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Abstract — Zusammenfassung

On the Stability of Multistep Formulas for Volterra Integral Equations of the Second Kind. The
purpose of this paper is to analyse the stability properties of a class of multistep methods for
second kind Volterra integral equations. Our approach follows the usual analysis in which the
kernel function is a priori restricted to a special class of test functions. We consider the class of
finitely decomposable kernels. Stability conditions will be derived and compared with those
obtained with the simple test equation. It turns out that the new criteria are more severe than the

conventional conditions. The practical value is tested by numerical experiments with the trapezoidal
rule.
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Uber die Stabilitit des Mehrschrittverfahrens fiir Volterrasche Integralgleichungen zweiter Art. Ziel
dieser Arbeit ist es, die Stabilitdtseigenschaften einer Klasse Volterrascher Integralgleichungen zweiter
Art zu untersuchen. Unsere Behandlung ist der iiblichen Stabilititsanalyse dhnlich, in der die
Kernfunktionen zu einer im voraus beschrinkten Klasse von Testfunktionen gehdéren. Wir haben
die Klasse der ,,endlich zerlegbaren“ Kerne betrachtet. Stabilititsbedingungen werden abgeleitet
und verglichen mit den Bedingungen fiir die einfache Testgleichung. Es zeigt sich, dal3 die neuen
Kriteria einschrinkender sind als die konventionellen Bedingungen. Der praktische Wert wird
getestet durch numerische Experimente mit der Trapezregel.

1. Introduction

Suppose we are given the system of non-linear Volterra integral equations
fx)=gx)+ | K(x,y,f()dy, xo<x=<X, (1.1)
X0

where g and K are given vector functions and f 1s the unknown vector function.

Several numerical methods have been proposed to solve this equation, the most

familiar ones of which are based on a direct quadrature rule. These methods have
the form
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nrl

fmn%lmg(xn-ihl)—l- Z wn*kl,jK(xn—Fla'xjafj)ﬁ nzk“l? (12)
= 0O

jﬁ

where f,, f,, ... are approximations to f (x,), f (x¢), ... and W, j are given weight
parameters. It will be assumed that £, 4, ..., f, -, are prescribed.

In the literature, the stability analysis of this and other methods i1s carried out either
for h,—0 (h,=x,.,,—Xx,), where general kernel functions K are admitted (cf. [&]
and [12]), or for fixed h=0, where the kernel is of the form K=a/, yielding the
test equation (cf. [11],[2])

f)=g(x)+a | fO)dy, aeC. (1.3)
)

The main 1dea behind this last approach is that the kernel function 1s chosen in
such a way that the numerical scheme can be rewritten as a recurrence relation
with a fixed number of terms, which is due to the possibility of reducing (1.3) to
the differential equation f'=af. In this connection, a remark of Kershaw in
[ 4, p. 159] about the use of this kernel function may be quoted: “... it is obviously
convenient, however its true relevance to the integral equation situation does not
appear to have been thoroughly examined.” It 1s possible, however, to extend the
analysis of (1.3) to more general kernel functions to obtain a firmer foundation
for the stability conditions derived for (1.3). In particular, we want to consider
kernel functions which depend upon the independent variable x in order to treat

integral equations which are more general than the integrated form of a first-order
ordinary differential equation.

The present paper is based on two earlier institute reports [6] and [7] and re-
produced here in a condensed and slightly modified version. In [6] the kernel
functions K (x, y, /) were allowed to be of the form

K(x,y, fl)=(a+bx)f, (1.4)

where a and b are constants, and in [7] we considered the class of finitely
decomposable kernels (cf. [3]), 1.e., kernels of the form

K (x, 7. /)= }: 0; () B, (5. ). (1.5)

where the Q; are matrices only depending on x and where the B, are vectors
which only depend on (y, f) and which are differentiable with respect to f. In
this paper K will be assumed of the form (1.5).

Although our stability analysis applies to rather general integral equations with
kernels of the form (1.5), it turns out that the resulting stability conditions
resemble those obtained for integral equations with the simple kernel a(y) f.
Thus, the stability behaviour found for ordinary differential equations with the
test equation f'=a(x) f is indicative of the local stability behaviour for Volterra
integral equations of the type (1.5).
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The first-order variational equation of (1.2) 1s of the form

ntl 0K _
Af"“*'lm.zo Wn+1,j af (xn+1:tx_]9f])Af_] HZk"’“].. (2‘1)
j=

In order to obtain a fixed-term recurrence relation for the perturbations 4f;, we
use two properties of the kernel function K and the weights w,;, respectively.
Firstly, by virtue of (1.5), the arguments x, y and f in the Jacobian matrix can be
assumed to be separable according to the formula

0K . | ..

— (x5, y, )= 2. Qi (x)R; (3, f), (2.2)
af =1

where the R, are arbitrary matrices only depending on y and f, and the Q, are
arbitrary matrices only depending on x.

Secondly, we use a property of w,; that holds for all quadrature rules which are
reducible to a linear multistep method with coefficients {a,, b,};_, (cf. [10], [13]).
This property reads

i B 0 for j=0,1,...,n—k, n=22k—1
A Wpi1-1,j= —h, b, _; for j=n—k+1,...,n+1

3

(2.3)

where the parameters g, and b, are independent of j, and k 1s a positive
integer.

Apart from the properties (2.2) and (2.3) we need the quantities

AGY =) w,;Ri(x,f)d4f;, n=0,1,...; i=1,2,...,r. (2.4)
j=0
[t 1s possible to derive a fixed-term recurrence relation for the perturbations 4 f;
and 4G!". Before doing this, however, we shortly discuss the meaning of the
perturbations 4 G{" by relating them to quantities introduced by Bownds [3].

Following Bownds (see also [1]) we substitute (1.5) into the integral equation to
obtain (1in our notation)

f69=9()+ ¥ QGO GO=] B D)dy. @3

The functions G¥ (x) satisfy the system of differential equations

4 G (x)= B, (x, g (x)+ i Q;(x)GV(x)), i=12,..,r. (2.6)
ji=1

dx
Hence, by solving the G (x) from these equations the function f (x) can be found.
Returning to our perturbations A4G\", it is easily seen that they just are the

discrete analogues of the perturbations 4 G® (x) of the functions G (x), defined
by (2.5).
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Substitution of (2.2) into (2.1) leads to the relation

Afni1= Qi (x,41) 4G . (2.7
i=1

In addition, we have from (2.3) for the perturbations 4G!" the recurrencs
relations

k

k
Z aZAGrglﬂll“lJr—hn Z bl Ri (xn'l-l*l:fn*i-l—-l)Afn+1“lm03 Zmls 2: *“:vr* (28
=0

=0

Writing 4 f, =4 G!? the recurrence relations (2.7) and (2.8) for the 4 G!Y can be
compactly written as a two-term recursion of the form

AV, .,=A4,4V (2.9)
where A, 1s a matrix operator and
A Vnm(AG", »eoe g AGInwi_l ..._k)T
with
AG,=(A4G\?, ..., 4GMT.
The magnitude of the eigenvalues of A, give an indication of the propagation of

the perturbations 4 G!” and therefore also of the errors 4 f,. Hence, the charac-

teristic equation of A, is of importance. Following the analysis given in [7] we
arrive at the result:

Theorem 2.1: The non-trivial eigenvalues of the matrix A, satisfy the characteristic
equation

== ()

X 0K ,.. -
det [Z (all+bl hnmaf (xn+13 xn+1~*hfn+1--l)) ék l]:o D(zlo)
[ .

First of all we emphasize that the characteristic equation (2.10) 1s completely
expressed 1n terms of d K/0 f at a number of points (x, y, /) in the neighbourhood
Of (X,+1, Vn+1,fn+1) This indicates that only the possibility to separate 0 K/0 f
according to (2.2) 1s used in the analysis; the specific form of this separation,
however, 1s not reflected in the characteristic equation. Further we note that, due to
the local character of our analysis, the jacobian 0K/Jdf i1s evaluated only at
x=Xx,,,. Lherefore, if 0 K/0 f 1s independent of x, then (2.10) is equivalent with the
characteristic equation of the linear multistep method for solving ordinary
differential equations applied to the test equation y’ ()= A () y ().

By comparing (2.10) with the characteristic equation obtained 1f the test equation
(1.3) 1s used 1n the stability analysis, 1.¢., the “linear multistep” equation (cf. [ 2])

k
> (@+bz)*"'=0, z=ah, (2.11)
=0

one can quantify the extent of the simplifications which are introduced if stability
considerations are based on (2.11) instead of (2.10). The use of (2.11) seems
justified for slowly varying Jacobian matrices, but may give wrong stability con-
ditions if 0 K/0 f 1s rapidly varying with x, y or f.
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3. Sta W

S

In this section we assume that the Jacobian matrices occurring in (2.10) can be
diagonalized by the same transformation. In that case (2.10) can be factorized and

leads to the equation
k

Z (al+bl zn+l,n+1-~l) Ck**lmo’ (31}
=0
| .. 0K ,. .
Where Zl’l"*’ -1.’",“‘..,1__[ IS arl elgenvahle Of hn a":f (xn+1,xn+1___1’ jn"i-l-*l) FI’OH’I (3.1)

stability conditions can be derived. It 1s more convenient, however, to determine
the stability region, defined as the set of points in the space {z,,1 n+1-1}i=0>
where the solutions { of (3.1) (the amplification factors) are inside the unit circle.
We illustrate this by deriving the stability region of the trapezoidal rule. This
rule 1s defined by

zwnOmWnlm“*mw’n,nﬂlmzwnnmh' (32)
This quadrature rule satisfies (2.3) with k=1, a,=—a,=—1 and b,=b, =3, so
that equation (3.1) assumes the form

(1_%Zn+1,n+1)gm(l—l—%zn-l-l,n)mo' (33)

Let the eigenvalues z be real; then by the Hurwitz criterion we arrive at the
stability region

(Z};1+ 1,n+zn+ 1,n-+ 1) (4+Zn+ 1,nmzn+1,n+ 1)<O (34)

Comparing (3.4) with the condition z<0 resulting from (2.11) when the test
equation (1.3) 1s used, we observe that (3.4) 1s more restrictive in the sense that
it takes into account the variation z,, | ,~ 2,41 n+1-

However, methods exist for which there is no distinction between stability

regions based on (2.11) and (3.1). As an example of such methods we mention the
‘backward differentiation formulas [9] defined by

K
aomml; bI:-“O, Z#O; Z (1ml)Ja,+jb0:—“ o ]mo, 1,...,k.

The stability regions of these formulas contain the whole left half plane for k<2
and almost the whole left half plane (except for a small region near the imaginary
axis) for k=3, 4, 5 and 6. In order to make use of these excellent stability proper-
ties one should find the corresponding weights w, ; by solving the relations (2.3).

In [13] solutions are given and the resulting quadrature formulas are investi-
gated.

In case of the backward differentiation formulas, (3.1) takes the form

k
(ao +bg 2, 1,n+1)ck+ Z 43 (7'=0
I=1

and 1t 1s readily seen that the region of stability is exactly the same as the one
obtained with (2.11).
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4. Numerical Illustration

Finally, we investigate the practical value of the theoretical stability conditions
derived from Theorem 2.1. We will illustrate this by performing a few experiments

with the trapezoidal rule. From the characteristic equation (3.3) it follows that
1ts amplification factor is given by

€n+1 ﬂ(1 +:1'fzn+ l,n)/(l ............%. Zn+ 1,.n+ 1)*

This factor describes the propagation of the perturbations
AV, =4f,, 4GV, ..., 4G,

if the starting value f, of the trapezoidal rule is perturbed. In practice, however,
we are 1nterested in the behaviour of 4 f, instead of 4 ¥,. In the tables of results
below we list the values of 4 f, due to a perturbation 4 f,=,,—3 and in addition
the values of the theoretical amplification factor {, which were computed during
the integration process. Furthermore, we also performed an experiment where
we mntroduced 1nstead of the isolated perturbation 4 f,, (cf. [2]) the perturbations

Afo, 4fy, ..., 4 fy obtained by rounding f,, ..., fo from the unperturbed experi-
ment to 4 significant digits.

(4.1)

We have chosen the frequently quoted equation of de Hoog and Weiss [5]
f)=1+1+x)e ™ P+1+x)[10In(1+x)+1—e"12%]+
- 14+x

L e o ]

o 1+vy

(4.2)
—10

f2()dy.

In order to avoid the initial phase of this stiff problem we started the integration
at x=1, taking the exact solution f (x)=[1-+(1+ x)exp (— 10 x)]* in the interval
10, 1]. From the Tables 4.1 and 4.2 we may conclude that the perturbation |4 f, |
decreases if the amplification factor | {,| is continuously less than 1 and that

Table 4.1. 4 f, due to an isolated perturbation Table 4.2. 4 f, due to perturbing

4fy in (4.4) Afg, ..., dfs in (4.4)
h=1 h=3 h=1 h=2
Afﬂ Cn Afn Cn Afn (:n Afn | Cn

- B | . . .
[ | —1.0,,—3 - —1.0,0—3 21| +41,,—4 ] —086 | +1.3,,—3 | —0.65
2| +1.4,,—3 | —1.31 22 | —3.5,,—4 | —0.87
3| —1.5,,—3 | —1.07 23 | +3.0,,—4 | —085| —1.9,,—3| —1.50
4| +1.6,,—3 | =109 | +3.2,,~3 | ~3.13 24| —2.5,,—4 | —0.86
5| —1.5,—3 | —0.95 25 | +2.1,,—4 | —085 | +1.2,,—3 | —0.65
6| +1.5,,—3 | —102 26 | —1.8,,—4 | —0.86
7| =133 | =091 | =2.9,,—3 | —0.92 27 | +1.5,0—4 | —085| —18,,—3 | —145
8 | +1.2,,—3 | —0.97 28 | —1.3,,—4 | —0.85 | -
9| —1.1,,—3 | —0.89 29 | +1.1,,—4 | —085 | +1.2,,—3 | —0.65
10} +1.0,,—3 | —094 | +89,,—3 | —3.11 30| —9.4,,—5 | —0.85 |
11 | —8.8,,—4 | —0.87 31 | +7.9,,—5 | —085 | —1.6,,—3 | —1.39
12 | +80,,—4 | —0.92 | 32 | ~6.7,0—5 | —0.85 1
13| —69,0—4 | —087 | —38,,—3 | 044 33 | +5.6,0—5 | —085 | +1.1;,,—3 | —0.67



On the Stability of Multistep Formulas for Volterra Integral Equations of the Second Kind 347

| A1, | 18 oscillating if | {, | is alternately less than and greater than 1. (In the

experiment with 10 independently perturbed f.-values we got divergence for
h=3 and x>19))

Since in this problem 0 K/d f is always negative, application of the analysis based
on (1.3) would predict a decrease in 4 f, for all stepsizes h. This is contradicted
by our experiments.
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