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3.1. Problem formulation *)

Consider a machine that produces each day a product whose quality will

be identified with one of the integers 1,...,M. At the beginning of each
day the machine may be inspected. The costs of an inspection are equal to

J. An inspection 1s done when the decision maker wants to find out the

quality of the product that will be produced that day. **) After an 1n-

spection he knows this quality. When he thinks that this quality (say i)
1s not acceptable, he decides to a revision of the machine. The revision
costs are R(1). Both the time needed to inspect the machine and the time
needed to revise the machine may be neglected. After a revision the machine
produces that day a product of quality M. The production costs 1lncurred at
a day are given by p(i) when the machine produces that day a product of
quality 1, (1 £ 1 £ M).

If the machine produces at day t a product of quality i, then, with
probability pij’ at the beginning of day t+l the machine will be in a
condition to produce a product of quality j (1 £ ] £ M), and, with proba-
bility P:go the machine will be defect at the beginning of day t+l. We
assume p., < 1 and P:g ¥ Psy t oo poy S 1 for all 1 < 1 < M. When the
machine 1s defect at the beginning of a day, the machine 1is repaired. The
repalr costs are R(0) and the repair time may be neglected. After a repair

the machine produces that day a product of quality M.

It 1s assumed that the machine becomes eventually defect when never a

revision occurs.

The decision maker wants to determine a strategy for inspecting and

revising the machine such that the long-run average costs per day are

minimal.

* )

**)

This report presents the elaboration of chapter 3 in [1].

It is assumed that the quality of the finished product cannot be
checked.



3.2. The state space, the natural process and the functions k(x;d) and

t(x:;d).

We first introduce some notation. Let Pog = 1, and let pOj = 0 for
1 < j £ M. Define the Markov matrix P by P = (pij)’ 1, = l,...,M. State O
1s an absorbing state of P. Further the states l,...,M are transient states

of P, since the machine becomes eventually defect when it 1is never revised.

Define for 1,3 = 1,...,M,
(1) _ ™ o T (1) for n 2 2
Pij ~ Pi; @ Pij T L, Pik Pk -
Observe p(n) < 1 for all 1 2 1. For 1, = l,...,Mand n =2 1, let

10
~(m) _ () (n) KNG
Pi;0 = Piy /{1 = pip’t and  a(im) = ) Byt (17pgq)

1]

We may interprete these probabilities as follows. For that purpose we con-

sider the situation in which neither the machine 1s inspected nor is re-

vised nor i1s repaired. Then, pi(.g) (respectively p].(_:t.j:) s, ] 2 1) 1s the proba-

bility that at day t+1 the machine 1s defect (respectively will produce a

product of quality j), given that at day 1 the machine produces a product
~(t)
pij’

produces a product of quality j, given that the machine i1s not defect at

of quality 1. Further, 1s the probability that at day t+1 the machine

the beginnihg of day t+1 and that at day | the machine produced a product
of quality i. Finally, q(i,t) is the probability that the machine is not
defect at the beginning of day t+2, given that the machine is not defect at
the beginning of day t+1 and that at day 1 the machine produced a product
of quality 1.

For this problem it suffices to specify only the state of the system

at the beginning of each day. We take as state space
X ={0,1,...,M} u {(i,n) | i=1,...,M; n=1,2,...}.

State 0 corresponds to the situation where the machine is defect, while

state ] =2 1 corresponds to the situation where the machine will produce a



&

product of quality ] provided that the machine will not be revised. Final-
ly, state (i,n) corresponds to the situation 1n which the machine is not
defect and n days ago the quality of production was known for the last time
where this quality was 1.

Next we define a natural process. We assume that in the natural pro-
cess neither the machine 1s 1nspected nor is revised nor 1s repaired. Hence
the natural process remains forever in state 0 as soon as this state 1s
taken on. When the natural process starts in state (i,n), the next state 1is
(i,n+1) if the machine does not get defect (the probability of this event
1s q(i,n)), otherwise 0 1s the next state. When the natural process starts
in state 1 =2 1, the next state 1is 0 1f the machine gets defect (the proba-
bility of this event 1is PiO)’ otherwise (1,1) 1s the next state.

Finally, we define the feasible decisions. In state Q0 the machine has
to be repaired. By thils intervention the system 1is transferred instanta-
neously into state M. In the states 1 = 1l,...,M-1 both the null-decision
and the intervention ''revise the machine' are feasible. By the latter in-
tervention the system 1s transferred instantaneously into state M. In state

M the null-decision 1s the only feasible decision. Let us assume that for

each 1. = 1,...,M we may choose a positive integer Ti such that 1in state
(i,n) with n 2 Ti the only feasible decision is to inspect the machine. In

the other states (i,n) both the null-decision and the intervention ''Inspect
the machine' are feasible. By the latter intervention in state (i,n) the

system is transferred instantaneously into one of the states 1,...,M where

>

; 1s the probability that the system takes on state j.

In each state there 1s at most one feasible intervention. Let us de—
note any intervention by d = 1.

Clearly, point (D) on p.2 in [1] is satisfied for

A =

M
0 :

{(i,n) | n=T.} u {0}.
1=1 1

To determine the functions k(x3;d) and t(x;d), we choose (see p.5 in

L1]),

O1 02



, i = 1,2. Consider first

i

Since AO] AOZ’ we write Wo S Yoi and Wy T W

the walk w. with initial state i = 0. It 1s easy to see

—0
(3.1) kO(O) = tO(O) = 0
M
(3.2) ko(l) = p(1) + j§1 pj.l.._.i kO(J) for 1 =1,...,M
M
(3.3) tO(l) = ] + j‘é] Pij tO(J) for 1 = 1,...,M

The systems of linear equations (3.2) and (3.3) have a unique solutiomn,

since 1,...,M are transient states of P. Consider next the walk w; with

il

initial state 1 < M. By the intervention d 1 the system 1s transferred
instantaneously into state M. It now follows that k] (131) = R(1) + ko (M)

and tl(i; 1) = tO(M). Hence for 1 = 0,...,M~1,
(3.4) k(i;1) = R(1) + ko(M) - ko(i) , t(i31) = tO(M) - to(i).

Consider now the walk W, with initial state (i,n). The probability that at

the first day of this walk the machine produces a product of quality J 1s

;é?). Hence,
M M
, : ~( .. , ~ :
G:» k() = p;7) ko) £o(Cim) = L RN IR

Finally, consider the walk w, with initial state (i,n). By the intervention

i

"inspect the machine'" the system is transferred instantaneously into state

~(n)

] with probability pij . Hence, for 1 <i <M and n =2 1,

. T ~(n) T ~(n)
(3-6) k,((i,n);1) = J + j;l Pii ko()s t ((i,n);1) = j;l Pi;  tod)-

From (3.5) and (3.6)
(3.7) k((i,n);1) =J and t((E,n)3;1) =0 for 1 <1 <M; n = 1.

So the functions k(x;d) and t(x;d) can be calculated from (3.1) - (3.4)



and (3.7).

3.3. The functional equations.

Any strategy z can be characterized by M positlive integers

tl(Z),.*.,

the null-decision in the states (i,n) with n < ti(z) , strategy z dictates

and by a set Rz c {1,...,M-1}, where strategy z dictates

the intervention ''inspect the machine' in the state (i,ti(z)) for

1 =1,...,M, and where RZ consists of the states in which strategy z dic—
tates the intervention ''revise the machine'". Clearly, under such a strategy
z the states (i,n) with n > ti(z) are transient states. Hence 1t 1s no re-
striction to assume that strategy z dictates an intervention 1n the states
(1,n) with n > ti(z) . Observe that for any strategy the associated Markov
chain {I } has no two disjoint ergodic sets, since state M can be reached

-1
from each state. Also, observe that in this problem an intervention in a

state (i,n) 1in Az may transfer the system instantaneously into a state j in

Az (cf. p.4 in [1]). Nevertheless the theory of chapter 1 applies since the

number of interventions in a finite time 1s finite and any intervention

leads to a state outside AO.

Fix a strategy z which is characterized as above. To determine a solu-

tion of the functional equation (9) on p.8 in [ 1] *) , we put
(3.8) c(z;0) = 0.

The intervention d = 1 in state 1 transfers the system into state M. Hence,

by (3.9), c(z;0) = k(0;31) - r(z) t(051) + c(z;M), so

(3.10) c(z:M) = -k(0;1) + r(z) t(0;1).

*) We will use repeatedly the following useful relation:

(3.9) c(z:x) = k(x;z(x)) - r(2) t(x;z(x)) + Ec(z;v) for x € A_,

where v is the state in which the system is transferred by the intervention

z(x) in state x. This relation can be easily deduced from (9) and (10) 1in

[1].



Further,

(3.11) c(z:1) = k(i;1) — r(z) t(i3;1) + c(z;M) for 1 e RZ.

For initial state 1 ¢ R the next intervention state is one of the states

Z

(i,ti(z)) and 0, where the probability that 0 i1s the mnext intervention
(t.(z))

state equals pio1 . Hence, by (10) in L1] and (3.8),

(3.12) c(z:i) = {1 - P: } c(z;(i,ti(z))) for i ¢ R_-

Using (3.7) and (3.9), we have for 1 < 1 < M,

v ~(o)
(3.13) c(z3(i,n)) = J + ) p..

L i c(zs53) for n 2 ti(z).

Finally, for initial state (i,n) with n < ti(z) the next state 1s one of
the states (i,n+l1) and 0, where q(i,n) is the probability that (i,n+1) is
the next state. Hence *), by (3.8), for 1 £ 1 £ M,

(3.14) c(z;(i,n)) = q(i,n) c(z;(i,n+1)) for n < ti(z).

We shall now demonstrate that in fact we need only to solve a system of

lel + 1 linear equations, where

(3.15) R = {1,...,M} \ R -

™/

From (3.13) with n = ti(z), (3.12), (3.11) and the definition of pi(_?) it

follows after some straightforward calculations that

* )

Use the following relation. If A > A,, then c(z;x) = Ec(z;a) for x ¢ A,,
where a 1s the first state i1n A taken on by the system when the system

is subjected to the natural process and x 1s the initial state. This
relation follows directly from (10) in [11].



(ti(z)) <ti(z))
(3.16) c(z;i) = {1 - P: }J o+ ) P. . {k(j;1) - k(0;1)} +
jeR J
Ve
(ti(z))
- r(z) ) P {t(3:;1) = £(O:;1)} +
jeRZ 3

(t,(2)) _

+ Z Pij c(z;3) for 1 € Rz.

JeRz
By (3.10) and (3.16) the quantities r(z) and c(z;i) for i ¢ ﬁz are deter-

mined uniquely (observe that state M belongs always to ﬁz). When these

quantities have been calculated, c(z;x) for x ¢ R can be calculated suc-

Z
cessively from (3.11), (3.13) and (3.14).

3.4. The policy improvement operation and the cutting mechanism.

For strategy z, let (r(z),c(z;x)) be determined as described in sec-
tion 3.3. First we shall specify the policy improvement operation for the
determination of strategy z'. Using (3.7), we have by (15), (12) and (11)
in [ 1] that state (1i,n) with n < ti(z) belongs to Az, if and only 1f

(37 el.zsm) =T+ ] 53 elz3i) < elz5(i,m)

Jm
Further, state 1 with 1 < 1 < M and i ¢ AZ belongs to AZ' 1f and only if
(3.18) c(l.z:i) = k(i31) - r(z) t(is3l) + c(z:M) < c(z;1).

For any state x € AZ we have by (12) and the agreement below 15 in [1] that

z'(x) = z(x). Hence

*

(3.19) c (z:x) = c(z:;x) for x € A ,

and, by (3.17) and (3.18), for x € A _, \ A,



(1,n),

O
)
7N
N
N’
H
=
o
|

?Tl
N
}..l
Proumssch
S’
l
H
N
N
Nt
ﬂ
7N
H
B e
S’
+
O
N
N

W
e
-
P
Hh
"
Il
lml

Before we specify the cutting mechanism for the determination of the

set A;, , we consider the following optimal stopping problem. We have a

Markov chain with a finite state space S and with one—step transition prob-

abilities q_ . Let § = 5, U S, U S,, where S, and Sj are disjoint for 1i#j.

The Markov chain has to be stopped on SO’ the Markov chain may be stopped

on Sl and the Markov chain cannot be stopped on SZ' It is assumed that the

set S0 will be reached with probability 1 from each initial state. When the

Markov chain is stopped in state s, a cost c(s) 1s incurred. For this stop-
ping problem, let M(s) be the minimal expected cost when the initial state

*)

1s s. Then ,

(3.21) M(s) = c(s) for s € S

03
(3.22) M(s) = minfc(s), } q_, M(t)] for s € S,
teS
(3.23) M(s) = }: A+ M(t) for s € 82.
teS

Also, the smallest optimal stopping set 1s given by

(3.26)  Syudses | e(s) < I a, M)},
teS

Let us now return to the determination of the set A;, (see pp. 11-12 in

[1]). This set is determined by the natural process and the cost function
* o

¢ (z3x), X € Az' . Let us recall that when the natural process starts 1in
state (i,n), the next state of the natural process is one of the states

(1,n+1) and 0, where q(i,n) 1s the probability that the next state 1is

*) C.f. chapter 8 in C. Derman, Finite State Markovian Decision Processes,
Academic Press, New York, 1970.



(i,n+1). When the natural process starts in state 1 > 0 the next state of
the natural process 1s one of the states (i,1) and 0, where P: 0 1s the
probability that the next state is 0. Now, we have that the set A;, 1s the

smallest optimal stopping set for the stopping problem in which (cf. p.12
in [1] and cf. [2])

q(i,n),(i,n+l) = q(1,n), q(i,n),o =1 - q(1,n),

and c(x) = c*(z;x).

Due to the special form of the transition probabilities qij we can deduce

from (3.21) - (3.24) a simple algorithm to construct A;, , since these

states belong to A.. By (3.21), (3.20) and (3.8),

0°
(3.25) M((i,Ti)) = c(z;(i,Ti)) for 1 <1 <M and M(0) = 0.

Now fix 1 with | £ 1 £ M. To determine which states (i,n) with n < T:i'. be~

long to A;, , we proceed as follows. Consider successively the states

(i,Ti--l), cees(i,1). By (3.24) and M(0) = 0, state (i,Ti--k) belongs to A;,
1f and only if this state belongs to A;, and '

(3.26) c*(z;(i,Timk)) < q(i,T,~k) M((i,T,~k+1)).

By (3.22) and (3.23),

—

> " . . _ ° " - t
C (Z,(l,Ti k)), 1f (1’Ti k) € Az"

(3.27) M((i,Ti“k)) =
q(i,Ti-k) M((i,Ti-—kH)) . otherwise.

*) The states (1,n) with n > Ti need not be considered in the stopplng
problem.
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When we have classified state (i,Ti"k) , then we can next classify state
(1 ,Ti“k--l ) .
Finally, by (3.24) and M(0) = 0, state i # 0 belong to A;, i1f and only

1f 1 ¢ A , and
Z
(3.28) ¢ (z31) < (1-p; ) M((i,1)).

An examination of the policy improvement operation and the cutting mecha-
nism shows that for this problem these procedures can be combined. This

will be done in the next section where an algorithm for the determination

of an optimal strategy will be given.

3.5. The algorithm

The n—th step of the algorithm runs as follows.

n—th step

z(n“l)

(a) Let z = be the strategy obtained at the end of the (n-1)-th step

(start step 1 with an arbitrary strategy). The strategy z 1s characterized
by the set Rz and the integers ti(z) s, 1 £ 1 <M (cf. section 3.3). Deter-
mine the unique solution (r(z)j;c(z;i), 1 € ﬁz) of (3.10) and (3.16). Next

compute c(z;1) for 1 € Rz from (3.11).

(n))’ | <

(b) To determine the integers ti(z 1 < M, corresponding to stategy

, (n)

, we perform for each fixed 1, 1 < 1 < M, the following procedure. Let

~(T3) .
P c(z3;]) and ui(Ti) = T..

T 1

I~ 2

ai(Ti) = J + ;

Successively for k = 1,... ,Ti"ti(z) , we compute

M ™)
sy =+ é P, 5 c(z33), &, = q(i,T,~k) a, (T ,~k+1),



otherwise, we put

ai(Ti“k) = g and ui(Ti“k) = ui(Ti“k+1).

k2
When this step has been done for k = 1,...,Ti“ti(z)a we proceed as follows.
Let
M (e, (2))
R.(t.(2)) = T+ ) P; ; c(z33)
j=1
Successively for k = Ti“ti(z)+1,...,Ti“l,'we compute
M N(Ti*-k)
B, (T.-k) = q(i,T.,~k) B, (T.~k+1); b = J + j;l P, 5 c(z33);
and bk2 = Q(l,Ti“k) ai(Ti"k+1),
and, 1if bkl < Bi(Ti"k) and 1f bk] < bkz,*we put
ai(Ti“k) = bkl and ui(Ti“k) = Ti - k,

otherwise, we put

ai(Ti“k) b and ui(Ti“k)

1e9 ui(Ti“k+]).

The final number u.(l) equals the i1integer ti(z(n)) corresponding to

1
strategy z(n). Next we determine the set R (n)° To do this, we subject each
4
of the states 1 = 1,...,M-1 to the following test where we distinguish be-
tween 1 € R.Z and 1 ¢ Rz.
State 1 € R, belongs to R (n) 1f and only if

Z

c(z;1) < (1-p.4) a.(1),

while state i ¢ R_ belongs to R‘(n) if and only if both
Z

c(z:1) > k(131) = r(z) t(i3;1) + c(z;M)
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and

(1-p, o) o (1) > k(i31) = r(z) t(i31) + c(z:M).

End of the n—th step

3.6. Numerical example

The following numerical data are given

M

Winpie
—

10, Ti =25 fori=1,...,10, J = 30

inb——— T L T R il e T Srerpppegpp il TR Rl

el -+l i il — M il ——

H
e
V"

i o
o’

pij’ 1 =0,...,10

0 | 130 1 0o o0 ©0 O ©O0 0 0 0 0 O

N 50 | .5 .5 0 o0 O O O 0O 0 0 o0

2 | 9 50 | .2 .2 .6 0 O O O OO ©o0 o 0|

3 | 8 40 o .2 .2 .6 0 0 0 0 0 0 o
4 |7 40 o o0 .2 .2 .6 0 0 0 0 0 0
B 6 0 | o o o .2 .2 & 0 0 0 0 o
K 5 35 | 0 0 O0O ©o0 .1 .2 .7 0 0 0 o
7 4 35 °o o o0 o0 O .1 .2 .7 0 0 o0

8 | 3 35 o o o0 o0 0 0 .1 .2 .7 0 0

: 3 35 o 0 0 O o0 0 0 .1 .2 .7 o

10 3 o 0 O O o ©o ©o0 o0 0 .2 .8
ISt s tep

(1)

We begin with strategy z which is characterized by

R (1) = {1,...,9} and ti(z(l)) = 25 for 1 = 1,...,10.

: ] .
We find r(z( )) = 9,76. The function c(z(l);i) and the strategy z(z) are

given in table 1, where the states of R (2) are marked with (*).
Z



2

nd

step

We find r(z

End of the ISt step

given 1n table 2.

E

nd of the 2n step

T"“*

! —

1
2
3
A
5
6
/
3
9
O

d

i A = e il

(2)y _ ¢

;1)

,96. The function c(z

(2)

ti(

;1) and strategy z

NEN

Table 1

(3)

are

Table 2

13
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g:d step
We find r(z(s)) = 8,93. The function c(z(3);i) and strategy 2(4) are
given in table 3.
4 t %)
I ~92. 14 *) 1 ‘
2 -91.25 ) | I ”
3 -89.38 (%) 1
| 4 | -85.50 (%) 1
5 ; -80.12 | (%) 2 Table 3
6 | -73.82 (%) 4
7 | -61.16 | (x) 6
8 -45.62 (x) i 8
9 10
10 15

End of the Brd step

(3) (4)

Since z = z » we have that strategy z

(4)

1s optimal.
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