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A method is described for the accurate discretization of a differential equation in 
which the highest derivative is multiplied by a small parameter. It is well known that 
for such singular perturbation problems with a strongly asymmetric differential opera
tor almost all discretizations are either unstable or inaccurate or direction depen
dent. By the combination, in an iterative process, of an inaccurate stable and an 
accurate unstable scheme we obtain an accurate stable solution, without adapting the 
scheme to the flow direction. I2 fact, two approximate solutions are obtained, that 
- uniformly in E - are both O(h ) accurate in the smooth part of the solution. The 
difference between both solutions can be used for the detection of the unsmooth parts. 

I . INTRODUCTION 

An iterative process is used to obtain the accu
rate solution of a singular perturbation problem. 
As a model problem we use the convection diffu
si.on equation 

-+ 
(la) -cLlu + a.Vu= f, 2 
on a bounded domain QclR , with either Dirichlet 
or natural boundary conditions 

(I b) 

(I c) 

u g on J£1. 1 , 

h on ;H1. 2 , 

where ri: is the outward normal on the boundary 
:iu. = 0r1 1uci\l2 • 

The problem is written in symbolic form as 

(2) L u = f. 
E 

It is well known that for such a problem with a 
strongly asymmetric differential operator, the 
usual discretizations are either unstable (the 
usual symmetric discretization methods: central 
differences, finite elements or Bubnov-Galerkin 
methods) or inaccurate (artificial viscosity) or 
direction dependent (various streamline-upwind 
or Petrov-Galerkin discretizations). By the 
combination, in an iterative process, of an in
accurate stable and an accurate unstable scheme, 
we construct a solution which is accurate, 
uniformly for all £, without adapting the scheme 
to the subcharacteristic directions (flow-direc
ti.ons) in the problem. 

In the iterative process two standard discreti
zations of (2) are used: 

(3) L c , h uh = f h' 

a standard accurate discretization (e.g. standard 
central differences or a finite element discreti
zation with piecewise linear test and trial 
functions on a regular triangularization), which 
i.s unstable for t0«h, and an artificial diffusion 

(artificial viscosity) discretization 

(4) La,h uh = fh' 

which is the same as (3) but with a= c + O(h), 
whence (4) is stable. It is well known [6] that 
both discretizations yield bad results for small 
ratios E/h. 

We combine the discretizations (3) and (4) in an 
iterative process of defect correction type. In 
case of a linear problem an elementary defect 
correction process generates a sequence of appro
ximate solutions uCi), i = 1,2,3, ..... , by the 
iteration (iterative refinement) 

u(O)= 0 
' 

(5) Lu(i+l) = f - Lu(i) + Lu(i). 

If lim. u(i)= u* and Lis injective, then u* 
is the §;;J'.ution of the "target equation" 

Lu= f. 

L is usually some approximation to L, for which 
the equation (5) is readily solved. 

For our problem we study a "mixed" defect correc
tion iteration with two target operators and two 
approximate operators. They are combined as: 

(6a) 

(6b) 

u(O)= 0, 

1u(i+!J= 
~ 1 (i+l) 
L2u = 

If this iteration converges, 

utions" uA = lim. u (i) and 
J_+oo 

With f 1 = f 2 f, obviously 

by 

we obtain two "sol

u8 = lim. u (i+4). 
A i.+o> 

u is characterized 

~ ~ ~- l - A - ~- I 
(7) [L2 -(L2-L 2 )L 1 (L 1-L 1 )Ju = [I-(L2 -L2 )L 1 ]f 

and u8 is given by a similar equation. 
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2. THE DISCRETIZATION 

To obtain an approximate solution for (2), we use 
the process ( 6) with f I J2 = fh and with the 
operators 

( 8) LI L €,h' LI L 
et' h' 

L2 L a,h' L2 2 diag (L h) =: D. 
a, 

In this way the second iteration step (6b) is a 
damped Jacobi-relaxion-step for the solution of 
(4). The first step (6a) is an order improving 
defect correction step towards the solution of 
(3), where the defect defining operator is simply 
given by 

( 9) E := L 1-L 1 = (a-s)Llh. 

A B 
uh and uh are now characterized The two solutions 

by 

(10) (L + 
E:,h 

(I I) (L h + 
E, 

(I + 

By using local mode analysis [4] we can show that, 
for the smooth parts of zhe solution, u~ and u~ 
are both accurate of O(h ). Further! the opera
tors L h + L hD-IE and L h + ED- L h are 

E, a, E, a, 
stable and the numerical boundary layers extend 
over a region of only 0 (h) in the boundary layer 
region [5]. 

Remark. 

It is not possible to find an accurate approxima
tion for our problem (1) by application of the 
simple defect correction (5) alone. If we apply 
(5) with L = L h and L = L , for e«h iteration 
would not conv~tge to a sen~iRle solution because 
of the instability of L • It would converge to 
the unwanted solution of' l'.he "target problem" (3). 
Theoretically, already a single step (or a few 
steps) of (5) result in a 2nd order accurate method 
cf. [2] Satz 2.2 , from which follows 

II uh - ~ull o:: Ch2 11 u"ll . 

Here ~u denotes the restriction of the true so
lution u to the mesh. However this is not a use
ful errorbound in our case, where II u" II may be 
very la2ge. In fact, for small s, we do not find 
the O(h ) convergence in practice for any rea
sonable value of h. This is shown in table l. 

£ = l um D A B 
h uh uh uh 

h = 1/8 0.630 0.0740 0.0780 0.0693 
ratio 2.47 3.65 3.64 3.46 

h = 1/16 0.0255 0.0203 0.0214 0.0201 
ratio 1. ?1 4.02 4.01 3,89 

h = 1/32 0.0149 0.00505 0.00533 0.00516 

Table Ja. 

D A B 
£ = 10-6 um 

h uh uh ~ 

h = 1/8 0. 790 0. 634 0.608 0.459 
ratio 1. 3? 1.?6 3.82 3.48 

h = I I 16 0.578 0.360 0.159 o. 132 
ratio 1. 52 2.08 4.75 4.54 

h = 1/32 0.380 0.173 0.0335 0.0291 

Table lb. 

Table J shows the error in the smooth part of the 
solution in the max-norm. 

u~~): the solution after one step (6a); 

uh : the solution after two steps (6a); 

u~, u~ obtained by iteration of (6). 

The problem: Elu + u = f on the unit square; 
with the Dirichlet b6undary data and the data f 
such that 
u (x,y) = sin(rrx)sin(~y) + cos(rrx)cos(3ny) + 

+(exp(-x/£) - exp(-1/€))/(1-exp(-J/£)). 

3. RELATION WITH MULTIGRID TECHNIQUES 

The algorithm in section 2 can be considered 
independent of multigrid techniques. However, it 
is related to previous work done on multigrid 
methods. 

The use of defect correction in combination with 
a multigrid algorithm is already mentioned by 
Brandt[!] and is theoretically studied by Hack
busch [2,3]. They consider a multigrid algorithm 
which, in the elementary form of a two-level 
algorithm, can be described by a process (6) as 
well. Then, (6a) is a "coarse grid correction" 
which is now written in the form 

(i+J) = (i) L-1 (f -L (i)) u u + 1 1 1u , 
because~-! 

L 1 is of deficient rank: 
~-1 -1 
1 1 = ph,2h1a,2h R2h,h' 

where Ph 2 and R2 h are the grid transfer 
operators £etween l'.fie fine and the coarse grid; 
(6b) denotes a sequence of relaxation sweeps. 
In the standard two-level algorithm both target 
operators are the same: L1 = L2 . In combination 
with defect correction (non-standard), the ope
rator L 1 corresponds to a more accurate discre
tization then L2 . 

In the approach we discuss here, we differ 
[l,2,3] by using a full rank operator 11 
We use the multigrid algorithm only to 
solve efficiently the equation (6a). 

4. THE DIFFERENCE BETWEEN u~ AND u~ 

Considering the difference u~ - ~ of the 
solutions of (JO) and (11), we find the 
following 

from 

La,h' 
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Lemma 

(12) 

Proof 

-1 A 
D Euh 

Because of (6b) we have 
B A 

(13) D (uh - uh) 

and hence,by (11), 
B 

(14) LE,huh - fh 

(L h 
E' or 

B A 
(15) La,h uh - fh E uh . 

. -1 ) A diag (L. h 6 uh. 
Ct, h 

From (13) and (15) the lemma follows immediately, 

From (12) we see that the difference uB - uAh is 
A h 

l~rgeAfo: large llhuh . In the regions where 
uh- uh is large, the 2nd order differences of 

u~ are large. Here the solution cannot accurate
ly be represented. Thus, we may use the differ
ence u~-u~ as an indicator where the mesh should 
be refinea for a better approximation of the 
solution. 

To study the local behaviour of the difference 
u~-u~ in more detail, we resort to the local 
mode analysis [l]. We consider the problem (la) 
on lR 2 and form the discrete operator L h over 
all lR2. As a forcing function we takes' the 
11mode 11 

ij hw . .,,2 lR2 
e ; J E,,, he + ; 2 

Re(hw) E [-n,+n] . 

Now the solutions u~ and u~ are studied by 
Fourier analysis. We note that the Fourier 
transform is a norm-preserving bijection between 
the f2 Cn:~ and the L2 ([-n,+n]2) functions, i.e. 

II u II II Q II 
where Q is the Fourier transform of u. 
From (12l_we derive 

/]/\ I -1 ) A ) = (16) uh-uh= FT( 2Ca-s) diag (La,h llh uh 

= ~~~(sin2 (wlh/2)+sin2 (w2h/2))~~ =: a;~ s2 u~, 
and from (10) we find 

A -4E 2 a-s 2 4i a-s 2 (17) ~h;Qh = -h2s (1+-2~s) + -h T c1+-2~s ), 

where 4iT/h = £0 h(w) is the characteristic 
trigonometric polynomial for the reduced 
difference operator. 

In previous work [4,5] we derived from (17) that 
uA ~s bounded, uniform ins, Moreover, u~ is 
o?h ) accurate in the smooth parts of the 
solution. We also showed that, for sma~l EA at 
boundary or interior layers the error in uh may 
be 0(1) ,uniformly in s. In these regions (where 
the discrete solution is not able to represent 
the true solution anyway) the numerical approx
imations may show oscillations. However, the 
discretization (10) is asymptotically stable and 
the critical regions near the layers have only 
O(h) width. 

To see the effect of h -+ 0 on the approximation, 
we study separately the "low" and the "high" 
frequencies in the true solution. The frequencies 
are called "high" or "low" with reference to the 
mesh used (size h). For the "low" frequencies in 
the solution we consider a fixed w and let h-+ 0. 
For the "high" frequencies we consider wh fixed 
and let h->-0. Regions where the solution is 
smooth are characterized by low frequencies. 
Regions where the mesh is too coarse to repre
sent a solution properly,are dominated by high 
frequencies. 

Now we use (16) to 
different regions. 

B A . h see how uh-uh behaves in t e 
For the low frequencies 

? ? s- = sin~ (w 1h/2) 
? 2 + sin~(w2h/2) = O(h ) and we 

find 
2 

11 u~ 
? 

11{ 
a-e II £='=- II B A -2;; s ,; c h-

uh -uh a 

C _]L h2 11 u~ II h+s 
Because uA is bounded, uniform in s, we 

tRe smooth part of the solution 
conclude 

that in we have 

II u~ - u~ II ,; c h2 , 

with C independent of c. 
For th7 high frequencies wh is fixed (and hence 
also S ) and we find 

II u~-u~ II ~~~ s2 II u~ II ,; a:s 

,,; C h/ (h+s) . 
Hence, for h<s, s fixed, we find 

11 c\ - u~ 11 = o Ch) 

and for e<h we find 

11 c\ - u~ 11 oc1) 
for the high frequencies. 
Hence we find that in the smooth part of the 
soluAion (low frequencies) the difference 
uB-u is small, whereas it may be large in those 
rggi8ns of transition layers, where the mesh is 
not fit to represent the true solution. In this 
way the difference ~B-uAb behaves similar to the 

. .n AR error in the approximation ui.;--nu. 

5. EXAMPLES 

. f A As a ~irxt example to show the behaviour o uh 
and uh-u , we use the same equation as Hughes 
and BrooRs [6], 

-c~u + cos(8) u + sin(8) u = O, x y 
on the unit square, with Dirichlet boundary _6 
conditions at the inflow boundary and E = 10 

(0, I) 

flow-
direction 

(0 ,A) 

(O,O) 

Inflow boundary 
conditions 

u (x, 0) 1, 0 ,; x,; 1, 
u(O,y) 1, 0 ,; y ,; A, 
u(O,y) o, I <: y > A. 

(1,0) A 3/16. 
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0 A Fig. lb. 
B - A IZI Fig. la. Es:ample l. Neumann BCs, 6 22.5 uh. uh uh 

1.0 
e~ 

0.05 

', ' ' 0.0 . ' 
-·O .05 

0.0 

Fig. 2a. Example 1. Neumann BCs, 8 22.5° Fig. 2b. 

1.0 
8.05 

o.o 

-0.05 

0.0 

Fig. 3a. Example 1. Neumann BCs, 8 Fig. 3b. 

1.0 
C. GS 

c.o 

·-0.05 

0.0 

Fig. 4a. Example I. Neumann BCs, 8 67.5°, Fig. 4b. 
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•I •• , ~.; J 

Fig. Sa. Example 1. Dirichlet BCs, 6 = 22.5°, u~. 

1.0 

o.o 

Fig. 6a. Example I. Dirichlet BCs, 6 = 45°, u~. 
J, .. 

1.0 

o.o 

Fig. 7a. Example I. Dirichlet BCs, 6 = 67.5°, 

? ~ 
·-•I.' ···, ,', 

]. 0 

0.0 

A 
Fig. 8a. Example 2. uh 
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~-

o.os 

o.o 

-0.05 

Fig. 6b. 

0.05 

o.o 

-o.os 

Fig. 7b. 

0.05 

o.o 

·-0.05 

Fig. 8b. Example 2. 
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At the outflow boundary either natural or homo
geneous Dirichlet boundary conditions are used. 
For L h we use the usual finite element discre
tizat~6n with piecewise linear functions on a 
regular triangularization. 
Note: the way the squares are triangularized 
(\SI or IZl) makes no essential difference in the 
results. If the triangle division follows the 
internal layer, the numerical results are 
-of course- slightly better. In the figures 
the triangularization is indicated. 

In common with [6] we use as flow directions 
e = 22.5°, 45° and 67.5°. 
In the figures ( 1 )-(7) we show the numerical 
s~lution u~ and the difference u~-u~ for the 
different cases. 

As a second example we use the variable 
coefficient problem 

-s6u + !.9u = 0 on [-1,+l]x[0,1], 

! = ( y(l-x2 ), - x(l-y2))T, 

with the Dirichlet boundary conditions 

u(x,y) 
u(x,y) 
u(x,y) 
u(x,y) 

I + tanh(I0+20x), 
0 
0 
0 

y=O, -1 ,; x ,; 0, 
y=l, -I,; x,; I, 
x=l, 0,; y,; I, 
x=- 1 , 0 < y ,; 1 ; 

and homogeneous Neumann boundary conditions at 
the outflow boundary: y=O, 0 < x < 1 . 
Asymptotically for s+O, the true solution is 
constant over the subcharacteristics and the 
outflow profile is the mirror immage of the 
inflow profile. 

(-1, I) 

(~l 
(1, I) 

(-I ,0) .__ __________ __, ( 1, 0) 

Inlet Outlet 

In the figures (Sa) and (Sb) we show the 
numerical solution u,A and the difference 

B A n 
uh-uh. 
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