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This paper considers a finite set of stochastic matrices of finite order. Condi-
tions are given under which any product of matrices from this set converges to a

“constant stochastic matrix. Also, it is shown that the convergence 1s exponentially
fast.

. INTRODUCTION

This paper deals with a finite set & of NV X NN stochastic matrices, 1.e., for
each P = (p,;)€P, p; =0 and 5, ,p;; = 1 for all 4, j = 1,..., N. Non-
homogeneous Markov chains were studied in among others, [3, 4, 9]; see also
[5, 7]

Consider the following conditions introduced in [9].

Cl. For each integer 2 > 1 and any P, e & (1 < 7z << R) the stochastic
matrix P, -+ P, 1s aperiodic and has a single ergodic class.

This condition 1s equivalent to each of the following two conditions.

C2. There 1s an integer v > 1 such that for each £ = v and any P; €
P (1 <1 < k) the matrix P, --- P, is scrambling; i.e., any two rows of P, -- P,
have a positive entry in a same column (cf. [3]).

C3. There is an integer w = 1 such that for each 2 > n and any
P,e Z (1 <1 < k) the matrix P, --- P; has a column with only positive entries.

We remark that in C2 (C3) it suffices to require the condition imposed on the
matrix products only for those of length v(u). The equivalences Cl < C2 < C3
can be seen as follows. Using the fact that a stochastic matrix Q such that O” 1s
scrambling for some # > 1 1s aperiodic and has a single ergodic class, we have
C3 = C2 = Cl. Wolfowitz [9] proved that C1 = C2. However, an examination
of the proof of Lemma 3 in [9] shows that this lemma remains true when we
replace its conclusion that P; 1s scrambling by the conclusion that P, has a

column with only positive entries. Using this, the proof of L.emma 4 in [9] next
shows that C1 = C3.

* This paper i1s registered as Mathematical Centre Report BW 58/75.

360
Copyright © 1977 by Academic Press, Inc,
All rights of reproduction in any form reserved. ISSN 0022-247X



PRODUCTS OF STOCHASTIC MATRICES 361

The purpose of this paper is to show that under C1 for any sequence {P;,
1 = 1} of matrices from & the matrix product P,, --- P, converges to a constant
stochastic matrix as # — c0. Also, it is shown that the convergence is exponen-
tially fast. Further, we give conditions imposed on the individual matrices

from & such that C1 holds. This paper, among others, may have applications
1in Markov decision theory (see [1, 8]).

2. CONVERGENCE OF THE MATRIX PrRODUCTS

The following theorem generalizes the theorem in [9] and is related to
Theorem 2 in [4]. Theorem 1 below shows not only that under C1 for any
sequence {£;} of matrices from & the product matrix P, --- P; converges to a
constant stochastic matrix as n— oo, but its proof which was suggested by
the one given in [2, pp. 173-174] shows also that the convergence is exponentially
fast where the convergence rate i1s uniformly bounded in all sequences {P,}.

THEOREM 1. Suppose that C1 holds. Then there is an integer v 2= 1, a number
x with O << oo < 1 and for any sequence {P; ,1 = 1} of matrices from P there is a
probability distribution {7r; , 1 < j << N} such that, for alli,7 = 1,..., N,

I(Pn Tt Pl)‘i:)' L I g al”/v] for all n ;’f— 1, (1)
whnere [x] 1s the largest integer less than or equal to x.

Proof. We first introduce some notation. For any N X N stochastic matrix Q,
define 1ts ergodic coefficient by

N
v(Q) = min ) min(g;; , g;,;)
=1

115%2 q
and, forj = 1,..., NV, let
M;(Q) = max g and m;(Q) = min g,; .

Observe that »(Q) > 0 if and only if O is scrambling. By [9, Lemma 4] we can
choose an integer v == 1 such that the matrix P, .-+ P; 1s scrambling for any
P,e Z (1 <1 <v). Then, by the finiteness of &,

y = min{y(P, - P)| Py P(1 <i <)} > 0.

Now choose any sequence {P;, 7 > 1} of matrices from Z. Foranyzn = m > 1,
put for abbreviation Ppym =Ly P, . From (P%—l‘l,l)iff — Zlc(Pn+1)ik(Pn,l)kj
it follows that for all 7 = 1,..., IV,

Mi(Ppi1.1) < M;(Py.1) and  mi(Ppyiy,1) = my(L£y,1) forall n=>=1. (2)
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Now, fix 7, & and n > v. For any number 4, let a* = max(a, 0) and a~ =
—min(a, 0), so that @ = a+ — a~ and a*, a~ > 0. Using the fact that
(@ — b)* = a — min(a, b) and that ZIN a;v = Zjlv a;~ when 37 a;, = 0, we get
for any 7 = 1,..., N,

(Pﬂ,l)i:i T (Pn,l)h-.?‘

N
— Z {(P n.n--v+1)ik — (P n.nwv*%'l)hk}(P““"’l)M

k=1

N
— 2 {(Pn.n_v+1)ik T (Pn,n-v+1)hk}+ (Pn--v,l)k:i +

fe=1

N
T Z {(Pn,n-—v—l—l)ik o (Pn.'nm—v-kl)h?«.:}“ (Pn—-v,l)kj

k=1
N
= Z {(Pn,n-uv+1)ik T (Pn,n P 1)71k}+ {Mﬁ(Pﬂ“V'l) o m—’f(P”"“an)}
k=1
N »
= <] — z mm[(P nm-—-v-i—l)z‘k > (P n,n—-—-v+1)hk] {M:i(P 'n---v.l) T mf(P ﬂ-vkl)}
.,. k=1

< (1 — {Mi(Poy,1) — mi(Pps 1))
Since ¢ and /& were arbitrarily chosen, it follows that for all j = 1,..., IV
Mi(Pn1) — mi(Ppy) < (L — yHM(Prey 1) — (P 1)s forall 7 > w.

A repeated application of this inequality and the fact that M (Q) — m;(Q) < 1
for any stochastic matrix Q show that, for allj = 1,..., IV,

M(P,.) — mf(Ppy) < (1 — )P forall n 3> 1. (3)

Together, (2) and (3) prove that for any j = 1,..., NV there is a finite number
w; == 0 such that M,;(P, ;) is monotone decreasing to 7; as # — o0 and m,;(P,, ;) 1s
monotone increasing to 7; as # — co0. Next this result, inequality (3), and the
definitions of M; and m; imply (1) with « = 1 — y. Clearly, > 7; = 1 since
P, --- P,1s astochastic matrix for alln. [

We remark that C1 holds when relation (1) applies for any sequence {P,},
so that C1 1s both sufficient and necessary for the assertion of Theorem 1.

By [5, Theorem 4.7, p. 90] the integer » in condition C2 can always be taken
less than or equal to v* = (1/2)(3N — 2N+ 4+ 1). Hence, by C1 < C2, one may
decide whether C1 holds by checking all matrix products of at most length v*.
This may be practically impossible when N is large. We now discuss conditions
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imposed on the individual matrices from & such that Cl holds. Before doing
this, we first remark that it was pointed out in [3, p. 235] that C1 does not
generally hold when each P e # is aperiodic and has a single ergodic class (see
also [6]). Clearly C1 holds when each P € Z is scrambling since in that case any
product of P’s 1s scrambling. The next theorem gives sufficient conditions for a
strong version of C3 under the assumption that the set #
“product’’ property.

has the following

A. 'The set Z is the Cartesian product of finite sets of probability distri-
butions.

THEOREM 2.
PeZ has a single ergodic class and that there is an integer s with 1 < s <C N such
that, for each P € 2, p,, > 0 and s is an ergodic state of P. Then there is an integer
pwith 1 < p <N — 1 such that for all R = p and any P; e P(1 < 1 < R) the
sth column of the matrix P, --- P, has only positive entries.

Proof. Let S(0) = {s}. Define the sets R(k — 1) and S(k) for 2 > 1 by

k-1

Rk — 1) = () S()
j=0
and

S(k) — gf [i¢R(E—1), Y p; >0 forall Pe2!.

1€ R(k~-1)

such that R(n) = {l,..., IV} when we can prove that S(k) = @ when R(k—1) 5
{1,..., N}. To do this, assume to the contrary that there i1s an integer & = 1 such
that S(k) = and R(k — 1) 5= {1,..., N}. Then, for each z ¢ R(k — 1), we
can find a matrix P% e % such that p{) = 0 for all je R(k — 1). Now, by
property A, there is a matrix P* € & whose ith row 1s equal to the :th row of
P® for all 7¢ R(k — 1). Then, pJ; = 0 for all i ¢ R(k — 1) and j € R(k — 1).
However, this i1s a contradiction since s € R(k — 1) and 1t 1s assumed that P*
has a single ergodic class and that s is ergodic under P*. This proves the existence
of the above integer u. Now, choose 2 == u, P;e Z (1 <<t < k) andj s s. By the
construction of the sets S(%), we have (P --* P._,,11);s > O for some m with
1 <m < u. Now since p,, > O for all P, we get (P, - Py);s > O for all g,
which proves the desired result.
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