending on whether the sense of rotation in $p^* + V^*$ given by p^* , w, v_1^* in that order is the same as the rotational sense given by $a_1, a_2, ..., a_n$ or that given by $a_n, a_{n-1}, ..., a_1$ respectively.

In 5 we shall give a proof of the fact that

(17)
$$\min_{j} \alpha_{j} \leq \frac{n-2}{2n} \pi; \min_{j} \alpha_{j}' \leq \frac{n-2}{2n} \pi,$$

with equality in at least one of these two relations if and only if the polygon under consideration is regular and p^* its centre.

Combination of (15), (16) and (17) yields

$$\chi \leq \frac{n-2}{2n} \pi$$

from which it follows that

(18)
$$\varrho \leq e^{-\psi \operatorname{tg} \pi/n}.$$

Now ψ is of the form $\psi_0' + 2k\pi$ with $0 \le \psi_0' < 2\pi$ and k an integer. As $\bar{\lambda}$ is also an eigenvalue of φ_1 , we may conclude

(19)
$$\mathcal{I}_k \quad \rho \leq e^{-(\psi_0' + 2k\pi) \operatorname{tg} \pi/n} \quad \text{and} \quad \rho \leq e^{-(-\psi_0' - 2k\pi) \operatorname{tg} \pi/n}.$$

If we put

$$\psi_0 = \min \{ \psi_0', 2\pi - \psi_0' \},$$

than either $\psi_0' + 2k\pi \ge \psi_0$ or $-\psi_0' - 2k\pi \ge \psi_0$, hence (A) holds for all eigenvalues λ of φ_1 for which $\psi \ne 0$, $\varrho \ne 0$, and therefore for all eigenvalues of φ_1 (cf. the remarks at the beginning of section 2).

5. It remains to prove (17). To this purpose suppose, with the notation of section 4

Then it is possible to find vectors 1) $p_1 \in \langle p^*, a_1 \rangle$, $p_2 \in \langle p^*, a_2 \rangle$, ..., $p_n \in \langle p^*, a_n \rangle$ in such a way that

Then, as $p_n \in \langle p^*a_n \rangle$

$$\frac{|p_n-p^*|}{|a_n-p^*|}\leq 1,$$

We denote by $\langle b_1, b_2, ..., b_k \rangle$ the closed convex hull of $\{b_1, ..., b_k\}$: $\langle b_1, b_2, ..., b_k \rangle = \{x | x = \alpha_1 b_1 + \alpha_2 b_2 + ... + \alpha_k b_k; \forall j \alpha_j \geq 0; \sum_{j=1}^k \alpha_j = 1\}.$

with equality if and only if $V_j p_j = a_j$. Introducing $\alpha_j'' = \not < p^* p_j p_{j-1}$ (j=2, ..., n) and $\alpha_1'' = \not < p^* p_1 a_n$, we find

$$1 \ge \frac{|p_n - p^*|}{|a_n - p^*|} = \frac{|p_n - p^*|}{|p_{n-1} - p^*|} \cdot \frac{|p_{n-1} - p^*|}{|p_{n-2} - p^*|} \cdots \frac{|p_1 - p^*|}{|a_n - p^*|} = \prod_{i=1}^n \frac{\sin \frac{n-2}{2n} \pi}{\sin \alpha_j''}.$$

Hence

(22)
$$\prod_{j=1}^{n} \sin \alpha_j'' \ge \sin^n \frac{n-2}{2n} \pi,$$

with equality if and only if $V_j \alpha_j'' = \alpha_j'$.

On the other hand, as the sum of the angles $(n\pi)$ of the *n* triangles $\langle a_n, p_1, p^* \rangle, \langle p_1, p_2, p^* \rangle, \ldots, \langle p_{n-1}, p_n, p^* \rangle$ is equal to

$$\sum_{j=1}^{n} \alpha_j'' + 2\pi + n \cdot \frac{n-2}{2n} \pi,$$

we have

$$\sum_{j=1}^{n} \alpha_{j}'' = n\pi - 2\pi - n \cdot \frac{n-2}{2n} \pi = \frac{n-2}{2} \pi.$$

As $-\log \sin x$ is a convex function for $0 < x < \pi$, we have

(23)
$$\prod_{j=1}^{n} \sin \alpha_{j}'' \leq \sin^{n} \frac{1}{n} \sum_{j=1}^{n} \alpha_{j}'' = \sin^{n} \frac{n-2}{2n} \pi_{i}$$

with equality if and only if

$$V_j \alpha_j'' = \frac{n-2}{2n} \pi.$$

Combination of (22) and (23) yields:

We can now repeat this argument, starting from

which follows from (24). We then arrive at the conclusion

$$(26) V_j \alpha_j = \frac{n-2}{2} \pi.$$

Hence, either of (21) or (25) entails (24) and (26). In other words Either

$$V_j \alpha_j = \alpha_j' = \frac{n-2}{2n} \pi,$$

in which case $\langle a_1, a_2, ..., a_n \rangle$ is regular with centre p^* , or

$$\min_{j} \alpha_{j} < \frac{n-2}{2n} \pi \text{ and } \min_{j} \alpha_{j}' < \frac{n-2}{2n} \pi,$$

which proves (17).

REFERENCES

- 1. Runnenburg, J. Th., On Elfving's problem of imbedding a time-discrete Markov-chain in a time-continuous one for finitely many states I, These Proceedings 536.
- 2. DMITRIEV, N. and E. DYNKIN, On characteristic roots of stochastic matrices, Isvestija, ser. mat., 10, 167-194 (1946).
- 3. Karpelewitsch, F. I., On the characteristic roots of a matrix with nonnegative elements, Isvestija, ser. mat., 15, 361-383 (1951).
- 4. Frechet, M., Méthode des fonctions arbitraires, Gauthier-Villars, Paris (1952).