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Stochastic Filtering Theory: A Discussion of Concepts, Methods, and Results*)

by
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ABSTRACT

The purpose of the paper 1s to give an exposition of the stochastic
filtering problem. A definition is proposed for a stochastic dynamical
system, 1n terms of the conditional independence relation. The stochastic
filtering problem 1s then defined as the determination of the conditional
distribution of the state given past observations. Two methods to solve
this problem are sketched. A list with stochastic dynamical systems for

which the stochastic filtering problem has been resolved is given, and

some examples are presented.
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]. INTRODUCTION

The purpose of this paper is to give an exposition of the problem, methods and
results of stochastic filtering theory. The novelty of this paper 1s in the defini-
tion and application ot the concept of a stochastic dynamical system, and 1in the
formulation that includes both sample continuous and jump process observations.

In this paper we restrict attention to observed processes on QXT==-RR. Due to
space limitation we will not discuss stochastic filtering problems for infinite
dimensional stochastic systems, for random fields, and quantum mechanical systems.
Neither will we discuss the important practical issues of asymptotic analysis of
filtering algorithms, filtering techniques, estimation bounds, and adaptive filter-
ing. The reader is referred to the literature on these topics.

We briefly summarize the historical development of the stochastic filtering
problem. Suppose given a stationary second order process specified by 1ts mean and
covariance function, that 1s considered to be observed. The linear observation
prediction problem is to find a linear operation on the observations that yields a
least squares estimate of the future observations. It has been the contribution of
Wiener [44] and Kolmogorov to have reduced this problem to the problem of solving
the Wiener-Hopf equation. The difficulty with this equation is that it seems im-—
possible to solve it in its full generality.

It is the contribution of Kalman, and of Bucy, to have singled out a class of
observed processes for which the linear observation prediction problem can be solved.
The idea underlying their approach is the concept of a state and of a linear dynam-
ical system, as developed by Kalman [17]. The model taken i1s a Gauss—Markov model,
which class allows consideration of non—stationary processes. The linear stochastic
filtering problem is then defined as the linear estimation of the state of this
system given past observation. The resulting algorithms, known as the Kalman and the
Kalman—-Bucy filter for respectively discrete and continuous time processes, have
found wide spread application [14, 15].

At about 1960 a generalization of the linear stochastic filtering problem has

been formulated, in which the linear dynamical system 1s replaced by a nonlinear
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dynamic model driven by disturbances having Gaussian distribution. A precise defini-
tion of a stochastic dynamical system is not given. The filtering problem 1s then
defined to be the estimation of the "state'" of this model given past observations.
For this problem a representation for the estimate has been derived known as the
Kushner—Stratonovich formula [19, 39]. The filtering probleﬁ has only been resolved
for two models.

Since about 1970 the filtering problem for counting and jump processes has
received attention. A model similar to that in the proceeding paragraph has been
adopted. A representation for the estimate of the '"'state" given past observations
has been derived under various sets of assumptions [1, 2, 3, 4, 5, 32, 33, 37, 38,
42, 43, 471.

In this paper we propose a general framework for the stochastic filtering
problem, based on the following principles. The objects we deal with are stochastic
processes defined on a totally ordered parameter set, and, of course, specified by
their distributions. At any time one has a past history that is assumed known with
certainty, and an uncertain future about which one can only speak in terms of con-—
ditional distributions. Then we define a stochastic dynamical system in which the
state transition function and the read-out function map into the distribution of the
state and the observation respectively. The stochastic filtering problem 1s then
defined to be the determination of the conditional distribution of the state given
past observations.

The emphasis in this paper is on conceptual ideas. Therefore no proofs will be
given. In section two we define the concept of a stochastic dynamical system and the
filtering problem . In section three we present two methods to analyze filtering
problems. Some examples are presented 1n section four. We close with some miscella-
neous comments 1n section five. For a comprehensive survey of the literature up to
1974 on filtering theory the reader 1s referred to [127.

We assume that the reader is familiar with the concepts and results of the
modern theory of stochastic processes, in particular on o—algebra families, martin-
gales, stochastic integrals and stochastic differential equations. We refer the

reader to the references [6, 7, 10, 23, 27, 28, 507 for further details.

2. THE PROBLEM FORMULATION

2.1. The set-up. The objects that we will deal with are stochastic processes defined
on some probability space and a totally ordered parameter set. We take as specifi-
cation of these processes their distribution. Estimation will be understood to mean

the determination of the conditional distribution given information.
'DEFINITION 2.1 An observed process will be a collection

{{Q: Fs P}; {T, BT}’ {Rk, Bk}, {Ft’ t ) T}? Y}



where {Q, F, P} is a complete probability space, T < R is an interval, BT the Borel
c—algebra of subsets of T, {Rk, Bk} the k~dimensional Euclidean space with its Borel
o—algebra, {Ft, t ¢ T} an increasing and complete family of o—algebras, y: OXT - Rk

a separable and measurable stochastic process such that {yt, F t ¢ T} 1s adapted.

t?
Usually the distribution of y 1s specified by E[exP(iv'yt)lFS] for all s, t € T,

s < t, Vv € Rk. For short we call {yt, Ft’ t ¢ T} an observed process.

Historically the filtering problem has been motivated by the stochastic obser-
vation prediction problem, which is to determine EEeXp(iv'yt)|Fy]

S
s < t, v € Rk. This problem can be embedded in the stochastic filtering problem.

for all s, t € T,

To define the stochastic filtering problem we need the definition of a stochastic

dvnamical system.

2.2. Conditional Independence. In this subsection we define a relation for a triple

of o—algebras, that will be used i1in the sequel.

DEFINITION 2.2. The o—algebras"Fl, F, are said to be conditionally independent given

the o—algebra G 1ff

ELx XZIG] = E[xllG] E EXZIG]

1

for any X, € le(Fl)’ X, € L]b(FZ)’ Notation {FI’ F,, G} € CI.

PROPOSITION 2.3. The following are equivalent:
a. {Fl’ FZ’ G} € CI:

b. E[x, |F, VG] = E[x |G] for all x
C. {FZ’ Fl’ G} € CI;

d. {FIVG, F.VG, G} € CI.

| € LI(FI);

2

PROOF. Omitted.

The concept of conditional independence 1s known in the literature [27], and 1is
used 1n the study of Markov processes. The equivalent property 2.3.b. expresses that
conditioning F, on FZVG, 1t i1s sufficient to know G only. Thus conditional indepen-
dence 1s seen to be equivalent to a sufficiency property for o-algebras. Sufficient
c-algebras 1n the Bayesian formulation of statistics have been considered in [36].
The concept of a splitting o—algebra, as introduced by McKean [26], is also seen to
be the same concept of conditional independence. The equivalence between these

concepts seems to us to be particularly important for a stochastic system theory.

A publication on certain problems related to the conditional independence

relation is in preparation.

2.3. Stochastic Dynamical Systems. In this subsection we propose a definition for
a stochastic dynamical system. So as not to overburden the paper we consider here

only systems without input.



Briefly, a dynamical system, that we will here call a deterministic dynamical

system, without input is a collectilon
o= {T, Y, 15 X, £, g}

where the state transition function f: TxTxX = X, x(t) = f£(t, s, x(s)), and the read-
read-out map g: TxX - ¥, y(t) = g(t, x(t)) satisfy certain conditions [17, p. 51.

With this definition in mind one way define a stochastic dynamical system as a
collection

st = {@, F, P, T, Y, Y, X £, g}

such that the maps f(t, s, x(s)) b distribution of x(t), and g(t, x(t)) > distri-
bution of v(t) satisfy certain conditions. This definition has been suggested by
Kalman [17, p. 5]. However this definition presupposes a "finite dimensional" state
space. Below we present a definition of a stochastic dynamical system that incorpo-
rates this 1idea.

Because we want to work with stochastic integrals and stochastic differential
equations 1t 1s necessary to cdgnsider the increments of the observation process as
the output of the stochastic dynamical system. The alternative 1s to work with the
observation as the output but then one must use white noise processes 1n the repre-
sentations. For discrete time processes this issue does not arise.

We introduce a somewhat different viewpoint on stochastic dynamical systems.
Let {yt, Fo, te T} be an observed process, where Ft represents past information at
time t € T. With the above intuitive definition of a stochastic dynamical system in
mind a state process {x_, t € T} based on the past {Ft, t € T} should be adapted

{xt, F oo t e T} and such that

E '.?_-' . oo 1 — 'fa e T o ¢ 9 .y _ XS
lexp (iu X + 1V (Yt Ys))ll"s] Elexp (1u X + 1v (yt ys)) {F ]

. - 3! k , :
for all s, t € T, s < t, ue R, v € R. This statement is equivalent to

Ay X .
{tF 7y tF , Ft’ F't} ¢ CI and F't ¢ Ft for all t € T, where
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To obtain a general formulation for stochastic dynamical systems we will work

with o-algebra families rather then with stochastic processes. Thus let {Ft, t € T}

and {Gt, t € T} be o-algebra families, F. representing past information and G
resenting future information at time t ¢ T.

e“
¢ TEP

DEFINITION 2.4. A stochastic dynamical system is a collection

({a, F, P}, T, {6, t e T}, (F, t e T}, {H , t e T})

where {Q, F, P} is a complete probability space, T a totally ordered set,

{Gta t € T}, {Ft’ t € T}, {Ht’ t € T} are complete sub—~o-algebra families of F, such

that for all t € T



{Gt V(V H), F V(VHT), Ht} e CI.
s=t T<t
Then we call {H_, t e T} the state c-algebra at t ¢ T.
;o Ht’ te T} € LS.

, .. : . n
b. If in addition there exists a stochastic process x : @ X T - R such that

Notation {Gt, F

He = F°t for all t € T, then we call (G_, F Ft ¢t ¢ T} a finite dimensional

t?
X
stochastic dynamical system and x the state process. Notation {G_, F., F } ¢ ISF.

DEFINITION 2.5. Given the observed process {yt, F , t € T}.

t?
a. If there exists a complete c-algebra family {H_, t e T} with H. < F_ for all

t € T and {tFAy, Ft’ H t ¢ T} € £S, then we call this collection a forward

t,
. . V
stochastie dynamical system for y. Here tFA = 0({Y5“yt, Vs>t }) .

b. If in addition there exists a process x : £ x T - R} with {xt, F t € T} adapted

t$
such that {tFAy, F, Fxt,t e T} € ISF then we call this collection a finite dimen-—

stonal forward stochastic dynamical system for y. In this case we call

))IFKS]:QXTXTan + C

El exp(iv' (v -y s

=1l

- E[exp(iu'xt)[FXS]:QXTXTXRH~+ C

respectively the stochastic read-out function and the stochastic sState-transition

function of this stochastic dynamical system, where G 1s the set of characteristic

functions Ck: Rk -+ C.

c. A stochastic dynamical system representation is a specification of the stochastic
state transition function and the stochastic read out function of a stochastic
dynamical system.

d. A stochastie differential stochastic dymnamical system representation is a
stochastic dynamical system representation in the form of a pair of stochastic
differential equations driven by independent increment processes for the state pro-

cess and the obserwved process.

The justification for calling the collection {Gt,f? H,,t eT} astochastic dy-

t? t?
namical system 1s 1n the interpretation of the defining property, namely that

{Gt V(gatHS)’ Ft vV(V_H ), Ht} e CI for all t € T, or, equivalently, that for all

TSt T
t e T, A ¢ Gt V(V H ) we have

szt S

E[ I F. V(Y_ B) VHI]=ETI | H]I.

A | :

In words this says that any event in the future information or the future states
conditioned on past information and past states, depends only on the current state.
Thus the two properties of a dynamical éystem, namely sufficiency of the state for
the output and recursiveness of the state, are captured by the above definition.

The definition of a stochastic dynamical system also implies that {g>tHs’

Y<tH.» B} € CI for all t € T, hence {H_, t € T} may be called a Markovian c-algebra
family. If in addition there exists a process x :  x T = R™ such that Ht = -t

for all t € T, then we can conclude that {x F t € T} 1is a Markov process.

t? " t?



Note that in definition 2.4 no restriction 1s given on the o—algebra family
{Ht, t € T}. The term forward in definition 2.5 is now to be understood in connec—
tion with the condition F°t c Fi.; thus the state 1s constructed on the basis of
past iInformation. A corresponding definition can be given for a backward stochastic
dynamical system, reminiscent of backward Markov models. This topic will not be
elaborated here.

Having given a definition of a stochastic dynamical system the following
problems arise, the stochastic realization problem, the definition of stochastic

observability, and related issues. We will leave these problems to future publica-

tions, except for stating the following problem.

DEFINITION 2.6. The stochastic realization problem. Given an observed process
{yt, Ft, t € T},
a. Find, if possible, a o—algebra family {Ht, t € T} with Ht - Ft for all t € T,
A
such that {tF y’ Ft, Ht’ t € T} € IS.
b. Find, if possible, a stochastic process x : Q %X T ~ R with {xt, F

*t ¢t ¢ T} ¢ ISF.

(> L€ T}

adapted, such that{tFAy, Ft’ F

C. Given.{tFAy, Ft’ Fxt, t € T} € £SF. Find, if possible, a stochastic differential

stochastic dynamical system representation for x, vy.

Some examples of stochastic dynamical systems are given in section four.

We point out that the above approach to stochastic cynamical systems differs
essentially from what should be called linear stochastic dynamical systems. There
the objects are second order stochastic processes, specified by their first and
second moment; the spaces are the Hilbert spaces generated by linear operations
on these processes; and the conditioning operation 1s the Hilbert space projection
operation. This formulation is more or less’'implicit in Kalman's work [16], and has
been formalized in the work by Faurre, Akaike, Picci, Lindquist and Ruckebush.

For references see [20, 21, 22, 29]. The definitions given here have been inspired

by these publications, in particular by the work by Piceci [29].

2.4. The Filtering Problem. With the concept of a stochastic dynamical system

defined, we can now present the definition of the stochastic filtering problem.

DEFINITION 2.7. Given the observed process {yt, F t ¢ T} and suppose that

{tFAy, Ft, Fxt, t ¢« T} € ISF.

a. The stochastic filtering problem is to determine the conditional characteristic

_tJ

i

function

Elexp(iu'x ) | Fz]

for all t € T, u € R".

b. If there exists a process z : { x T + R with {zt, Fz, t € T} adapted, such that



{Fxt, Fg; F°t., t € T} € ISF, then we call this collection a finite dimenstonal
stochastic dynamical firlter system for the above defined stochastic filtering prob-
lem. For short, we call this collection a firlter system, and z the filter state.

To determine the conditional characteristic function in 2.7.a. will be under-
stood as to exhibit the function from the past of the observations to the character-
istic function. We will use the term stochastic filtering problem rather than the
term stochastic reconstruction problem, which term 1s suggested by the analogy with
deterministic dynamical system theory [17].

A filter system has the two properties

E[ exp(iu'x ) IFZ]
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E[eXP(lw zt)[FS] El exp(1w'z

or z_ 1s a sufficient variable in estimating x_ given FZ, t ¢ T} 1s a

_ C
Markzv process. The last statement implies intuitively that z can be computed
recursively, but this aspect we have been unable to clarify yet. Clearly the exis-
tence of a finite dimensional filter system 1s important for the practical applica-
tion of this theory. It is not at all clear that the filter state will be E[xtlej.

It can be shown that the stochastic observation prediction problem can be em-

bedded in the stochastic filtering problem. Here we will not consider the stochastic

prediction and the stochastic smoothing problem, which are to determine
Elexp (iu'x, ) |FY]
C S

for t > s and t < s respectively.
A method to solve the stochastic filtering problem is to reduce 1t to the prob-

lem of solving an equation for the conditional characteristic function.

3. METHODS

In this section we present two methods for the stochastic filtering problem,

both of which yield equations for the conditional characteristic function.

3.1. The Semi-Martingale Representation Method. We start by defining two concepts
from the thebry of stochastic process.

DEFINITION 3.1. The process {xt, F , t e T} is called an untformly integrable semi-
martingale 1iff x has a decomposition as x

{at, F t € T} € V

X .+a+m where Xy € LI(FO)’

0

1s of integrable wvariation, aq = 0, {mt, F_, t e T} € Mlu 1s an

t € T} € SM

t’ 1

uniformly integrable martingale, m, = 0. Notation {x_, F

0 t’> " t? lu’
The above class of semi-martingales is a sub—class of those introduced in [28],
to which the reader is referred for further details. The class of semi-martingales

has proven to be an extremely general class of processes, that is closed under a
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large number of operations.

DEFINITION 3.2. Let {yt, Ft’ t ¢ T} be an observed process. We say that the

martingale representation condition holds for the class Mluloc{Fg; t € T} 1f there

exists a sample continuous local martingale m“ and a positive integer valued random

measure p such that 1f m € M {Fz, t € T} then m has a representation as

luloc

m = my+(h.m )+ (9. (p~p))+(¥.p),

for certain predictable processes h, ¢, Y.

Here the expressions on the right hand side are stochastic integrals, we refer
to [10, 28] for details. It is a rather deep and important result in stochastic

integration theory that the martingale representation condition 1s satisfied for a

large number of observed processes.

We formulate a sub-problem of the stochastic filtering problem.

DEFINITION 3.3. Given the observed process {yt, E t € T} and assume that the mar-

t’
tingale representation condition is satisfied forM]uloC{FZ, t e T}.
Let {Xf’ F , t e T} € SM, - The semi—-martingale representation problem 1is to give

a decomposition for the projection of x on {Fz, t € T}.

The solution to this problem is provided by the following ideas. The projection
of x on {F’, t ¢ T} is defined to be & = {E[xtlFZ], FZ, t ¢ T} which is again a seml-
martingale, say with decomposition X = §0+£+54 A relation between a and a can be
given. Then the martingale representation condition is invoked to obtain a repre-
sentation for m. Finally the processes 1n this martingale representation can be de—

termined. The above method has been proposed in [9]. Note the analogy with linear
stochastic filtering theory.
We will not attempt to solve the above problem here. Below we present two

canonical cases. Special cases and generalizations may be found in [1, 3, 4, 9, 23,
32, 33, 40, 41, 42, 43, 48].

THEOREM 3.4. Let the obserwed process {yt, Ft t € T} and x ¢+  x T +-Rn satisfy

dxt = ftdt+dmt, X5

dyt = htdt+dwt, g
where w ¢ @ x T +-Rk, {Wt’ Ft’ t € T} 1s a standard Brownian motion process,

k , ) ' 2 .

h : QX T Rn, {h., F_, t e T} e SM, with E[lethlIl dg] < o,
m :  x T~ R, {mt, F o, t e T} e My, £ : @ x T > R, {ft, F o, t e T} € SMﬂijlth
E[fTUfS“ZdS] < «, and that "x't(m)" < 1 forall (w, t) € Q x T.
a. Then the martingale representation condition holds for the classiM]uloc{Fz,t e T}.
b. There exists a process ¢ : L x T +*Rp+k, {¢t, Ft,t e T} € ZLl(t) N SM]u such

t
that <m, w > S IO ¢Sds.



c. The solution to the semi-martingale representation problem is given by

a _ 72 Sxh = s " _ y
d®_ = f de+[I +¢_ 1 (dy,-h dt), R, = Elx,[Fy],
~xh - NN R
n E[ (x,-% ) (h ~h ) lFt],

where the hat symbol denotes the projection of a semi—martingale on the o—-algebra

{FZ, t € T}.

PROOF [9, 23]
The formula of 3.4.c. 1s known in the literature as the Kushner—Stratonovich

formula.

THEOREM 3.5. Let the observed process {yt, F t € T} and x : Q@ X T - R" satisfy

t?

= +a +
X, Xota +m,

p(w, dtxdv) = h(t, v) u(dt, dv)+q(w, dtxdv)

where vy 1s a pure jump process, p 1ts associated jump measure,

(h(t, v), F., t ¢ T, v € R} predictable, {u((0, tlxA), FY, t € T, A e B} predict-

t?
able, {q(w, (0, tlxA), Ft’ t e T, A € 'Bk} € Mluloc’ X € SM]u with m ¢ M, .
a. Then the martingale representation condition holds foeruloc{F{, t € T}.

b. There exists a predictable process {¢(t,v), F t e T, v € RK} such that

t?

<m, q(w, (O, t]XA) >t - ISIA p(s, v) h(s, v) u(ds, dv).

c. The solution to the semi-martingale representation problem 1s given by

M,

- -t —
X, = x0+at+fOka k(s, v) q(w, dsxdv),

q(w, dtxdv) = (p(w, dtxdv)-h(t, v) p(dt, dv),

k(t,v) = (E[(xt~§t)(h(t, v)-R(t, v))'|F/I+E[y(t, vIh(t, v)!sz) R(e, v

of which a predictable wversion 1s taken.

PROOF [1, section 5].

: , . A
We return to the stochastic filtering problem. Let {tF y, Ft’ FXt, t € T} € ISF,

and suppose that the state process x is a semi—martingale. Then 1t can be shown that
t € T} € SM

for all u € R" the process {exp( iu'xt), F is a semi-martingale.

t?’ lu
Depending on the availability of the solution to the semi-martingale representation
problem for the stochastic system under consideration, one obtains the semi-martin-
gale decomposition for the process ¢(u) = {E[exp(iu'xt)le], Fz, t ¢ T}. In general
one can express the processes in the decomposition as operations on c(u), so that

this representation becomes a genuine equation for the conditional characteristic
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function. One is then faced with the question how to obtain a solution for this

equation.
There are few results on this equation for the conditional characteristic

function. To be specific, one would want conditions for thg exlstence and uniqueness
of the solution, and methods to determine the solution. We mention a few cases 1in
which the equation can be resolved. The first case is where the state process 1s a
finite state Markov process. The second case is where the state process 1s a dis-
crete state Markov process, see [31]. The third case is for the linear Gaussian,
Gauss-Markov model that underlies the Kalman—-Bucy filter. The method consists of
converting the equation to an equation for the conditional moments, which may then
be solved by using properties of the Gaussian distribution; see [13] for details.

Yet another method 1s to extent the results for the discrete time case by a limit-

ing argument, but one would hope for a more direct approach.

3.2. The Measure Transformation Method. A second method to obtain an equation for
the conditional characteristic function is the measure transformation method intro-

duced by Zakai [49].

The idea of this approach is to perform a measure transformation, such that

under the new measure the processes x and vy are independent. An equation for the

Yy
t

solved. The advantage of the method 1s that the independence of x and y under the

operator of conditioning on F then readily follows, which equation has to be

new measure makes the calculations involved easier.
The only assumption necessary for the application of this method 1s the abso—

lute continuity, for which conditions are available in the literature. The generator
for the state process, which is a Markov process by the stochastic dynamical system

assumption, 1s not needed.

The resulting equation obtained by this method can be converted into a semi-

martingale representation as obtained in section 3.1.
The application of this method to sample continuous observed processes may be

found in [45, 49] of which we give a summary below. For jump processes the method

can be found in [1, 2, 5, 61].

THEOREM 3.6. Given the observed process {yt, F t € T} and the process

tS
1 ] .
X ¢ Q xT->R satisfying

1. EEEXP(iV‘(Yt“YS))[FSVSFXﬂ = eXp(iV‘IEC(T)XTdT“%V'Ik(t~s)v)
where s, t € T, s < t, v ¢ Rk, C : T %:kan;

2. {xt, F , t € T} is a Markov process such that

t’

' 2
E[fT "C(r)xT" dt] < o,

a. Then {tFAy, Ft, F*t t ¢ T} e %SF.

b. There exists a probability measure PO : F > [0,1] such that
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1. P <<P0 on F with P+

t A C ~
pp = exp (Jy xLC*(s) dy ~4fg xL C1(s) C(s) x.ds);

E,[dP/ dPolFt],

2. under PO {yt, F o, t e T} 1s standard Brownian motion;
3. under PO F?, F% are independent;

X
4, P = PO on FT.

‘ * q ¥ Yq - S M : y -
Then E[exp(iu xt)lFt] Eo[axp(lu.xt)ptlFt]/EefptiFt] a.s.

c. We have the equation

EOEeXP (iu'xt) P [Fz] = Elexp (iu'xt)]
+fY E [o_ E [exp(iu'x, )|F*SIx' |[FYIc' (s) d
0 “0-Pg "o-E%P Xp o 1F Y-

PROOF [45, 6.51].

4., EXAMPLES

In this section we indicate some stochastic dynamical systems for which the
stochastic filtering problem has been resolved. In the list below we summarize the
stochastic dynamical system by the coriditional distribution for the observed process
and the character of the state process.

The stochastic filtering problem has been resolved for the following stochastic
dynamical systems.

1. The Gaussian, Gauss—Markov system, yielding the Kalman—-Bucy filter [15, 231].

2. The Gaussian, Finite State Markov process system, Wonham [46].

3. The Poisson, Finite State Markov process system, Segall [347, Rudemo [30].

4. The Poisson, Gamma system, Frost [51]], see theorem 4.3. below.

5. The jump process with Gaussian kernel in its dual predictable measure, with
Gauss—Markov state process. Reference Fishman, Snyder [8].

6. The observed process is a function of the state process, while the state process
is a Markov process with a discrete state space, Rudemo [31].

7. The Gaussian, Bilinear system, as presented by Marcus, Willsky L[25].

We remind the reader that we have excluded stochastic filtering problems on
geometric structures, algebraic structures, and partially ordered sets. No claim 1s
made that the above list 1s complete.

Below we present the solutions to the stochastic filtering problem for three

stochastic dynamical systems.

THEOREM 4.1. The linear Gaussian - Gauss Markov system.

n
ps L€ T}, x :+ Q x T~ R, and assume that
t

it ¥ (v = MV T v PR = (3t [ DU P —c )
1. Elexp (iv' (y =y M [F V. F 1 = exp (iv'[_c(t)x_dt=3v'L, (t-s)V)

for s, t e T, s <t, v € Rk, C : T +-kan, Ine kak the unit matrix, Yo = O;

Given the observed process{yt, F



.» F, t € T} a Gauss-Markov process such that E(x.) = O,

Q(t, s) = E[xtx;] > 0 for all s, t € T, x 1s almost surely sample continuous,

TxT - RMT is differentiable and

A0

dQ(t, s)/dt = A(t)Q(t, s),

A(t)Q(t, t)+Q(t, t)A'(t) < -dQ(t, t)/dt.

Then {tFAy, F_, F't, t ¢ T} ¢ ISF.

a.
b. There exists m € Z, and 1ndependent standard Brownlian motion processes

v :  x T +-Rm,'w : O x T +—Rk such that we have the representation

¥
<
{

A(t) xtdt+Q(t,_0)B(t)dvt, Xy

dyt = C(t) Xtdt+dW' = 0,

£2 7Q

nxm . )
where B : T - R 1s a full rank solution to

B(t)B' (£) = Q(t,0)7'[dQ(t, t)/dt-A(£)Q(t, £)-Q(t, t)A' (£)1Q ' (t, 0).

c. The solution to the stochastic filtering problem for the stochastic system

e

of a. 1s given by
Elexp (iu'xt) le] = exp (iu'i’%t—-%u'iﬁ(t)u) .

¥ ,
d® = A(£)X dt+I(t)C (t)(dy -C(t)X dt), X, = E(xy),

dZ(t)/dt = A()Z()+Z()A" (£)+Q(t,0)B(t)B'(t)Q' (t,0)=z(t)C(t)C" ()= (L),

2(0) = E[(XO“E(X0>)(XO"E(XO))']*

d. {Fxt, FZ’ Fxt, t ¢ T} 1is a finite dimensional filter system, known as the

Kalman—-Bucy filter system.

PROOF..The results of a. and b. are easily established. For c. see [23].
I'hnen d. follows.

THEOREM 4.2. The Poirsson—FSMP system. Given the observed process {yt, F t e T},

tﬂ
vy ¢+ § X T->Rand x ¢ O x T > R" and assume that
. X t . iv |
1. E[ekp(lv'(yt“ys))lFSVSF ] = exp(fSC(T)det(e -1)) for s, t € T, s <t, v € R,
Yo = 0, C «: T +_R1xn;

2. {xt, F , t e T} 1s a finite state Markov process, say with state space

t? .
n m 1
X - {Xl’ Xz’wtnxm}c:((),m) ; 1Et Z . Q X T > R 3 Z = I{X

N t mxi}’
$ :+ T x T - R™H

[

¢lJ(t, 5) = EEzizi]/EEzg] ifl EEZi] > 0, s < t,

= 0 , otherwises
| X
assume that ¢é(t, s) > 0 for all s, t € T, and that ¢(-,0) : T > RO

1s differentiable, say with

do (t, 0)/dt = A(t)e (t,0)

for A : T +-Rmxm; let D = (x], xz,...xm).
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a. Then {tFAy, Ft’ Fxt, t € T} € XISF.

b. There exist processes m, m' such that we have the representation

_— ¥
dz_ = A(t)z dt+¢(t, 0)dm!, z,,

=0

dyt C(t)Dz(t)dt+dm

t? yO

where {m,, F t € T} € M., {m!, F t € T} € M,.

t? " t’ t> "¢’ 1
c. The solution to the stochastic filtering problem for the stochastic system of

definition a. 1s

ﬁ - ‘
. - 7 | y — : . % ~ 1

E{exp (iu'x¢) [F71 = .2, exp(iu'x,) 2,
- R ~ . _ - -

dZ_ = A(t)Z de+k _(DZ__) (dy_-C(t)DZ_dt), 2, = E(zq),

i,

~ _ Ca N A A
kt [dlagonal(zt) z Z,

1D'CT(t).

PROOF. The results of a. and b. follow from the theory for stochastic dynamical
systems. For c. see [30, 34].

THEOREM 4.3. Let the observed process {yt, F t € T} with k = 1, and x : Q x T +~ R

t?
satisfy

. Xq _ , L 1v
1. Elexp (lv(yt"ys)> IFS VsF 1 = exp (fsx,rd'c (e 1))
fors,teT,s-ﬂt,veR,yomO;

ot
2. {xt, F

NP Sy T} is a Markov process of the form.xt = e "X,

where Xy * &~ R, has a Gamma distribution with parameters r, B € (0, «), and

a € R_.

Xt

a. Then {tFAy, Ft’ F*t, t € T} € £SF, and we have the representation

dx. = axtdt, X

dyt = xtdt+dmt, Y, = 0,

where {mt, Ft’ t € T} e'Ml. Also y is a counting process.

b. The solution to the stochastic filtering problem is given by
. _ _ ~ +
ECexp(iux ) |F] = (1-iug(t))” T*™,

dB(r)/dt = aB(t)=8°(t), B(0) = B.
Then ﬁt = B(t)(yt+r)-
c. A recursive equation for X is given by

dxt = axtdt+8(t)(dyt%§tdt), Xy = rf,

dg(t)/dt = aB(t)-8%(t), B(0) = B.

i

PROOF. The solution in b. can be found in [51] for the case a = 0. See also [32].
Attempts to generalize the above solution to a larger class of stochastic dynamical

systems have proven futile.
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5. COMMENTS

5.1. Research on the Stochastic Filtering Problem. Here we give a few remarks on the

stochastic filtering problem that may be relevant to future research efforts in

this area.

The practical application of this theory seems to demand finite dimensional
filter systems as solutions to stochastic filtering problems. It seems extremely
~unlikely that the solution to the stochastic filtering problem for arbitrary sto-
chastic dynamical systems will be a finite dimensional filter system. The question
should therefore be posed: find all stochastic dynamical systems that yield finite
dimensional filter systems. One would hope that a resolution of this question also

would yield structural information that may be used in filtering techniques.

We mention a few 1deas that may be used to resolve the above question. It seems
worthwile to require that the conditional distribution E[exp(iu'xt)le] 1s 1nvariant
in time, in other words 1s of the same type for all t € T. If the underlying dyna-
mics are linear, this probably will lead to the class of infinitely divisible dis-
tributions. One way the distribution may be made i1nvariant is to choose a pair of

conjugate distributions [52] for the stochastic dynamical system.

5.2. Open Problems. We mention a few issues that are relevant to the future develop-

ment of a stochastic filtering theory.

1. The formulation of a general theory for stochastic dynamical systems. The 1i1ssues
here are general definitions, the stochastic realization problem, the formulation
of the concepts of stochastic observability and stochastic controllability, etc.

2. The question of which classes of stochastic dynamlical systems yield finite

dimensional stochastic dynamical filter systems.

3. The investigation of equations for the conditional characteristic function. The

1ssues here are the existence and uniqueness of solutions, and techniques to solve

these equations.

4. The extension of the ideas presented in this paper to infinite dimensional sto-

chastic systems, to systems defined on geometric structures, and stochastic systems

on partially ordered sets.

5.3. On Stochastic Filtering and Stochastic Control. Since thilis paper 1s presented

at a stochastic control oriented meeting we briefly indicate the relation between

stochastic filtering and stochastic control.

Suppose given {Q, F, P}, {F., t € T}, an observed process {yt, F t € T}, and

t? t?

(s Fo, toe T} belonging to a class U of admissable 1nput proces-

ses. If there exists a process {x

an input process {u

P Ft’ t ¢ T} such that for all t € T

, Ay b. G Xt u
{tF VF, F_, FCVEF } € CI

tﬂ
then we call the collection {tFAy, F, Frt VtFu, t €« T}, a stochastic dynamical

system, with input.
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The stochastic filtering problem in the context of control is to determine
E[exp(iw'xt)leVFE] for all t € T, w ¢ Rn; 1f there exists a process
{zt, FiVFi, t € T} such that {Fxt, FXVFE, thVtFu, t €« T} 1s a stochastic dynamical
system, then we call this collection a filter system.
The filter separation property 1is said to hold iff
E[eXp(iw'xt)!FzVFg] = E[exp(iw'xt)le] for all t e T, w ¢ R™.

Given a cost function C : Q x U = R . The stochastic control problem is to

find u* e U such that

.y

ELc(u*) |[F{VF, 1 < EEc(u){F{VFE]

for all u € U such that u: = u, for s ¢ [0, t], and all t ¢ T.

The control separation property is said to hold i1ff there is no loss in cost in
restricting attention to controls adapted to the o—algebra generated by
{E[exp(iw'xt)leVFE], t € T}. If both separation properties hold, then the control
process wilill be a function of the filter state.

The above remark should be considered to be a first sketch of a general

formulation.
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