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Abstract

A basis for the eigenfunctions of the relativistic elliptic two-particle Calogero—
Moser Hamiltonian is known for a dense set in the natural parameter space.
We study the question whether an interpolating basis exists, employing an
asymptotic power series ansatz. For the hyperbolic specialization we determine
all of the coefficients explicitly, which gives rise to formal interpolating
eigenfunctions. For the elliptic case we also need a power series ansatz
for the eigenvalues. We obtain the first few coefficients explicitly, thus
obtaining evidence for the existence of interpolating formal eigenfunctions and
eigenvalues.

PACS numbers: 02.30.Gp, 02.30.Lt

1. Intreduction

The results presented in this paper primarily concern ordinary linear second-order analytic
difference equations with special coefficient functions, and solutions with certain symmetry
properties. Specifically, we deal with explicitly given elliptic coefficients, and (in greater
detail) with their hyperbolic specialization, obtaining some results going beyond those in our
previous papers [1,2].

At present, there is a conspicuous lack of knowledge concerning the general theory for
this type of equation. Explicitly worked-out special cases may yield guidance into this largely
uncharted territory. In particular, they give rise to natural questions concerning more general
classes of equations. On the one hand, for any question that has already been answered
explicitly for the special cases, one can ask whether similar answers hold true in & more
general setting. But on the other hand, an approach that does not involve detailed special
function knowledge may yield existence results that would be crucial to the study of open
questions in the more specialized context.

With an eye on this eventual interplay between the special and the general, we try and
introduce the kind of issues we address in our special case via a stepwise narrowing of focus,
ientioning pertinent questions (and a few answers) at the point where they first arise. (See
also section 2 of our recent lecture notes [3] for a related account.)
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We start from an analytic difference equation (henceforth A AE) of the form

F(z—ia) +C(z)F(z+ia) = EF(2) ae(0,0) EceC. (1.1
Here, the coefficient C(z) is assumed to belong to the function field
M= (f(z) | f meromorphic on C}. (1.2)

Moreover, we focus attention on solutions F € M to (1.1). Obviously, in case C(z) vanishes
identically, the general solution to (1.1) (with E € C*) is given by exp(i In(E)z/a)u(z), where
1(z) belongs to the field of ia-periodic meromorphic functions

Pu={peM|pi+ia) = pn@)} (1.3)
Assuming from now on
Clo) e M* 14

let Fy, F, € M* be two solutions. Then their Casorati determinant

D(Fy, Fy;2) = Fi(z+ia/2) Fy(z —ia/2) — Fi(z —ia/2)Fy(z +ia/2) (1.5)

vanishes identically iff F,/F, € P,. Assuming Fi/F, ¢ P, one easily checks that (1.5)
solves the first-order AAE

D(z+ia/2) 1 6
Di-ia/2)  C@)’ (0

Now suppose F3(z) solves (1.1, too. Then we have

Hj@) =D(F}, Fyi2+ia/2)/D(Fy, Fyz+iaf2) € Py j=1,2. (17

(By (1.6), quotients i ; L . . :
e iden, t;} ents of Casorati determinants are ia-periodic.) It is straightforward to verify

B@) = m@F@) - m@)F (). (1.8)
Obvi i : :
be v'iz:fg’ :]amt:z?.g?;:f this form with 1, 14, € P, solve (1.1), so the solution space may
fanctione. nsional vector space over the field Py, of ia-periodic meromorphic

Next, taking existe i : : i
AAEs of to abcg)ve ty]?exjce of a solution basis as just considered for granted, consider W0

F(z~iag)+ Cs(F(z+iay) = EsF(z)

A joint soluti th “EMoD) EeC s=n -
ution to these i . s . i
difference operators 4; ?cﬁlimﬁa;\?:nv;;wed " aJont cgenfuncron of th o s

AT, 4 CG@TG, sy (110
with ’

LA =Fr-a) 4ecr (1.10)

Itis, theref; i

o ns:l;{j::ﬂ; ?tr};:tetfnya.lue eigenfunction of the commutator [A,, A-].
o belong lmiomo.]oxnt solutiox_ls exist whose Casorati determinants Wt 4 84
since one can allow myly lie a+f/ 4a-, one still obtains an infinite-dimensional solution space:
one has pliers from P, whenever a, and a_ are multiples of a. But since
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Of course, one should first of all prove that two solutions with the above properties exist—
which is far from clear. Assuming only existence of two joint solutions F,, F_ € M* fora, /a_
irrational, however, there is a simple extra condition entailing that the solution space is two
dimensional with basis {F,, F_}: one need only assume

i Fi(2)/F-(2) =0 (1.13)

for all Re z in some interval I = [a, b].

The sufficiency of this condition can be seen as follows. (Our reasoning is adapted from the
proof of theorem B.1 in [1], which deals with the special elliptic case that will be reconsidered
below.) Denoting F./F_ by Q, it follows from (1.13) that Q(z) is neither ia,-periodic nor
ia_-periodic. Thus the Casorati determinants of F, and F_ wur.t. ia, and iz_ do not vanish
identically. Now let F be another solution to the joint eigenvalue equation. Then we have

F(2) = A s QD F(2) + A 5D F-(2) 8=+, — (1.14)
with A.5 € Py, 7, § = +, —. From this we deduce
Aet(2) = Ae(2) = [M— (D) — 214 (2)]1Q(2). (1.15)

Now the functions A.5(z) are analytic on the lines Re z = p € [a, ], save for finitely
many p. (This follows from meromorphicity and periodicity.) Fixing oy € [a, b] such that the
functions A.s are analytic on Re z = py, it follows from periodicity that they are bounded as
well. From (1.15) we then get

inm A_i(po+ika-) = A__(pp) keN. (1.16)
—00

Finally, we use A_. € P,,, and our assumption a,./a- ¢ Q to deduce that A_,(z) equals
A_—(po) for Re z = py, hence for all z. Thus we obtain A.5(z) = ¢, 7,8 =+, —, so that F is
a linear combination of F, and F_, as advertised.

Let us next specialize to a situation in which .4, and .A_ obviously commute, namely,

Cs(z) € Py, 8=+, 1.17)
In this setting the question concerning joint eigenfunctions is especially natural. Even so, it
appears to be wide open.

Assuming existence of a joint solution F € M*, however, one arrives at three distinct
solutions F(z), F(z £ia,) to the AAE A, F = E,F (since C,(z) is ia,.-periodic). Therefore
one can write F(z — ia,) as a linear combination of F(z + ia,) and F(z) with ia_-periodic
coefficients, in accordance with the second AAE A_F = E_F obeyed by F. The latter AAE,
then, may be viewed as a constraint of monodromy type.

Specializing further, let us view ay, a_ as parameters varying over (0, co), on which C,.(z)
and E, depend in a real-analytic way. Then we may define C_(z) and E_ by requiring that
they be equal to C,(z) and E, with a, and a_ interchanged, respectively. In this restricted
context, it is natural to search for solutions to A, F = E,F that also depend real-analytically
on a,, a_, and that are invariant under the interchange of a, and a_. Indeed, this entails they
alsosolve A_F = E_F.

In our concrete settings there are a few more ingredients playing a role. First, we are
dealing with a coefficient C,(z) that depends on an extra parameter b in an entire fashion;
since C_(z) is obtained by interchanging @, and a_, it has the same type of dependence.
Second, specializing to the state of affairs in the hyperbolic case, the eigenvalue pair (E, E_)
depends on a number in the (open) right half plane, in the sense that only for this one-parameter
family and special b-values do we have a joint solution basis with all of the aforementioned
features available. Specifically, this is the case for b of the form ka, +la_,k,1 € Z. (In the
elliptic case there are some further restrictions, cf [1].)



10568 S N M Ruijsenaars

Fixing a,, a_ witha, /a_ irrational, the numbers b = ka, +la_ are clearly dense inR. The
natural question that arises is, therefore, whether the two basis functions for the joint solution
space admit an interpolation to arbitrary real b. Once again, this is a question that can be
asked in the more general settings delineated above. However, our new results make plausible
that such an interpolation may only be possible at the expense of allowing non-meromorphic
solutions. Indeed, they suggest (but do not quite prove) that in our case interpolating basis
functions have a natural boundary on the imaginary z-axis.

Let us now detail the hyperbolic coefficient functions we are concerned with in section 2.
They are given by

Cil0) = sinh(or (z + ib)/a;) sinh (i (z — ib + ia_s)/as)

h . - P =+, —. (118)
sinh(rz/as) sinh (7 (z + ia_s)/as)
The AAOs A; (1.10) are then related to the AAOs
sinh(z (z — ib)/as) . .
A= . _ —_ — 1.19
= Tig_, + (i = —i) 8 =+, (1.19)

employed in (2] by a similarity transformation involving the ‘generalized Harish—Chandra
function’

@ a.biz) = G(as,a_;z — ib.+ i(as +a.)/2)

Gas,a_;z+i(ay +a_)/2)

(HCTC: G(asa_; 7) is the hyperbolic gamma function from [4], also known as the double sine
function.) Specifically, one has

As=c() Ascx)  S=4,— (1.21)
on account of the AAESs satisfied by the G-function.

Starting from As-eigenfunctions W (z, y) with eigenvalues

Ej(y) = 2cosh(a_sy) S=1+,— - (1.22)

and asymptotics

(1.20)

W(tz, y) ~ c(dz) exp(izy)
we therefore obtain A;-eigenfunctions

Fe@.y) = e W(dz, y) £ (y) (1.24)

with eigenvalues E;(y). The function f&)i : .
- . : 18 at our . uch that the
eigenfunctions F(z. y) have a certat y) disposal. It will be chosen such that th

asymptotics D symmetry property (‘self-duality’). Moreover, it has

y 5 o0 (129

f~1 ¥y - 00 (1.25)
so that

Filz. y) ~ explizy) y — oo. (1.26)

The elliptic coefficient functions at issue in section 3 are given by
Co@) = exp (~2br)sa (z +ib)ss(z — ib +ia_g)
Here we have s3(2)s5(z +ia_s)

6 =+,—. (127)

55(2) = 5(r, a5; 7) =4, — (1.28)

and s(r, a; 7) is defined in terms of the Weierstrass o

-function o (z; @, @) by
v e . ia ,
rag = (Z’ 2 ?) exp(-nz’r/m). . (129
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Thus Cs(z) is an elliptic function with periods /r, ias.
The elliptic AAOs Aj; are related to the AAOs
ss(z — ib)
55(2)
employed in [1] by the similarity transformation (1.21), with ¢(z) now given by
G(r,a.,a-; 7 —ib+i(a, +a-)/2)
G(r,a+,a-; 2 +i(a+ +a-)/2)

As = exp(-—br) Tig, + (G — —i) =+, — (1.30)

c(r,ay,a-,b; 2) (1.31)
Here, G(r, a,a_; z) is the elliptic gamma function introduced in [4].

At the elliptic level, too, there exist, for suitable parameters a,, a_, b, joint eigenfunctions
W(+tz, y) of the AAOs A; with eigenvalues E;(y) satisfying

E;(y) ~ exp(a-sy) y—>oo §=+— (1.32)

and asymptotics (1.23) (cf equations (1.22)+1.26) in [1]). Thus they give rise to Aj-
eigenfunctions Fi(z, y) (1.24) with asymptotics (1.26) whenever f (y) satisfies (1.25).

Let us now sketch the contents of section 2, which deals with the hyperbolic case. In
section 2.1 we introduce and explore a power series ansatz for a solution to the AAEs
AsF = 2cosh(a_;y)F with asymptotics exp(izy) for y — oo. This yields a system of
AAEs coupling the coefficients. The requirement that the coefficients vanish for z - oo
gives rise to a special type of solution that is unique when it exists.

In section 2.2 we exploit results from our paper [2] to prove that this special type of solution
does exist for a, /a.. irrational and b of the form (N, +1)a,—N_a_, N,, N_ € N. Insection2.3
we obtain the coefficients explicitly. We show they admit a real-analytic extension to real b by
using the g-binomial theorem. In this way we obtain formal interpolating A;s-eigenfunctions.
Though we discuss them in some detail, we leave various questions open.

The elliptic case is studied in section 3, following the pattern laid out for the hyperbolic
case. Here, however, we cannot go very far. Indeed, our results are only some small steps
towards a complete resolution of the interpolation issue. But just as in the hyperbolic case,
they do supply some new ideas for further studies.

To conclude this introduction, let us add that our hyperbolic results can be exploited to
obtain arbitrary-b (non-formal) trigonometric eigenfunctions. (In section 4 of [2] we only
handled a discrete set of b-values.) To keep this paper within bounds, we will return to the
trigonometric case elsewhere.

2. The hyperbolic regime

2.1. A power series ansatz
Consider the eigenvalue equations
(A_sF)(z,y) = 2cosh(asy)F(z, ) as€(0,00) &=+~ 2.1

with A4_; given by (1.10) and (1.18). Since the coefficients Cs(z) ( 1.18) tend to 1 exponentially
as Rez — oo, one may expect that solutions F.(z, y) exist with plane wave asymptotics
exp(izy) as Re z — oo. But in fact we are going to impose the ‘dual’ requirement

F.(z,y) ~ exp(izy) Rey — 0. (2.2)
More generally, requiring ‘ )
a,fa- £Q (2.3
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until further potice, we are going to study the power series ansatz

Y - (=1 (24

Fiz,y) =¢¥ Z cu(z)exp(—2ka, y)exp(-2la_y) €0
k=0
i s r all monomials to be distinct.)

(Nm'e['::: (sim:;). inn:caizzaéyﬁy appear unmotivated at this point. Its relevance is, howcvt;r,
suggested by our previous results in [2]. We begin by studying it so as to make ?learfhow 1 a:
eigenfunctions from [2] fit in this general framework, unencumbered by the detailed formul

presented later on. Furthermore, proceeding in this reverse order will be advantageous in our
study of the elliptic case in section 3.

Plugging (2.4) into (2.1), we obtain

o
Z e e e (2 —igg) + C e ez + iag))
£10

N 25)
= (1 +e’h‘y) Z cu(z)e‘z“‘“**'“"”‘ &=+, —. 2.
k=0

Comparing coefficients, we getford = +

a2 =10) ~ Cmn(2) = ~C_Qem (2 +i0) 4 cpin(d)  mimeN @6)
and for§ = —
CmalZ —ia_) = Cpplz) = — +eppa(z+ial) + Cmn-1(2) m,neN. 2.7
Here, we have boundary conditions

cp =1 =0 [eN a-1=0 kel (2.8)

' $&, 1t is highly non-unique. In particular, we can
multiply (2.4) by an arbitrary formal power series of the form
o]
p(y) = E Omn EXP(=2(ma, +na_)y) Qg =1 2.9
m,n=(
1o obtain another formal solution with coefficients
ko1
P = Z Z Cij(Det ;. 2.10)
i=0 j=0
Then the coefficients ((»)

mr (2) yield a solug

. - n\2) on o the system (2.6)«2.8), too.
To discard this ambiguity, it is clearly sufficient to require
WA= Rz i ey (0.0 @1
Of course, at this stage it is far from clear tha i ith thi i ists. Even
t a solution with thi mptotics exists.
so,lctusassumedlatasoluﬁontothem=osu S Sy

bsystem satisfying (2.11) exists. To be quite

P, We assume that for arbitrary poe @ a- satisfying (2.3) and real b there exist

S (ay.a_,b;2), 5 e N*, such that
GEDEP,, Vpen (212)
# 0 - a0) = —C, a1 i@ VneN q@=1 @19
% (2) - Q Rez = o0 Vn e N*.

@14
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This existence assumption will be shown to be non-vacuous later on. (Indeed, we will
exhibit the a,, explicitly.) But for now we only derive some illuminating consequences. First,
we claim our assumption entails that the system (2.6)—(2.8) admits a unigue solution with
asymptotics (2.11).

We prove this claim in several steps. To begin with, we show that the above functions «a,,
are uniquely determined by (2.12)~(2.14). Indeed, taking first n = 1, the difference of two
such functions is ia.-periodic and ia_-periodic, and it vanishes for Rez — oo. But then it
vanishes identically, cf (1.12). Proceeding inductively, this yields the desired uniqueness.

Next, we assert that the coefficients

Cmn(@s, a—, b; 2) = anla-, as, b; Day(ay, a_,b; z) m,neN  (2.15)

solve the system (2.6)—(2.8) and have asymptotics (2.11). The last assertion is immediate
from (2.14). To prove the solution property, we recall that (2.12), (2.13) amount to ¢q, solving
the m = O subsystem. Since C_(z) is obtained from C,(z) by interchanging a, and a_, the
coefficients ¢, satisfy the n = O subsystem. Using now ia;-periodicity, the solution property
for the general system easily follows.

Finally, to prove the uniqueness of this solution, we need only invoke the argument showing
uniqueness of the functions @,. Indeed, the same reasoning shows that the solution ¢pg to
the n = 0 subsystem with the prescribed asymptotics is unique. Then we successively get
uniqueness of ci3, ¢12, €13, . . -, €21, €22, - - . etc. Hence our claim is proved.

We continue with a few more consequences of our existence assumption. First, it entails
the symmetry property

o, (ay, a—, b;z) = ay(@s, a—,a.+a_ —b; 2) neN. 2.16)

To see this, note that the function C,(z) (1.18) is invariant under » — a, + a_ — b.
Therefore, (2.16) follows from uniqueness of the functions o, with the properties (2.12)~
(2.14). :

Combining (2.16) and (2.15), we now obtain

culas, a_,b;z) =cpla-, as, b; 7) 2.17
cu(ay, a—, b; z) = cylas, a—,a. +a_ — b; z). (2.18)
Thus the corresponding formal solution
x
Fi(a,,a_,b;z,y) = exp(izy) ) cu(@s, a-, b; 2) exp(~2(ka, +la_)y) 2.19)
k=0

to the eigenvalue equations (2.1) satisfies
Fi(ay,a-,bz,y) = Fi(a—,a. b; 2, y) (2.20)
Fi(ay,a_,b;z,y) = Fi@s,a-,a, +a- — b; z, ). (2:21)
It is not a simple matter to find the unique functions a, obeying (2.12)~(2.14) directly.
Here we only determine oy (which is easy), and then exploit results from [2] to obtain all of

the a,.
Thus, consider the n = 1 AAE (2.13),

ai(z —ia-) —a1(z) = ~Cy() +1. (2.22)
Using (1.18), this can be rewritten as
ay(z —ia_) — a1 (2) = 7(as, a—, b)[coth(rz/a,) — coth(z (z +ia_)/a,)] (2.23)

¥(as, a_, b) = sinh(in (b — a_)/a,) sinh(izb/a,)/ sivh(ira-/a.). (2.24)
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Hence we immediately obtain the solution
oi(a.,a., b, 2) = yla,, a_, b)lcoth(w(z +ia.)/a.) — 1] (2.25)

Note that it is indeed invariant under b — a, +a_ — b, and that it is ill defined fora, =a_.

To solve the n = 2 equations directly is not a routine matter. (Moreover, we should n;:pcat
at this point that existence of a solution is not clear, a priori.) Thus we now turn to the pertinent
results from our paper {2}, which will lead to the desired solutions a,(a,,a-, b;2).n € N.
(They are given by (2.59) below.)

2.2. Eigenfunctions for a dense set of b-values

In section 3 of (2] we obtained joint A;-eigenfunctions M (a,, a_. b: %z, p) with eigenvalues
2cosh(xp/as), 8 =+, —, forall a,, a_ € (0, 00) and b of the form k,a, + k_a_, k,, k_ € Z.
(For other eigenvalue pairs we have no information concerning joint A;-eigenfunctions.) More
specifically, the hyperbolic specialization of the elliptic A;-eigenfunction W(z, y) from [1]
(already mentioned in the introduction) is related to M (z, D) via

(2 7p/asa) = Mz, phu(p)? (226)
where w(. P) is the hyperbolic weight function from [41.

' In th_ls connection we recall that the dependence of the joint eigenfunctions on the spectral
variable is a matter of convention. As it turns out, in the hyperbolic case this dependence

can be chosen in such a way that one obtains joint eigenfunctions that are invariant under

interchanging z and p. Indeed, the functions M (£z, p) have this striking ‘self-duality’
property, cf equations (3.71), (3.72)in [2).

We proceed by defining A;s-eigenfunctions

Fi(z,y) = ¥ M(x, p)/c(2)c(p) p=aa y/x @21
where

4

¢= —2‘{(1 —b/a)(1 ~bja_y-1]. 228
When one views these functions as functions of Z and p, they are by construction self-dual as
well. But in the context of this paper it is expedient to employ the same spectral variable y for
the two regimes at issue. Clearly, one has

F(z,y) = —u(=2)Fi(~z,y)

(229
where
‘ u(2) = —c(z)/e(~z) (2.30)
is the u-function (*S-matrix’) from [41.
The phase (2.28) is chosen such that one gets asymptotics
Fi(z. y) ~ exp(izy) Rey — oo 231
F_(z,y) ~ —u(—z) exp(—izy) Rey — oo, (232)

The wo functions Fi(z,

i -periodi ipli iscrete set
on the imaginary y-axis, . periodic multipliers for a dlscne
holds true for Re : > (l)s Restricting attention to Re y > 0 from now on, the condition (1.13)

Flz~igy) + sinh(z(z + ksas)/a_g) sinh(x (z — gk,

-1
oy — )as)/a_z)

_ -8) Sinh(r (z + iay) Jay) F(z +ig;)
S2eh@nFR)  kez gon @33)
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Since our main interest in this paper concerns interpolation with (2.3) in effect, we may
as well restrict attention to b of the form

b= (Ny+1a.—-N_a_ N N_eN. (2.34)

(Indeed, these b-values are already dense in R.) The pertinent c-function can be calculated
from the A AEs satisfied by the hyperbolic gamma function, yielding

: ©ON
c(z) = (—i)2NeN-+NetN-+1 HZ sinh(z (z + ika_-)/a,) / l—[251nh(7r(z —ijay)/a2). (2.35)
k=1 i==0
From equation (3.65) in [2] we then obtain

N5
Fuz,y)= [] a" "] |i4sinh(r(z +ijas)/a_s) sinh(z(p +ijas)/a—)] ™"

8=+,~ j=1
x T exprNs(z + p)/a_s)Sy,(gs: exp(=2m2/a_s), exp(~27p/a-s))
=t~
x exp(izy) p=a.a_y/x. (2.36)
Here, g, and g are the phases
g, = exp(iray/a_) q- = exp(izra_/a,) (2.37)
and Sy (g; r, 5) is a polynomial in r and s with coefficients that are Laurent polynomials in q:
N
Swigsr )= Y oy (@r*s'. (2.38)
kI=0

The coefficients are defined by equations (2.2)~(2.5) in [2]. (Note the typo in (2.2): the second
dot sequence should be omitted.) For our purposes, it is enough to use two formulae that easily
follow from their definition in [2], namely,

N
Sn(gi 1, 0) = gV TT(1 - g7r) (2.39)
j=1
and
Sn(g;r, ) _ i’: dMgns (2.40)
Sn(g:7.0) L
) —-21+2(N+l)r
d,(m(q; r = (_)I Z q- (G y+Hir) I_[ T . (2.41)
1< <m<i,<1v Jj=1
Using (2.39), (2.40) and the notation
rs = exp(—2mwz/a_s) 55 = exp(—2asy) =+, — (2.42)
we can rewrite (2.36) as
N3
Fu(z,y) —N3(Ns+1)/2 1
— = SN (qa; T5, s5) 337 33
exp(izy) 5=1:,I_ 4 ' ,Ul A g5 7r) (1 — g5 Vsp)
& & ~2j -1
= H (Zd,w')(%; Ts)Sé) n(l ~q5 7s5)7. (243)
=, — 1=0 Jj=1

From this one easily sees that the rhs can be written as a product of two power series in s, and
s.., which converge for |s3] < 1,8 = +, — Moreover, the asymptotics (2.31) is clear from

=1,
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2.3. Formal interpolating eigenfunctions

i i i 2.1). As
lving the eigenvalue equations (
repared to return to our ansatz (2.4_) for so : : us L
y:::r: ;::tp seep:,ra (non-formal) solution of this form exists fc?r arbitrary posn;\tlﬁ E:a:.n :nomials
of the form (2.34). Requiring once more (2.3) so as to en‘sure mdependen;% ;)_( %
s7's", we may now deduce that their coefficients ¢, satisfy the system (2. .8).
+ 0

: j ici irst, let us
We continue to obtain the coefficients associated with (2.43) in explicit form. First, le
note (2.41) entails

: o = 3 2.44)
[T =25 = 3" d g )l (
1=0

Jj=1
i it the
Also, (2.37) and (2.3) yield g} # 1 for § = +, — and | € Z. Now we are going to exploit
identity

2j-2(Ny+1)
q

I
1- (2.45)
dI(Ns) (qa; 0) — H -—-__Q.T_.
=t 1—g;

. ient
Its validity can be deduced directly from the recurrence relation obeyed by the sum coeffici

o i e of
in (2.41), cf equations (2.26) and (2.31) in [2]. But one can also view it as a special cas
the g-binomial theorem. (This was pointed out before in [5].)

. . in
Before recalling and using the general version of this theorem, we rewrite (2.45) using
standard g-notation [6] as

- 246)
4G5 0) = (2% g2,/ (a; g2 (
More generally, we have from (241

(5" g2y (P rs; 972,
d,m”(qa;r;): 4s g5 \g; 5

(247)
@59 (a52r5: g5 ),
We now make the key observation that we can write
qf"’ = expQin(b — a,)/a_) qiN‘ = exp(—2iwb/a,). 248)
(Recall our standing assumption (2.34).) Thus, setting
ibs(B). 12) (a—ige(d),. ~2
B, ry= € 1 62 ’35)’ " 0rig"n ‘2 s ] leN §=+,— (2.49)
@59 (g5 g5,
with
6.(®) =2n(a, +a_ ~ b)/a_ ¢_(b) = 2nb/a, 250)

we obtain well-defined
Furthermore, they are cle

d} (N, + Da, - N_

coefficients that depend on »
arly the unique coefficients with

a-, 1) =d™(g5: 1)
Consider now the power series

€ R in a real-analytic fashion.
this property that satisfy

l=07-~-aN8 6=+,“. (2'51)

00
Py(b, rs; 55) = de (b, r3)s}. @52
=0
Forb = (N, + Da, - N_q_ these series break off at | —
the rhs of (2.43). Forp

. #Fkia,+k_a
have finite convergence radiys (due

N, yielding the sums occurring 08

. t
-+ ks € Z, however, both series are infinite and need 10
to ‘small denominators’).
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We do not address this convergence problem here. Instead, we continue to study the
interpolation in the sense of formal power series. Using once more standard g-notation [6],
we have

P3(b, 0;5) = 10(e*®; —; g, 5). (2.53)
Now we recall the g-binomial theorem [6]:
o @90 g _ @53 9)e0

o =0 = Y s = T

Isl, lgl < 1. (2.54)

(Fora = g™N, N € N, the series breaks off. Thus one may take ¢ on the unit circle, entailing
the identity (2.45), as announced.) It entails

10(e; —5 ¢, 9) 7" = 1go(e™t; —; g, as)
. o0 -1,
(™ q)ldlsl
= @

Therefore, we can explicitly determine the reciprocals of the formal power series P; (b, 0; 5).
They read

Isl<1 |g]<1. (2.55)

N (exp(—igs (B)); gk

1/Ps(b,055) = s exp(ikgs (b))s*. (2.56)
=0 (955 95k
Putting the pieces together, we finally get the interpolating formal power series
Fi(z,y) -
A L E LA I—[ Z cfm (b; z) exp(—2m;asy) 2.57)

explizy) 5o/
where the coefficients are given by

50y N €xp(es()); a7 (exp(—igs (b)) exp(—2mz/a—s); g5
=) 2. 2 =3 =)
= (g5 a5 (g5 “exp(—2nz/a—s); g5 N
 exp(=i65(1)); gDt
(q§ 5 452 In—t
Now we recall our previous analysis of the power series ansatz (2.4). The uniqueness results
we proved entail in particular that the functions «, are given by
" (exp(2mib/ay); g*) (exp(—27(z +ib)/aL); ¢=%)
an(cu,a-b;z)-——.z (exp( & /2+) q-) (exp(—2x( : )/a+); q _21
= (g2 9Zn (exp(—2m(z +ia-)/aL); -\
(exp(—27ib/a,); g* )t
x 2. 2
(qz; q ) P
with g_. = exp(iwa_/a,). This is the explicit formula announced above.
To conclude this section, we add a number of observations related to (2.59). We begin
by noting that the only one of the three properties (2.12)~2.14) that is obvious from (2..59)
is (2.12) (ia,-periodicity). It would be a quite unpleasant task to verify the two remaining
properties directly. Note that the asymptotics (2.14) does follow from the g-binomial theorem.
Indeed, (2.55) entails the identities

5.’—.\ (i) @ Dl it _ n>0 |g| <l (2.60)
=0 (QQ Q)I (q; ‘I)n—l

Clearly, these are still valid for all g on the unit circle that satisfy g* # 1,k € N*, which
yields (2.14).

exp(i(n — ¢s(b)) §=+—. (2.58)

expQni(n — )b/a,) (2.59)




10606 S N M Ruijsenaars

Next, we note that the parameter symmetry (2.16) is not at all clear from (2.59). Even for
1 — e2wib/as ( 1 — e~ 2 (z+ib)/a, )

ai(a., a, b)= 1— exrio-fa \ | — e—2n(z+a-)/a, - (261)
some effort is needed to rewrite it as (2.25), which is manifestly invariant. Note that t_his
symmetry entails that for b = —N..a, + (N_ + 1)a_ the formal power series As-eigenfunction
F.(a,,a_,b; z,y) is equal to the (non-formal) .A;-eigenfunction (2.36). In fact, since for b
of the form (N, + 1)a, — N_a_ the map b > a, +a_ — b on the functions an(a-, as, b 2)
and a(as, a-, b; z) may be replaced by b > b + (2N_ + 1)a_, one obtains (2.36) for
b= (N,+Da,+(N_+Da_ and b = —N,a, — N_a_, as well. (These equalities can
also be obtained directly from the results in section 3 of [2}.)

We proceed by observing that we can use (2.29) to obtain a second independent
formal power series .A;-eigenfunction F_(as,a_,b;z,y). It also has the symmetry
properties (2.20), (2.21), since the u-function does. Furthermore, its interpolation properties
follow from those of Fi(ay,a-,b;z,y), since u(as,a_,b;z) admits a meromorphic
interpolation.

The c-function has the latter feature, too, cf (1.20). Therefore, the interpolation behaviour
of the function M (z, p) is also equivalent to that of F, (z, y), cf (2.27). We already made some
remarks on the interpolation problem for M(z, p) in [2]. (See also section 4.4 of our lecture
notes [7].) Here we can add that (2.59) implies that the poles of the coefficients of the formal
power series eigenfunctions are indeed dense on the imaginary z-axis whenever b is not of the
fom.z ka,+la_,k,! € Z. (This denseness property was already discussed in [1].) This state of
affairs suggests that whenever a non-formal eigenfunction for such b-values exists, for which
the formal eigenfunction F.(z, y) is an asymptotic series, it will have the imaginary z-axis as
anatural boundary.

Let. us I'inal]y consider the case of a rational quotient a_/a, = M/N, with M and
N coprime integers. Then a(ay,a_, b; z) is still well defined for n < N. Likewise,
om(a-, a,, b; 2) has no divergencies form < M. But for larger n- or m-values the coefficients
are divergent, which reflects the equality of (for instance) the monomials s and s¥, cf (2.42)-
On the other hand, it may well be that the pertinent confluence limits are finite. This hunch is
suggested by its validity for the simplest case, which is the limit a, —» . for the lowest order
monomials. Indeed, using (2.61), one easily checks that "

om (o(av,a-, by 2067 + oy (a_, a,, b; 7)e~207) (262)
exists.
3. The elliptic regime

3.1. A modified power series ansatz: the casem +n < 3

In the elliptic case the results fro . o
jqint eigenvalues E.(y) that have 31:1 {1] already mentioned in the introduction give rise to

ymptotics (1.32). But only in some special cases do these

elmAOs (1.10), (1.27). pair of A;-eigenvalues, when A, are viewed as the
g 50,

we obtain more
should clearly onoe the

ste; X 1 inhs y we
drOP the asymptotics R (2 6)-«(2‘8). n the enmc case, B

assumption (2.11). Thus, (2.14) should be omitted 5
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well. But as will now be shown, there does not even exist a function ¢ satisfying both (2.12)
and (2.13). As a preliminary, we note that (1.29) entails the AAE
s(r,a;z+ia/2)
s(r,a; z —ia/2) -
whence one has
s'(r,a;z—ia)  s'(ra;z)
s(roa; z —ia)  s(ra;z)
In order to prove the asserted non-existence, we consider the AAE (2.22) with C, (z) given
by (1.27). The elliptic function C;(z) has two simple poles in its period rectangle, so the sum
of the two residues vanishes. Therefore one can uniquely write C,.(z) as

— exp(—2irz) 3.1

2ir. (3.2)

_ sy(z+ia)  si(2)
Ci(2) = A(as,a-) + Blas,a-) <S+ i) 5@ ) 3.3)
Comparing residues at x = —ia_. yields
B(a,,a_) = e 25, (ib — ia_)s,(ib) /s, (ia_). 3.4
Taking now z = —ib, one obtains
—2br
A(ay, a2) = ——[5,((b)s,,(ib — ia_) — s,(ib)s. (b — ia_)]. (3.5)
sy (ia-)
Defining p(z) by
s (z+ia)
=B+ R
1(z) .G i) p(z) (3.6)
the AAE (2.22) and requirement a; € Py, now yield
plz—ia)—px)=1—-A 3.7)
. si(z+ia)  si(z+ia- — ia+)) .
- — - - = =2irB (3.
pl-ia)—p@ =8 (s+(z ¥ia)  siz+ia- —iay) rh oGy

where we used (3.2).
Taking the z-derivative of the two AAEs (3.7) and (3.8), we obtain p’(z) = ¢ from (1.12).
Thus we have p(z) = cz +d, with

~iga_c=1—A ~ia,c = —2irB. (3.9)
Now from (3.5) and (3.4) we see that A £ 1 and B 5 0. Hence we need
1— A = —2ira_B/a,. (3.10)

But in view of (3.4) and (3.5) this relation only holds for special b-values (in particular, for
b=0)

We are therefore led to an illuminating conclusion: Even at the level of formal power
series, the ansatz (2.4) is not compatible with As-eigenvalues 2 cosh(a_sy), § = +, —.

On the other hand, we may consider a power series ansatz for the eigenvalues, too.
Specifically, let us assume

o0
E;(y) = exp(a—sy) Z efm, exp(—2(ma, +na.)y) ego =1 &=+, —. 3.1
m,n=0
(Hence (1.32) formally follows.) As the generalization of (2.6) and (2.7) we then get

Cmn(Z = 184) —~ Cmn(2) = —C—(2)Cm—1,n(T +iay) + Ze,;_,,‘,,_,ckz(z) m,neN (3.12)
' k4

m,n
Cmn(Z = 10-) = Cn(2) = —Ci(D)Cmp1(z +i2-) + Ee;,k,,.-zckz(z) m,n € N. (3.13)
4 - :
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Here, the summation symbol signifies a sum over ke {01,....m} and | € {0,1,...,n}L
itting the term (k, 1) = (m, n). '
i T:l%ing first m = 0, n = 1 in this recursive system of AAEs, we obtain

co1(z — ias) — co1(2) = €qy (3.14)
cor(z —ia) — e (2) = —Ca(D) + €1 (3.15)
Using as before (3.3)+3.5), we write
@) = % +p(@) (3.16)
so that p(z) satisfies
p(z—ia) ~ p(z) = —A+eg (3.17)
p(z —iay) — p(z) = —2rB +eg;. (3.18)

Thus we get p(z) = cz+4d. ) )

At this stage we cannot rule out that ¢ is non-zero, since we are allowm_g qgm.e ge‘flegl
eigenvalues. But our principal interest is in coefficients ¢mn (z) that are 7 / r-periodic in Z. v
is because the joint eigenfunction ¥ (z, y) from [1] has the property that ¥(z. y) exp(—1zy

x/r-petiodic in z; since c(z) (1.31) is /r-periodic, too, it follows that Fi(z, ¥) exp(—izy) 18
[ r-periodic, cf (1.24).

Accordingly, we require from now on

Cmn(2) € Pryr m,neN. (3.19)
The above then yields

co(z) = Bla., a-)%———}g:—; (3.20)

ey = 2irB(as, a-) (3.21)

e = Alay,a.) (3.22)

with A(a,,a.) and B(a,,a-) given by (3.5) and (3.4), resp. In particular, this entails that
Ej(y) depends on all of the parameters 7, a,., a_ and b, in contrast to the hyperbolic case- '[.‘he
constant yp; cannot be fixed unless we impose further restrictions on coy (z). In this con!lef{“().n
we recall the ambiguity pointed out in the paragraph containing (2.10). Now at the ellipti®
level there is no natural generalization of the asymptotics requirement (2.11). Thus we should
try and fix the dependence on y in some other way.

We will return to the y-dependence shortly, but we allow the ambiguity for the time being-
Clearly, we can repeat our reasoning for the equations

¢z —ia’) — cp(z) = e‘;o ~ (3.23)
(e ~ia) — c10(2) = —C_(2) + ey a2
so that we obtain
0@ = Bla a8 ¢2)
10 (a_,a,) G i) + %0
€l =2irB(a_, a,) e
€0 = Ala-, a,). (3.27)
Consider next ¢;;. We should solve the AAEs
an(z— f“*) ~ @) = ~C_(eor(z +ia,) + €5 + efcon(e) + €1€10(2) 629
nz—ia.) - enfz) = —Co@epiz +ia

9
) + €]y + efyco1(2) + €8y c10(2) (329
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for a 7/ r-periodic function cj;(z). By the same reasoning as before, when such a solution
c11(2) exists, then it is unique up to a constant, while e}, and e, are uniquely determined.
Using (3.15) and (3.24) to get rid of C+(z), one easily verifies that the desired solution reads

c11(2) = [c10(2) ~ 2e]{cor(2) — 2eq,]1 + yus (3.30)
yielding

ey = —ep (ego + 2ejp) (3.31)

€fy = —ejoleq; +2¢5). (3.32)

Before discussing the general situation, we obtain a few more quantities explicitly, namely
Cozs €330 €20, €39, 8 == +, —. The first one should be a 7/ r-periodic function satisfying the
AAEs
coplz — 1) — ¢ (2) = egy + gy co1(2) (3.33)
c(z —ia-) — c2(2) = [co1(z — ia-) — coi(z) ~ g Jeor(z +ia-) + e, +e5ic01(z).  (3.34)

As before, any function with these features is unique up to a constant.
We claim such a function exists and is given by

B(a,,a_)* s(z +ia.)

ce(z) = 2 st + &1c01(2) + S2c01{z +ia-) + vz (3.35)

&1 = cgi(ia) 52 = ey — coi{(0) + coi(ia-). (3.36)

Indeed, the rhs is clearly zr/r-periodic. To verify the AAE (3.33), one needs the identity
siz—iay)  s{@ _ . si@)

2
neoia) 50 Tao ¥ 637
which follows by differentiating (3.2). To check (3.34), one can proceed as follows. First,
although the difference A(z) between the Ihs and rhs consists of terms that are not ia.-periodic,
A(z) is in fact ia,-periodic. (This can be verified by using (3.2) and (3.37).) Therefore A(z)
is elliptic. Requiring now that the residues at the simple poles z = 0 and z = —2ia_ cancel,
one obtains (3.36). Then the residues at z = —ia.. cancel, too, so A(z) is z-independent.
Choosing z = —ib in A(z) so as to exploit C;(—ib) = 0 (cf (1.27)), one now obtains

o - Blasa)’ (SL’(ib) _ si(ib—ia-)
) s.(ib)  s.(ib —ia-)

) + g [ep1 (a-) — cor(—ib +ia_)]

+eor(ia-) — co1(0)Mco1 (—ib) — coi (—ib +ia_)]. (3.38)
Likewise, from (3.33) one gets
J 2' = X .
¢, = Bla,,a_)? (21;-%2—2%% - 2r2) + &5, [cor (ia-) — co1 (0) + &3y} (3.39)

Clearly, we can now determine c0(z) and e%o, 8 = +, —, by switching indices anda., a-.
Therefore, all quantities ¢n (2), €5, With m +n < 2 have now been obtained in explicit form.

3.2. An appraisal of the general case

We proceed with a study of the general simation. Obviously, we can analyse the
system (3.12), (3.13) with boundary conditions (2.8) recursively, the conclusion being that
when a solution satisfying (3.19) exists, then it is unique up to the ambiguity (2.10), whereas
the formal power series (3.11) have uniquely determined coefficients. Now in the hyperbolic
case we could exploit our previous results from [2] to prove that for b = (N, + Da, — N_a_
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the system (2.6)(2.8) does admit a solution. Although the results in [1] suggest that this is
still true for the pertinent elliptic system, we have no complete proof.

In order to explain in more detail what is involved here, it is expedient to consider first two
cases for which existence of a solution does follow from [1]. Specifically, these are the cases
b= (N.+1)a, and b = (N_ + Da_, with N5 € N. (These special cases were also studied
in [8,9].) By 4, + a_ symmetry, we need only discuss the first case.

First, we recall from section 2 in [1] that the function

N. .
Fuz,y) =c(@) W (z, y) = @ H %‘%f;%%‘))—) y € (K.00) (340)

j=1
%s an A;-eigenfunction with eigenvalues E;(y), § = +, —. (We are choosing the function f(y)
in (1.24) equal to 1, since we have no other natural ‘dual choice™ available.) The point is

now thzlat the solutions to the constraint system detailed in [1] admit a convergent power series
expansion

o
2500 =) njx exp(~2ka, y) mo=ija, j=1,...,N, 34D
k=0
for y large enough.

Indeed, from the paragraph in[1] containing equation (2.15) we deduce that the parameters

3’( (aé’d *are related by exp(—2a,y) = £(t), where £(r) is holomorphic at + = 0 and satisfies
and) = g O #0. Therefore, there exists a function H(z) that is holomorphic at z =0
SSE{S es H(0) =0, H'(0) # 0, such that t = H (exp(~2a,y)). Hence we obtain (3.41)-
sing also equations (2.16) and (227)in [1]

i t
expansions we now deduce that there exist convergen
. o0
TRENE@ ) = ) co@exp(-2kay) g =1 (342
k=0
00
XP-aNE-() =Y ey exp(—2ka,y) = = ] 34
=0 00
o0
XP-a-y)E(y) = Y et 4 et
+ g[eko +ey CXP(‘2a_y)] CXP(—Zka+y) 950 =1 (344)

for y large enough. In particular, this entails
u(z) =0 =

. =0 =0 keN leN (b= (N,+Da) (4
in i i

accordance with the special cases calculateq in section 3.1.

Nex
to the hy;frﬁinuédfasﬂf :e e setof bvalues (N, + 1)a, — N_a_, N,, N_ € N*. In contrast
» We are not aware of g complete proof that the system (3.12), 3.13)

with boun iti
these b~va.ldtzz. c’i‘): ons (28) and periodicity requirement (3. 19) admits a solution for all of
ses, we first recall some results from [1]. From

. explain the problem that ar
o . at ari
equations (1.21)—{1.25) n [1}, we deduce that the function

Pz ) = e (g, y) = iy 1l ﬁ s-5z + 2%(y))

3.46)
s=e,— jo S-3(z + ijay) (

y € (K, 00)

— i = 1
stion i +9 =+, ~_ (Thus we bave once again | (y] )ta’ik’d
On IS now whether the solutions zj (») to the constraint system
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in section 3 of [1] admit a convergent power series expansion

00
BO) =Y nlyexp(-2ka, +lal)y) g =ijes j=1,...,N; 8=+~
k=0
(3.47)

for y large enough. If so, this would follow for exp(—izy) F1(z, y) and exp(—a_;y)Es(y), as
well.

Elaborating on the latter question, we observe that the parameters u and ¢; introduced
in [1] are related via exp(—2asu) = f3(t5), where f3(z) is holomorphic at z = 0 and satisfies
f3(0) = 0, £;(0) % 0. (This follows from equation (3.16) in [1] by writing the 1hs as «, and then
exponentiating.) Therefore, there exist two functions H. (z) that are holomorphic at z = 0 and
satisfy Hs(0) = 0, H1(0) # 0, suchthatz, = H, (exp(—2a.u)). From[1] equation (3.17) we
now deduce that we have y = u + H (exp(—2a.,u), exp(—2a_u)), with H(z1, z2) holomorphic
atz; = zz = 0. But we do notknow whether an ‘inverse’ function 1 (z1, z,) exists, holomorphic
atz) = z3 = 0 and such that u = y + I (exp(—2a,.y), exp(—2a_y)). If so, we would have

exp(—2a;u) = exp(~2a5y) Y 74 exp(—2(ka, +1a_)y) (2 (348)
k=0

with the power series convergent for y large enough. Thus it would follow that z? (), hence
exp(—a-sy)Es(y) and exp(—izy) F.(z, y) as well, admit convergent power series expansions
in exp(—2a,y) and exp(—2a._y) for y large enough.

Even when the above question admits an affirmative answer (as we expect), it appears
an intractable task to actually calculate the coefficients explicitly by taking F..(z, y) (3.46)
as a starting point. In the hyperbolic case we could invoke the second, far more explicit
representation (2.36) of the joint eigenfunction, which enabled us to bypass the highly
transcendental dependence of the zero functions zﬁ (y)-on y. But we are not aware
of any alternative representations in the elliptic case, so that a further analysis of the
system (3.12), (3.13) with boundary conditions (2.8) and periodicity requirement (3.19) appears
more promising.

Even though we are unable to prove that the latter system admits solutions for all of the
b-values (N + 1)a, — N_a_, we should repeat that we have shown above that no obstructions
occur for the cases m + n < 2. Moreover, all of the pertinent quantities in section 3.1 are
real-analytic in b for real b. This strongly suggests that formal interpolating solutions with
essentially the same features as in the hyperbolic case do exist.
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