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Abstract 
A basis for the eigenfunctions of the relativistic elliptic two-particle Calogero­
Moser Hamiltonian is known for a dense set in the natural parameter space. 
We study the question whether an interpolating basis exists, employing an 
asymptotic power series ansatz. For the hyperbolic specialization we detennine 
all of the coefficients explicitly, which gives rise to formal interpolating 
eigenfunctions. For the elliptic case we also need a power series ansatz 
for the eigenvalues. We obtain the first few coefficients explicitly, thus 
obtaining evidence for the existence of interpolating formal eigenfunctions and 
eigenvalues. 

PACS numbers: 02.30.Gp, 02.30.Lt 

1. futroduction 

The results presented in this paper primarily concern ordinary linear second-order analytic 
difference equations with special coefficient functions, and solutions with certain symmetry 
properties. Specifically, we deal with exp)icitly given elliptic coefficients, and (in greater 
detail) with their hyperbolic specialization, obtaining some results going beyond those in our 
previous papers [l,2]. 

At present, there is a conspicuous lack of knowledge concerning the general theory for 
this type of equation. Explicitly worked-out special cases may yield guidance into this largely 
uncharted territory. In particular, they give rise to natural questions concerning more general 
classes of equations. On the one hand, for any question that has already been answered 
explicitly for the special cases, one can ask whether similar answers hold true in a more 
general setting. But on the other hand, an approach that does not involve detailed special 
function knowledge may yield existence results that would be crucial to the study of open 
questions in the more specialized context 

With an eye on this eventual mterplay between the special and the general, we try and 
introduce the kind of issues we address in our special case via a stepwise narrowing of focus, 
inentioning pertinent questions (and a few answers) at the point where they first arise. (See 
also section 2 of our recent lecture notes [3J for a related account) 
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We start from an analytic difference equation (henceforth AAE) of the form 

F(z-ia)+C(z)F(z+ia)=EF(z) aE(O,oo) EEC. (1.1) 

Here, the coefficient C(z) is assumed to belong to the function field 

M = (f(z) \ f meromorphic on C}. (1.2) 

Moreover, we focus attention on solutions FEM to (1.1). Obviously, in case C(z) vanishes 

identically, the general solution to (1.1) (with E EC*) is given by exp(i ln(E)z/a),u(z), where 

µ.(z) belongs to the field of ia-periodic meromorphic functions 

Pia = {µ EM I µ(z + ia) = µ,(z) }. 

Assuming from now on 

C(z) EM* 

let Fi, F2 E M• be two solutions. Then their Casorati determinant 

(l.3) 

(1.4) 

'D(Fi. Fi; z) = Fi(z+ ia/2)F2(z - ia/2) - F1 (z - ia/2)F2 (z + ia/2) (1.5) 

vanishes identically iff Fif F1 E Pia· Assuming Fi/ F2 fj Pia. one easily checks that (1.5) 
solves the first-order A.ilE 

D(z + ia/2) 1 

'D(z - ia/2) = C{z) · 
(1.6) 

Now suppose F3(z) solves (1.1), too. Then we have 

/Lj(Z)=.'D(Fj,F3;z+ia/2)/V(F1,F2;z+ia/2) E'Pia j = 1,2. (1.7) 

(By.0.6~· quotients of Casorati determinants are ia-periodic.) It is straightforward to verify 
the 1dent1ty 

F3(z) = J.L1 (z)F2(z) - µ 2(z)F1 (z). (1.8) 

Obbe v~ously, all functions of this form with J.L1, /J,2 E P;n solve (1 1) so the solution space may 
viewed as two-<l' · - · ' · 

f . a imens1onal vector space over the field p. of ia-periodic meromorphic 
uncttons. ia 

Nex.t., taking existenc f I · · . . 
At.Es of the above type, e 0 a so utton basis as JUSt considered for granted, consider two 

F(z-ia s)+C ( )F( · 
. . - 8Z Z+ULJ):::;;: EoF(z) a~ E (0, 00) E~ E c 0 = +, -. (1.9) 

A~~onto~~ti . . 
difference operato A. . Ma ons can_ be viewed as a joint eigenfunction of the two analytic 

rs~ · -+ Mgtvenby 

with 
.Aa =.Tia_, + Cs(z)Lia_, 8::::::+,- (l.10) 

(TaF){z)=:F(z-a) <rEC* (1.11) 

11 is therefore a1 . · 
' ' so a zero-eigenvalue eig nfu · 
Let us now assume that two . . e. nction of the commutator [A+, .A_]. 

a_ belong to M* For ti' -• JOtnt solutions exist whose Casorati determinants w.r.t. a+ and 
· ra ona.a Ja · 

since one can allow multipliers fi -· o~e still obtains an infinite-dimensional solution sp:ice, 

one has rom P.,,, Whenever a+ and a_ are multiples of a. But since 

Pia. n 'Pia_ =IC a+/a_ ~ Q (1.12) 

one would expect that the joint solution . . . 
space ts two dimensional for irrational a+/a--
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Of course, one should first of all prove that two solutions with the above properties exist­
which is far from clear. Assumingonlyexistenceoftwojointsolutions F+. F_ EM* fora+fa_ 
irrational, however, there is a simple extra condition entailing that the solution space is two 
dimensional with basis {F+, F_}: one need only assume 

lim F+(Z)/ F_(z) = 0 (1.13) 
Imz->oo 

for all Rez in some interval I= [a, b]. 
The sufficiency of this condition can be seen as follows. (Our reasoning is adapted from the 

proof of theorem B.l in [l], which deals with the special elliptic case that will be reconsidered 
below.) Denoting F+/ F _ by Q, it follows from (l.13) that Q(z) is neither ia+-periodic nor 
ia_-periodic. Thus the Casorati detenninants of F+ and F_ w.r.t ia+ and ia_ do not vanish 
identically. Now let F be another solution to the joint eigenvalue equation. Then we have 

F(z) = A+,s(z)F+(z) +L,s(z)F_(z) 8 = +, - (Ll4) 

with A,0 E Pia., -c, 8 = +, -. From this we deduce 

L+(z) - L_(z) = P\,+-(z) -A++(z)]Q(z). (1.15) 

Now the functions A.-cS(Z) are analytic on the lines Re z = p E [a, b], save for finitely 
many p. (This follows from meromorphicity and periodicity.) Fixing Po E (a, b] such that the 
functions Ar& are analytic on Re z = Po. it follows from periodicity that they are bounded as 
well. From ( 1.15) we then get 

lim L+(Po + ika_) = A__(Po) k EN. (1.16) 
k_,.oo 

Finally, we use A-+ E 'Pia. and our assumption a+fa_ <f. Q to deduce that A-+(z) equals 
).. __ (Po) for Re z =Po. hence for all z. Thus we obtain A,s(z) =c., r, 8 = +,-,so that Fis 
a linear combination of F+ and F_, as advertised. 

Let us next specialize to a situation in which A+ and A- obviously commute, namely, 

o=+,-. (l.17) 

In this setting the question concerning joint eigenfunctions is especially natural. Even so, it 
appears to be wide open. 

Assuming existence of a joint solution F E M*, however, one arrives at three distinct 
solutions F(z), F(z ± ia+) to the AD.E A+F = E+F (since C+(Z) is ia+-periodic). Therefore 
one can write F(z - ia+) as a linear combination of F(z + ia+) and F(z) with ia_-periodic 
coefficients, in accordance with the second A.6.E A-F = E_ F obeyed by F. The latter AD.E, 
then, may be viewed as a constraint of monodromy type. 

Specializing further, let us view a+. a_ as parameters varying over (0, oo), on which C+(z) 
and E+ depend in a real-analytic way. Then we may define C_(z) and£_ by requiring that 
they be equal to C+(z) and E+ with a+ and a_ interchanged, respectively. In this restricted 
context, it is natural to search for solutions to A+F = E+F that also depend real-analytically 
on a+, a_, and that are invariant under the interchange of a+ and a_. Indeed, this entails they 
also solve A-F =£_F. 

In our concrete settings there are a few more ingredients playing a role. First, we are 
dealing with a coefficient C+(Z) that depends on an extra parameter bin an entire fashion; 
since C_(z) is obtained by interchanging a+ and a_, it has the same type of dependence. 
Second, specializing to the state of affairs in the hyperbolic case, the eigenvalue pair (E+, £_) 
depends on a number in the (open) right half plane, in the sense that only for this one-parameter 
family and special b-values do we have a joint solution basis with all of the aforementioned 
features available. Specifically, this is the case for b of the fonn ka+ +la_, k. l E Z. (In the 
elliptic case there are some further restrictions, cf [1].) 
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Fixing a+. a_ with a+/ a_ irrational, the numbers b = ka+ +la_ are clearly dense in JR. The 

natural question that arises is, therefore, whether the two basis functions for the joint solution 

space admit an interpolation to arbitrary real b. Once again, this is a question that can be 

asked in the more general settings delineated above. However, our new results make plausible 

that such an interpolation may only be possible at the expense of allowing non-meromorphic 

solutions. Indeed, they suggest (but do not quite prove) that in our case interpolating basis 

functions have a natural boundary on the imaginary z-axis. 

Let us now detail the hyperbolic coefficient functions we are concerned with in section 2. 
They are given by 

C (z)= sinh(n(z+ib)/a0)sinh(rr(z-ib+ia_0)/as) (l lS) 
0 sinh(nz/as)sinh(:rr(z + ia_8)/a0) 0 = +, -. · 

The A AOs A., ( 1.10) are then related to the A D.. Os 

A = sinh(n(z - ib)/a0) • • 

5 - "nh( I ) Tia_, + (1 ~ -1) 
s1 nz a0 

8 =+.- (1.19) 

employed in [21 by a similarity transfonnation involving the 'generalized Harish-Chandra 
function' 

C(a a b. ) = G(a+. a_; z - ib + i(a+ + a_)/2) 
+• - ' ' z - -::::-:--------=--...:...__..:..:__;_ (1.20) 

G(a+. a_; z + i(a+ + a_)/2) 

(Here, G(a+a_; z) is the hyperbolic gamma function from [4] also known as the double sine 
function.) Specifically, one has ' 

A> = c(z)-1 Asc(z) 8 = +, -

on account of the AAEs satisfied by the G-function. 

Starting from As-eigenfunctions 'll(±z, y) with eigenvalues 

Es(y) = 2cosh(a_8y) 8 = +, -

and asymptotics 

W(±z, Y) "' c(±z) exp(±izy) 

we therefore obtain .A.,-eigenfunctions 
Y-+ oo 

(l.21) 

(1.22) 

(I.23) 

F±(Z, y) s c{z)-1 IJ! (±z, y) f (y) (1.24) 

with eigenvalues E (y) Th fu · . 
· nfu . 8 • e nction f (y) is at our disposal It will be chosen such that the 

e1ge nct1ons F (z y) h · · . 
. ± , ave a certam symmetry property ('self-duality') Moreover it has 

asymptotlcs · ' 

f (y)'""' 1 

so that 

F+<z.. y) ""'exp(izy) y -+ oo. 

The elliptic coefficient fu · . 
nc11ons at issue in section 3 are given by 

Here we have 

Cs(z) = exp(-2br) s6(Z + ib)sa(z -ib + ia 8) 

S&(Z)S& (z + ia_s) 

ss(z) = s(r, a8; z) 0 = + _ 

o=+,-. 

and s(r, a; z) is defined in tenns of the w, . ' 
eierstrass a-function a(z; w, w') by 

s(r a· z) - ( :n- ia) 
, ' =a z; 2r' 2 exp(-11z2r/;r). 

(1.25) 

(1.26) 

(1.27) 

(1.28) 

(1.29) 
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Thus Cs(z) is an elliptic function with periods n:/r, ia8 • 

The elliptic A6.0s As are related to the A6.0s 

ss(z - ib) 
As = exp(-br) Tia_6 + (i-+ -i) 

ss(z) 
8=+.-

employed in [1] by the similarity transformation (l.21), with c(z) now given by 

( b. ) _ G(r, a+, a_; z - ib + i(a+ +a_) /2) 
c r, tz+, a_, , z = . . 

G(r, a+, a_; z + 1(a+ +a_) /2) 

Here, G(r, a+a_; z) is the elliptic gamma function introduced in [4]. 
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(1.30) 

(l.31) 

At the elliptic level, too, there exist, for suitable parameters a+, a_, b, joint eigenfunctions 
\ll(±z, y) of the A6.0s As with eigenvalues E8(y) satisfying 

y-+ 00 8 = +, - (1.32) 

and asymptotics (1.23) (cf equations (1.22)--(1.26) in [l]). Thus they give rise to Ao­
eigenfunctions F±(Z, y) (1.24) with asymptotics (1.26) whenever f(y) satisfies (I.25). 

Let us now sketch the contents of section 2, which deals with the hyperbolic case. In 
section 2.1 we introduce and explore a power series ansatz for a solution to the A.6.Es 
AsF = 2cosh(a_8y)F with asymptotics exp(izy) for y -+ oo. This yields a system of 
A.6.Es coupling the coefficients. The requirement that the coefficients vanish for z -+ oo 
gives rise to a special type of solution that is unique when it exists. 

fu section 2.2 we exploit results from our paper [2] to prove that this special type of solution 
does exist fora+/ a_ irrationalandboftheform (N++l)a+-N_a_, N+, N_ EN. In section2.3 
we obtain the coefficients explicitly. We show they admit a real-analytic extension to real b by 
using the q-binomial theorem. In this way we obtain formal interpolating As-eigenfunctions. 
Though we discuss them in some detail, we leave various questions open. 

The elliptic case is studied in section 3, following the pattern laid out for the hyperbolic 
case. Here, however, we cannot go very far. Indeed, our results are only some small steps 
towards a complete resolution of the interpolation issue. But just as in the hyperbolic case, 

they do supply some new ideas for further studies. 
To conclude this introduction, let us add that our hyperbolic results can be exploited to 

obtain arbitrary-b (non-formal) trigonometric eigenfunctions. (In section 4 of [2] we only 
handled a discrete set of b-values.) To keep this paper within bounds, we will return to the 

trigonometric case elsewhere. 

2. The hyperbolic regime 

2.1. A power series ansatz 

Consider the eigenvalue equations 

(A-oF)(z, y) = 2cosh(aay)F(z, y) as E (0, oo) 8 = +, - (2.l) 

with A_8 given by (l.10) and (1.18). Since the coefficients Co(z) (l.18) tend to 1 exponentially 
as Rez -+ oo, one may expect that solutions F+(Z, y) exist with plane wave asymptotics 
exp(izy) as Re z -..+ oo. But in fact we are going to impose the 'dual' requirement 

F+(z, y) ""exp(izy) 

M~ generally, requiring 

a+/a_ rt. Q 

Rey-+ oo. (2.2) 

(2.3) 
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until further notice, we are going to study the power series ansati.: 

''° 
F+(z.y) = L exp(-2ka+y) exp(-2Ja .y) coo{z) = l. (2.4) 

t,l..C 

(Note that (2.3) is necessary for all monomials to be distinct.) 
To be sure, this ansatz may appear unmotivated at this point. Its relevance is, however, 

suggeste.d by our previous results in [2]. We begin by studying it so as to make clear how the 
eigenfunctions from [2] fit in this general framework, unencumbered by the detailed formulae 
presented later cm. Furthermore, proceeding in this reverse order wm be advantageous in our 
study of the elliptic case in section 3. 

Plugging (2.4) into (2. l ), we obtain 

00 

= (l +e-:za.') L CH(z)e-21ka.+1.:1r 

k.!"'1J 

Comparing coefficients, we get for 8 = + 

0 = +,-. 

c ... ,.(z - ia+) - c,,.,.(z) "" --C (z)c,,,_l.n (z + ia+) + c111-1.11 (z) 
andfor8::-

c.,,, (z - UL) - c,,.,, (z) == -C+ (zk,,.,,,_ 1 (z + ia_) + cm,11-1 (z) 

Here, we have boundary conditions 

(2.5) 

m,n EN (2.6) 

m,neN. (2.7) 

coo== I C-1,1 == 0 l EN Ck,-1 == 0 k EN. (2.8) 

note We ~ by analysing _the system (2.6}-(2.8) of coupled linear AAEs. F"lrSt, let us 
that the eigenvalue equations (2. l) do not fix the dependence on the spectral variable 

Y · Therefore whenever a soluti· · · · · multi 1 2 ' . on exists, it ts highly non-unique. In particular, we can 
p y ( .4) by an arbitrary formal power series of the form 

00 

p(y) = L a,,.,. exp( -2(ma+ + na_) y) 
m.n=O aoo =I (2.9) 

to obtain another formal solution with coefficients 
k l 

c<Pl('),..... "" 11 .. - L L...cu(z)a1r;_,,1-j· 
i=-0 j={J 

(2.10) 

Then the coefficients c(p\( ) · Id 
To discard this "'~ z. y1~ . a solution to the system (2.6}-(2.8), too. 

ambiguuy, 11 is clearly sufficient to require 
cu(z)--> O R ) 
. ez-+oo Y(k,l)EN2\{(0,0)}. (2.11 

Of course, at this stage it is far from i . 
so, let us assume that a sol . c ear that a solution with this asymptotics exists. Ev~ 
precise, we assume that f~n:~ them =:.o subsystem satisfying (2.11) exists. To be qu~te 
functions a (a. a b· :z:} N1~ positive a., a_ satisfying (2.3) and real b there exist • ' -· ' ,n E ,such that 
a.,(z) E P;.,. Vn E N• 

a.,(z - ia_) - a,.(z:)::::: -C (7)a . 
a ( ) 0 +.. n-1(z + ia_) +a,.-1(<:) .. z - Re~ '--+ oo Vn EN" 

Yn E N"' ao(z) = 1 

(2.12) 

(2.13) 

(2.14) 
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This existence assumption will be shown to be non-vacuous later on. (Indeed, we will 
exhibit the an explicitly.) But for now we only derive some illuminating consequences. First, 
we claim our assumption entails that the system (2.6)-{2.8) admits a unique solution with 
asymptotics (2.11 ). 

We prove this claim in several steps. To begin with, we show that the above functions an 

are uniquely determined by (2.12)-{2.14). Indeed, taking first n = 1, the difference of two 
such functions is ia+-periodic and ia_-periodic, and it vanishes for Rez ~ oo. But then it 
vanishes identically, cf (1.12). Proceeding inductively, this yields the desired uniqueness. 

Next, we assert that the coefficients 

m,n EN (2.15) 

solve the system (2.6)--(2.8) and have asymptotics (2.11). The last assertion is immediate 
from (2.14). To prove the solution property, we recall that (2.12), (2.13) amount to c0n solving 
them = 0 subsystem. Since C_(z) is obtained from C+(z) by interchanging a+ and a_, the 
coefficients Cmo satisfy then = 0 subsystem. Using now iao-periodicity, the solution property 
for the general system easily follows. 

Finally, to prove the uniqueness of this solution, we need only invoke the argument showing 
uniqueness of the functions an. Indeed, the same reasoning shows that the solution Cmo to 
the n = 0 subsystem with the prescribed asymptotics is unique. Then we successively get 
uniqueness of cu, c12, c13, ... , c2i. c22, ... etc. Hence our claim is proved. 

We continue with a few more consequences of our existence assumption. First, it entails 
the symmetry property 

n EN. (2.16) 

To see this, note that the function C+(z) (l.18) is invariant under b ~ a+ + a_ - b. 
Therefore, (2.16) follows from uniqueness of the functions an with the properties (2.12)­
(2.14). 

Combining (2.16) and (2.15), we now obtain 

ck1(11+, a_, b; z) = czk(a_, a+, b; z) 

Ckz(a+, a_, b; z) = cki(a+, a_, ll+ +a_ - b; z). 

Thus the corresponding formal solution 

00 

F+(a+. a_, b; z, y) = exp(izy) L q1(1l+, a_, b; z) exp(-2(ka+ + la_)y) 
k,l=O 

to the eigenvalue equations (2.1) satisfies 

(2.17) 

(2.18) 

(2.19) 

F+(a+. a_, b; z, y) = F+(a_, a+, b; z, y) (2.20) 

F+(a+, a_, b; z, y) = F+(a+, a_, a++ a_ - b; z, y). (2.21) 

It is not a simple matter to find the unique functions an obeying (2.12)-{2.14) directly. 
Here we only determine a 1 (which is easy), and then exploit results from [2] to obtain all of 
the an. 

Thus, consider then= 1 A.6.E (2.13), 

a 1 (z - ia_) - a1 (z) = -C+(z) + L 

Using ( 1.18), this can be rewritten as 

a 1 (z - ia_) - a 1 (z) = y(a+, a_, b)[coth(nz/a+) - coth(:ir(z + ia_)/a .. J] 
y(a+, a_, b) = sinh(iJr(b - a_)/11+) sinh(ixb/a+)/ sinh(iJra_/a+)-

(2.22) 

(2.23) 

(2.24) 
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Heoce we m11111;u'111u::iJ obtain the solutioo 

a 1(a,,., tL, b; ::.) = y(a+. a • b)[coth(;ir(;:. + ia_)/a+) - l}. (2.25) 

Note that it is indeed invarilllll under b ~ a+ + tL - b, and that it is ill defined for a+ = a_· 

To solve then = 2 equations directly is not a routine matter. (Moreover, we should repeat 
at this point that existence of a solution is not clear, a priori.) Thus we now rum to the pertinent 
results from oor paper which will lead to the desired solutions a,. (a+. a_, b; z), n E N. 
(They are given by (2.59) below.) 

2.2. Eigenfunctions for a dense set of b-values 

In section 3 of [2! we ohtaioodjoint A.1-eigenfunctions M (a+. a_, b; ±z. p} with eigenvalues 
2cosl:l(irp/ad, 8 == +,-,for all a+, a_ E (0, oo) and b of the form k+a+ +La_, k+, k_ E Z. 

(For other eigenvalue pairs we have no information concerning joint As-eigenfunctions.) More 
specifically, the hyperbolic specialization of the elliptic A~-eigenfunction IJJ(z. y) from [lJ 
(already mentioned in the introduction) is related to M (z, p) via 

lll(z.:irp/a+(L) = M(z, p)w(p) 111 (2.26) 

where w(p) is the hyperbolic weight function from [4J. 

In this connection we recall that the dependence of the joint eigenfunctions on the spectral 
variable is a matter of convention. As it turns out, in the hyperbolic case this dependence 
~an be chosen in such a way that one obtains joint eigenfunctions that are invariant under 
interchanging z and p. Indeed, the functions M(±z, p) have this striking 'self-duality' 
property, cf equations (3.71), (3.72) in [2]. 

We proceed by defining A,;-eigenfunctions 

where 
F±(Z,y)::ei<f>M(±z,p)/c(z)c(p) p=a+a_y/rr (2.27) 

ll: 

cl> s 2[(1 - b/a+)O - b/a_) - lJ. (2.2&) 

When ooe. views these functions as functions of z and p, they are by construction self-dual as 
well. But 1~ the co~text of tll.is paper it is expedient to employ the same spectral variable Y for 
the two regimes at issue. Clearly, one has 

where 
F_(z, Y) = -u(-z)F'+(-z, y) (2.29) 

u(z) s -·c(z)/c(-z) (2.30) 

is ~function ('S-matrix'} from 14]. 

phase (2.28) is chosen such that one gets asymptotics 

F+(z, y) "'exp(izy) Rey -i- 00 (2.31) 

F _ (z, Y) "' -u{-z) exp(-izy) Re v -i- (2.32) 

The two functions F::.(• y) are I~•~ .. b . . • oo. t 
oo the· · . "' rem= Y 1a+- or 1a--periodic multipliers for a discrete se 

imaginary y-axis Restricti tte · 13) 
holds true~ R _ 0 · ng a ntmn to Re Y > 0 from now oo the condition (l. 

or e '- > • however For irratio al ' 
the two-dimensional space of ( · . n a+~a-, the functions F±(z, y) therefore span 

. . IUeromorphic) functtons F satisfying the A6Es 
F(z - ia,) + s1nh(ir(z: tk.ia.i)/a_a) sinh(ll(Z - i(k~ l)a3)/a_4) . 

_ sinh(;rz/a_,) sinh(ll"(z + ia•)/a-a) F(z +ta&) 

- 2 COSh(aiy)F(z) .t. E z • = + _ 2 3~) 
"'& 0 -- ' • ( • ~ 



Relativistic Lame functions revisited 10603 

Since our main interest in this paper concerns interpolation with (2.3) in effect, we may 
as well restrict attention to b of the form 

b = (N+ + l)a+ - N_a_ (2.34) 

(Indeed, these b-values are already dense in R) The pertinent c-function can be calculated 
from the A~Es satisfied by the hyperbolic gamma function, yielding 

c(z) = (-i)2N+N-+N++N_+J IT 2 sinh(rr(z + ika_)/a+)j TI 2sinh(rr(z - ija+)f a_). (2.35) 
~! j=O 

From equation (3.65) in [2] we then obtain 

N6 

F+(Z, y) = n qf•(N,+l)/2 n [4 sinh(rr(z + ijas)/a-s) sinh(rr(p + ija5)/a-8)r1 

8=+,- J=l 

x TI exp(x Ns(z + p)/a_0)SN,(q8; exp(-2rrz/a_0), exp(-2rrp/a_,,)) 
8=+,-

x exp(izy) (2.36) 

Here, q+ and q_ are the phases 

q+ = exp(irra+/a_) (2.37) 

and SN(q; r, s) is a polynomial in rand s with coefficients that are Laurent polynomials in q: 
N 

SN(q;r,s) == L cifl(q)rks1. (2.38) 
k,l=O 

The coefficients are defined by equations (2.2)-(2.5) in [2]. (Note the typo in (2.2): the second 
dot sequence should be omitted.) For our purposes, it is enough to use two formulae that easily 
follow from their definition in [2], namely, 

and 

N 

SN(q; r, 0) = qN(N+l)/2 TI (1 - q-21,) 
j=l 

SN(q; T, S) _ ~d(N}( . ) I 
-L..., 1 q,rs 

SN(q; r, 0) r=0 

I 1 _ -2j+2(N+l)r 
d(N}( . r) = (-)I "'""' q-2(i1+···+ii) 11 q . . 

I q, . L...,. . I_ q-21, 
!~11 <00·<11~N Jo=I 

Using (2.39), (2.40) and the notation 

r8 = exp(-2rrz/a-s) s0 = exp(-2ac1y) 8 =+, -

we can rewrite (2.36) as 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

F ( ) N, l 
+ z, y - n -N,(N~+l)/2S (q . r S ) n --------• - q5 N, s, o• 8 -2j -2j 

exp(izy) 8=+,- J=l (1 - q5 rs)(I - q6 so) 

= n (fdfN1)(q5;rs)s~)n(l-q;2js8)-I. 
8=+,- /,,,,Q J=l 

(2.43) 

From this one easily sees that the rhs can be written as a product of two power series in s+ and 
s_, which converge for js8 1 < l, 8 ::;: +, -. Moreover, the asymptotics (2.31) is clear from 
rlciN) = 1. 
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2.3. formal interpolating eigenfunctions 

We are now prepared to return to our ansatz (2.4) for solving the eigenvalue equations (2.1). As 

we have just seen, a (non-formal) solution of this form exists for arbitrary positive a+. a_ and b 

of the form (2.34). Requiring once more (2.3) so as to ensure independence of the monomials 

s';' s~, we may now deduce that their coefficients Cmn satisfy the system (2.6)-(2.8). 
We continue to obtain the coefficients associated with (2.43) in explicit form. First, let us 

note (2.41) entails 

N, N, n (1 - q~2j S&) = L d1(N1) (q5; O)si. 
j=l l=O 

(2.44) 

Also, (2.37) and (2.3) yield qJ =fa 1for8 = +, - and l E z. Now we are going to exploit the 
identity 

I l 2j-2(Na+l) 

diNi) (qi;; 0) = n -qi> 1j (2.45) 
j=l 1 - q8 

~ts validity can be deduced directly from the recurrence relation obeyed by the sum coefficient 

m (2.4~), cf_equations (2.26) and (2.31) in [2]. But one can also view it as a special case of 
the q-bmorrual theorem. (This was pointed out before in [5].) 

Before recalling and using the general version of this theorem, we rewrite (2.45) using 
standard q-notation [6] as 

(2.46) 

(N) (q-2N,. q2) ( 2N6 -2) 
d1 ' (qi;; ri;) = 0 ' 8 1 qs rs; qs t 

(q2. q2) ( -2 -2 . 
8• s 1 qs rs;q8 )1 

We now make the key observation that we can write 

(2.47) 

q~N· = exp(2in(b - a+)/a_) q:_N- = exp(-2brb/a+). 

(Recall our standing assumption (2.34).) Thus, setting 

(2.48) 

d;, (ei.P.i(b). q2) (e-i.P.1Chl • -2) 
' (b, r) :::: ' ;, I r' qs I 

(q}; qi)1 (q8 2,; qi2)1 l EN 8 =+,- (2.49) 

with 

. lf>+(b) == 2;r(a.i-+a_ -b)/a_ <P-(b) = 2nb/a+ (2.50) 
we obtain well-defined c ffi · 
FurthennQre ... ey are I oel thc1ents that depend on b E lR in a real-analytic fashion. 

, u1 c ear y e uniqu ffi . . . 
~ e coe c1ents with this property that satisfy 

d, ((N+ + l)a+ - N_a_, r) = d(N;)(q • r) l 51) 
. r a. = O, ... , Ns 8 = +, -. (2. 

Consider now the power series 

00 

P;,(b, ra; sa) = '°' ds(b r )sl 
~I , 8 &· 
l""1) 

(2.52) 

For b = (N + 1) 
+ a+ - N _a_ these se · b . 

the rhs of (2.43). For b :p k a + k nes reak off at l =Na, yielding the sums occurnng on 
have finite convergence radi +(d _a_: k± E Z, however, both series are infinite and need not 

us ue to Small denominators'). 
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We do not address this convergence problem here. Instead, we continue to study the 
interpolation in the sense of formal power series. Using once more standard q-notation [6], 
we have 

Ps(b, O; s) = 1</Jo(eilf>i(h); -; q~, s). (2.53) 

Now we recall the q-binomial theorem [6]: 

A.-( . . ) _~(a; q)1 1 _ (as; q)oo 
l'f'll a, -,q,s = L..t--s - ---

t=O (q; q)1 (s; q)oo 
lsl, lql < 1. (2.54) 

(For a = q-N, N E N, the series breaks off. Thus one may take q on the unit circle, entailing 
the identity (2.45), as announced.) It entails 

1</Jo(a; -; q, s)-1 =1</>o(a-1; -; q, as) 
00 ( -1 ) "a ;q111 =L..t as 

1=0 (q; q)1 
lsl < 1 lql < I. (2.55) 

Therefore, we can explicitly determine the reciprocals of the formal power series P8 (b, O; s). 
They read 

l/Ps(b, O; s) = f (exp(-it.1(~)); qf)k exp(ik<fa8 (b))i. 
k=O (q8; q8 )k 

(2.56) 

Putting the pieces together, we finally get the interpolating formal power series 

F+(z,y) n ~ s (. ) = L..t c,,,1 (b; z) exp(-2msas y) 
exp 1zy 8.:+,- m1=0 

(2.57) 

where the coefficients are given by 

Ii (b· ) _ ~ (exp(i<fas(b)); qf)1 (exp(-i</>s(b)) exp(-2rrz/a-s); qi2)1 
en ' Z - L.,, 2 2 -2 -2 

l=O (qs;qs)t (q8 exp(-2:rrz/a-s);q8 )1 

x (exp(-i~s(~)); qF)n-t exp(i(n -l)<fa0(b)) ll = +, :-. 
(qs; qB )n-l 

(2.58) 

Now we recall our previous analysis of the power series ansatz (2.4). The uniqueness results 
we proved entail in particular that the functions an are given by 

( b ) ~ (exp(hrib/a+); q:)1 (exp(-2Jr(Z + ib)/a+); q=2)1 
Oln a+, a_ ; z = L..; 2 • 2 • . -2 

l=O (q_, q_)1 (exp(-2Jr(z + ta_)/a+), q_ )1 

(exp(-2Jrib/a+); q:)n-1 (2 ·c l)b/ ) x 2 2 exp JO n - a+ 
(q_; q_)n-1 

(2.59) 

with q_ = exp(iJra_/a+). This is the explicit formula announced above. 
To conclude this section, we add a number of observations related to (2.59). We begin 

by noting that the only one of the three properties (2.12)-{2.14) that is obvious from (2.59) 
is (2.12) (ia+-periodicity). It would be a quite unpleasant task to verify the two remaining 
properties directly. Note that the asymptotics (2.14) does follow from the q-binornial theorem. 
Indeed, (2.55) entails the identities 

t (a; q)1 (a-I; q)n-1 an-I= 0 n > 0 Jql < 1. (2.60) 
l=O (q;q)1 (q;q)n-1 

Clearly, these are still valid for all q on the unit circle that satisfy q1c #= l, k E N*, which 
yields (2.14). 
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Next, we note that the parameter symmetry (2.16) is not at all clear from (2.59). Even for 

1 - e'21ri.b/a+ ( 1 - e-231"(z+ib)/a+ ) 

a1 (a+, a_, b; z) = 1 - e2:Icia-/a+ 1 - e-2lr<z+ia-l/a. - 1 
(2.61) 

some effort is needed to rewrite it as (2.25), which is manifestly invariant. Note that ~s 
symmetry entails that for b = -N+a++ (N _ + l)a_ the fonnal power series .A,,-eigenfunctJ.on 
F+(a ... a_, b; z, y) is equal to the (non-fonnal) .A,,-eigenfunction (2.36). In fact, since for b 
of the form (N+ + l)a+ - N_a_ the map b 1-+ a++ a_ - b on the functions am(a_, a+, b; z) 
and an(a .. ,a_,b;z) may be replaced by b 1-+ b + (2N_ + l)a_, one obtains (2.36) for 
b ::::: (N+ + l)a+ + (N_ + l)a_ and b = -N+a+ - N_a_, as well. (These equalities can 
also be obtained directly from the results in section 3 of [2].) 

We proceed by observing that we can use (2.29) to obtain a second independent 
formal power series As-eigenfunction F_(a+. a_, b; z, y). It also has the symmetry 
properties (2.20), (2.21), since the u-function does. Furthennore, its interpolation properties 
follow from those of F+(a+, a_, b; z, y), since u(a+. a_, b; z) admits a meromorphic 
interpolation. 

The c-function has the latter feature, too, cf ( 1.20). Therefore, the interpolation behaviour 
of the function M(z, p) is alsoequivalentto that of F+(z, y), cf (2.27). We already made some 
remarks on the interpolation problem for M(z. p) in [2]. {See also section 4.4 of our lecture 
notes [7].) Here we can add that (2.59) implies that the poles of the coefficients of the formal 
power series eigenfunctions are indeed dense on the imaginary z-axis whenever b is not of the 
formka++la_, k, l E Z. (This denseness property was already discussed in [l].) This state of 
affairs suggests that whenever a non-formal eigenfunction for such b-values exists, for which 
the fonnal eigenfunction F+(z, y) is an asymptotic series, it will have the imaginary z-axis as 
a natural boundary. 

Let_ us ~nally consider the case of a rational quotient a_/ a+ = M / N, with M and 
N copnme mtegers. Then a,.(a+, a_, b; z) is still well defined for n < N. Likewise, 
a,,,(a:-, a+. b; z) ~as no divergencies form < M. But for larger n- or m-values the coefficients 
are divergent, whic~ reflects the equality of (for instance) the monomials s!' and s!!., cf (2.42!· 
On the other hand, it may well be that the pertinent confluence limits are finite. This hunch 18 

sugges~ by its validi~ for the simplest case, which is the limit a+ -+ a_ for the lowest order 
mon0tn1als. Indeed, usrng (2.61), one easily checks that 

(2.62) 

exists. 

3. The elliptic regime 

3.1. A modified power series ansatz: the case m + n < 3 

In the elliptic case the results from [l J alr . . . . · · to joint eigenvalues E ( ) tha h . eady mentloned m the mtroduct:mn give nse 
eigenvalues ual 2 ± Y 1 ave asymptotics ( l.32). But only in some special cases do these 
which starts~ ;o~h(a::i:Y!· Even so, we may attempttofollowthereasoninginsection2.1, 
eigenfunctions :r th: ~: (~~~n;alu~, cf ~2.1 ). Th~t is, we may try and obtain .formal joint 
elliptic ~AOs (1.lO), (l.27). · or this pair of ~--eigenvalues, when A± are viewed as the 

Doing so, we obtain once the 
should clearly drop the as ~ syste':11 (2.6)-(2.8). In the elliptic case. however, we 

ymptotics a&SUtnption (2.11). Thus, (2.14) should be omitted as 
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well. But as will now be shown, there d0es not even exist a function a 1 satisfying both (2.12) 
and (2.13 ). As a preliminary, we note that ( 1.29) entails the A~E 

s(r, a; z + ia/2) ( 2. ) 
=-exp - vz 

s(r, a; z - ia/2) 
whence one has 

s'(r, a; z - ia) s'(r, a; z) 2. - = tr. 
s(r, a; z - ia) s(r, a; z) 

(3.1) 

(3.2) 

In order to prove the asserted non-existence, we consider the AA.E (2.22) with C+(z) given 
by (l.27). The elliptic function C+(z) has two simple poles in its period rectangle, so the sum 
of the two residues vanishes. Therefore one can uniquely write C+(z) as 

C () -A( ) B( ) (s~(z+ia_) _ s~(z)) + z - a+. a_ + a+, a_ . 
S+(Z + ia_) S+(z) 

(3.3) 

Comparing residues at x = -ia_ yields 

B(a+, a_) = e-2br S+(ib - ia_)s+(ib)/s+(ia_). (3.4) 
Taking now z = -ib, one obtains 

e-2br 
A(a+, a_) = -(. ) [s+(ib)s~(ib - ia_) - s~(ib)s+(ib - ia_)]. (3.5) 

S+ Ja_ 

Defining p (z) by 

() B s~(z+ia_) () 
1Xt z = . +p z 

S+(Z +ta_) 
(3.6) 

the A~ (2.22) and requirement a 1 E 'Pw+ now yield 

p(z - ia-) - p(z) = 1 - A (3.7) 

p z - ta+ - p z = - = - 1r (3.8) ( . ) () s(s~(z+ia_) s~(z+ia_-ia+)) 2. B 
s+(z+ia_) s+(z+ia_ -i12+) 

where we used (3.2). 
Taking thez-derivativeofthe two A~Es (3.7) and (3.8), we obtain p'(z) = c from (1.12). 

Thus we have p(z) = cz + d, with 

-ia_c = 1 -A -ia+c = -2irB. 
Now from (3.5) and (3.4) we see that A -::/= 1 and B -::/= 0. Hence we need 

1 - A= -2ira_B/a+. 

(3.9) 

(3.10) 

But in view of (3.4) and (3.5) this relation only holds for special b-values (in particular, for 
b=O.) 

We are therefore led to an illuminating conclusion: Even at the level of formal power 
series, the ansatz (2.4) is not compatible with As-eigenvalues 2 cosh(a-6y), 8 = +, -. 

On the other hand, we may consider a power series ansatz for the eigenvalues, too. 

Specifically, let us assume 
00 

Ea{y)=exp(a_3y) L e~11 exp(-2(ma++na_)y) efio=l 8=+,-. (3.11) 
m.n=O 

(Hence (1.32) formally follows.) As the generalization of (2.6) and (2.7) we then get 
m,n 

Cmn(Z - ia+) - Cmn(Z) = -C_(z)Cm-1,n(Z + ia+) + L e;-k,n-1Ck1(Z) m, n e N (3.12) 
, k,I 

m,n 

Cm~(?: - ia_) - c,,.11 (Z) = -C+(Z)Cm,11-1(Z + i{t_) + L>:-k,n-1CJ:1(z) m, n e N. (3.13) 
' kJ 
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Here. the summation symbol signifies a sum over k E {O, l, ... , m} and l E {O, 1. · .. • n}, 

omitting the term (k, l) = (m, n). . Taking first m = o, n = I in this recursive system of AAEs, we obtam 

co1 (z - ia+) - co1 (z) = e()1 

c01 (z - ia_) - co1 (z) = -C+(z) + e~i • 
Using as before (3.3}-(3.5), we write 

s:(z+ia_) () 
co1 {z) = B ( . ) + P z 

S+ Z +ta-

SO that p(z) satisfies 
p(z - ia_) - p(z) =-A+ e~1 
p(z - ia+) - p(z) = -2ir B + e01 . 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Thus we get p(z) = cz +d. 
At this stage we cannot rule out that c is non-zero, since we are allowing quite gene~ 

eigenvalues. But our principal interest is in coefficients Cmn (z) that are rr I r-periodic in z: ~s 
is because the joint eigenfunction 'It (z, y) from [11 has the property that \ll (z. y) exp( -:zy) :s 
11' /r-pcriodic in z; since c(z) (1.31) is :re /r-periodic, too, it follows that F+(z, y) exp(-izy) 15 

11' /r-periodic, cf (1.24). 
Accordingly, we require from now on 

Cmn(Z) E 'Ptt/r 

The above then yields 

m,nEN. 

( ) s:(z + ia_) 
co1 z = B(a+, a_) . + Y01 

(3.19) 

(3.20) 
S+(Z +ta_) 

e01 = 2ir B(a+. a_) (3.21) 
e;1 = A(a+,a-) (3.22) 

with A(a+. a_) and B(a+, a_) given by (3.5) and (3.4), resp. In particular, this entails that 
Ea (y) depends on all of the paramelers r, a+. a_ and b, in contrast to the hyperbolic case. 1:'11e 
constant Yot cannot be fixed unless we impose further restrictions on c01 (z). In this conne~t:t~n 
we recall~ ambiguity pointed out in the paragraph containing (2.10). Now at the elliptlC 
level there 1s no natural generalization of the asymptotics requirement (2.11). Tuus we should 
try and fix.the dependence on yin some other way. . 

We will return to they-dependence shortly, but we allow the ambiguity for the time being. 
Clearly, we can repeat our reasoning for the equations 

c1o(z - ia_) - c1o(z) = et0 

c1o(z - ia+) - c1o(z) = -C_(z) + eiQ 
so that we obtain 

s' ( . ) 
c1o(z) == B(a_, a+) ,.. z + ~+ + Yto 

s_(z + lll+) 
eto = 2irB(a_,a+) 

elo = A(a_, a+). 

Consider next c1 I· We should solve the AAEs 
cu(z - ia+) - c11 (z) = -c (z) ( . ) _ _ . - coi z +la+ + ell + ei0Co1 (z) + e- c1o(z) 
C11 (z - IQ ) - ( ) _ C . 01 - Cu z - - +(z)cio(z +la-)+ et1 + etoco1 (z) + eo1 C10(z) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.Z7) 

(3.28) 

(3.29) 



for a function c1 1 By the same as before, when such a solution 
cu exists, then it is unique up to a constant, while eij and 1 are uniquely determined. 
Using (3.15) and (3.24) to get rid of one easily verifies I.hat the desired solution reads 

yielding 

= 
= 

+ Yll 

(3.3 l) 

(3.32) 

situation, we obtain a few more quantities explicitly, namely 
The first one should be :a if/ r-periodk function satisfying the 

All.Es 

Cm(Z - ia...) -

1..n2(z - ia_) - = - co1(z) - (Z + ia_) + e;\2 + ei)1 cm 

As before, any function with these features is unique up to a constant. 
We claim such a function exist~ and is given by 

(3.33) 

(3.34) 

) B(a+, a )2 + ia_) 
co2(z. = 2 . .. ) +{1co1(z)+{zc111(z+ia_)+y00 (3.35) 

S+(Z +UL 

{1=cm(ia_) {1=:e~1 -co1(0)+co1(ia_). (3.36) 

Indeed, the rhs is clearly 11: /r-periodic. To verify the Ab.E (3.33), one needs the identity 

µ( . ) "') '() 
S+ z - IG+ - S+ ,z = 4ir S+ z:. - 4r2 (3.37) 
S+(Z - ia_.) S+(Z) S+(z) 

which follows by differentiating (3.2). To check (3.34), one can proceed as follows. First, 
al.though the difference t..(z) between the lhs and rhs consists of terms that are not ia+-periodic, 
t..(z) is in fact ia+-periodic. (This can be verified by using (3.2) and (3.37).) Therefore t..(z) 
is elliptic. Requiring now that the residues at the simple poles z = 0 and z = - 2ia_ cancel, 
one obtains (3.36). Then the residues at z = -ia_ cancel, too, so .6.(z) is z-independent. 

Choosing z = -ib in t..(z) so as to exploit C+(-ib) = 0 (cf (1.27)), one now obtains 

+ B(a., a_)2 (sZ(ib) s~(ib - ia_)) + . . • eo2= - .. -- . . +e0i[c01(1a_)-co1(-1b+1a_)] 
2 S+(tb) S+(lb - la-) 

+[c01 (ia_) - co1 {O)][co1 (-ib) - co1 (-ib + ia_)]. (3.38) 

Likewise, from (3.33) one gets 

- 2 ( • s~(2ia_) 2ri) -[ c· ) (0) + J e02 = B(a., a_) 21r . - + e01 co1 1a_ - C01 + e0p-
S+(2w_) 

(3.39) 

Clearly, we can now determine cio(z) and e~. 5 = +,-,by switching indices and a., a_. 
Therefore, all quantities c""" (z), e!,,. with m + n ~ 2 have now been obtained in explicit form. 

3.2. An appraisal of the general case 

We proceed with a study of the general. situation. Obviously. we can analyse the 
system (3.12), (3.13) with boundary conditions (2.8) recursively, the conclusion being that 
when a solution satisfying (3.19) exists, then it is unique up to the ambiguity (2.10), whereas 
the formal power series (3.11) have uniquely determined coefficients. Now in the hyperbolic 
case we could exploit om previous results from {2] to prove that for b = (N+ + l)a.. - N_a_ 
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the system (2.6}-(2.8) does admit a solution. Although the results in [ 11 suggest that this is 

still true for the pertinent elliptic system, we have no complete proof. 
In order to explain in more detail what is involved here. it is expedient to consider first two 

cases for which existence of a solution does follow from [ 1 }. Specifically, these are the cases 

b = CN+ + l)a+ and b = (N_ + l)a_, with Na E N. (These special cases were also studied 

in [8, 9}.) By a+ +r a_ symmetry, we need only discuss the first case. 
First, we recall from section 2 in [l] that the function 

F ( ) = ( )-1,r.( ) _ izy nN+ s_(z + Zj (y)) 
+ z, y - c z '¥ z, y - e .. 

i=t s_(z + 11a+) 
y E (K, oo) (3.40) 

is an.A,s-eigenfunction with eigenvalues E8(y), S = +, -. (We are choosing the function f(y) 

in (1.24) equal to 1, since we have no other natural 'dual choice' available.) The point is 

now that the solutions to the constraint system detailed in [I] admit a convergent power series 
expansion 

00 

Zj(y) = L lJi,k exp(-2ka+y) 
k==O 

lJj,O =: ija+ j = I, ... , N+ (3.41) 

for y large enough. 

Indeed, from the paragraph in [ 1] containing equation (2.15) we deduce that the parameters 

Y and tare related by exp(-2a+y) = f(t), where f(t) is holomorphic att = 0 and satisfies 

f(O) ~ 0, f'(O) f:. 0. Therefore, there exists a function H(z) that is holomorphic at z::::: 0 

and sa~sfies H(O) = ?· H'(O) =j:: 0, such that t = H(exp(-2a+y)). Hence we obtain (3.41). 

Us.mg also equations (2.16) and (2.27) in [l] we now deduce that there exist convergent 
expansions 

00 

exp(-izy)F+(z, Y) = I>kO{Z) exp(-2ka+y) 
k=() 

00 

exp(-a+y)E_(y) = LeiQexp(-2ka+y) 
k=O 
00 

coo= l 

exp(-a y)E (y) - °"[ + + 
- + - {:o et0+ek1exp(-2a_y)]exp(-2ka+y) 

for Y large enough. In particular, this entails 

(3.42) 

(3.43) 

(3.44) 

C.ti(Z)::::: 0 - Q 
. ekl = et,1+1 = 0 k E N l E N* (b = (N+ + l)a+) (3.45) 

in accoNei;xdant, ce withd the Special cases calculated in section 3 1 
we stu y the de .. 

to the hyperbo1· nse set of b-values (N+ + l)a - N a N N E N*. In conu:ast 
1c case we are + - -· +, - 3) 

with boundary conditi~ns 2 8 not aw~e ?~a complete proof that the system (3.12), (3.1 

these b-values To explai ~ ) and penodicity requirement (3.19) admits a solution for all of 

equations (1.2i)-{l.2S) in [t] problem that arises, we first recall some results from [l]. from 
n ' we deduce that the function 

y E (K,oo) (3.46) F+(Z, y) == c(z>-11fl(z, y) = eizY n ft s_s(z + z!_<y)) 

. b+,- i=l s-a(z + 11aa) 

is an .A.s-eigenfunction with eigenvaI 1 

in (l.24).) The question is now wheues Ea{y), 8 = +,-.(Thus we have once again f?'~-~i.A 
ther the solutions ~ (y) to the constraint system oeuu-
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in section 3 of [l] admit a convergent power series expansion 
00 

z~(y) = L 11J,kl exp(-2(ka+ + la_)y) 
8 •• 

T/j,OO = zJa8 j = 1, ... , N8 8 =+, -
k,l=O 

(3.47) 

for y large enough. If so, this would follow for exp(-izy)F+(z, y) and exp(-a_8y)E8(y), as 
well. 

Elaborating on the latter question, we observe that the parameters u and t8 introduced 
in [l] are related via exp(-2aou) = fs(t8), where fs(z) is holomorphic at z = 0 and satisfies 
fs(O) = 0, f£(0) # 0. (Thisfollowsfromequation(3.16)in [l]bywritingthelhs as u, and then 
exponentiating.) Therefore, there exist two functions H± (z) that are holomorphic at z = O and 
satisfy H±(O) = 0, H~(O) # 0, suchthatt± = H±(exp(-2a±u)). From[l] equation(3.17) we 
now deduce that we have y = u+H(exp(-2a+u), exp(-2a_u)), with H(zi. z2) holomorphic 
atz1 = z2 = 0. But we donotknowwhetheran 'inverse' function /(z1, z2) exists, holomorphic 
atz1=z2=0 and such that u = y + /(exp(-2a+y), exp(-2a_y)). If so, we would have 

00 

exp(-2aou) = exp(-2a0y) L -r:ft exp(-2(ka+ + la_)y) (?) (3.48) 
k,1=0 

with the power series convergent for y large enough. Thus it would follow that z}(y), hence 
exp(-a_0y)E0 (y) and exp(-izy)F+(z, y) as well, admit convergent power series expansions 
in exp(-2a+y) and exp(-2a_y) for y large enough. 

Even when the above question admits an affirmative answer (as we expect), it appears 
an intractable task to actually calculate the coefficients explicitly by taking F+(z, y) (3.46) 
as a starting point. In the hyperbolic case we could invoke the second, far more explicit 
representation (2.36) of the joint eigenfunction, which enabled us to bypass the highly 
transcendental dependence of the zero functions z~(y) on y. But we are not aware 
of any alternative representations in the elliptic case, so that a further analysis of the 
system (3.12), (3.13) with boundary conditions (2.8) and periodicity requirement (3.19) appears 
more promising. 

Even though we are unable to prove that the latter system admits solutions for all of the 
b-values (N++ I)a+ - N_a_, we should repeat that we have shown above that no obstructions 
occur for the cases m + n ~ 2. Moreover, all of the pertinent quantities in section 3.1 are 
real-analytic in b for real b. This strongly suggests that fonnal interpolating solutions with 
essentially the same features as in the hyperbolic case do exist 
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