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1. INTRODUCTION 

The simplest linear multistep (LM) method for 
Volterra integral equation of the second kind 

solving the 

y(t) = g(t) + JtK(t,T,y(T))dT, t ~ I:=(to,T], 
to (I. 1) 

is obtained by writing down this equation in a sequence of 
equidistant points 

tn := t 0 + nh, n = O(l)N (h fixed and tN = T) (1.2) 

~nd by approximating the integral term by some suitably chosen 
~uadrature formula. Such a method is called a direct quadrature 
(DQ) method for (I. I). Recently, several other LM methods for 
solving (I.I) have been proposed (cf. the indirect backiuard 
ii_fferentiation method in [5] and the rrrultilag and modified 
nultilag methods in [9](see also[12]). 

In this paper a general class of linear multistep methods is 
iresented which includes all these methods, and many others 
:section 2). This enables us to give a uniform treatment of the 
,roblems of consistency (Section 3), of convergence (Section 4) 
tnd of stability (Section 6). Since the ordinary differential 
,quation dy/dt = f(t,y), y(t0)=y0 , is a special case of the 

.ifferentiated version of (I.I), the relation with linear multi
tep methods for ODEs is analyzed and fixed terms recurrence 
elations are derived for a class of convolution kernels(Section 
). Finally, two numerical experiments are reported (Section 7). 

Space prevents us including the detailed proofs of 
he theorems presented here. These may be found in [6]. A number 
f additional numerical experiments which support and confirm 
he theory, may also be found in [6]. 

The work presented here can easily be extended to Volterra 
~tegral equations of the first kind, and to Volterra integro
Lfferential equations (cf.[6]). 
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2. A GENERAL CLASS OF LM METHODS FOR SOLVING (1.1) 

Let us associate with (I.I) the so-called lag term 

Y(t,s) := g(t) + r K(t>r,y('t'))d't' (2.1) 

to 
for (t,s) € s := {(t,s): t 0ssstST}. Note that Y(t,t)=y(t). Let 
Y and y (t) denote numerical approximations to y(t ) and to n n 

n 
Y(t,t ), respectively, and let n 

K (t) := K(t,t ,y ), n ~ O. n n n (2. 2) 

Usually, y (t) will be computed by a quadrature formula of the form n 

n 
Yn(t) = g(t) + h I w .K.(t), n ~no • (2.3) j=O n,J J 

where the w . are given weights and n0 is sufficiently large to n,J 
ensure the required order of accuracy. We assume that this quad-
rature formula is of order r, i.e., 

t 

En(h;t) := Jn K(t,T,y(T))dT - h 

to 

n 
I 

j=O 
w .K(t,t. ,y(t.)) n,J J J 

(2.4) 

ash+ O, n + ~. with tn=t0+nh fixed. Our general LM method for 
(I.I) consists of the quadrature formula (2.3) and the LM formula 

k 
I a.y . + i=O i n-i 

k 

I 
i=O 

k 
I s .. Y .(t .) = j=-k J.J n-i n+J 

k k (2.5) 
= h I L y .. K .(t .), n = k(l)N, k fixed, i=O j=-k l.J n-i n+J 

where the parameters ai, Sij and yij' i=O(l)k, j=-k(l)k, are to 
be prescribed. From this scheme the quantities yk, Yk+I ' ••• ,yN can be computed successively. The quantities y y and 1' .•• , k-1 Yl(t), ••• ,Yk-l (t) are assumed to be precomputed by some starting 
method. Since the kernel K(t,T,y) is not necessarily defined 
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outside S, we usually require (cf. Figure I) that e .. 
l.J 

for j < -i. 

81 

y .. = o, 
lJ 

FIG. !. Points in the (t,s)-plane needed in (2.5) fork= 2 

Furthermore, it will be assumed that the points t. are equally 
J 

spaced (cf. (1.2)) although most of the analysis can be carried 
through for non-uniform spacing (compare a similar situation in 
the analysis of LM methods for ODEs). It is convenient to 
characterize the formula (2.5) by the matrices 

A= (o..), B = (e .. ), C = (y .. ) 
l. lJ l.J 

(2.6) 

where the row index i assumes the values O(l)k and the column 
index j the values -k(l)k. We now describe four subclasses of 
(2.5) from which we will borrow several illustrating examples in 
this paper. 

2.1 Direct quadra:tu:r•e methods 

Consider the LM formula defined b9 the (Ix!) matrices 

A= I, B = -1, C = O, for which (2.5) reduces to 
(2. 7) 

y = y (t ). 
n n n 

Evidently, this is the direct quadrature (DQ) method, described 
in the introduction. 

2.2 Indirect linear rrrultistep methods 

We formally derive this subclass by applying a linear multi
step method for ODEs with coefficients ai and Yi' i=O(l)k, to the 

differentiated version of (I.I) (cf. [5] ) : 
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y'(t) = K(t,t,y(t)) + Yt(t,t), (2.8) 

y (t t) denotes the partial derivative of Y(t,s) with where t , 
respect to its first variable t, in the point (t,t). This yields 
the scheme 

k k k 
h \' y. K . ( t . ) + h I y. yt ( t .• t . ) , l i n-i n-1 i' =O 1 n-i n-i i=O 

l aiyn-i 
i='O 

n ~ k. (2.9) 

Now we approximate the derivative Yt of Y by the k-step forward 
differentiation formula (cf. [l~ Table 25.2]) 

I k 
Y (t t )~-- l cS 0Y(t o .,t .). (2.10) t n-i' n-i h l=O ~ n+~-i n-1 

lJsing 
k 

I 
i=O 

(2. 3) we obtain 
k k-i 

aiyn-i + .I l 
i=O j=-i 

y.cS .. Y .(t+.) 
1 i+J n-1 n J 

or,equivalently, the generating matrices 

ao 
0 

Yooo yOcSl Yo0k 

al Y1°o Y1°1 Y1°k 
A= 

' 
B= 

0 
ak Yk00 Yk0 I Yk0k 

h 

' 

k 
I y.K .(t .), 

i=O 1 n-1 n-1 

n~k, (2.lla) 

(2. J lb) 
yl 

0 o, 
YI I 

C= I 0 

0 I 
yk 

These matrices generate an indirect linear rrrultistep (ILM) 
method. When the a. and y. are the coefficients of a backward 1 1 
differentiation method, (2.11) represents the IBD (indirect 
backward differentiation) method, analyzed in (5). We notice that 
for this IBD method we have y.=0, i=I (l)k, and y0o.=a., j=O(l)k. 

1 J J 
2.3 i'>!:ultilag methods 

In Wolkenfelt et.al. [12] we find methods which can be 
characterized by the matrices 

A= 

0 

B= 
' 

0 

0 
al 

CJ.k 

Yo 

0 ' C= 'O 
Y1 

0 

yk 

(2. 12) 

Here, the ai and Yi' i=O(l)k, may be the coefficients of any LM 
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method for ODEs. If the lag term Y (t) is computed by using a 
n 

quadrature rule which is (a,y)-reducible (see Section 2.5), then 
the resulting method turns out to be equivalent to a DQ method 
based on the same (a,y)-reducible quadrature rule (provided, of 
course, that the starting values are identical). Thus, a 
different implementation of the same method was used for 
the stability analysis of DQ methods. However, as was pointed 
out by Wolkenfelt [9], this implementation requires a lot of 
additional arithmetic operations and, although suitable for 
theorerical analysis, it is not recollll!lendable in actual compu
tations. In order to avoid this disadvantage, he proposed to 
compute the lag term simply by a quadrature rule of the form 
(2.3) to obtain the multilag (ML) methods. 

2.4 Modified rrrultilag methods 

In [9] Wolkenfelt also introduced a modification of the ML 
methods, viz., the so-called modified multilag (MML) methods, 
characterized by the matrices 

ao 0 Yo 

al 0 -al al Y1 / 

A= 
' 

B= 0 ' 
C= 0 0 • (2.13) 

0 

The ai and yi are, again, the coefficients of any LM method for 

ODEs. 

2.5 The quadratUY'e weights of the lag term 

In order to define a specific LM method for (I. 1) we have 
not only to specify the generating matrices A, B and C, but also 
the quadrature weights w . in (2.3). An important family of 

n,J 
quadrature formulas, including the well-known Gregory quadrature 
formulas, are the so-called reducible quadrature formulas [8]. 
The weights w . in such formulas are recursively defined by the 

n,J equations 

k* 0 if j 
l a.w .. = { 

i=O i n-i,J b . if j 
n-3 

0 (I )n-k*-1 
, n=k*, k*+ 1 , ••• , 

n-k*(l)n (2.14) 

where the a. and b., i=O(l)k*, are the coefficients of some given 
i i 

LM method for ODEs. Here, we define w .=O for j>rnax(n,k*-1), and 
n,J 

the "starting weights" w ., Qs; n,j s;k*-1 are assumed to be 
prescribed. n,J 
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Defining the characteristic polynomials 

p 

k* 
:= l 

i=O 

k*-i a.z , cr(z):= 
l. 

k* 
I 

i=O 
(2. 15) 

the quadrature formulas generated by (2 .14) are said to be 
(p,a)-reducible. We note that the characteristic polynomials of 
the Adams-Moulton methods generate the weights of the Gregory 
formulas. The backward differentiation methods generate rather 
unconventional quadrature rules, which were analysed in [!I]. 

3. CONSISTENCY OF THE LM FORMULA (2.5) 

Let us associate with the LM formula (2.5) the difference
differential operator L defined by n 

L (Y) := ~ {a..Y(t .,t .) + 
n i~O l. n-i n-1 

k () } + I [S .. - y .. h a-J Y(t +.,t .) ' j=-k l.J l.J s n J n-i 
(3 •I) 

where Y(t,s) is an arbitrary function, differentiable with 
respect to s on t0~s$T, As in the case of LM methods for ODEs, 

the operator L is introduced in order to operate on test n 
functions Y of sufficient differentiability (cf. e.g. Lambert 
[7,p.23]). Unlike the ODE case, the relation of the operator L 

n 
with the LM formula (2.5) is not immediate, and needs some 
explanation. Suppose that Y(t,s) is defined by (2.1) with y(t) 
the exact solution of (I.I). Observing that Y(t,t)=y(t) and ay 
a;(t,s)=K(t,s,y(s)), and using (2.4) we find, on substitution of 
y(t) into (2.5), the equation 

k { k l a.iy(tn-i) + l [1\J.Yn-i(t +.) - hy .. K .(t .)]} i=O j=-k n J lJ n-i n+J 
k k (3.2) 

= Ln(Y) - l l s .. E .(h;t .). 
i=O j=-k lJ n-1 n+J 

Thus, the exact solution of (I.!) satisfies the method {(2.3)
(2.5)} apart_ from t?e residual terms in the right-hand side of 
t3.2). In this section w · , e concentrate on the first residual term. 
~~f~)ition 3: I The operator (3. I) and the associated LM formula 
~. are said to be consistent of order p if for all 

YcCp+l[S] L (Y)-0( p+I · ' n - h ) as h+O with nonvanishing error constant. 
~f (~)co:responds to the theoretical solution of (I I) then 
n will be called the local truncation error of. (2: 5). IX/ 
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The following theorem provides the consistency conditions in 
terms of the parameters a., B .. and y ... 

l. l.J l.J 
Theorem 3.1 The operator (3.l) and the associated LM formula 
(2.5) are consistent of order p if 

k k 
I [(-i)qa. - I jq-t(-i)t-l(is .. + ty .. )] =: c 2 = o (3.3) 

i=O i j=-k l.J J.J q 
for q = O(l)p and 2 = O(J)q (with (-i) 2- 1£:=0 if 2=i=O). 00 

Corollary 3.1 Let p be the order of consistency of the LM method 

for ODEs defined by the coefficients {a.,y.} employed in thesec-
l. l. 

tions 2.2, 2.3 and 2.4. Then the order of consistency p of the 
LM formula (2.5) for (I.I) is given by p =~for the DQ method, 
p = min{k,p} for the ILM method, and p p for both the ML meth
od and the MML method. 00 

If the LM formula (2.5) is consistent of order p, then the 
local truncation error L (Y) can be expressed in terms of the 

n 
constants defined in (3.3) as follows: 

p+l 
L (Y) = hp+l I 
n £=0 

p+2 
+ O(h ) as h + 0. 

(3 .4) 

It is of some interest now to compare the values of the error 
constants C 1 n• 2=0(l)p+l, for the various subclasses given p+ ,,., 
in Section 2. We have evaluated and simplified the expressions 
for these constants as much as possible: 
For the ILM method Corollary 3.1 gives p=k, under the (reasonable) 
assumption that p~k. We then find 

k 
C = (-l)p-I l [iP{ia. + (p+l)y.} - R] , (3.5) 

p+ I, 2 i=O i i 

where R = k!y. if 2 = 0 and R = 0 if 2 = l (l)p+l. 
For both the 1 ML and MML method we find 

{ 
0, 

cp+J,2 = (-l)p-1 

if 2 
k 

I 
i=O 

ip{ia. + (p+l)y.}, if£ 
1 l. 

O(l )p, 
(3.6) 

p+I. 

We have computed the numerical values of the error constants for 
k 

two usual choices of the coefficients {a.,y.}. 0 , viz., the 
1 ]. 1= 

baclovard differentiation (BD) method~ for which p=k, and the 
Adams-Moulton (AM) method for which p=k+I. Table I gives the 
values of the relevant constants C 1 , where p is prescribed by p+ , ,, 
Corollary 3.1.Note that the (M)ML-AM methods have p=k+l, whereas 
the other methods have p=k. 
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TABLE I 

ETTor constants in (3.4) for various choices of {a.,y.} in (2.5) 
1. 1. 

method {a. ,y.} k=I k=2 k=3 k=4 k=5 
1. 1. 

{ ck+l ,O -2 0 -72/11 0 -14400/I 
BD 

Ck+! >O : -I -4/3 -36/11 -288/25 -7200/l. 
ILM { ----:.J--;- --------- ------

{ ~k+l ,0 
-I 2 -6 24 -120 

AM 
0 0 0 0 0 k+l ,>O 

--0-- - -0-- - - - - - - c- - - -:- 0--0- 0 { k+ 1'<k+1. 

~ { BD C . I -4/3 -36/11 -288/25 -7200/l ~ 
- - - k_:!:l_Jc+..!_ ~ - - - - - ----- - - - --c . 0 0 0 0 0 MML 
AM { k+2,<k+2: 

ck+2,k+2 ·-112 -I -19/6 -27/2 -863/12 

The order> of convergence of the LM method is dictated not 
only by its order of consistency, but also, of course, by the 
quadrature error (2.4) and by the errors in the starting values 
y1, ••• ,yk-l' In the next Section we shall analyze the convergence 

of the LM method {(2.3)-(2.5)}. 

4. CONVERGENCE 

Similarly as with LM methods for ODEs, a necessary condition 
for convergence of the LM method {(2.3)-(2.5)} is that the 
characteristic polynomial 

k 
a(z) := l 

i=O 
a.z 

1. 

k-i (4. I a) 

satisfies the root condition, i.e., its roots are on the unit 
disk, those on the unit circle being simple. 

In the sufficient conditions for convergence the parameters 
S .. and y .. are also involved. We define 
lJ l.J 

k k-i k 
ecz) :"' I s.z s. := I e .. 

i"'O 1 i j=o-k l.J 
(4. I b) 

k k-i k 
y(z) :"' l y.z y. :"' l Y· • 

i=O i i j=-k lJ 
(4. Jc) 

Furthermore, we will use the notation 

b.K (t) = K(t,t ,y(t )) - K(t,t ,y ), 
n n n n n 

~E (h) = max /E.(h;t. £,) - E.(h;t.)/, 
n i:::;j $n 1. J+ 1. J 

£,$k 
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max I E. (h; t.) I , 
i:>:j:5n 1 J 

T (h) = max jL.(Y)i and o(h) = max jy(t.) - Y·I· 
n i:5n 1 j :>:k-1 J J 

87 

E (h) is the maximal error arising in the approximation of the 
n 

lag terms Y(t,t) by Y (t) (cf. (2.4)). T (h) may be considered 
n n n 

as the maximal local truncation error of the LM formula, 
and o(h) is the maximal starting error. We now formulate a 
general convergence theorem which provides an estimate for the 
global error 

£ = y(t ) - Yn· (4.2) 
n n 

We assume that K satisfies the Lipschitz conditions 

l~Kt(t)I :5 L1 li::il and l~t(t) - ~K2 (t*)i :5 L2 1t-t*I \i:: 2 1, 
where L1 and L2 are the Lipschitz constants. 

Theorem 4.1 Let a(z) satisfy the root condition. 
k 

(i) If a(z) = a 0z then there exists a constant C > 0 such that 

(4.3a) 

(ii) If S(z) = 0 then there exists a constant C > 0 such that 

li::nl :5 c [o(h) + h-l{~N(h) + TN(h)}], n=k(l)N. (4.3b) 

Ill 
Now it is easy to derive the following 

Cordllary 4.1 Let o(h) = O(hq), EN(h) = O(hr) (as in (2.4)), 

~EN(h) = O(hr+l) ash+ 0 and let {a.,y.} in (2.5) be the 
1 1 

coefficients of a p - th order consistent LM method for ODEs. 
Then the order of convergence p* of the LM method for 
(1.1) is given by: p* = min(q+l,r) for the DQ method, p* = 
min(q,r,p) for the ILM method, p* = min(q+l,r,p+l) for the ML 
method and p* = min(q,r,p) for the MML method, where p is the 
order of consistency of (2.5), given by Corollary 3.1. Ill 

S. RELATION WITH LM METHODS FOR ODEs 

The Volterra equation (I.I) contains the classes of ordinary 
differential equations as special cases. For example, if in (I.I) 

g(t) = constant then dy 
+ dt = K(t>r ,y) f(-r,y) 

f(t,y) (5. la) 

K(t>r,y) 
i + _J_ = 
dt2 

, etc. 
f(t,y) (S. I b) 
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Therefore, it is natural to ask to what method the LM formula 
(2.5) reduces when it is applied to the special cases (5.1). 
Furthermore, one may ask for the relationship with LM methods for 
ODEs of the form(5.I). In order to formulate this relationship 
we introduce, in addition to the polynomials a(z), S(z) and y(z) 
(cf. (4.1)), the polynomials 

o(z) ~ - k-i 
µ := l a.z 

i=O i 

k 
B. := l jB .. 

l. j=-k l.J 
(5. 2a) 

Y-(z) ~ - k-i := l y.z 
i=O i 

k 
y. := l jy .. 

l. j=-k l.J 
(5. 2b) 

We shall also employ the shift operator E defined by Eyn = yn+l. 

Theorem 5.1 Let g(t) =constant. 
(i) If K(t,T,y) = f(T,y) then theformula (2.5) reduces to 

a(E)y + S(E)Y (t) = hy(E)f(t ,y ), n ~ 0. (5.3a) n n n n n 

(ii) If K(t,T,y) = (t-T)f(T,y), B(z) = 0, and if the weights w . 
n,J 

in(2.3) are (p,cr)-reducible, then theformula (2.5) reduces to 

a(E)p(E)y + h2[cr(E)S(E) - p(E)y(E) (5.3b) 
n 

-kp(E)y(E) + p(E)y'(E)E]f(t ,y) 0 n n 
where y' denotes the derivative of y. 

From part (i) of this theorem it follows that the LM 
formula (2.5), when applied to the integrated form of the first 
order equation dy/dt=f(t,y),reduces to a linear multistep method 
{a,y} for this equation, provided that 8(z)=O. This statement 
holds, irrespective of the weights w . used in the definition 

n,J 
of the lag term Y (t), In other words, if the matrix Bis cnosen 

n 
such that the row swns va:nish (8.=0) then our linear method is in 

l. 

fact an LM method for ODEs whenever the Volterra equation (I.I) 
is a (first order) ODE. Such linear methods will be called 
(a,y)-reducibZe. The recurrence relation (5.3a) plays an important 
role in the stability analysis of Volterra equations with (5.la) 
as test kernel. In particular, for (a,y)-reducible methods, the 
ODE-stability theory directly applies and may suggest suitable 
polynomials a and y for the construction of stable numerical 
methods for solving equation (I.I). 

Example 5.1 The ILM and the MML methods are (a,y)-reducible, 
whereas the DQ and the ML methods are not. 00 

Part (ii) of Theorem 5.1 provides us with further information 
about how we should choose the weights w . and the matrices A, 

n,J 
B and C in order to construct a suitable integration method. 
Observe, that here the structure of the matrices B and C is such, 
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that the sam~ set of polynomials {p,a,a,y} may lead to different 
recurrence relations. 

Example 5.2 Let both {a,y} and {p,a} be the trapezoidal rule, 
i.e., a(z)=p(z)=z-1 and y(z)=a(z)=~(z+l). Now it is a simple cal
culation to find that (5.3b) reduces to a LM method {p*,a*} for 

second order ODEs with p*(z)=(z-1) 2 both for the ILM and the MML 

method, but with a*(z)=!(z+l) 2 for the ILM and a*(z)=z for the 
MML method, respectively. (Note that both methods have order 2 
(cf. [7, p.253]), with error constant -1/6 for the ILM and 1/12 
for the MML method, respectively.) 00 

For an extension of Theorem 5.1 toithe case of a general con
volution kernel K(t,T,y) = E~=O (t-t) f~(T,y), the reader is re
ferred to [6]. 

6. v0-STABILITY 

Definition 6.1 A discretization method for (1.l) is said 
to be vo-stabie if y + 0 as n +co whenever it is applied, 
with fixed n stepsize h > O, to the test equation 

t 
y(t) =Yo+ J {A.+ µ(t-T)}y(T)dT, (6.1) 

0 
with arbitrary (A.,µ) e Q, :={(A.,µ): A.< O, µ ~ O}. 00 A,µ 

Wolkenfelt[lO] has shown that the DQ method (2.7) can not be v0-
stable when the quadrature weights in (2.3) are (p,a)-reducible. 
This negative result raised the question of whether v0-stable 
methods for (1. 1) do exist at all. Brunner, N~rsett and Wol-
kenfelt[4] answered this question affirmatively for a certain 
class of so-called one-stage implicit Runge-Kutta methods. In the 
class of LM methods analysed in the present paper, v0-stable 
methods do also exist. In particular, they occur in the sub
class of ILM methods. To see this, we observe that for the ILM 
methods we have 

S(z) = -y(z), y(z) = -ky(z) + zy' (z), (6.2) 

and from Theorem 5.1 we derive the following result. 

Theorem 6.1 Let the conditions of Theorem 5.1 part (ii) be satis
fied, then the LM method, when applied to the test equation 
(6.1), assumes the form 

{p(E)[a(E) - hf..y(E)] + 

+ h2µ[cr(E)S(E) - p(E)(y(E)+ky(E)-Ey'(E))]}yn 

In the ILM case this equation reduces to 

{p(E)[a(E) - hf..y(E)] - h2µa(E)y(E)}yn = 0. 

o. (6.3) 

(6.3') 
00 

Since equation (6.3') is identical to the one obtained by 
Brunner and Lambert ([3]) in their stability analysis of 
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numerical methods for the test integro-differential equation 

dy t 
dt(t) = /..y(t) + µf y(T)dT, (6.4 

0 
we may find examples of v0-stable ILM methods just by inspectin: 
the stability regions given by Brunner and Lambert. In this way 
we immediately conclude from [3] that the four combinations, 
with {a,y} and {p,a} defining either the trapezoidal rule or th1 
backward Euler rule, are v0-stable methods. It turns out that 
the MML versions of these methods are not v0-stable. (In fact, 
as communicated to us by S. Amini, no MML methods can be 
v0-stable.) In Figure 2 the stability regions of both the IML 
and the MML methods are given. Evidently, the ILM methods have 
considerably larger regions of stability. 
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F:,:G. 2. Stability regions for MML(/ //) and ILM(\. '\ '\) methods 
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7. NUMERICAL EXPERIMENTS 

91 

In this Section we illustrate by a few numerical experiments 
the convergence theorem 4.1 and the improved stability behaviour 
of the ILM and the MML methods. In the tables of results we list 
the accuracy obtained, by 

A(h) := - log 10 (irelative error at the end point!), (7.1) 

i.e., the number of correct digits in the numerical solution. 
The pair {p,cr} used for computing the lag term will always define 
a Gregory formula of order r; the pair {a,y} defines either an 
Adams-Moulton or a backward differentiation formula of order p.· 
Methods are denoted by, e.g., ILM(G -Blr'). 

r P 

?.l OT'der of aonvergenae 

In the first experiment we integrated the equation 
t 

y(t) = 1 + sin(t) - cos(t) - f y(T)dT, 0 S t s 2. 
0 

(7.2) 

The starting values were taken from the exact solution y(t) = 
sin(t). The generating characteristic polynomials {p,cr,~,y} were 
chosen such that, according to Corollary 4.1, all methods listed 
in Table 2 are just of order p*= 5. In this Table the values of 
A(h) and the corresponding effeative order P!ff are presented, 

where p* = eff [A (h) - A (2h)] I log 102 

TABLE 2 

Tests of order of convergence 

h 
-1 

DQ(G5) ILM(G5-AM6) ML(G5-AM4) MML(G5-AM5) 

4 5.0 3.8 4.7 5.3 
)5.? )5.0 )5.5 )5.1 

8 6.7 5.3 6.3 6.8 
)5.4 )5.2 )5.3 )5.1 

16 8.3 6.9 7.9 8.4 
)5.2 )5.1 )5.2 )5.1 

32 9.9 8.5 9.5 9.9 

From the results we see that the effective order tends to the 
asymptotic order as h decreases. We also see that the ILM method 
is less accurate than the other methods, which may be explained 
by its larger error constants (cf. Table I). 

7. 2 Stabi "lity 

In the second experiment we chose an example in which the 
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kernel has a large Lipschitz constant (obtained by modifying an 
example given by Bownds[2)): 

y(t) = 50(1-t2)2n(l+t) + 75t2-5lt+I -
t 

1oof 2n(l+t-T)y(T)dT, 
0 (7.3) 

0 :S t :S 4. 
Again, the starting values wer~ taken from the exact solution 
y(t) = 1-t. The results listed in Table 3 clearly show the better 
stability properties of the ILM method (a negative A(h)-value 
may be interpreted as an unstable behaviour). In particular, we 
observe the only marginally better performance of the MML methods 
when compared with the ML methods. 

TABLE 3 

Stabi Uty tests 

h-1 DQ(G5) ILM ML MML 
G5-BD5 G5-AM6 G5-BD4 G5-AM4 G5-Bo5 GS-AMS 

4 -4.3 +2.5 +I. 2 -2.8 -4.3 -2.6 -2.8 
8 -6.5 +2.2 +2.2 -6.2 -5.6 -2.7 -4.9 

16 +2.3 +2.6 +4.4 -6.9 +3. 7 -2.4 +5.6 
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