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THE APPLICATION OF ITERATED DEFECT
CORRECTION TO THE LOD METHOD

FOR PARABOLIC EQUATIONS

J. G. VERWER
Abstract.

The paper 1s concerned with the numerical solution of the initial boundarsy
problem for a class of multi-dimensional parabolic partial differential equatic
particular the time-integration of semi-discrete equations is investigated. An atte
made to develop integration formulas being computationally attractive and c
accuracy, while possessing unconditional stability properties. To that end iterated

correction 1s applied to the LOD method. The convergence properties of this proc
investigated. Numerical experiments are reported.

Key words and phrases: Numerical analysis, Parabolic partial differential equ
Locally one-dimensional method, Iterated defect correction.

1. Introduction.

Let @ denote a bounded and path-connected region in the k-dimen
(X4,- . .,X,)-space with boundary df2 parallel to the coordinate axes. Consid

parabolic partial differential equation of the non-linear type
K

(1.1) u, = » Filt,Xqy. oy Xp Uy Uy, U

7 X xixi) ?
1 =1

defined in the set (0, T) x Q. Let a boundary condition be given in the fo
(1.2) a(t,Xxq,...,xJu+b(t,x,,....,xJu, = c(t,Xy,.. ., Xz ,

(t,Xy,....x;) € (0, T] x 2Q, u, normal derivative, and assume an 1nitial func
given at t=0. In this paper we are concerned with the numerical solution
initial boundary value problem when brought in an explicit, semi-discretizec
.e., we primarily discuss the numerical integration of the system of or
differential equations

(1.3) y =f(ty), te(0,T), y0) =y,

being obtained from discretizing the space variables in (1.1)—(1.2). It 1s as
that the semi-discretization has been performed in such a way that f satisf
linear splitting relation

K
(1.4) f,y) = ) filt,y),

1=1

Pt AT o kit TT————, e
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THE APPLICATION OF ITERATED DEFECT CORRECTION ... 3RS

where the ith splitting function f; approximates the one-dimensional operator F,

(ct. [4]). Then each derivative ¢f;/Cy is a band matrix, usually a tridiagonal one.
The paper has been written in order to investigate the application of iterated

defect correction [2, 3] to the locally one-dimensional splitting formula [7,4]

Yoy = Vs
1-0) Vi = Yi-nt+tiltsnye).  i=1(0k .
1 y\*-}-l — _)-"(k) .

In this one-step integration formula =t ,, —t, denotes the steplength and .
denotes an approximation to the exact solution y(z) of (1.3) at t=t_. It is easy to
see that the order of consistency of (1.5) 1s equal to 1 for every splitting (1.4).
Observe that if k=1, (1.5) reduces to the implicit Euler formula.

The purpose of the investigation i1s to find integration formulas for systems
(1.3)—(1.4), which are more accurate than the LOD formula (1.5) and which
possess its attractive unconditional stability property [7,4], as well as its advantage
of being computationally attractive (per integration step). The idea of iterated
defect correction, when applied to (1.5), may lead to such integration formulas.

In our investigation we adopt the approach followed by Frank & Ueberhuber
[2]. They investigated iterated defect correction for the efficient solution of stiff

systems. Their basic formula 1s implicit Euler. Because our splitting formula is
closely related to implicit Euler, many of their results carry over.

2. The IDEC-process for the LOD splitting formula.

In this section we shortly describe the IDEC (iterated defect correction) for the
splitting formula (1.5). Details are omitted as these are clearly discussed in [2] and
[6]. Let the solution of (1.3) be required on the interval [0, T]. Introduce the
sequence of subintervals [H;, H; ., ], not necessarily equidistant, where H, =0 and
H, =T for a suitable integer i,,. We now restrict the discussion to the first
subinterval [0, H,;] on which we define the equidistant step points

(2.1) to = 0, t,=VvH;/m, v = 1(1)m,

with 1 <m <4. For practical reasons we do not consider values of m>4. Let j

denote the iteration index of the IDEC. The process then consists of the following
steps:

1°. Set j=0. Apply method (1.5) on the grid (2.1) to system (1.3) to obtain the row
n®=[ns,...,n%7] of approximation vectors n°. Here ng=y,.
2°. Define the jth defect function

(2.2) di(t) = (PY(r)—f(t, P'(1)),

where P’(t) is the vector polynomial of degree <m interpolating #/, i.e., P/(t,)=#]
for v=0(1)m, and compute the defects

BIT 19 — 25



386 J.G. VERWER

(2.3) d’(t,) (P))(t,)—f(t.nd), v=1(1)m.

I

3°. Define the initial value problem y' =/f(t,))+d’(t), y(0)=y, and apply (1.5) to
this problem on the same grid (2.1) to obtain the row n/=[n),. .../ ] with =}
=y,. Herewith it is assumed that ¢’ has been added to the first splitting
function f,.

4. Improve, i.e. compute the (j+ 1)th approximation row »’*! by

(2.4) T =yl 4y —nl .
5°. Increase j and proceed with 2.

We apply the local connection strategy [ 2], re., after the last iteration step on
[0, H,] we simply repeat the whole process on [ H,, H, ], and so on. The additional
programming effort to implement the IDEC 1s small. The required derivative
values (P’) (t,) are easily determined from differentiation of Lagrange’s formula [1,
p. 878]

m

! Z w,‘.xPj(_rx)., v=1(1)m.

x = ()

(2.5) (PY(1,)

|

For m=4 the constant weights w_, are given in [1, p.914].

[t can be shown that the fixed point of our IDEC coincides with the solution of
the polynomial collocation method 1n the step points (2.1), which, in turn, may be
interpreted as the fully implicit Runge—Kutta method

nt

(2.6) n¥F = yot+1t > W S(t.n¥, v=1(1m.

x =1
The coefficient matrix W= (w_) with v,x=1(1)m is the inverse of the weight
matrix W= (w,). If m>1, methods of this type are also called block methods.
Each result ¥ 1s mth order consistent, 1.e. the local truncation errors are of order
m—+ 1 in 7. Hence, 1t is expected that the order of the iterates »/ is equal to or
smaller than m. In our case the order of each iterate equals min (j+ 1, m). Thus the
optimal order 1s reached after m—1 IDEC 1terations.

For the stability test-equation y' =y, yv(0)=y,, ~ € C, we have

(2.7) o = @.(S)yy, S = mti,  v= 1(1)m
¢, being a rational function satisfying: ¢ (s)~1/s, Re (s) — — oc. The stability
function of the method 1s ¢, which 1s A-acceptable for m<2. For 3=m=<4 the
function ¢,, 1s A (x)-acceptable with « close to n/2 (cf. [2], fig. 6). As a consequence,
the 1 =m £ 4-formulas (2.6) possess attractive unconditional stability properties for
semi-discrete parabolic equations.

3. Convergence of the IDEC.

We investigate the convergence for the linear test-model being usually
considered in the stability analysis of splitting methods [4], viz.
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(3.1) Vi=Jy, J = > J,;,

where the constant matrices J; share the same eigensystem and are symmetric and
negative definite. As in similar situations, it then suffices to consider a scalar
equation [6]

(3.2) Vi= Ay = A+ oo+ A4y, A < 0, y(0) =y,

l

where each 4; represents the eigenvalues of J,. The LOD method now yields

Ll (1—z)7 ', z, = t4,.

1=1
When applied to the scalar equation y'=Ay+d(t), the LOD method yields y, .,
= R[y,+1d(t,, )], provided d(t) has been added to A,y (compare point 3° of
section 2). Because of the tact that implicit Euler gives recurrence relations of the
same type (the stability function R is then replaced by (1 —z) ', z=z,+ ... +z)),
it thus follows that many results in the convergence analysis given in [2] carry

over to our situation. In particular, when applied to (3.2) the IDEC process
reduces to the recurrence relation

(3.4) AT = S+ Ve i = s omi]T

with S, a constant matrix of order m and V,_, a constant vector of length m.
Obviously, we have convergence 1if the spectral radius o(S,)<1. The explicit
construction of §,, and V,, 1s carried out 1n appendix 1 of [2] (see also [6]). Here
we do not need S,, explicitly, but merely state that its elements are functions of z;,
i=1(1)k.

Let us proceed with the investigation of a(S,) for z; <0, i=1(1)k, and arbitrary
splittings z=z,+ ... 42z, k=2. For the simple case m=1 1t can be shown
analytically that, for z, <0, O<o(S,)<1. Further, ¢(S§,) — O 1if all z; — 0 and
g(S,)— lifall z;, - —oc. If m>1, explicit expressions of a(S,,) are not availabls

and we can only state a result for the two limit cases (cf. [ 2, 6]}):

THEOREM. For all m=1 the following relations hold:
a) limo(S,)=0 if all z, — O,

!

b) Iimao(S,)=1 if all z;, - — 0.

Let us now temporarily assume that indeed o(S,,) <1 for z;<0. Then, at first
sight, for z;-values close to zero we may expect a rapid IDEC convergence,
whereas for the larger ones convergence is expected to be slow. We shall consider
this point in more detail. The initial approximation #° in (3.4) is given by #°
=[Ry,,...,R™,]% According to (2.7), the vth element of the fixed point vector
i*=U—S,)"'V_can be expressed as n*=¢,(mz)y,. Hence, the vth imtal
iteration error, say ¢’ =n*—n?, is given by
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(3.5) e? = [ (mz)— R"]y, -

From the damping properties of ¢ and R it thus follows that components of the
solution of (3.1) belonging to large negative eigenvalues are damped in the 1nitial
IDEC iteration error. Often, these components (approximations to Fourier
coefficients belonging to higher harmonics [6]) are already small in the initial
vector of (3.1). Hence, at least in the initial phase of the iteration, 1t 1s expected
that the decrease of the iteration errors & is governed by the small z;-values.
Unfortunately, the speed of convergence decreases if j increases. This is due to the
fact that, for (3.1), the errors &/ tend to lie in subspaces spanned by dominant
eigenvectors of J. For these eigenvectors convergence is slow. Consequently, 1t 1s
of no use to perform a large number of iterations. We illustrate this phenomenon
in the example at the end of this section.

For k=2 and m=1(1)4 we computed ¢(S,) numerically at the points (z,,z,),
z.= —1/4, |=0(1)80. All computed ¢ are smaller than one. A plot of the maximal
o-values as a function of z, is given in fig. 3.1. We see that for small z-values
the speed of convergence decreases with increasirfg m.

-20.0 -17.50 -15.00 12 .50 -10.00 -7 .50 . -5.00 -2.50

Fig. 3.1. Maximal o-curves.

An itlustrative example. Let the integer N 2 1, and denote h=1/(N + 1). Suppose
k=2 and let equation (3.1) originate from semi-discretization of U, = Uy o, T Uy,
defined on (0, T} x {(x,, x,) ‘ 0<xy,x, <1} with u=0 on the boundary and initial
function s(x,, x,). Assume that the semi-discretization has been performed on a
uniform grid of size h with second order symmetrical finite differences. The LOD
matrices J, and J, are then given by J, =I®A4, J,= A®I, where I denotes the
unit matrix of order N, A the standard finite difference matrix, and the symbol ®
direct product. These matrices satisfy the requirements of the test-model.
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To get some insight 1in the convergence behaviour of the IDEC. we did some
experiments for the special initial function

| . SIN 77X SIN 7TX
S(X{,X5) = - L R

(3.6 " (1 —2xcos (mx,)+ o) (1 —2x cos (mx,) + %)

<1 .

The Fourier coefficients of (3.6) are given by o' 7/ 72 i j=1,2.... (see [6]). Hence,
If « — 1, we expect that the convergence slows down. We applied the IDEC for m
=1(1)4, each time on 4 subintervals [0, H, ] =[0,mt] for x =0,0.1 and 0.5. In table
3.1 we list the number of iterations necessary to satisfy |5/7!' —#/|| <0, 0 being
given 1n the table. In all experiments N =10, 1.e. i=1/11. As the eigenvalues of
both J, and J, are given by —4h ™ “sin? (jnh/2), j=1(1)N, the z,-values (see fig.
3.1) lie approximately between —n°t and —484t. The number — 2 approximates
the smallest eigenvalue. If only the first harmonic is present in the nitial function,
re. =0 1n (3.6), the speed of convergence 1s completely determined by the
product of 7 and this smallest eigenvalue.

The results of the convergence experiment show that, despite the damping as
pointed out n (3.5), the IDEC 1s rather sensitive with respect to the higher
harmonics. The experiment also shows that mostly the speed of convergence
decreases with the number of iterations (provided «0). Because of these
unwanted phenomena, it seems of less use to apply the IDEC while iterating until
convergence. In the next section we therefore discuss some more experiments
performed with a fixed number of 1terations, viz. m— 1. In this approach we fully

rely on the order of the formulas.

Table 3.1. Results of convergence experiment.
P

t=1/10 I T=1/20 T=1/40 | T=1/80
_ —T — - ] _
1072 [107% | 107°|[1072 | 107* | 107¢|| 1072 | 107* [ 10®

2 4 6 2 3 1 3 4
2 | 5 | 10 || 2 4 2 3 5
3 12 | 32 3] 9 2 6 13
2 6 8 || 2 4 ) 2 5
2 6 | 10 || 2 S 2 3 6
3 L 10 | 29 rl 3 | 8 2 6 14
3| 6 | 10 2 | 5 2 4 6
3 1 6 | 10 3 5 2 5 g
3 9 27 || 3 3 3 7 13

! | - | . 4 - S N ,
3| 7| 1 2 6 2 5 7
31 7 | 12 2 | 6 2 5 /
4 9 | 25 4 9 3 g 13
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ents.

° N @E’if ﬂE &x p@ I

4.1. The examples used.

We report numerical results for 3 examples of initial boundary value problems
for 2-dimensional equations of type (1.1) chosen from two test families used 1n
57, We first list the 2 families (in reduced form) and then the 3 examples. In all
examples (0, T] x Q= (0, 1] x {(xy, X,) l 0 < xy,x,<1}. For simplcity, we confined
ourselves to Dirichlet boundary conditions.

First family

{4 1) {Fl (r} xh x:’-ﬂ 4 u’x” u'xlxl) = uzv[uxlxl + a(t'ﬁ xla x.?.)] + g(t, -x-_la XZ) »

.. ) ) | \ AL
F2 {f., ..--\'_1,, Xa, U, u.x:z,tt umxz) = U ‘ux:?.xz ?

where

—2t*(x, +sin (27t)) ,

I

a(t, xq,Xx,)
o(t,x,,x,) = t[(x?+x,)(2sin (2nt)+ 2nt cos (2nt)) + 2x,x3] ,

with solution u(t, x,,x,)=1+12[ (x? + x,) sin @7r)+ x,x3] -

Second family.

. | U
Fl(f,xl,xz, H., uxl,, uxlxl) — l/(u)uxlxl”*‘z“(l”“:l;r)mzuyu .

(4.2)

Fo(t,xq, Xa,u,t iy ) = |/ (W, .,

with solution u(z,x,,x,)=exp (—x; —x,)/}/ (1 +1).

ExaMmpLE 1. The hnear problem obtained from equations (4.1) with v=0.
ExampLE 2. The non-linear problem obtained from equations (4.1) with v=1.
ExaMpPLE 3. The non-linear problem obtained from equations (4.2).

The problems were semi-discretized on a uniform grid, using second order
symmetrical finite differences, with grid size h=1/(N + 1), N=19. The boundary
expressions, appearing in the ordinary differential equations for the internal grid
points next to the boundary, were evaluated at r=t_,, (see formula (1.5)). Note
that the space errors for examples 1-2 are equal to zero.

4.2. The algorithms used.

As discussed in the previous section, it is of no use to perform a large number of
IDEC iterations. Consequently, we applied the technique with a fixed number of
m— 1 1terations, so that the order of consistency of the resulting algorithm is equal
to m. Observe that for m=1 we thus applied the LOD method itself.

In case of non-linear problems the calculation of the Yuy-vectors in (1.5) involves
the solution of a system of non-linear equations. In actual applications it i1s of no
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use to solve these systems very accurately as the LOD method is only of first
order. Therefore, we performed one Newton-type iteration leading to the result

| ‘ - # . T .,ml N
(4.3) Yiy = Yi-n+tt =) filto ovaoy)

where J; approximates the partial derivative {f;/Cy at (1., v.). The resulting scheme
remains first order consistent. The (tridiagonal) matrices J, and J, were
computed by means of first order finite differences. This computation was (if
necessary) performed only at the beginning of each IDEC step, hence at the times
e [ =0,1,. ...

To be able to compare the results of the various algorithms we need a measure,
say ce,,, lor the computational effort per integration step of length 7. It is convenient
to express c¢e,, 1n the effort of the LOD-method. Therefore, we set ce, =1. We now
assume that the effort of one IDEC iteration, using m points, is equal to 2mce,
=2m. This 1s justified by the observation that the defect calculations require the
evaluation of a derivative and a weighted sum (2.5). Consequently, we have ce,
=2m—1. The computational labour involved in the calculation of the matrices J,
and J, has been left out of consideration. For non-linear problems this favours the
schemes where m 1s small, especially the LOD formula, because 1t integrates with
matrices being updated every integration step. This will influence the stability
(and possibly the accuracy) of the formula.

4.3. The results.

The 3 examples were integrated with all algorithms, 1.e. with m=1(1)4, for t
=1/12, 1/24, 1/48, 1/96. In the tables of results one finds, for two t-values, ue =
—1g ¢ where ¢ 1s the maximum absolute error at t over the grid, and sce,,=ce, /1.
In the tables the symbol * means instability.

Table 4.1. (ae, sce,,)-values for example 1.

C—W— —— s R — TR B » ..I.- e e e o LA e TR Tre— S =T s rial e R T ’ " "> o T

f=10.5 -; t=1

2 3 l 4 1 2 3 4

v

013, 18]243. 30|2.73. 42/10.96. 12| 1.36, 36| 1.81, 60|2.07. 84
2.51, 36|2.89, 60|3.12, 84/|1.16,24 | 1.76, 72| 2.23, 120 | 2.46, 168
287, 72| 3.27. 120 | 3.49. 168]| 1.42. 48 | 2.15, 144 2.61, 240 | 2.84, 336
321, 144j 3.67. 240 | 3.92. 336“1.69, 96 | 2.51, 288 | 3.02, 480 | 3.28, 672

i 1 A N
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Table 4.2. (ae,sce,)-values for example 2.

i e — - - - . —em—— T v — - ]. F .
t=10.3 t=1
. i
2 | 3 4 | ] 2 3 4
10.83, 18] o o 1 10.36, 12 * % | *
' 1.97, 36 X * [ 10.99, 24 x - #
2,57, 7212.53, 120 |1.60, 168 |1.25. 48 } I
2993, 14413.37, 240 13.69, 336|[1.49,96 |1.72, 288 * K
L I R N , - |
Table 4.3. (ae,sce,,)-values for example 3.
[ = 05 | | [ = 1
et e oo esttiasers - N e . SERRRRRTRDTIN r Ay e - . ..T i -
1 2 | 3 4 || 1 2 |3 4
'1

1.76, 12 [2.17. 36|2.50, 60| =«
1.98, 24 [2.48. 72|2.84. 1201 3.06. 168
213,24 |2.71, 72| 3.10, 120 |3.34, 168 [2.22. 48 | 2.81. 144| 3.21. 240 | 3.45. 336

239,48 |3.05, 144) 3.52, 240|378, 336 | 248, 96 | 3.15, 288 | 3.63, 480 | 3.89, 672

1.67, 6 {2.07, 18] 2.39, 30 |1.50, 42|
1.89, 12 12.39, 36|2.74, 60 (297, 84

1 N - B ..
O B D —

T A s etV i e A CAAMMERAR ey i 4 s mreims iR 1 A [ |

The results indicate that the following conclusions are justified:

l". For non-linear problems the IDEC formulas are less stable than the LOD
formula. This conclusion is justified by the results for example 2, and the result for
example 3 obtained for t=1/12 and m=4. We emphasize, however, that the LOD
formula updates the Jacobian matrices every integration step. In practice this is
very expensive and will seldom be done. Nevertheless, if the updating is not
performed every step, it is still expected that the LOD formula is more stable.

2" In case of stable computations the results become better with Iincreasing m.
This can be immediately verified by putting the (ae, sce, )-values of examples 1, 3
In an accuracy-efficiency diagram. Between successive values of m the
improvement is not large. If we compare the results obtained for m =4 with the
results obtained by the LOD formula, however, the improvement is significant.
Let us, for example, consider the results given in table 4.1 for t=1. Now. if we
assume that further halving the stepsize in the LOD fotrmula also halves the
error—for 7 small enough this is inevitable— we can write down the following
(ae,sce;)-values: (1.99, 192), (2.29, 384), (2.59, 768), (2.89, 1536), (3.19, 3072), etc. It
1s immediately seen that the corresponding results for m=4 are significantly better.

3". The order of consistency of the IDEC formulas cannot be recovered from
the results (note that in example 1 the space errors are equal to zero; further, from
the experiments described below it can be seen that in the errors of table 4.3 the
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time integration errors dominate clearly). To indicate that this phenomenon 1s
probably not due to the defect correction, but inherent in the collocation schemes,
we performed two further experiments. We integrated examples 1, 3 with the
formula for m=4, using t=1/24, 1/48 and 1/96, but now performing 10 IDEC
1terations in order to obtain a numerical approximation closer to the collocation
approximation. The ae-values obtained at t=1 are given below:

. 1,24 | 1/48 l 1/96

exampie 1 | 3.18 | 3.67 | 4.33
example 3 | 3.95 | 439 | 5.04

All errors are significantly smaller than the corresponding errors of the preceding
experiments. Again, however, the order p=4 can not be recovered (this will be the
case after an unacceptable decrease of 7). As in all computations the mmequality
17i? —n? . <1079, v=1(1)1/t, was satisfied, we believe that the effective order of
the collocation schemes themselves — when applied to semi-discrete parabolic
equations with realistic stepsizes—is significantly smaller than the theoretical
order. The reader should observe that this conclusion is in disagreement with the
results reported in [2], section 6.

5. Concluding remarks.

The IDEC formulas, especially the ones of higher order (provided they remain
stable when integrating non-linear problems) are more efficient than the basic
LOD formula. A disappointment is that the effective order of the formulas 1s
significantly smaller than the theoretical order when considering realistic
stepsizes. This may imply that the additional computational effort needed to
obtain the higher theoretical orders 1s better used when integrating (using
relatively small stepsizes) with a simple second order splitting method, such as the
method of alternating directions or the line hopscotch method [4]. These methods
also possess unconditional stability properties and are computationally attractive
(per integration step). Some results of the line hopscotch method, applied to
examples 1, 3, are given in appendix 3 of [6]. It appears that for example 1 our
formula for m=4 1s slightly better, whereas for the non-linear example 3 the line
hopscotch method 1s to be preferred. We did not investigate the application of
defect correction to line hopscotch, or ADI, as these methods do not yield
equations of type (3.3") (cf. [4]). Because their stability functions do not vanish

at infinity it 1s doubtful whether a modified IDEC process would lead to
unconditionally stable schemes.
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