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Abstract — Zusammenfassung

One-Step Splitting Methods for Semi-Discrete Parabolic Equations. The main purpose of the paper is
to discuss splitting methods for parabolic equations via the method of lines. Firstly, we deal with the
formulation of these methods for autonomous semi-discrete equations
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f satisfying a linear splitting relation f (y)= Y f;(y). A class of one-step integration formulas is

1= 1

defined, which 1s shown to contain all known splitting methods, provided the functions f; are
defined appropriately. For a number of methods stability results are given. Secondly, attention is paid

to alternating direction methods for problems with an arbitrary non-linear coupling between space
derivatives.

Einschritt Split-Methoden fiir semi-diskrete parabolische Gleichungen. In dem Artikel werden speziell
die Split-Methoden fiir parabolische Gleichungen mittels der Linienmethode besprochen. Bei diesen
Methoden behandeln wir zuerst die Formulierung fiir autonome semi-diskrete Gleichungen

dy | . .
—;—t—mmf(y), f nicht-linear,

k
wobei f eine lineare Split-Relation f (y)= Z f;(y) erfiillt. Eine Klasse von Einschritt-Integrations-

P=1
formeln wird hier definiert welche alle bekannten Split-Methoden enthilt, unter der Bedingung, daf3 die
Funktionen f; geschickt gewidhlt sind. Fur eine Reithe von Methoden werden tabilititsergebnisse
angegeben. Ferner wird das alternierende Richtungsverfahren fiir Probleme mit einer willkirlichen

nicht-linearen Verbindung zwischen Raumableitungen diskutiert.

Keywords and phrases: Numerical analysis, ordinary differential equations, partial differential
equations, method of lines, splitting methods.

1. Introduction

A flexible approach in the numerical solution of time-dependent partial differential
equations 1S obtained by applying the so-called method of lines. Herewith the
numerical solution process may be considered as to consist of two parts, viz.
semi-discretization and time-integration. In the semi-discretization the partial
differential equation i1s converted into a system of ordinary differential equations
by discretizing the space variables, while the time variable 1s left continuous.
Usually, the semi-discretization i1s obtained, either by the finite difference method
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[17], or by the finite element method [6]. In the time-integration the resulting
system of ordinary differential equations is integrated by a numerical integration
method [14] to obtain an approximate solution of the original differential
equation. If the discretization of the space variable(s) and the time variable are
considered as if they were performed simultaneously, the solution of the time-
dependent partial differential equation is said to be approximated via the so-

called direct grid approach.

Both approaches are essentially the same, i.e. every method obtained via the lines
approach may in the end be considered as a direct grid method, and both are
followed in literature. A difference exists in the presentation and formulation of
methods. To this purpose the method of lines approach 1s more suited than the
direct approach. It generally leads to a more general formulation and a more uni-
fying treatment of methods for time dependent equations. It 1s the purpose of this
paper to discuss splitting methods for parabolic equations via the method of
lines, and in particular the time integration will be discussed.

In the numerical solution of partial differential equations splitting methods have
been introduced to avoid the solution of large and complicated systems of
non-linear equations, which arise when applying fully implicit integration formulas
to multi-dimensional problems. More generally, the idea of splitting 1s to break
down a complicated (multi-dimensional) process into a series of simple (one-
dimensional) processes. The aim of splitting 1s always to obtain a feasible
computational process. Well-known splitting methods (also referred to as fractional
step methods) are the alternating direction methods [2, 3, 16], the locally one-
dimensional methods [26], and the hopscotch methods [9, 10]. In the literature
these methods are usually formulated and analyzed as direct grid methods.
Examples of explicit splitting methods, designed for hyperbolic partial differential
equations, can be found in [20, 8]. Such methods are related to explicit Runge-
Kutta methods for ordinary differential equations.

We consider the numerical integration of the initial value problem for ordinary
differential equations

d |
== (), f:RV>RY, (1.1)

where the vector function f can be linearly split into k terms, k> 1, i.e.

k

fO)=T fi0) fRY>RY. (12)
We assume that (1.1) is obtained from semi-discretization of parabolic initial
boundary value problems defined by t-independent differential operators. The
functions f; are called splitting functions and depend on the original partial
differential equation and the type of semi-discretization. In section 2 of this paper,
we define a general class of one-step integration formulas for systems (1.1)—(1.2),
which we shall call splitting formulas. In this definition no a priori knowledge of
the functions f; is assumed, except that they define a meaningful splitting, i.e. a
splitting which admits a feasible computational process for a certain problem
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class. In our discussion we thus distinguish between splitting functions and
splitting formulas, while a combination of both leads to a splitting method. This
distinction 1s an immediate consequence of the method of lines approach, and it
shows clearly that a certain type of splitting functions can usually be combined with
more than one type of splitting formula, and vice versa. Several examples of
known splitting methods, considered in this way, are discussed 1n section 3. Be-
cause these methods are based on a linear splitting (1.2), we refer to them as
linear splitting methods. In section 4 we pay attention to splitting methods of the
alternating direction type for problems with an arbitrary non-linear coupling
between space derivatives. For such problems relation (1.2) 1s too restrictive it
one wants to apply alternating direction methods. Section 5 i1s devoted to a
discussion of stability properties of splitting methods. Using matrix theory,
results are given for the greater part of the methods discussed in the examples.
These results are presented in a uniform way and are based on two basic
theorems, viz. a theorem due to Kellog [ 15], and a theorem given by Wachspress

125].

This paper 1s based on two institute reports [ 22, 23]. For the preparation of these

reports the book of Yanenko [26] and the survey of Gourlay [ 12] were very
useful.

2. Linear Splitting Formulas

Consider the m-stage, oné-step integration formula

(0) __
yn+1 __yn:

ik

yLJ—)f-l:yn_’_Tn Z Z /ljlif‘i(yg}i*l)a ]ml (l)m, (21)
[=0 i=1

yn+1==yl('l"215

where y_, denotes the numerical approximation at t=t, and t,=t,.,—1,. Each
formula from class (2.1) is called a linear splitting formula. The parameters 4
serve to make this scheme a consistent and stable approximation to the differential
equation (1.1). In particular, however, they should be used to exploit the splitting
property (1.2) in order to obtain an attractive computational process. For
example, if the Jacobian matrix of each f. is tridiagonal, they should be chosen in
such a way that each intermediate approximation yY) , can be obtained from the
solution of a system of non-linear equations with a tridiagonal Jacobian too. In
that case Newton iteration 1s easy to apply.

Observe that if 4;;;=0, the resulting scheme is explicit. In the theory of splitting

methods this case does not often occur. Observe that for k=1, 1.e. when no -
splitting is performed, scheme (2.1) reduces to an m-stage, semi-explicit Runge-
Kutta scheme [1]. In most applications the number of stages m equals the number
of splitting functions k.

Let & (t,, v, V,+ ) denote the increment function of the one-step formula (2.1), 1. €.

Yn+1=YntTn P (Tns Yoo Vit 1) (2.2)
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i

ywing definition of order of consistency:

be consistent of order p if p 1s the largest

(T, y (0 y(1+7)=0("" 1), 10, (2.3)

ficiently differentiable solution of the differential

The co ns g istency cor ditions can be derived through a formal Taylor expansion
M mulas are usually of order 1 or 2. Conditions up to order 3 are

1w derivation of these conditions is straightforward and is

mvergence proof of (2.1), as convergence results for
by general increment functions @ are well known (see

1 we list a number of linear splitting formulas of type (2.1), which all
1ssociated to %phmm methods already given in the literature as direct

liscretization of boundary conditions is part of the
splitting formulas are defined for systems of
u@m niy requirement for those systems is that they
splitting leading to computational feasibility.

ordinar :;% differenti:
admit a i

3.1 Two-Term Splitting Methods
Let k=2 1e let

fW=fi+f10), (3.1)



One-Step Splitting Methods for Semi-Discrete Parabolic quations 295

and consider the 2-stage formula

yizl—g 1 Vn + Ty [(/’L T %) fl (yn) T Jf fl (Vi:l—g 1) + A fZ i\n)] .

Yne1 =)VYpt7T, [( > 1 ) i)+ I (J—’ﬁ,lﬁ )+ “"21"" T2+ i%"; FaWast)

A still being a free parameter. It is easily verified that for each splitting (3.1) this
formula is second order consistent. This simple formula generates several known
splitting methods. We will show this in the following subsections by specifying

/i and substituting special values for the free parameter A.

3.1.1 Two Alternating Direction Implicit Methods

Let € denote a bounded and path-connected region in the two-dimensional
(X1, X,)-space with sides parallel to the coordinate axes. Let ¢Q denote the
boundary curve of £, and consider a parabolic equation of the non-linear type

utm Gl (xlﬂ xza u: uxln u.xl x1)+ GZ (xla XZ':: Uu, “xza uxn, X ) {33}

- :*.‘4"‘

defined in the product set € x (0, 7). Further, assume the boundary conditions
on 0€2 x (0, 7] of the form

a(x,, X,)u+b(xq, x,) u,=c(x,, Xx,), u, normal derivative. (3.3)

|

Superimpose a rectangular grid on € with grid lines parallel to the coordinate
axes, and semi-discretize equations (3.3)—(3.3') using standard finite differences.
This yields a system of ordinary differential equations

dy _

7—=S (), f being S-point coupled. (3.4)

Each component of y and f 1s associated to a grid point belonging to the domain

(2, while a coupling exists only between nearest neighbours along grid lines
(see F1g. 3.1 for an 1llustrative example).

|
@
@

@
® @

Fig. 3.1. A set of internal grid points

Next define the functions f, and f, to be the semi-discretized operators G, and
G,. We shall call this splitting

fy)=s: W +r2 () (3.5)

of (3.4) the differential operator splitting. By substituting these fqnctions into for-
mula (3.2) with A =1 we obtain an alternating direction implicit method of the
type of Peaceman and Rachford [16]:
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1 " (1)
‘:zlglm\n*’%ﬂ Tn[f 1§14—)1 +f’7’ n}]
= Vi1 +2 T L 0 O+ (e D]
hﬁ*l "n+1 ’?’Tn n+1 2 hzi—l

The choice £=1 then le dds to an alternating direction implicit method of the type
discussed by Douglas and Rachford [3]:

| {
.}1:‘11*: 1 — V T tn [% f rr) + fl ( :'1*3 1 + ]( (V )]
1’:n 1 ‘ill"%} 1 T Tn [7’ ‘n -+ 1 M?m: f W_;,.?. (1111)] -

The intermediate approximation Viﬁﬁl in (3.6) is a first order consistent approxi-

. . . s | L . 1 . 0 s .
mation at the intermediate point t=t,+35 7,, whereas in (3.7) y\'}; is first order
consistent at the pomt ¢t =t,+1,.

(3.6)

(3.7)

Because of the 5-point coupling and the absence of partial derivatives with
respect to x, in G, and x, in G,, the Jacobian matrices of f, (v) and f, (y) are
tr h"iif:u;m-za!.. This makes the methods computationally attractive. The calculation
of v} requires the solution of a system of non-linear equations with a tridiagonal
Jacobian for each grid line along the x,-axis. By using a Newton iteration process
this calculation 1s easy to perform. The same holds for the calculation of y,, ;, but
now for grid lines along the x,-axis.

3.1.2 The Odd-Even Hopscotch Method

Again we consider a S-point-coupled system, but now we assume that the coupling
between its components is fully non-linear:

dy
di

= f(y), S-point coupling, fully non-linear. (3.8)

Such a system may arise when semi-discretizing a non-linear parabolic equation
of the type

U, = G (\ 1> V2, Uy Uy uxn uxl X2 M.X'w h) ) (39)

with boundary conditions like (3.3'). For such a system the linear alternating
direction splitting of the preceding section can not be realized. In section 4 a non-
linear alternating direction splitting will be considered which can deal with this
type of equation. In the class of linear splitting methods, however, it is also
possible to deal with (3.8), viz. by hopscotch methods.

As 1n the preceding section, each component of (3.8) is associated to a grid point
of a two-dimensional grid. In our formulation it is now convenient (see also

section 4) to introduce vector functions f ., f,., f+ and 1, such that

FW=Ffo W +fe M+ WM+1 (), (3.10)

and similarly for y, which are defined by the prescription: divide the set of grid
points into 4 subsets, say QO, g, 2, and 2, as shown in Flg 3.2; let the symbol

A be generic and let [ (y) denote the i-th component of f(y); then
| FU(y), if corresponding grid pointe Q
= [ v P sSSP A (3.11)

0, otherwise.



One-Step Splitting Methods for Semi-Discrete Parabolic L-quations 297

O O O
-+ X ~+ X + X -+ X
+~ X 4+ X 4+ x 4+ x

Fig. 3.2. Four subsets of gridpoints
Next define the splitting functions f, and f, for equation (3.8) by

/1 (.,V)mfo (W) +f1 (),
faW=Ffg W+ ().

By substituting these functions into formula (3.2) and putting /=1 the odd-even
hopscotch method is readily recognized. By computing y{!), first at the grid
points € Qg U (2. and then at the points = QO w 2., Oniy scalar equations are to
be solved. The same holds for y,,, when the computing order is reversed. This
property makes the method attractive with respect to computational effort per
integration step. An additional advantage of hopscotch-type methods is that the

explicit evaluations can be saved by rewriting them in the so-called fast form

(see [9])).

(3.12)

3.1.3 The Line Hopscotch Method

Instead of 5-point coupled systems we now consider 9-point coupled ones, and
again assume that the components are fully, non-linearly coupled:

dy

dt
Such systems usually arise by semi-discretizing parabolic equations containing a
mixed derivative 1.e. equations of the type

-=f(y), 9-point coupling, fully non-linear. (3.13)

“r — G (xla xZ:b u, uxlﬁ uxzza qul Xi? Jz'i.xl X9 l“'ixz .;\‘.'3)5 (314)

with boundary conditions (3.3’). They may also arise from semi-discretization of
equations without a mixed derivative (e.g. (3.9)), viz. by using non-orthogonal
grid lines. To nine-point coupled systems the line-hopscotch method can be applied
7. 8]. Using the notation of the preceding section the corresponding splitting
functions f; and f, read

fo =1 W+1c ).

By substituting these functions into formula (3.2) and putting A=73 the line hop-
scotch method is easily recognized. By computing |}, first at the grid points
e Q. U Q,, and then at the points € Q4 U g, Only systems of non-linear equations
with a tridiagonal Jacobian matrix are to be solved; the same holds for the
computation of y,.,. The functions (3.15) define the splitting along horizontal
orid lines. In a similar way the splitting may be defined for vertical lines. It is ob-
served that the present method requires half the number of tridiagonal inversions

(3.15)
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as required by the Peaceman-Rachford method. In addition, it can be applied to
fully non-linear equations possessing a 9-point, as well as a 5-point coupling.
Test results of the line hopscotch method, written in its fast form and applied to
non-autonomous equations, can be found in [ 13, 21].

3.2 Multi- Term Splitting Methods

Consider the k-dimensional, non-linear parabolic equation (cf. (3.3))
k
U=, Gi(Xq, ooy X U Uy Uy ) (3.16)

1= 1

with boundary conditions of the type given in section 3.1.1. Assume that standard
finite differences are applied to obtain the semi-discrete system

dy

——=f W f)= 2 fi(»), (2 k+1)-coupling (3.17)

where each f; denotes the semi-discrete operator G;, i.e. we use the differential
operator splitting (see section 3.1.1).

3.2.1 A Method of Gourlay and Mitchell

Let k=3, and consider the three-stage formula

ygll-l2 1 ﬂyn-l—%’fn [fl (yn)+f2 (yﬁtl-lz 1):!5
Vedi=Yad1 +3 0 L3 O )+ W 0], (3.13)
Vn+1 m)’ﬁh +%I T, Lf> (yizz-lzl)—}-fl Vet 1)]-

It is easily verified that (3.18) is second order consistent. This type of splitting
method has been suggested by Gourlay and Mitchell [ 11]. The second stage only
contains the function f;, whereas f;, and f, occur at both the first and the third
stage. The method 1s based, partly on the principle of alternating directions, and

partly on the principle of the locally one-dimensional method discussed in the next
subsection.

3.2.2 The Locally One-Dimensional Method of Yanenko

Consider the k-stage formula
yﬁ?—i2 1 = ynn

wi) 1 ﬂ}’qufll)'*'”:n L(1 ""a)fj (yf-;j:f))'l‘“fj e 0l J=1(1)k, (3.19)

I
yn+1 _yn“%-l:

where « 1s still a free parameter. For every o the method is first order consistent.
This type of splitting method emanates from Yanenko [26]. The method is called
locally one-dimensional, because of the fact that at the j-th stage only the semi-

discretized one-dimensional operator G; is used. In applications the free parameter
o usually equals £ or 1.
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3.2.3 The Method of Approximation Corrections of Yanenko
Consider the k + 1-stage formula

(0y __
yn+ 1 "'""'yna

Vit =i at ;0000 J=1(0 k., (3.20)
yn+ 1 :"“yn_l'_rnj“ (yﬂi 1)-
This type of splitting method also emanates from Yanenko 126], who called it the

method of approximation corrections. In the preliminary, locally one-dimen-

sional stages stability (see section 5) is achieved, while the last stage serves to
make the method second order consistent.

3.2.4 The Method of Stabilizing Corrections of Douglas and Gunn

Consider the k-stage formula

' i:l-g 1 =Y+ T, L) — S (Vn)+ S 4 (}’fn{g O,
v =yia +1, [f0% ) —=f0.], =2k, (3.21)
yn+1 myizkll .

For k<3 this splitting method was introduced by Douglas and Rachford [3] and
later, mn 1ts general form, formulated by Douglas and Gunn [5] (see also
Yanenko [26]). At the first stage, a consistent approximation is evaluated, while

all succeeding stages serve to improve the stability. Therefore it is called the
method of stabilizing corrections. It is only first order consistent.

3.2.5 The Method of Stabilizing Corrections of Douglas

Consider the k-stage formula
Vi1 =Ynt T [f W) =2 /1 W) +3 1 0],

yf’ljl' 1= f'lj:ll) +% Th [f] (yilj'i‘ l)mf_; (yn)]a sz (1) k., (322)
VYn+1 ™ y;k_{_ 1-
This splitting method is a second order analogue of (3.21). For k=2 we obtain
the earlier mentioned Douglas-Rachford method (3.7). The case k=3 originates
from Douglas [4], whereas the general case has not been discussed in the
literature.

4. Non-Linear Splitting Methods

In sections (3.1.2) and (3.1.3) we discussed two hopscotch methods for fully non-
linear equations (such as (3.9)) with an arbitrary coupling between space derivati-
ves. To these equations alternating direction implicit methods based on linear
splitting formulas (such as (3.6), (3.7)) cannot be applied. In this section we introduce
non-linear splitting formulas and functions, by which alternating direction implicit

21 Computing 22/4
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methods can be defined for fully non-linear equations of the type (3.9). In particular,
we give two methods which may be considered as generalizations of (3.6) and
(3.7).

We introduce the non-linear function F:RY x RY— R"Y, F still to be specified,
such that

FTW=F{,y). (4.1)
Next we consider the one-parameter class of integration formulas
1 | " 1 - o '
.}’f'l‘l! 1= yn T I-n [—5 F (y:lewg 1» yn,) + (./L T %’f) F (,,,.Vn*: }"?rz)] ’ (4 "))
2 A—1 | —4 _ -
; 1 1 - S L
yn+ 1= yn T T‘-n |:§m F (yil-li 1> .}’?n) T ’)/1 ) F (,ym _}"n + 1) T Y j. F (_,Vizl-g 1 }'n -+ 1):| .

Formula (4.2) 1s a one-step formula of the form (2.2) to which the usual definitions
of consistency and convergence apply. A straightforward Taylor expansion yields
that (4.2) 1s consistent of order p=2 for every splitting function F satisfying (4.1).
Observe that this formula is implicit in the first argument of F at the first stage
and in the second argument at the second stage.

Now assume for a moment that f (y) can be written as in (3.1), i.e. f (y)=f, (V) +1, (V)
By defining
Fv,w)=/f;(v)+]> (W), (4.3)

and substituting into (4.2), we recover the one-parameter class of linear splitting
formulas (3.2), which, in turn, contains the underlying formulas for the alter-
nating direction implicit methods (3.6) and (3.7). Hence, for 5-point coupled
equations satisfying a linear differential operator splitting, like (3.5), the A=3 and
/=1 formulas of class (4.2) lead to the linear Peaceman-Rachford and Douglas-
Rachford methods.

Next, let f(y) originate from (3.9), 1.e. f does not satisfy a linear differential
operator splitting. Using the notation of section (3.1.2), we define the function
F (v, w) by

) +

. o (4.4)
T UO T W + aE (I —D ) We ) +

fo(Dvy+0v, +wg+(I—D)w,)

where I denotes the unit matrix and D a diagonal matrix whose elements are still
free. Let us substitute this function F into formula (4.2). Because of the special
character of the function f (y) defined by (3.8), we have that the calculation of y{3},
requires the solution of a system of non-linear equations with a tridiagonal
Jacobian for each grid line from Q0 @2, and Q, U Q,, respectively. A similar

observation can be made for the calculation of y,. ;, but now for grid lines in the
other direction. We thus see that (4.2), (4.4) defines a family of alternating
direction implicit methods for the fully non-linear partial differential equation
(3.9). The method with A=1, i.e.
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1) _ .. ;1 , -
.}"}»1-3 1 =V, +31T, F (}H’LQ 1> Vn)s o
. (4.5)

) e (1) .,,L 1 -
.yn-l—l myn“l* 1 +2 Tn F (..,Vin 1+ yn*--#l)a

will be called the non-linear Peaceman-Rachford method. and the method with
L=1, 1€
J( 1 —— 1) ..L N , N
)’n-lz 1 =V + 2 1y [F (}LQ 1s yn) + F (_ym .}"n)] .

— (1 1 I (s |
yn + 1 ""_yn —!2 1 +§ Tn [F (.}’”' ne yn + 1)"_ F (‘"’?m .}“?n}] .

-

(4.6)

the non-linear Douglas-Rachford method.

A difficulty in the application of these non-linear methods is the choice of the
diagonal matrix D, whose elements serve as weight factors for the elements of the
main diagonals of the Jacobians of the systems of non-linear equations. The most
obvious choice is D=3 I; then the original Peaceman-Rachford splitting 1s ob-
tained 1if the original partial equation were u=u, ,, +u, ... In other cases,
however, e.g. for u,=u, , +ou, .., o1, this choice may lead to instabilities
(see section J).

Remark 4.1: The 1dea of non-linear splitting for fully non-linear problems is not
restricted to two dimensions. The Douglas formulas (3.22), k>2, are easily

generalized for k-argument splitting functions F (y, ..., y). For example, for k=3
we then obtain

1 1 W1 | , |
yiz-iz 1 myn +§: Tn [F (y:'z“iz 12 ym ..,wn) +F (yna ym yn)] ’

2 1 1
Vat1=Vud1 T2 T LF W VX 10 V) = F (Vs Vo V)], (4.7)
yn +1 = yng_g 1 __{__é.,., Tn [F (ym *}'?rza yn + 1) T F (..-vm ym .}"?n)] .

For a definition of the splitting function F (y, y, y) in this case, we refer to [23]. [

5. Stability Properties

Splitting methods find their interest, next to the computational feasibility, in
possessing unconditional stability properties for interesting problem classes. In
the direct grid approach such properties are usually investigated by making use
of harmonic analysis [ 17]. In the method of lines approach it 1s more convenient
to make use of matrix theory. In this way unconditional stability properties can
be shown for all splitting formulas previously discussed. These results will be
based on two basic theorems, viz. a theorem due to Kellog [15] and a theorem
given in Wachspress [25].

5.1 The Amplification Matrix and the Stability Function

With respect to stability we confine ourselves to the first order varnational
equation of the integration formula under consideration. This approach 1s widely
accepted in the literature and has proved to be satisfactory. For our formulas this
first order variational equation is always of the form

yn+1mAnyna (51)

21%
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A, denoting the amplification matrix. Let us first consider formula (2.1). Then A,
1s defined by _
AN:R(THJI’ ”"ﬁTﬂJk)? (5-2)

where J; denotes the Jacobian & f,/0y at y=y,, and where R is a matrix-valued
function defined by the formal relations

RNz, ....Z,)=1, I the unit matrix,

j k
RU] (Zla aZk)mI—I_ Z Z j"jlf ZiR”] (Zlﬁ "'wzk)ﬂ Jml (1)?’?’1, (53)

[=0 i=1

R(Z,,...Z)=R"™(Z., ... Z).

This function is completely determined by the splitting formula, and is theretore
called the stability function of the formula. The value of the stability function,
obtained by substituting the Jacobian matrices J; of the particular problem to be
integrated, is the amplification matrix (5.2). Thus, the amplification matrix
depends both on the splitting formula and the splitting functions, and therefore
on the problem to be integrated. The reader should be aware of the fact that
the matrix arguments of R may be non-commuting.

Expressions (5.1)—(5.3) can be obtained in a more direct manner by applying
formula (2.1) to the linear equation

dy
T 5.4
o Jy, (5.4)
where X
I1=1

In fact, it is usually more convenient to start from the linear equation (5.4). This
equation, with additional restrictions on the matrices J;, 1s then considered as a
test-model for stability. "

Next we consider the class of non-linear splitting formulas (4.2). As observed 1n
section 4, this class 1s reduced to class (3.2) if F (v, w) satisfies a linear splitting
relation like (4.3). For linear equations (5.4), such a linear relation does always
exist. Because (3.2) 1s a special case of (2.1), it 1s not necessary to give the stability
function of class (4.2) at this place. In this special case the matrices J;, i=1, 2,should
be interpreted as the derivatives 0 F/dv and 0 F/d w, respectively.

5.2 The Test-Model and Two Basic Theorems

For the derivation of stability criteria one must make assumptions on the matrices
J and J,;. Restrictions which are usually imposed are [ 5]:

1°. The matrices J; are symmetric and negative definite.

| . (35.6)
2°. The matrices J; commute.

To interpret these restrictions, consider the k-dimensional equation

k
=Y Uy, x, (5.7)
i=1
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on the unit cube with zero Dirichlet boundary conditions. If we impose a uniform
grid and semi-discretize using standard finite differences, we obtain a linear

system of type (5.4). If we further assume the differential operator splitting, i.e.

the matrices J; are associated to the operators ¢2/dx?, then properties (5.6)
hold. '

The linear equation (5.4), whose matrices J; satisfy conditions (5.6), is usually
considered as a test-model for stability. In some situations, however, equations

are considered of which the conditions imposed are less restrictive (see e.g.
section 5.3).

For the derivation of the stability criteria — when using matrix theory — it is of

importance whether the stability function R is factorized or not. We shall
distinguish these two cases and treat them separately.

5.2.1 A Useful Theorem for Factorized Stability Functions

The following theorem of Kellog [15] may be used in many cases where we have
factorized stability functions:

Theorem 5.1: Let B be a given matrix. Let B' denote the transposed of B, and let p
denote a positive scalar. If B+ B is non-positive definite, then

a) p I— B is non-singular,

b) (pI—B)" " [,<p™ ",

¢) (pI+B)(pI—B)~*'|,<1.

Further, if B+ B’ is negative definite, then

d) |(pI=B)"" l,<p™ 7,

e) l(pI+B)y(pI—B)"*|,<1.

This theorem enables us to obtain stability results of the type

H An “2<15

or
| A" ||, <C, n>1, C a constant,

where A, and A represent amplification matrices. Further, this theorem can be
used to obtain results under less restrictive conditions than imposed by (5.6).

5.2.2 A Useful Theorem for Non-Factorized Stability Functions

The following theorem, given in Wachspress [25], is useful when we have to deal
with a non-factorized stability function:

Theorem 5.2: Let B be a symmetric, negative definite matrix. Let M be a non-
singular matrix and define C=I+p M~ " B. If MT+ M + p B is positive definite,
then the spectral radius o (C)< 1 for all positive scalars p.

This theorem enables us to obtain stability results of the type
o (A, <1,
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A, again denoting an amplification matrix. 4, always depends on the step length
t.. If 1, =1, T constant, A,= A, A constant. This result then implies that 4" tends
to the zero-matrix as n— oc.

Wachspress [25] also gives a corollary to theorem 5.2: Let r be some positive
Integer, and let

If M'4+M,+p; B is positive definite for i=1(1)r, then ¢ (C)<1 for all p;>0.
Hence, when assuming a finite set of non-constant stepsizes t,, this corollary can
be used to show that the spectral radius of the resulting amplification matrix 1s
smaller than one. We shall confine ourselves to the application of theorem 5.2.

5.3 Stability Theorems

In the present section we list stability theorems for the greater part of the splitting
formulas previously discussed. All these theorems deal with unconditional sta-
bility. The reader should be aware of the fact that the results are stated for the
splitting formulas. To interpret a result for a splitting method based on a certain
splitting formula, the type of splitting, as well as the underlying class of partial
differential equations, has to be taken into consideration (see section 5.2).

5.3.1 Theorems for Factorized Stability Functions

‘Theorem 5.3:
1°. The stability function of the formulas (3.2), (4.2) reacds

R(Z\.Z))=(1—3Z,)) " (I-3Z) " U+3Z)U+3Z,). (5.8)

2°. Let conditions (5.6) be satisfied and let k=2, then | R(t,J,,1,J,5)ll,<1 for
all =, >0.

3°. Let t,=1, T constant. If J,+J], i=1,2, is non-positive definite, R" (tJ{,1J5)
is uniformly bounded in n for all ©>0.

Proof: The derivation of the stability function (5.8) 1s straightforward. Part 2° 1s
easily proved by making use of the commutativity and by applying part €) of
theorem 5.1. To prove the last result we rewrite R(tJ,,tJ,) as

R(tJy,tJy)=(I—-351J,)"" ﬁ(f Ji,tdy)(U—=31Jy),
with N
R(tJy,tdy)=(I—3tJ) " U+3tJ)U—3tJd) " (U+351J,).
From part c) of theorem (5.1) 1t follows that
| R (zJy, T o)< 1.
The uniform boundedness of R" (t J,, T J,) 1s now obtained from the relation
R'(tJy,1Jy)=(I—-31J,) 'R (tJ,td) =31t J),)

and part b) of theorem 5.1. [
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Function (5.8) 1s the stability function of the underlying splitting formulas for the
implicit alternating direction methods of Peaceman-Rachford and Douglas-
Rachford, discussed 1n section 3.1.1. As these methods are based on a differential
operator splitting, part 2° of the preceding theorem shows unconditional stability
of the methods for the 2-dimensional version of equation (5.7). Further, part 3°
of the theorem shows that under less restrictive conditions than (5.6), a somewhat
weaker form of unconditional stability is preserved.

The hopscotch methods, discussed in sections 3.1.2, 3.1.3, are based on the same
splitting formula as the method of Peaceman-Rachford. It is beyond the scope of

this paper to interpret the results of theorem (5.3) for hopscotch splittings. A
nice stability result has been given by Gourlay [9].

Theorem 5.4:

1°. The stability function of the splitting formula for the alternating direction —
locally one-dimensional method (3.18) is

R(Z,,Z,,Z)=(1—3Z) " (I+3Z,)I—-5Z;)"!
I+3Z3)(I—-32Z,)" ' (I+32Z)).

2°. Assume that conditions (5.6) with k=3 hold, then || R(t,J,7,J,,.7,J3)],<1
for all T,>0.

(5.9)

Proof : Part 1° follows from a trivial calculation. Part 2° is proved by making use
of the commutativity and by applying part e) of theorem 5.1. [

Applying this theorem to the integration process defined by the three-dimensional
version of equation (3.7) and by (3.18) (with differential operator splitting) reveals
unconditional stability.

Theorem 5.5:

1°. The stability function of the splitting formula for the locally one-dimensional
method (3.19) is

R(Z,, ...

| U—aZ) ' (I+(1—-n) Z)). (5.10)
i =k
2° Let =% or ao=1. Assume the matrices J,+J. to be non-positive definite, then
| R(t,J{y .., Ty JW) 2 <1 forall t,>0.

3°. Let a=% or a=1. Assume the matrices J.+J. to be negative definite, then
| R(t,J{, .-, Ty Sl 2 <1 forall ©,>0.

Proof: Part 1° follows again from a trivial calculation. Result 2° and 3" are
immediate consequences of theorem 5.1. [

We see that the locally one-dimensional method 1s stable under less restrictive
conditions than those of (5.6). For example, no commutativity is required.
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5.3.2 Theorems for Non-Factorized Stability Functions

Theorem 5.6:

1°. The stability function of the splitting formula for the method of approximation
corrections (3.20) is

1
R(le...,Zk)mI—}"Z Z (I“‘""%Zl)wl. (5.11)
i=k

2°. If conditions (5.6) are assumed, we have ¢ (R (t,J, ..., 1, J})) <1 for all t,>0.

Proof: The proof of part 1° is again trivial. To prove the second part we apply
theorem 5.2. Let A,=R (t,J,, ..., 7, J,) and

k
M = I__[ (I“'-li’cn‘]i)a
I=1

then A =I+7,J M~ ' Because of the commutativity, 4, may be written as
A =I+7, M™'J and

k k
MT+M+Tan2 ],—I (I+%Tnji)m'rnz jia
=1 1=1

where J= —J; is symmetric and positive definite. This expression may be re-
written as

M'"+M+7, J=21+P,

P being a sum of products of symmetric positive definite, commuting matrices.
As a product of such matrices i1s also positive definite, 2 I+ P is positive
definite, which proves part 2° of the theorem. [

Theorem 5.7:

1°. The stability function of the splitting formula for the method of stabilizing
corrections (3.21) is

1
R(Zl,,..,Zk)mI+n I-2Z)'Z. (5.12)
i=k
2°. If conditions (3.6) are assumed, we have o (R (1, J 4, ..., 7, J,)) <1 for all 7,>0.

Proof: When applied to equations (5.4)—(5.5), the intermediate values y'%. .
i=2(1)k, of formula (3.21) satisfy

Va1 =0 =1, J)7 " DNi) =1 Ji yal. (5.13)
By induction on i we now prove that

1 i
V=1 T=71,J)7" [H (=T J )+, Jj‘ Yns 1=2(1) K. (5.14)
j=i j=1

From (5.13) it follows that
witl=0—1,Jix1)" " 5% 1 — 1, Jiv1 Yl



One-Step Splitting Methods for Semi-Discrete Parabolic Equations 307

By assuming that (5.14) is valid, we obtain

(i+1) __ |
Vn+1 ““(Imrn']i+1) *

For i=2 relation (5.14) follows from an easy calculation, which completes the
induction. Further, by substituting i =k into (5.14) and writing

(k) __
yn-i— 17

the proof of part 1° 1s completed. The proof of part 2° is analogous to that of

part 2 of theorem 5.6. This is easy to see after inspection of both expressions
for R. L[]

Theorem 5.8:

1°. The stability function of the splitting formula for the method of stabilizing
corrections (3.22) is

(5.15)

2°. If properties (5.6) are assumed, we have ¢ (R (t,J{, ..., 1, J,)) <1 for all t,> 0.

Proof : The proof of part 1° is analogous to that of the preceding theorem. For the
proof of part 2° we refer to theorem 35.6. [

When the formulas (3.20)—(3.22) are applied to equation (5.7) with a difterential
operator splitting of the right hand side, the theorems of this section show un-
conditional stability of the integration processes. Note that the stability function
(5.15) for k=2 1s precisely function (3.8). Further, note that in case of commuting
arguments function (3.15) equals function (5.11).

6. Concluding Remarks

As already observed in the introduction, each splitting method discussed 1n this
paper consists of two components, viz. the splitting functions and the splitting
formula. To some extent these two components are independent of each other.
The splitting functions largely depend on the class of problems under considera-
tion, so that we are not completely free in choosing them. Once a splitting has
been found, which is appropriate to the problem to be solved, usually more than
one splitting formula can be chosen to obtain a computationally attractive process.
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Since the order of consistency and the stability functions of the splitting formulas
do not depend on the splitting functions, a suited splitting formula can be
selected on the ground of accuracy and stability considerations.

In the paper the emphasis has been on the presentation and formulation of
existing splitting methods. There is an abundant literature on this subject. For
case of survey we confined the discussion to the most important methods. Section 4
has been added to illustrate the applicability of implicit alternating direction
methods to non-linear problems with an arbitrary coupling between space
derivatives.

We restricted our considerations to equations without t-dependent terms. This
enables us to give a general presentation and formulation of splitting methods.
Formally the various methods can be easily generalized for equations with t-
dependent terms. However, when doing this, one should take into account that the
t-dependent terms coming from time dependent boundary conditions will usually
cause a drop in accuracy (cf. Fairweather and Mitchell [ 7]).
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