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As of September 1, 1983 the Mathematisch Centrum (Mathematical Centre) in
Amsterdam changed its name to Centrum voor Wiskunde en Informatica
(CWI), which translates as Centre for Mathematics and Computer Science. It
seemed time to acknowledge the fact that Computer Science has always been
an 1ntegral part of our Centre since its inception in 1946 and that this will
continue to be the case.

T'o mark the occasion two events were arranged: a ‘Name Change Day’ on
August 31, 1983 and a Symposium on Mathematics and Computer Science on
November 25, 1983. On the occasion of the Symposium five leading experts
surveyed various topics touching upon both mathematics and computer sci-
ence. This was also the theme of the ‘Name Change Day’. Four of the five
surveys presented at the Symposium (by A.J. BADDELEY, C.B. JonES, L.
LovAsz and J.T. SCHWARTZ) and the two lectures delivered on the Name
Change Day (by M. HAazewiNkEL and L.G.L.T. MEERTENS) have been col-
lected in this volume. The fifth speaker at the Symposium, D.S. ScorT, found
himself unable to compose a text in time. The six contributions are comple-
mented with a number of papers written by various scientists involved - in one
way or another - in our Centre.

This volume may serve to underline our conviction that the two structural
sciences, mathematics and computer science, should not be separated, as has
happened in many schools of science. Each will lose by ignoring the other.
Both are developing remarkably vigorously at the present time, and it is a
often observed historicoscientific fact that a successful and fast development
leaves no time and little inclination for matters of synthesis and interrelations
with related activities. It would be a mistake, however, to interpret this
phenomenon as a sign that things are growing apart. The history of the
Interrelations between physics, chemistry and mathematics, in both recent and




%!
much older history, illustrates the point.

[he name change also marked a change in the publishing activities of the
CWI. Next to the ‘Tracts’ and ‘Syllabi’, there now exists the series “CWI
Monographs’ of which this is, we hope, a worthy first volume. The volume was
produced by the phototypesetting system of the CWI and it is a pleasure to
thank here all those who put substantial efforts into it: the typing staff, espe-
cially Mrs. J. Kustina and Mrs. L. Brown, the computer typesetting group,
notably H. Noot, and the desk editor, W.A.M. Aspers. In addition, we are
grateful to all those who contributed in other ways 1o the events mentioned

and the appearance of this volume.

J.W. DE BAKKER
M. HAZEWINKEL
J.K. LENSTRA
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A.J. Baddeley

Division of Mathematics and Statistics, CSIRO,
P.O. Box 218, Lindfield NSW 2070 Australia

We list recent ideas in stochastic geometry which are closely related to image
analysis. These include the synthesis of stochastic models of Images, tech-
niques for evaluating models and algorithms, general concepts of ‘geometrical
Information’ and the theory of random sets, problems of image irregularity and

errors In observation, techniques of geometric integration theory, and fractional
dimensional irregularity .

1. INTRODUCTION

Lhe development of computerized image processing and image analysis already
seems to have prompted considerable study of the relations between geometry,
probability theory and computer science. ROSENFELD [29, preface] observes
that all image processing algorithms must be based explicitly or implicitly on
mathematical models of the images to be processed. Some of the newer sto-
chastic image models presented in [29] are based on Markov processes, random
fields, random mosaics (tessellations) and stochastic grammars. Apart from
image modeling, we imagine other mathematical contributions should include a
theoretical background for the comparison of algorithms, and mathematical
techniques for the treatment of image models.

Independently of such requirements, many concepts related to im age
analysis have evolved in other areas, notably in stochastic geometry, stereology
and geometric integration theory. Stochastic geometry is that part of probabil-
ity theory dealing with random subsets of a geometrical space, and interactions
between probability and geometry. This includes all stochastic image models,
at least in principle, but some frequently studied models are: elementary con-
structions of random lines, circles or triangles; spatial schemes such as random
mosaics and random coverings of the plane; and general random processes and
random sets. The main body of theory concentrates on uniformly random
models, for which there are simple explicit solutions. However, the last decade
has seen the introduction of more flexible techniques and a completely general
theoretical foundation for random sets.

[his paper summarizes some recent work in stochastic geometry (drawing
also on stereology and geometric integration theory) which could be connected
with image analysis. Section 2 introduces the range of random image models in
stochastic geometry, and outlines the classical theory of uniformly random
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models. The more recent combinatorial theory (Section 3) has an application
to problems of image complexity. Section 4 discusses the k endall-Matheron
abstract theory of random sets, which has many similarities to tenets of image
analysis. J. Serra’s mathematical morphology and image analysis theory 1is
touched upon in Section 5. Recent thoughts about image irregularity and
observation errors (Section 6) are developed using geometric integration
theory. Finally Section 7 speculates on the usefulness of fractal (fractional

dimensional) models of image irregulanty.

2. CLASSICAL STOCHASTIC GEOMETRY

Detailed surveys of stochastic geometry can be consulted in the literature [24,
3, 7, 32, 35] and we shall give here a very brief sketch. Probability models
available for generating random geometrical objects (hence random image
models) can be classified as:

(a) elementary constructions;

(b) stochastic processes;

(c) theory of random sets.

(a) Elementary constructions are the simple geometrical figures of Euclid with
an added component of randomness, as for example the output of a computer

graphics program when the input is a random number generator. Points, lines,
triangles, circles and other figures are determined by n<<co real parameters so
that a random figure can be defined as a probability distribution on the n-
dimensional parameter space. Of course we may also construct the random line
joining two random points, and so on. Using parametrisations of the rotation
and translation groups we may generate random positions of an arbitrary
object. Typical problems include finding the probability that two random
figures (or a random figure and a fixed figure) will intersect; the mean area of
length of overlap between figures; and the probability that N random figures
will completely cover a specified region.

Even the simplest problems for random figures lead to difficult multiple
integrals. An exception to this rule 1s that wniformly distributed random figures
often lead to simple explicit solutions. For example, a random two-dimensional
point X = (x;,x,) is a uniformly random (UR) point in the region 4 CR* if it
has constant probability density f(x;,x;) = K. The constant must be
K = 1/area(4) since probability integrates to 1. For any measurable subset
B C A we find the probability

P(X falls in B) = %z—g)l , (1)

which is what we understand by a ‘simple explicit solution’. Now consider a
random circle C(X,r) of fixed radius r obtained by randomizing the centre
point X. Let X be a uniformly random point in the disc Dy ., of radius R +7r
and centre 0. Then the crcle C(X,r) always intersects Dy, the disc of radius R

about 0. We say C(X,r) 1s a uniformly random circle hitting Dg. For any
(fixed) pomnt x €Dy,
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‘77'?‘2

m(R +r)*

mean or expected area

P(C(X,r) contains x) = P(X falls in C(x,r)) =

of overlap between C(X,r) and Dy is by Fubini’

E(area C(X,r)NDg) = [P(x lies in C(X,r))dx
D

r2

— ?TR2"“""“"‘—""””"5' >
(R +r)

1.e. proportional to the product of areas of C'(X,r) and Dy.
Definition of a uniforml ine 18 less intuitive. Let paran
specity the line

eters (p, 6)

{(x,y):xcos8 + ysinf = p},

1.e. |p| 1s the distance of the line from the origin, and § determines its direc-
tion. A uniformly random (UR) line is such that (p, 8) is a uniformly distributed
pomnt in some bounded region of R X[0,7). For example a UR line hlttmg the
disc D 1s obtained when p and # are independent random variables uniformly
distributed over [—r, +r] and [0,7) respectively. In general for X CR? the set
of lines intersecting X is some irregular set of (p,f) points in the allowable
region. To generate a UR line hitting X, in practice, find a disc Dy cir-
cumscribing X. Generate a UR line L hitting Dg; if LNX = &, reject this

attempt and generate another line L; until L hits X. Then L is UR hitting X.

Uniform random line hitting X

generate random line g
uniform in disc

Conditional on g hitting X
g 1s uniform random line hitting X
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Uniform random lines have the invariance property that if L 1s a UR line
X, and if Y CX, then the probability P (L ! its Y) does not depend on
the position or orientation of Y within X. A 1 parts of X are equally bikely to
be ‘sampled’ by L. This fair sampling property, which characterizes the uni-
form distribution, can be recognised as invariance under the euclidean group
of rigid motions. Another nice characterization of UR lines 1s based on the
two-person game where 4 ‘hides’ a set Y inside X and player B draws a line L
through X to find Y. Optimal strategy for 5 is to generate a uniform random
line.

We state two fundamental results concer UR lines. Let L be a UR line
through X, a bounded measurable plane set. 1i 4 C X is measurable then

E length (LNA) = L"'";M (2)

where E again denotes expected (mean) value, and K i1s a constant depending
on X. If CC X is a plane curve then

En(LNC) = =8 Kth 2 (3)

where n(L NC) is the number of intersection points between L and C. Thus,
the mean amount of overlap between a UR line and a fixed figure 1is given by
(2), (3) regardless of the geometrical configuration of the figure. This general-
ity is the basis of the classical theory. Corresponding formulae hold in higher
dimensions and noneuclidean spaces [30].

Apart from the obvious application of (2)-(3) to stochastic image models, we
can interpret them to give methods for measurement of length and area. If an
image consists of several curves, their total length can be statistically estimated
by randomly rotating the image, superimposing a grid of parallel lines and
counting the number of crossing points.

Statements about image complexity also follow from (2)-(3). Suppose the
image consists of curves of total length /, the screen 1s divided 1into an n Xn
square grid, and we wish to estimate the number of grid squares which contain

part of the image. Assuming the image and grid are randomly superimposed,

the mean number of grid-image intersections 1s i(n —1).. For large n this

T
approximates the mean number of squares crossed, 1.. the mean complexity.

Stochastic image models may also be based on (b) stochastic processes. 10
generate a random pattern extending over the entire plane, divide R* into
squares, and place a random number of random points in each square. A ran-
dom pattern of lines is a random pattern of (p,8) points in R X{[0O,), and so
on. Thus we define a random point process in space S as a random locally finite
set of points in S, where ‘locally finite’ means each bounded region of S only
contains a finite (random) number of (random) points. A random line process
‘is" a random point process in R X[0,7), or more intrinsically, is a random
locally finite set of lines 1n R2. In calculations one uses the correspondence
between a random point process and the system of random variables
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...................

nite population of spheres
Or
isation of a random sphere process

N(A) = (number of points in 4), A CS, which constitute a random measure
N () on S. A random line process 1s a random measure on R X[0,7), or
sically, corresponds to a random capacity function H(A4) = (number of
intersecting A), A CR*. See [18,12].

Explicit calculations are usually unsuccessful except for wuniform Poisson
processes, 1n which each bounded part of the process consist of independent
uniformly random points/lines, and N(4), N(B) are independent when
ANB = . Equations (1)-(3) yield the expected values of N(4), H(A), the
number of crossings of a fixed curve, the total length of lines overlapping A,
and the number of line-line crossings inside A.

General random point processes and line processes have been studied using
moments [12,19,32] and Palm probabilities [26]. For a point process the first
two moment measures are the intensity measure w(4) = E[N(4)] on R?, and
the second moment measure p® on R*XR? defined by u?UAXB) =
E[N (4A)N (B)], which together contain variance-covariance imnformation. If
the process is statistically stationary, then w(4) = A area(4) where A>0 is the
intensity, while u® “disintegrates’,

dpP(x,y) = dy(y —x)dm(x) x,yeR*

and the measure y on R? describes correlations between points in the process.
The correlation charactenistics can be estimated from observations of the pro-
cess, furnishing a general empirical approach to point- and line- processes [33].
Second-order statistics characterize many of the visible characteristics of an
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image or pattern [11], but are not infallible [28,5]. A direct analysis of depen-
dence between points or lines in a process is obtained using the Palm probabil-
ities P*, essentially the conditional probability distribution of the random pro-
cess given that there is a random point at x.

A random line process or circle process subdivides the plane into a random
tessellation. This is a potentially important model of random images [14, 24,
31]. Characteristics of the polygons formed by a Poisson line process have
been determined by MiLES [23], in particular the means and variances of
polygon area, perimeter length and number of sides. Another important ran-
dom tessellation is the Dirichlet or Voronoi tessellation: if {x;,i€Z} are the

points in a point process, let the tile corresponding to x; be

T, = {_}’GRZZU’ —xi I <ly "‘"“"le, ]#I}

The 7; are polygons tessellating R*. Characteristics of the Voronoi tessellation
induced by a Poisson point process are given by MILEs [21].

Finally, random image models can be based on (c) the theory of random sets.
This is discussed 1 Section 4.

3. COMBINATORIAL THEORY
More results have recently been obtained for classical problems, by simplifying

geometry and applying combinatorial probability methods [1]. We will first
prove the curve length formula (3),

En(LNC) = 2 lengéh (C)

where C is a plane curve, L is a UR lne hitting XOC, and n(LNC) =
number of intersection points in L N C. Suppose C is a polygonal curve consist-

ing of line segments S,S,, . ..,S,. Let[S;] denote the event L N §;5= <, that
is L hits Si* Put

1 if LNS4o
lisy = {0 f LNS. =0 .

Clearly we have
n(LNC) = ‘il Iis)

with probability 1, since P (L contains S;) = 0. But immediately
En(LNC) = iillEI[St] = _ilP (IS;D.

It can easily be argued that uniform random lines have P ([S;]) proportional to
length (S;);

En(LNC) = a length (S;) = « length (C)

i =]
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which proves (3) up to the constant factor.

'he proof reveals importance of additivity, meaning both the linearity of the
integral E and the additivity of the counting function n(L NC). Together with
the natural properties of uniform distributions, this property forms the basis of
stochastic geometry.

Suppose now we want the distribution of the variable n(L N C): computation
of P{n(LNC) = k} 1s not obvious. Consider two segments S;,5, and evalu-
ate P([S,]N[S,]), the probability that L intersects both S,,S,. Case 1: if
§1,S, have a common point, let 7" be the third side of the triangle. Th

1
1[Sl]ﬂ[Sz] = '"5"(1[51] + 1[52] ""'"‘ 1[T1) a.s.

since 1f L intersects both S,,S, the sum in brackets equals 2, and otherwise is

zero. Case 2: 1f §,,8, have no common point we can derive a similar expres-
S10n

1 |
Iisiangss) = 2 Tl — iz = Lis,) a.s.

where 4,,4,,B,,B, are segments ung the four endpoints of §,,5,. But
this implies that every expression liginis) = lis)-lis;) can be written as a linear
combination of vanables lir,;, where T are line segments joining vertices of C.

|HEOREM. Let xy,...,x, be points in R?, and s;; the line segment joining X,
with x;. For a random line L, let [s;;] be the event L Ns;=&. Let @ be the ring
of events generated (through wunions, intersections, set differences) by [s;]
I<i<<j<sn. Then for any A €Q there exist constants c¢;;(A) such that

cij(A) s, (4)

£<:j

holds except when L contains a vertex Xx;.

If L 1s uniformly distributed we take mean values in (4) to get

P(A) = 2/K 2 cii(A)llx; — x;ll ()

i <<j

1.e. all combinatonial probabilities for UR lines are expressible as sums of
lengths of segments s;;. For example, the distribution of n(L M C) 1s expressible
in terms of the distances between each pair of vertices of C. This 1s a great
advance, 1n principle, on the classical theory which was restricted to mean
values. An algorithm for the ¢;;(4) 1s known, and practicable for small n.

One can also take non-uniform random lines in (4), say with probability dis-
tribution Q, to obtain

and note the coefficients ¢;;(4) are the same as above. The quantity Q[s;;]
serves as a generalized length of 5;;. Thus, again 1n principle, nonuniform ran-

dom lines are no more computationally difficult than UR lines.
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Finally we present another application to image complexity, concernu
quad-tree representation of images. An image can be recorded or transmitted
as tree structure, as follows. Divide the image field into four equal squares
and note which squares, if any, consist of a single colour. The remaining, mul-
ticoloured squares are subdivided again into four, and the process repeats until
a predetermined level of subdivision is reached. The record of subdivisions and
colours forms the quad tree. Important questions include the average complex-
ity (number of nodes) of the quad tree, and estimating the increase in com-
plexity if a deeper level (finer subdivision) 1s added. Both problems depend on
the unage but 1t 1s reasonable to suppose that n a sufﬁmently small square,
the 1mage boundary can be regarded as a umiformly random line. Consider a
UR line hitting a square subdivided into & ><k equal squares. Accordmg to (3)
the mean number of subsquares crossed equals k. Furthermore using (5) we

can compute the distribution of the number N of subsquares crossed. In the

interesting case k = 2, we have P(N =1)=—(V2—1), P(N = 2)=2— V2,
]

P(N = 3)“——““5(\/5*-- 1). Thus the cost of adding one extra level of subdivi-

sion is to double the number of terminal nodes, on average. One fifth of the
new branches will be triple.

12 the
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ANDOM SET THEORY
In addition to the constructive example: andom geometry 1n Section 2, one
can propose others such as the zero-set (or contours) of a ras dom function.
Foundations of a general theory of ra: sets were laid by G. MATHERON
expressly developed as a mathematical background to image analysis as well as
stochastic geometry. Kendall’s theory takes an abstract view of the construc-
tion of probability spaces of random sets, emphasising the variety of structures
which can be chosen. The two approaches are complementary [27] and both
make use of Choquet’s capacity theorem.

To mtroduce the theory we generaljze the random events [S;] which played a
formative role in Section 3. For the Matheron approach, let % be the class of
all closed sets in R". If TCR" define the hitting set

= {(FeFNT5£J }.

Endow % with the (weakest) topology such that [U/] 1s an open subset of & for
all open sets U CR", and {K ] 1s closed for all compact KNR" (see [20]). Then
% becomes a Polish space Define a random closed set as a random element of
% with the Borel o-algebra. Under this structure the events [T], T CR”" are
measurable when 7 1s open, closed or indeed Borel. Intersections and unions
of random closed sets are random closed sets. Area, length (where defined) and
number of points (where finite) are random variables.
Kendall’s approach emphasises that the definition of a random set depends
on the geometrical information which is assumed to be observable. Its basic
constituents are the random events [7] = { XN T~} where X is the random
set and 7 1s a fixed set called a ‘trap’. The associated random variable

1 o XN7TxJ
- |

0O if not (7)

corresponds to a ‘bit’ or ‘flag’ indicating whether X was detected by the trap 7.
From the observer’s point of view the random set X 1s characterized by the
information {A(7),T €Y} where U 1s the class of all traps available to the
observer. Define a trapping system J on a space S to be a class of nonempty
subsets of S, which cover §, satisfying certain properties analogous to separa-
bility and local compactness. A random J-set in S is a random function

h:9—{0,1}

1.e. a stochastic process of 0-1 vanables A (T), T €9, subject to a consistency
condition which enables & to be interpreted in the form (7). Note the probabil-
ity structure depends completely on the choice of trapping-system. If § = R"
and J= open sets, a random Y-set 1s a random closed set in Matheron’s sense.
Smaller trapping-systems may be inadequate to distinguish all closed sets. A
set X 1s indistinguishable (to the observer) from its J-closure,

clos (X.9) = [ L) T]C = N T

XNT=0 XNT'=g
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mplement) and Wwe need only consider 9-closed sets

£ 18 . | _. — - 2
¥ = clos(X,). For example if ¥ = {open hal planes of R } the U-closed sets

. ; ¢ ? R
he convex sets of 2 Thus random %-sets in this case "are random convex

sets: and the customary representation of convex Sets by support functions can

be derived from h(T). | | o
Random set theory provides sohd foundahonsi for investigating both sto-
chastic geometry and the observation and processing of images. For exaple,
convergence of random sets is a natural concept 1n *the ger}eral theory whi ch
has been applied to assess €rrors Comin itted 1n dlgltlfzmg an um age,; approxima-
tion of one image by another, and the stability of 1mage processing transfor-
mations [31, Chapter VII] and to derive the statistically 1n portant liaws of
large numbers and a central limit theorem for repeated observations of images

(2,36]. The general setting also permits more involved discussion of the proba-
bilistic properties of image models, such as infinite divisibility and the semi-
Markov property [18,19]. It is a basic result that the probability distribution of

a random set X is determined by its avoidance function

Q(A)2 Prob (XﬂA““—-—“fZJ), A= UTi’ T,‘EC\’T
i =1
and the introduction of Q makes for a coherent approach to image models
[31,18].

The strongest link between image analysis and random set theory is surely
the trapping system. Any image is given to us through an array of detectors
(and perhaps subjected to edge detection processing, etc.) which can be formal-
ised as a trapping system. Further, the relationships between various forms of
image information (e.g. digitized versions on different lattices; grey tones) can
be studied by varying 9 in the stochastic model. The author feels that the great
potential of this method 1s yet unexplored.

. MATHEMATICAL MORPHOLOGY

The work of J. SERRA [31] establishes a coherent methodology for image
which avoids the fragmentary character of most other approaches.
Mathematical morphology developed in parallel with random set theory, begin-
ning with MATHERON’S [17] geostatistical work and Serra’s invention of the
‘texture analyzer’ image processing devices. The result is a combination of
sound theoretical criteria with practical experience. We can only convey the
flavour of the subject here.

Transformations of sets arise in many stochastic geometry problems. Con-
sider the Probability distribution of the random distance d(x, A) from a fixed
set A CR” to a random point x 4. Clearly P{d(x, A)<r)} equals the proba-
bility that X falls in the region 4,) = {xeR?:d(x, A)<r} which we dub the
r-envelope of A. Equivalently 4, is the set formed by placing a disc of radius
r around every point aeA. The envelope transformation A4 —A () 18 the sim-
plgst example of a set transformation. If 4 = Dy is a disc. then A4 )y = Dgr+,,
while in general the shape of Ay 1s more rounded (with smaller holes) than
that of 4. It is argued that the function Jf4(r) = area (4 (r)) reflects essential
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charactenistics of the geometry of A. If 4 is convex then f4(r) = 7r<-+
r. length (04) + area (4), while if 4 is a finite set of points then f, is plece-
wise quadratic with a behaviour reflecting the sizes of gaps between the points.
A series of images A4, ...,4, could be differentiated or discriminated using
the derived functions fy (r), ..., f4 (r).

The envelope operation can be performed on a discrete grid of points. A
simple algorithm 1s to scan the entire grid and, for each point x whose digital
neighbourhood includes a point of the current image 4, we mark x for inclu-
sion 1n the new 1mage 4. Furthermore we can watch this process of expan-
sion for increasing r by repeating the algorithm, since (4 ),y = A( +4)- This
1S done by texture analyzers.

The Minkowski sum of two sets A,B CR* is defined as

ADOB = {a+b:acA, beB}

in the sense of vector addition. If B is the disc D, then AD® D, = A4, the r-
envelope. More generally A® B is the superposition of translated copies of B
centred on each of the points of A, if we take the origin 0 as the ‘centre’ of B.
Shifted copies of 4 are obtained when B 1s a single point, AD{b} =
{a +b:aceA}. Defining B= {—b:beB} one can mterpret AD®B =
{(x eR*:(x @B) NA %= O}, the set of all ‘centres’ of shifted copies of B Wthh
intersect A. Hence the transformation A -4 @ B also has a clear interpretation
in stochastlc geometry, and can be claimed to reflect important characteristics
of the geometry of 4. This and other set transformations can be implemented
on a discrete grid by including or removing points x according to the state of
the entire digital neighbourhood of x.
Minkowski subtraction of A,B CR* is defined by

ASB = (A°DBY

1.e. the complement A 1s enlarged by B. For example, if B = D, is a disc,
ASD, = ({xeAd:d(x, A")>r} 1S the inner parallel set. In general
ASB = {xeA:x®PBCA} is the set of all centres of copies of B contained in
A. This has a natural interpretation and the function g(r) = area (A SD,) is
claimed to contain essential information about the geometry of 4. Define two
further set transformations, the closure

= (ADB)OB
and opening
Ap = (ASB)®B.

Thus Ap is the union of all copies of B contained in 4; and 4° is the result of
a similar operation on A¢. A set is B-closed, 4® = A, iff it is -closed in the
sense of Section 4 where 9 1s the class of all translated copies of B. Apart from
their natural interpretation in stochastic geometry, 4° and Ay can be used to
develop a rigorous definition of size and size distribution for images [18,31].
The mathematical morphology approach to an image processing problem 1s
to select an image transformation (built from @, ©, A2, Ay etc.) suitable to
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the application, and make numerical analyses of the transformed images. One
chooses transformations either by experience, intuition about the scientific
problem, or by setting down criteria which the transformation must satisfy.

Some limitations of mathematical morphology as it currently stands call for
brief comments. The texture analyser 1s designed on a hexagonal point lattice
for the digitized image. Naturally the theory is strongly dependent on this
choice of instrumentation, and probably does not answer all questions about
random 1mage models that are required in different applications. Associated
with the choice of instrumentation i1s the adoption [31, pp 8-15] of a list of
theoretical principles which notably excludes rotational stability. A hexagonal
grid has only three basic directions and there have been difficulties with the
analysis of image orientation or directionality. There may also be practical
reasons for employing a rectangular gnid or other system of image detection -
for example, satellite data may already be in this form. Another problem with
all image analysis based on stochastic geometry is that images are not sharply
divided black and white sets, but grey tone functions. This is a drawback to
the widespread use of texture analyzers. Mathematical morphology for grey-
tone functions 1s under development [31, Chapter XII].

The author suspects one can be led astray by excessive analysis of a single
image, when this image is to be representative of a larger population. This
apphes particularly in stereology, where the planar image is a random plane
secion XMNE of a three-dimensional body X which is the real object of
interest. It is then important that the sampling procedure used to generate
A ME should be known, and appropriate. Statistical inferences depend on the
sampling method used. It is not quite sufficient to base image analysis on con-
siderations of the trapping-system and other geometrical structures, without
incorporating statistical models for the origins of data.

6. IMAGE IRREGULARITY, OBSERVATION ERRORS AND GEOMETRIC MEASURE
THEORY

Elementary formulae from stochastic geometry (see (1)-(3) in Section 2) are
widely used in stereology for measuring curve lengths, estumating surface areas
and so on. Yet these results were derived for ideal smooth curves and it is a

priori doubtful whether they apply to irregular images or images observed

- . under error.

An extreme example is tangent counting. Let C be a twice differentiable
Plane curve, #€[0,7) and T%°(f) = number of tangents to C parallel to direc-
tion 6. This would be found by scanning a straight line across the image

(parallel to §) and counting the positions where the image 1s tangent to C. We
have

Of T0)d0 = [l«(s)lds (8)
C

where k(s) is the curvature of C at point s. If the scan direction € is generated
at random (uniformly), 779 () is a statistically unbiased estimator of the total
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absolute curvature of C. Additionally if C 1s itself a random plane section of a
curved surface, then T%* yields an estimate of the total ‘absolute’ surface cur-
vature.

Even assuming that real images are differentiable, the tangent count 1s
unstable in the sense that small perturbations (kinks, ripples) in C may cause
large changes in 7% and k. More realistically if C is the boundary of a finite
union of convex compact sets (hence, almost everywhere dlﬁerentiable) T
does not share the properties usually required of a good statistic. SERRA [31,
p.141 ff] nevertheless shows that a precise and useful interpretation can be
given to the tangent count or ‘convexity number’ of such curves, and that this
can be approximately determuned from a digitized 1mage.

Practical stereologists and image analysts follow procedures for counting
‘tangents’ to image curves, even when these are wuregular, thick or fuzzy, bro-
ken or digitized. A tangent counting algorithm may be built into the image
analyzing dewce Mathematicians should be discussing the performance of

hms, their relation to real geometry, and the effects of observation

Standard proofs of (1)-(3) and (8) do not accommodate a discussion of per-
turbations or errors, being applications of Fubini’s theorem to simple geometr-
ical models. We need the more powerful methods of geometric measure theory
[6], principally the coarea formula. Briefly, let M,N be m- and n-dimensional
domains (rectifiable surfaces), m=n, and let p:M—N be a Lipschitz-
continuous map. For almost every xeN, p~'{x} = {zeM:p(z) = x} is an
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m —n dimensional rectifiable set. If m =n, then p ~'{x} is a finite set. T!

here 1S
a function J"p defined on M called the approximate Jacobian of p, such that
the coarea formula

[fWp)2)dX™z = [ [ f(2)dX™ "z dH"x (9)
M Np o {x)
holds for any 9™-integrable function f:M—R, where 3* is the k-dimensional
Hausdorfl measure (‘k-dimensional volume integration’, see Section 7).
Thus (9) 1s a kind of generalization of Fubini’s theorem which incorporates
the Jacobian for a change of vanables.

To prove (8), for example, let C be a twice differentiable curve, and intro-
duce

C" = {(s,]):s€C, !l is the tangent to C at s).

This is a one-parameter set of points in R*XR X[0,7). Apply the coarea for-
mula (9) to the map

p:C =C, p(@sl) =s.
This has (J lp)(.s*.,,l) = (1+x*) * where k = k(s) 1s the curvature of C, and
since p ~ ' {s} is a single point (s,/) we get

[fis.ix1 +x2)mé"d€]<:1(s,l) = [f(s,))ds
/

C
for any function f. Similarly, for the map

q:C —-[0,7), q(s,/) = direction of line /,

we have (J 1q)(:s',,l) = (:cz/(1+x2))7. Since q“l{ﬁ} consists of all pairs (s,/)
where / 1s parallel to 6, we get

[FsD0E/A+@) dIC sl = [ S Fisih)de
) C’ 09 {6)
If f= 1, the sum on the right hand side above 1S T95(6). Choosing
f(s,1) = |k| so that the two left hand sides agree, we get equation (8).

Now suppose that C is nondifferentiable, and that the experimenter has
some algorithm for counting or detecting apparent tangents to C. Let

C = {(s,):seR?,/ is a line; the algorithm counts / as a tangent to at s}.

Then under suitable conditions we may replace C~ above by C and perform
the same calculations to get

[T 6)db = [*(s)ds,
0 I

~abs . _ ~
wherg 1 1s the expenimentally observed tangent count, I' = p(C) 1s the set
of points at which tangents are detected, and k = J'q/J'p is a kind of gen-
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alized curvature. For example, let C be an 1irregular curve C(1) =
{(t)+e(t), 0<r<1, where curve 4 1s smooth and |le(z)ll<<r. If the tangent
algorithm is such that se4 and / is tangent to ADD,, then I’ = A4, and « is a
function of r and the curvature of A. Thus I' 1s a rectified version of C.

Secondly, if C 1s smooth, but a tangent where x(s) 1s small may not be
observed, we get

T ('JT i"‘_,abs,) _

[ lic(s)|u(x(s))ds
where u(x) = probability of detecting a given ta
examples are explored 1n [4].

[hus we still have a geometrical interpretation of the image analysis algo-
rithm when it is applied to non-ideal images. This i1s achieved by concentrating
on intrinsic behaviour of the algorithm or observation method, encapsulated 1n
the projection maps p,q. More generally we can regard an image analysis algo-
rithm as an operator on images in the sense of generalized functions, and the
mathematical prerequisites for such an approach already exist [6].

gent at curvature k. Further

7. FRACTALS
MANDELBROT [15,16] explored the concept of fractal (fractional dimensional)
sets initiated by Besicovitch, which have wide mathematical associations and
seem to be useful models for real images. The simplest kind of fractal set 1s
self-similar: if X can be divided into k disjoint sets each of which 1s congruent
to X after magnification by a factor a, then A = loga/logk 1s the similarity
dimension of X. For curves A = 1; for a disc A = 2; but for the Cantor set,
k =2, a =3, A = log3/log2 is fractional. When X 1s magnified, its content
increases by a fractional pow<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>