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Abstract

In a preceding paper [2] we have introduced a new approach for solving a
wide class of Markov decision problems in which the state-space may be general
and the system may be continuously controlled. The criterion i1s the average
cost. This paper discusses two applications of this approach. The first applica-
tion concerns a house-selling problem in which a constructor builds houses
which may be sold at any stage of the construction and potential customers
make offers depending on the stage of the construction. The second application
considers an M/M/c queueing problem in which the number of operating
servers can be controlled by turning servers on or off.

MARKOV DECISION PROBLEMS; AVERAGE COST; GENERAL STATE SPACE; CONTINU-
OUS CONTROL; APPLICATIONS; HOUSE-SELLING PROBLEM; M/M/c QUEUEING PROB-
LEM WITH VARIABLE NUMBER OF SERVERS

1. Introduction

In a preceding paper [2] we have introduced a new approach for solving a wide
class of Markov decision problems with the average cost as criterion, including
problems in which the state-space i1s general and the system can be continuously
controlled. This paper discusses two applications of this approach. Each of these
applications will be illustrated with numerical results.

The first application concerns a house-selling problem in which a constructor
builds houses which may be sold at any stage of the construction and potential
customers make offers depending on the stage of the construction. From the
optimality equation given in [2], an integral-differential equation for the curve
determining an optimal policy for accepting offers is derived.

The second application considers the well-known M/M/c queueing problem
in which the number of servers turned on is variable. Using a general policy-
iteration method developed in [2], we derive a special policy-iteration algorithm
which exploits the structure of this problem and calculates an optimal policy
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currently made. State (y,, y.) corresponds to the situation where an offer of size
y- 1s made for a house of which a fraction y, of the total construction has been
completed. State E corresponds to the situation where no house is under
construction. The natural process is chosen as follows. Starting from state y° the
natural process moves along the states y with y"=y <1 according to the
‘building process’ described above until either an offer 1s made or the total
construction of the house is completed without any offer having been made in
the meantime. In case of an offer of size y, in state y the natural process jumps to
state (y, y.) while in case of completion of the construction the natural process
jumps to state E. The natural process starting from state (y,, y.) jumps
immediately to state E. We take state E as an absorbing state for the natural
process (e.g. imagine that in the natural process the contractor gives up his work
in state E). Observe that in this natural process any offer i1s accepted. We next
choose the feasible decisions. For each state y the only feasible decision is the
null-decision which leaves the natural process untouched. For any state (y,, y,)
the teasible decisions consist of the null-decision which prescribes acceptance of
the offer and causes an instantaneous transition to state E, and the intervention
d = 1 which prescribes refusal of the offer and causes an instantaneous transition
to state y,. The only feasible decision i1n state E 1s the intervention d = 1 which
~ prescribes starting with a new construction and causes an instantaneous change
to state (. The following costs are associated with the natural process and the
interventions. In the natural process there is incurred a cost at rate b(y) when
the natural process is in state y. Further, when the natural process makes a
transition to state (yi, y.) a cost of — y, is incurred and when the natural process
makes a transition to state E after completion of a construction a cost of — K is
incurred. Finally, by the above choices, there is no cost associated with any
Intervention.

Now, for any policy, the superimposition of the natural process and the
interventions prescribed by that policy agrees with the evolution of the system

resulting from the specific control as executed by the decision-maker. Clearly,
Element 4 of [2] applies with

We choose Ag = Ap = Ay in order to determine the k- and ¢-functions, see
|2]. Clearly, for all (yi, y.) € X,

LY, y2)5 1) = to(y1) = to((¥1, ¥2)),  k((y1,¥2)5 1) = ko(y1) — ko((y1, y2)),

and, furthermore,
1(E;1)=1(0) and k(E;1)= k0).

Since the natural process starting from state (y,, y,) immediately jumps to state
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E, we have for all (y., y2),

to((y1, ¥2)) =0 and  ko((y:, ¥2)) = — y-.

Further, t,(y)= Emin[A, T(y)] for all 0=y <1 where A and T(y) are
independent random variables such that A 1s exponentially distributed with
mean /A and the construction time T (y) has a gamma distribution with density

g(-]1—=y). We find for 0=y <1,

o=t (z55)"7)

To determine the function ky(y), we first make the following observation. The
building costs incurred between stages y, and y, of the construction are given by,
for all 0 = })0‘( Vi < 1.,

n

§ G Ne(mmye\ <[
llmz b()’()+ n(yl )’0))61( ” ) p L“ b(v) dv.

> =)

Further, for any initial state y with 0 =y <1, let the random varnable X, be
equal to 1 when the total construction 1s completed before a first offer occurs,
and let X, be equal to the stage of the construction at the epoch of the first offer,
otherwise. It is routine to verify that, for all 0=y <1,

a
a—+ A

c(l—y) a c(u—y)
Pr{xyml}m( ) and Pr{Xyéu}ﬁl—-( )

for y=u<l.

Let h(u|y) be the derivative of Pr{X, = u} with respect to u. Then for all
D=y <],

L | A a c(u—y)
(uly)=rc n(l+~;)(a+/\) for¥y<u<1.

Now, we have by the choice of the natural process that, for all 0 =y <1,

ko(y) = E[*gfyxy b(v)dv] — LI {Lm vdF (v | u)}h(u 'y)du — KPr{X, =1}

from which we get after some algebra

¢ [° a \°&“ PEENC R
kn(y)ma-fy b(u)(a+A) du-—-—a(y)—-(a +/\) K, 0=y<l,

where

(2.1)  a(y)=cln (1 +~3~) LI{LM vdF(v| u)}(a i/\)C(W”du, 0=y <1.
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Note that by the above choices of the natural process and the feasible decisions
the functions k (x; z(x)) and t(x; z(x)) are bounded for x € A, for each policy z
that has the property of accepting at each stage ol the construction any offer
which exceeds some critical (possibly very large) valuc. The assumptions A1-A4
in [2] are satisfied for this class Z of policies.

2.3 Characterization of an optimal policy. In thissection we shall derive from
the optimality equation (16) of [2] the existence and the structure of an
average-cost optimal policy. Moreover, we shall find that 1n fact such a policy is
determined by an integral-differential equation.

Now, let z* be any policy of Z. Denote by {g(z™¥),v(z™; x) x € X} the unique
solution to the equations (8)-(9) with z = z* of [2] such that

(2.2) v(z*; E)=0.

Since the intervention d = 1 in state (y,, y2) causes an instantaneous transition to
state y,, it follows from relation (11) of [2] and the above formulas for the
functions k and t that

v(z* (YL, y)) = k(¥ y2);1)—g(z%)t((y, y2); 1)+ v(z™; y1)

(2"3) = y2—+— R(Z$, y1)+ U(Z*; )’1) for a“ (}/’1, yB)E Az*a
where
Rzt vy=L [ ( a )f(““” ) m( a )f“*”
REy) =5 b (ghy)  du-e0)-(755) K
(2.4)

x c(1-y)
_....8_{__.); {1-.--( a ) } for 0=y <1.

a-+ A

By relation (9) of [2] and the fact that the natural process starting from state
(v., y2) jumps to the intervention state E, we have

(2.5) v(z*(y,y2))=v(z* E)=0 for (yi,y:) & A.-.
Finally, by relation (11) of [2],
(2.6) v(z% E)=k(E;1)—g(z")(E;D)+v(z*;0)=R(z*;0)+ v(z*;0).

Now, let z € Z. Then, by virtue of the fact that the only possible intervention is
d =1, it follows from the relations (11) and (13)-(14) of [2] that

(2.7) v([z]z E)=k(E;1)—g(z*)tH(E; 1)+ v(z2*;0)= v(z*; E)
and
v([z]2% (¥, ¥y2) = k((y1, y2); D — g(2*)t((y1, y2); )+ v(z *; 1)

2.8
(2.8) myz-}—R(z*;y])—}-v(z*;yl) for all (yi, y2) € A..
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Further, by definition (14) of [2] and the relations (2.2) and (2.7),

(2.9) v([z]z*; (y.y2))=v([z]z*; E)=0 forall (y,y.) & A..

We shall now prove that a policy z* € Z satishes the optimality equation (see
(16) of [2}])

(2.10) v(z*;x)mqggv([z]z*;x) for all x € X,
if and only if for policy z* the following inequalities hold:

(2.11) y.+ R(z*; y)+ov(z*y)=0 forall (y.,y)EA.-
(2.12) v+ R(z*; y)+ov(z*;y)=0 forall (yi,y:) & A.:-

To prove this, we first observe that, by relation (15) of [2] and (2.7), the
optimality equation (2.10) 1s equivalent to

2.13) v(zlz*;(y,,y2))=v(z*;(y1,y2)) forall (y,y. )€ X andall z € Z

Suppose first that (2.13) holds. To establish (2.11), we observe that for any state
(yi, ¥.) € A .. we can find a policy z € Z such that (y,, y.) & A., so, by (2.3), (2.9)
and (2.13), we get (2.11). Also, for any state (y,, y.) & A .. we can find a policy
z € Z such that (y,, y2) € A, so, by (2.5), (2.8) and (2.13), we get (2.12). Next
assume that (2.11)-(2.12) hold. To verify (2.13), fix z € Z. For (y,, y») & A., we
get (2.13) from (2.9), (2.5), (2.3) and (2.11). For (yi, y») € A, we get (2.13) from
(2.8), (2.3), (2.5) and (2.12).

We now have proved that a policy z* &€ Z for which (2.11)—(2.12) hold 1s
optimal. Moreover, we can conclude that such a policy z™ is determined by a
function s(y;), 0=y, <1 such that

(2.14) A.-={(y1, y2)|y:=s(y)}.
Furthermore,
(2.15) s(y))= —R(z™;y1)—v(z*; y1).

Since we know the structure of A ,. we can express v(z *; y,) in the function s( - ).
To do this, we first observe that, by (2.3), (2.5) and (2.14)—(2.15), for all (y,, y»)

(2.16) CuyN= | AT
- 1A UL ) }’13 yl =

L 0 for y.= s(y).

Using relation (12) of [2] with V ={(y,, y.)} U{E}, (2.2) and (2.16), we get
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v(z*;y) = Ll { J:lm v(z*;(u,v))dF(v | u)}h(u 'y)du +v(z*; E)Pr{X, =1}

. (=2 [ o= s@ndEenl(=25)" du

0=y <1.
From this relation and (2.15), we get for 0=y, <1,
s(y1) =
. A 1 s(u) a c(u—y,)
~ R(z*;y,)—c1n (HZ)L {f (v — s(u)) dF (v | u)}(a H) du.

Differentiating this formula and using (2.1) and (2.4), we get, after some algebra,

s'(y))=-=b(y)

19 + ¢ In (1+£—-){

Using the fact that lim,_,v(z*;y)=0 (see (2.17)) and the relations (2.2) and
(2.6), we have the boundary conditions

(2.19) s(0)=0 and s(1)=K.

fm (s(y))—v)dF(v | yl)wﬂfﬂ}, 0=y, <l.

s(y1)

The integral-differential equation (2.18) and the boundary conditions (2.19)
determine both the curve s(-) giving the optimal policy z* and the minimal
average cost g(z™).

2.4 Numerical results. In this section we give some numerical results for the
case where F(-|y,) is a gamma distribution with density

{(’;A__! 2{)2}' vn-le--m\(yl)v’ D é 0’

where n 1s a positive integer and A (y,) 1s a given function. Observe that the mean
and the variance of this distribution are equal to 1/A(y;) and 1/n{A(y,)}*. By a

well-known relation between the Poisson distribution and the gamma distribu-
tion, we have

Lm (S()h)—" U) dF(U ’ yl) == e*nh(yl)S(}’l){S(yog [n/\ (yl)g(yl)]l/] f

(y1)

-5 2 A sl ]

j=0

Hence the relation (2.18) reduces to a differential equation with unknown
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parameter g(z ™). To solve this differential equation with the boundary condi-
tions (2.19), we have used a computer program developed [11] for parameter
estimation in differential equations. In Table 1 we give some numerical results.

TABLE 1.

A=2 a=1,c=1, K=2, b(y)=1and A(y)=1/3y +0.01)

T S —— e — - — . — —

" g(z*) y 0.15 0.30 0.45 0.60 0.75 0.90

1 —3.243 s(y) 0401 0770  1.106  1.405 1.665  1.88]
5 -2.816 s(y) 0.371  0.721  1.048 1350  1.622  1.86l

10 —2.729 s(y) 0.365 0.712 1.037 1.339 1.614 1.858

3. An M/M/c queueing problem with a variable number of servers

3.1 Introduction. We consider the M/M/c queueing problem studied by
McGill [ 6], where the number of servers operating can be adjusted at arrival and
service completion epochs. The customers arrive in accordance with a Poisson
process with rate A, and there are ¢ independent servers available each having an
exponentially distributed service time with mean 1/ux. It i1s assumed that the
lowest possible trafhic intensity A/cu 1s less than 1. The cost structure includes a
holding cost of h > 0 per customer in the system per unit time, an operating cost
of w >0 per server turned on per unit time and a switch-over cost of K(a, b)
when the number of servers turned on is adjusted from a to b. We assume that

K(a,b)=k".(b—a)whena <band K(a,b)=k  .(a— b)when a = b,

where k7, k™= 0. This problem has been treated amongst others by Bell [1],
Lippman [5], McGill [6], Robin [8] and Sobel [9]: cf. also Sobel [10]. It was
shown by Lippman [5] that there is an integer M such that an average-cost
optimal policy has all ¢ servers turned on or left on when M or more customers
are present. We henceforth only consider the following finite class C of
stationary policies with this property. A policy in C is characterized by integers
s(i), $(i), t(i) and T(i) for i =0,1, - -+ such that

(a) —-1=s()<S(H)=T)<t(i)=c+1 for all i 20, where s(i)

=c—1,$S0)=TG)=c and t(i)=c+1 for all i = M,

(b) s(i)=s(i+1)and t(i)=¢t(i+ 1) for all i 0.
Under this policy the number of servers operating-is adjusted both at arrival and
service completion epochs. If there are i customers present and k servers turned
on, the number of servers on is adjusted upward to S(i) when k = s(i), i1s kept
unaltered when s(i) < k < t(i) and is adjusted downward to T(i) when k = t(i).

It 1s a famous conjecture that there is an average-cost optimal policy which

belongs to the class C' and has the additional property that S(i) = s(i)+ 1 and
T(i)=1t(i)—1 for all i
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In this paper a special policy iteration algorithm will be developed whic
locates an average-cost optimal policy. This algorithm generates within the clas
C a sequence of improved policies, and in all examples tested the algorithr
converged to an optimal policy with S(i)=s(i)+ 1 and T(i)= t(i)— 1 for all
(We note that the algorithm may also be used for locating an average-co:s
optimal policy within the class C for the case of general switch-over costs.) Th
algorithm exploits the structure of the particular queueing problem. Thi
appears especially in the value-determination part of the algorithm in which th
size of the system of linear equations to be solved is of the order 2\
independent of ¢. In addition the algorithm does not require any truncation c
the state-space, i.e. no approximation of the infinite-capacity problem to a finit
one is needed. These facts compare favourably with the policy iteratio
algorithm in Howard [4] in which Nc¢ linear equations must be solved in th
value-determination part, where the integer N arises from the truncation of th
state-space and denotes the maximum number of customers allowed in th
system. We may expect that N > M, especially when A/cu is close to 1, in whicl
case a large choice of N is required in order to obtain a fair approximation of th
infinite-capacity problem, whereas the estimate of M tends to be small since 1

this case an optimal policy tends to have all ¢ servers on with relatively fev
customers in the system.

In Section 3.2 we specify the basic Elements 1-6 of {2] which are crucial for th.
algorithm and we determine some absorption probabilities which underly th:
transition probabilities of the embedded decision processes. In Section 3.3 w¢
derive the system of linear equations to be solved in the value-determinatior

operation. Finally, in Section 3.4 we present the algorithm and give somx
numerical results.

3.2 The elements. In choosing the state-space, the natural process and the
feasible decisions, similar considerations to those in the first application will play
a role. In order to obtain a set A, which has the desired properties and furthe
allows for computationally tractable k- and ¢-functions, we will choose the
Elements 1-3 in such a way that in the natural process ¢ servers will always be
turned on when the number of customers i1s larger than M and, moreover, the
states 1n which no customeérs are present are intervention states for any policy
The latter can always be achieved by choosing these states absorbing for the
natural process, e.g. imagine that in the natural process the system is closec
down forever when the system becomes empty. This choice involves the
introduction of both (artificial) interventions for these states and (artificial) state:
to which the system is transferred by these interventions. :

After these introductory remarks, we now choose as state-space

X ={(s)]i=0,1,--5=0,1,---,c}U{(©,5)[s=0,1,-- -, ¢},
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where state (i, s) with { = | corresponds to the situation where i customers are
present and there are s servers turned on of which min(i, s) servers providi
service. The state (0,s) corresponds to the situation where no customers are
present, there are s servers turned on and the servers are not available for any

future service, while state (0, §) corresponds to the same situation except that the
servers are now available tor future service. °

we choose the natural process as
follows. For both initial state (i, s) with 1 =i = M and initial state (i, s) with i # 0

and s = ¢ the natural process stays in state (i, s) until the next epoch at which an
arrival or service completion occurs, after which the natural process assumes
either state (i + 1,s) or ( — 1, s) depending upon whether an arrival or service
completion occurs first, so for these initial states the number of servers on is left
unaltered in the natural process. For initial state (i, s) with i > M and s# ¢ the
natural process jumps immediately to state (i, ¢), i.e. for this initial state the
number of servers is adjusted upward to ¢ in the natural process. The states
0,m), m=40,---,c¢ are chosen as absorbing states for the natural process,
whereas the natural process starting from state (0, §) stays in this state until the
next arrival epoch at which the natural process assumes state (1, s).
We next choose the sets of feasible decisions. For state (i,s) with 1 =i =
M —1 and s# ¢ the set of feasible decisions consists of the decisions d
0,1, .-+, c where decision a prescribes to adjust the number of servers turned on
from s to d and causes an instantaneous transition to state (i, d). Observe that
for this state (i, s) the decision d = s is the null-decision and any decision d # s is
an intervention. In state (M, s) with s# ¢ we choose as the only possible decision
the intervention d = ¢ which prescribes an upward adjustment of the number of
servers to ¢ and causes an instantaneous transition to state (M, ¢). In each of the
states (0, s5), 0= s = ¢, the set of feasible decisions consists of the interventions
d=0,---,¢c where the intervention d prescribes to ‘reactivate’ the servers and
to adjust the numbers of servers on from s to d and causes an instantaneous
transition to state (0, d). Finally, in the states (M, ¢) and (0,5)for0=s=c we
take the null-decision as the only possible decision. The cost structure 1s as
follows. In the natural process a holding cost at rate h.i and an operating cost at
rate w.s are incurred when there are i customers present and s servers turned
on. An intervention cost of K (s, d) is incurred when the intervention d i1s made
In any state in which s servers are on.

Now, for any policy, the superimposition of the natural process and the
interventions prescribed by that policy agree with the evolution of the system
resulting from the specific control as executed by the decision-maker. Using the

fact that A/cu < 1, it follows that Element 4 of [2] applies with

Ao={0,s)]s=0,---,¢c}U{(M,s)|s=0,---,¢c—1}.

To determine the k - and ¢-functions introduced in Element 5 of [2], we choose
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An=A,=A,. From the definitions of these functions, it follows that, for any
state (i, s) with i# 0 and intervention d,

t((4, 5); d) = t((3, d)) — 2((i, 5)),

k((i,s);d)= K(s,d)+ ko((i, d)) = ko((i, 5)).
Further, for any state (0,s) and d =0, --,¢,

1((0, 5); d) = 1((0, d)) — £:((0, 5)),

k((0,s); d) = K(s, d)+ ko((0, d)) — ko((0, 5)).

We shall now calculate the functions t, and k, as far as needed. Fix s with s # c.
Then

IA
IA
R

A+ iw) 1+ iute(( = 1,8)) + Ato((G +1,8))], 1

(3.1) t((i,s)= 3 (A +su) '[1+suto((i — 1,8))+ Ato((i + 1, 5))],

s=i1=M-—-1,

with (0, s)) = t,((M, s)) = 0. For ease of notation, denote by hy((i,s)) the
component of ko((i, s)) in which the expected holding costs are represented, i.e.

ko((i, s)) = swto((i, s)) + ho((i, s)).
We have

(A + i) 'Thi + iuho((i — 1, s)+ Aho((i + 1, 5))],

1=1 =5,

32)  ho((i,s) =
(A + su ) '[hi + spho((i = 1, 5)) + Aho((i + 1, 5))],

s=i1=M-—1,

with ho((0, s)) = ho((M, s)) = 0. We now discuss briefly the solution of (3.1). The
solution of (3.2) proceeds in the same way. We refer to Miller [7] for details. The
equation for f£,((i,s)) i1s a second-order linear difference equation with non-
constant coeflicients for i = s and constant coefficients for i = s. The solution of
the equation with constant coeflicients is standard. To solve the equation with
non-constant coefficients, multiply both sides of this equation by A + ix and
consider the equation for A#(i)= t((i +1,s)) — to((i, s)). This equation is a
first-order linear difference equation and a particular solution may be found by
using the method of parameter variation. We find for the case of A/su# 1,

a,(i)+ B.:b(i)+a, for 0=i=s5,
tﬂ((i>s))m {

c(i)+6,d(i)+y, for s=i=M,
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where

. {1 ! 9 A - j ‘ ¢ — 1 -
(3.3) a,(i) = “Z ; f__i%'_)__ b(i) = 2 (/1))
(3.4) ci(iy=(—=M)/(se —A), d(i)=(sp/A) —(su/A)™.

By the boundary conditions £,((0, s)) = t,((M, s)) =0, we have «a, = vy, =0. The
constants 3, and 0, follow by considering (3.1) for i = s and substituting the
above explicit expressions for #,((i, s)) withi = s — 1, s and s + 1 where there are
two possibilities for f£,((s, s)). To save space, we omit the formulas for these

constants. For the same reason, we omit the expression for fy((i,s)) when
Alsu = 1.
Similarly, we find for the case of A/su # 1,

a.(i)+ B.b(i) for 0=i=s,

hﬂ((ias))m
c(i)+ 6.d(i) for s=i=M,
where
i — 1 ! 7 1—J 2 2 >
(3.5)a2(i)$-h2 . tt(u/A) cg(i):h 1-— M +h§s;u + A) (¢ M)

2(st — A) 2(spe — A )

The constants B, and o, follow by the same considerations as above.

Next we determine the functions t,((i, ¢)) and ho((i, ¢)) where h, is defined as
above. Clearly,

(3.6) to((i,c)=(A+ i) ' [1+inty((i—1,c))+ Ate((i +1,¢))], 1=i=c,

with t,((0, ¢)) = 0. To give a recursive relation for #,((i, ¢)) for i = 1, we make the
following observation. Using the ‘memoryless’ property of the exponential
distribution, 1t 1s easily seen that the time needed to reduce the number of
customers from i = ¢ to i — 1 by using ¢ exponential servers having each mean

service time 1/u 1s distributed as the length of one busy period in the M/M/1
queue with arrival rate A and mean service time 1/cu. This implies

(3.7) () =1/(cuw — X))+ t((i—1,¢)) for i=z=c.
Using #,((0, c)) =0, we get that the solution to (3.6) is given by
to((i,c))=a,(i)+ &b(1) for 0=1=c,

where a,(i) and b (i) are defined in (3.3) and the constant &, follows by using (3.7)
with 1 = ¢. Next we find

(3.8) ho((i, ¢)) = (A + i) '[hi + inho((i —1,¢c))+ Aho((i +1,¢))], 1=i=c,
with ho((0, c)) = 0. Using the fact that for the above M/M/1 queue the total
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expected amount of time spent by the customers in the system during one busy
period equals cu/(cie — A)® (observe that the ratio of this quantity and the
expected length of one busy cycle gives the average number of customers
present), we find

;1 — 1 .
(3.9) ho((i, c)) = __Q___) @-*—%—)— + ho((i — 1, ¢))

Using ho((0,c)) =0, we find that the solution to (3.8) is given by
ho((i, ¢)) = a=(i) + &b(i)

where a,(i) and b(i) are given in (3.5) and (3.3) and the constant &, follows by
using (3.9) with i = c.

We end this section by determining some absorption probabilities which
underly the one-step transition probabilities of the embedded decision process-
es. For any integers i, s, L and R with0=L=i=R=M R#L and0=s=c,
define p(i, s, L, R) as the probability that the natural process starting from state
(i, s) will assume state (R, s) before state (L, s). Suppress for the moment the
dependence of p on L, R and s and write p(i, s, L, R) = p(i). Since in the natural

process the number of servers on i1s not changed as long as not more than M
customers are present, we find

for 1 = c.

(A + i) [iup(i— 1D+ Ap(i+1)] for i=s,
(3.10) p(i)=

1\

(A +su) [sup(i — 1)+ Ap(i +1)] for i=s,

with p(L)=0 and p(R)=1. We give only the solution when A/su # 1 and we
distinguish between three cases.

Case 1. L = s Then we find the solution of the classical ruin problem,

p(i,s, L, R) ={(suw/A) — (st /A) (s /A)T — (s /A)E}  for all i
Case 2. R =s. Then
i~ 1 R -1
plis LR)Y={ 3 ()it} /{3 wmyir} torani
j=L j=L
Case 3. L <s< R. Then

1+ n{(su/A) —(su/A)¥} fors=i=R
p(i,s,L, R) =

i —1 5 |
N> E (L/A))! for L =1 =5,
j=L

where the constants 7, and 7, follow by the same considerations as before.
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3.3 The system of equations for a policy of the class C.
this section we shall specify for policy z the system of equations (8)-(9)
introduced in [2]. We recall that policy z is characterized by integers s(i), S$(i),
t(i)and T'(i)fori =0, ---, M — 1 (see Section 3.1) and we observe that its set of
intervention states is given by A, ={(is)]i=z1l, s=s(i) or s=
t()}U{0,s)|0=5=c}. ]

By the structure of policy z we have that after any
intervention the system assumes one of the states (i, S(i)), (i, T(i)) or (0,3)
where 1 =i = M and s(0) < s < ¢(0). This fact will have as a consequence that in
the value-determination procedure we need only to solve 2M + ¢t(0) — s(0)—3
linear equations. Before showing this, we note that, by the monotonicity
properties of policy z, the set A, will be entered in one of the states (L (s), s) and
(R(s),s) with 0=s = ¢ where

Fix policy z € C. In

L(s)=max{i|l1=i=M, t(i)=s} if s=1(0), and L(s)=0,
(3.11) otherwise,
R(s)=min{i|1=i=M, s(i)= s} if s<c¢, and R(c) = =.

That is, for s servers turned on, L(s) denotes the largest queue size for which
policy z prescribes either a reduction of the number of servers on or at least their
‘reactivation’, whereas R (s) denotes the smallest queue size for which policy z
prescribes an upward adjustment of the number of servers turned on.

We now specify the equations for the average cost g and the relative values
v((i, s)) with (i, s) € A.. By relation (11) in [2], we have for 1=i=M

v((,s))=k((i,5); S(i))— gt((i, 5); S(P)) + v((5, (), s =s(i),
v((i,s))=k((i,5); T(i))— gt((5, s); T()) + v((i, T(i))), s=1t(i),

whereas for the intervention states (0,s), 0 = s = ¢, we find
v((0, 5)) = k((0, 5); S(0))— g2((0, 5); S(0) + v((0, S(0)), s = 5(0),
(3.13) v((0,5)) = k((0,5); T(0)) — g1((0, s); T(©) + v(O, T(0)). s = ¢(0).
v({(0,s5))=k({(0,s);s)— gt((0,s); s)+v((0,5)), otherwise.

Letting p(i,s,L(s), R(s)) for s <c¢ be defined as in Section 3.2 and letting
p(i,c, L(c), R(c)) =0, it follows from relation (9) in [2] that, for state (i, s) & A,,

v((i,s))=p(i s, L(s), R(s))v((R(s),s))
+{1—=p(i,s, L(s), R(s));v((L(s).s))-
Further, using the fact that L(s)=0 for s(0)<s < ¢(0), we find
v((0,5)) = p(L, 50, R(s))v((R(s), 5))
+{1—-p(1,s0,R(s))}v((0,s)) for s(0)<s <t(0).

(3.12)

(3.14)

(3.15)
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The equations for the remaining relative values will not be needed and are
omitted.

It now follows that we get 2M + t(0)— s(0)— 3 linear equations in the
M + t(0)— s(0)—2 unknowns g, v((i,S(i))), v((i, T(i))) and v((0,5)) with
l1=i=M-1 and s(0) <s <t(0) by taking the equations (3.15) and the equa-
tions (3.14) with both s = §(i) and s = T'(i) and by substituting in the right-hand
sides of these equations the corresponding equations for v((R(s),s))and
v((L(s),s)), cf. (3.12)-(3.13). To determine these unknowns uniquely, we put
one of the relative values equal to zero (see Theorem 2 in [2]), e.g. put
v(M -1, T(M —1)))=0. Once the above 2M + ¢t(0) — s(0) — 3 linear equations

have been solved, we can next compute any of the required v(x) from
(3.12)-(3.14).

3.4 The algorithm. We shall now present a policy-iteration algorithm which
generates a sequence of policies belonging to the class C of structured policies.
Before specitfying the details of this algorithm, we first give a general outline of

the algorithm which 1s based on the modified policy iteration method given in
Section 5 of [2].

Algorithm (a) Value-determination procedure. Solve for the current poli-
cy z € C with parameters s(i), S(i), £(i) and T (i) the above-described system of
2M +t(0)— s(0)— 3 linear equations.

(b) Policy-improvement procedure. Determine a policy z'€ C with
parameters s'(i), $'(i), t'(i) and T'(i) where s'(i)= s(i) and t'(i) = t(i).

(c) Cutting-procedure. Determine a policy z”" &€ C with parameters s”(i),
$7(1), t"(i) and T"(i) where S"(i)= S'(i), T"(i)= T'(i), s"(i)=s'(i) and t"(i) =
t'(i).

(d) If z"= 2z, stop, otherwise, go to (a).

We now give in detail the policy-improvement and the cutting procedure.

Policy-improvement procedure

Suppose that we have solved for policy z the system of 2M + ¢t(0)~— s(0) — 3
linear equations as described in Section 3.3. For the obtained solution, denote by
g(z) the average cost of policy z and denote by v(z; x) the relative value for
state x (as already noted, once we have solved the embedded system of
equations described in Section 3.3 any required v(z;x) follows immediately
from one of the relations (3.12)-(3.14)). Since we want to obtain a policy z' € C,
we have to apply the policy-improvement procedure of the modified policy-
iteration algorithm given in Section 5 of [2]. Before doing this, we note that for
any state (i,s) with 0=i =M — 1 and any decision d € D((i, s)) (cf. definition
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(13) in [2] and Section 3.2),
v(d. z;(i,s)) = K(s,d)+ (d)— ko((i, s)) + g(2)to((i, 5))

where

kO((ir d)) o g(z)t(ﬁ)((i’ d)) T U(Z ’ (Za d)) for | = 11
Ui (d) =

ko((ﬁ, J)) — g(z)z‘o((ﬁ, 3)) + v(z; (0, d_)) for 1 =0.

Further, we recall that in the policy-improvement procedure any intervention
prescribed by policy z cannot be replaced by the null-decision but only by
another intervention. Since in the states (0, s), 0 = s = ¢ the null-decision is not

feasible as opposed to the states (i,s) with i =1, the two cases have to be
considered in a slightly different way.

Fix first 1=i1= M — 1. Define d7 and d%* as the smallest and the largest
integer for which K (0O, d) + ¢i(d) and K(c, d) + 5 (d) are minimal on the interval
[s(i)+ 1,¢(i)—1]. Observe that d7 and d*%* minimize v(d.z;(i,0)) and
v(d.z;(i,c))for s(i) <d < t(i). Itis straightforward to verify that d* = d**. By
the same reasoning as on p. 258 in Sobel [9], we find that, for all 0 = s = d*, the
number d minimizes K(s,d)+ ¢:(d) and hence v(d. z; (i, s)) for s(i)<d <
t(i). Hence, forall 0=s =d7,

(3.16) v(di.z;(,s)= min v(d.z;(,s)=v(z;(,s)),

siy<d<t(i)

where the latter inequality tollows from the fact that v(d.z;x)=v(z;x) for
d = z(x). Similarly, we have for all d¥*=s = c,

(3.17) v(di*.z;(i,s5)) = S(fg‘ljgt(i)v(d. z;(L,s)=v(z;(is)).
For i =0 we determine the numbers di and d¢* in the same way as above
except that we now take [0,c] as the minimization interval instead of
[s(i)+ 1, (i) — 1]. Similar properties hold ford and dt* asford ¥ and d**.

It now follows that we obtain policy z'€ C by taking s'(i)=d7—1, $7(i) =
di, t'(i)=d3*+1 and T'(i)=d3* for0=i=M — 1.

The cutting procedure

Suppose we have performed part (b) of the algorithm and obtained policy z’.
In addition we have obtained the function v(z'(x).z; x) for x € A . . For ease of
notation, we write d(x)=v(z'(x).z;x) forx € A, .

For the natural process with a cost of 0(y) for stopping at state y € A, we
shall now determine a set A with A¢C A C A, such that (a) the set A 1s a
stopping set at least as good as the set A . for each initial state x € A .. (in fact
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this is trivially met for x € A, so that verification is only needed for x € A ;\A),
(b) A = A, for some z"€ C. This will be done according to the principle
outlined in Remark 4 of [2]. For a properly chosen sequence of states x € A ..
with x & A., we shall verify whether A .\{x} is a better stopping set than A .. or
not for the natural process starting from state x. Next the intersection ot all those
sets which are better stopping sets will give the desired set A. Before we
demonstrate how this principle can be developed into a simple procedure in our
queueing problem, we first evaluate for x =(i,5s) € A. the quantity Qi =
ED(S,). where S, is the first entrance state of the natural process into the set
A .\{x} when the initial state is x, cf. definition (18) in [2]. Consider first the case
where x = (i, s) with s = s'(i). Then the possible realizations of S, are the states
(i+1,s)and (i—1,s) if s =s'(i — 1) and the states (i + 1,s) and (L'(s),s) if
s >s'(i —1) where L’'(s) is defined by (3.11) with z replaced by z'. Using the
definition of the absorption probability p given in Section 3.2, we find for state
(i, s) with s = s'(1),

(A + umin(i, s)] '[AT(( + 1,5)+ umin(i, s)T((i — 1, s))].

s=s'(1—1),

p(i,s,L'(s), i+ 1)o((i +1,8)+{1—p(i,s, L(s),i + 1)} o((L'(s), s)),

s>s'(i—1).

Similarly, for state (i, s) with s = ¢t'(i) we find
(A + pmin(i, $)][AG(G + 1, 5)) + wmin (i, 5)5((i — 1, 5))],

s=t'(i+1),

pis,i = 1LR'($)F((R'(s), ) +{1=p(i,s.i = 1, RS (G — 1,5)

s<t'(i+1),

where R'(s) is defined by (3.11) with z replaced by z' and p(-.,¢,-,-)=0.
We can now describe the determination of the parameters s”(i), $”(i), t"(i)
and T"(i) of policy z" € C. Recall that in the cutting procedure any intervention
prescribed by policy z’ cannot be replaced by a different intervention but only by
the null-decision. Consequently the states (0,s) for 0 = s = ¢ need not to be
considered in this procedure. Further, we have S"(i)=S'(i), T"(1)= T'(i),
s"(i)y=s'(i) and t"(i)=t'(i) for all i with s"(0)= s'(0) and t"(0)=t'(0). We
determine the numbers s"(i) for 1 =1 by calculating successively
s"(1),---,8"(M — 1) in the following way. Fori=1,---, M —1, let s"(i) be the
largest value of s with max (0, s"(i — 1)) = s = s'(i) such that Q ;= 0((i, s)) if such
a value of s exists, otherwise let s”"(i)= s"(i —1). The numbers t"(1) for i =1 are
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determined by calculating successively "(M — 1),---, t”(1). Let t"(M)=¢ + 1.

For 1=M—1,---,1, let t"(i) be the smallest value of s with t'(i)=s=
min (¢, (i + 1)) such that Q',= 7((i, s)) if such a value of s exists. otherwise let
t"(1) = t"(i + 1). In this way we obtain a policy z" € C

Remark 1. In any iteration step the above policy-improvement procedure
yields a policy z’ & C having the additional property that S'(i)= s'(i)+ 1 and
T'(1)=1t'(i)— 1 for all i. However, except for the final iteration step, the cutting
procedure by its very design may generate policies in C without this property.

Remark 2. The above algorithm needs only a minor modification in order to
locate an optimal policy among the class C of policies in case of general
switch-over costs with the separability property K(a,b)=k*(b)+ b'(a) for
b>a, K(a,b)=k (b)+b (a) for b<a and K(a,b)=0 for b = a, where
k“(-), k™ (), b"(+) and b (-) are non-negative, k *(-) is non-decreasing and k -
1S non-1ncreasing. Observe that this function K(a, b) includes the case where the
switch-over costs consist of a fixed adjustment cost plus linear costs as above. In
order to apply the algorithm, only the policy-improvement part needs a sligh
modification. For all i = 0 we determine the numbers d¥ and d** as before. We
again find d7 = d7%* for all i. However, we now find for : 1 that the relations
(3.16) and (3.17) only hold for 0=s = s(i) and t(i) = s = ¢, respectively. The
parameters of the new policy z’' are now obtained as follows. We choose
S'(i)=d* and T'(i)=d** for all i =0 as before. The numbers s'(i) are
determined by calculating successively s'(M —1),---,s'(0). Fori =M —1,---,0,
let s'(i)+ 1 be the smallest value of s with

s()+1=s=min(S'(¢)—-1,s¢+1) i 1=1

0=s=min(S'(0)— 1, s(1)) if i=0

such that v(S'(i). z;(i,s)) = v(z; (i, s)) if such a value of s exists, otherwise let
s'(i)= min(S'(i) - 1, s(i + 1)). The numbers t'(i) are determined by calculating
successively t'(0),- -+, t'(M —1). Let t'(—1)=0.Fori=0,---, M - 1,let t'(1)— 1
be the largest value of s with

max (t'(—1), T'O)+1)=s=c if i =0

max (¢'(i — 1), T'(@)+1D=s=t(i)—1 if i=1]

such that v(T'(i). z; (i, s)) = v(z; (i, s)) if such a value of s exists, otherwise let
t'(I)=max (t'(i — 1), T'(i) + 1). | | o

We were not able to show that the algorithm converges in a finite numbel_‘ of
iteration steps to an optimal policy, although any step yields an improved policy.
However, convergence appeared in all examples tested. After convergence of
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TABLE 2.
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the algorithm to a policy z * (say) we checked a criterion guaranteeing that policy
z* is optimal among the class of all stationary policies when this criterion is
satisfied. This criterion is based on Theorem 8 in [2] and requires the verification
that (a) v(d.z*;(i,s))=v(z*;(i,s)) for all (i,s) and all d € D((i,s)), and (b)
Qisz2v(z*;(i,s))forall (i,s)E A.-with1=i=M — 1 where Q% 1is defined as

;s above with z' replaced by z*.

In all examples tested this criterion was satisfied and, consequently, an optimal
policy was found.

In Table 2 we give for a number of numerical examples the minimal average
cost g(z*) and optimal values for s(i), S(i), t(i) and T (i) where S(i) and T(i)
are given by S(i)=s(i)+1 and T(@{)=1t(i)— 1.
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