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BY

J. TH. RUNNENBURG

(Communicated by Prof. J. PoPKEN at the meeting of June 24, 1961)

1. Introduction, basic definitions

In waiting-time theory so far one has considered almost exclusively
independent arrival-intervals. It is not hard to find a reason: the difficulty
of the problem increases considerably if the independence assumption 1s
dropped. Still, one would like to have at least some idea of the influence
of dependence on known results. In his thesis the author obtained a
number of theorems, both of a theoretical and a more practical nature,
concerning Markov-dependent arrival-intervals (or renewal-intervals) and
the corresponding waiting-time theory. In this paper just one reasonably
simple (and hence rather attractive) example is considered, from which
it will be seen that it is indeed possible to work with dependent variables
and to obtain even then practically useful formulae. The results can
easily be generalized, but that is not done here. Related theorems can
be found in RUNNENBURG (1960) and RUNNENBURG (1961).

We consider a waiting-system with one counter, where the queue-
discipline is ‘““first come, first served”. At time 0 a customer enters for
service at the counter, which is then busy finishing some work, which
will take a further time wo2). Hence wo is the waiting-time of the Oth
customer. Let new customers arrive at moments ti, ta, ... with

(1.1) Vo = tpii—tn n=0,1,2, ... (to == 0)

denoting the length of the arrival-interval (or renewal-interval) between
the nth and (n+ 1)st customer (or renewal). We assume that the y, are
(simple) Markov-dependent random variables, the only possible values
(or states) of the y, being the integers 1, 2, ..., r, where r is finite. The
transition probabilities are stationary, 1i.e.

_ def 1 . :
(1.2) _ Pij = P{yn+1=7|¥Yn = 1}
1) Report S 285 of the Mathematical Centre, Amsterdam, presented to the

Troisiéme Congrés International de Télétrafic, Paris 1961.
2) Random variables are printed in bold type.
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1s Independent of n. We further assume

Qi+ bq;bj

(1.3) pifmm:

with a; and b; complex numbers, which satisfy !)

a,mza.g,
%

b= b,
]

a2+ b2=1,
a6+ bib >0,
Ogcziaj—l—bibjg 1.

(1.4)

We call this particular chain the Markov chain M;. The a; and b; are
assumed to be complex numbers to obtain a larger set of transition
probabilities. One can easily prove that for r=2 all possible Markov
matrices with two states are obtained in this way.

Assumption (1.3) may seem rather odd, but is inspired by the following
considerations. We wish to be able to handle the matrix with entries py;
and its powers, without too much computational difficulties. The situation
1s analogous to that in the theory of integral equations. There a function
k(z, y) of two variables x and y, called the kernel of the integral equation,
1s replaced by a finite sum of products

(1.5) k*(x, y) = % JTu(x) 9.(y)

u=1

to simplify the equation and develop a theory. The present problem
contains a ‘“kernel” py, function of two ‘““variables” ¢ and j. One way
of simplifying the ‘“‘general’” p;; would be to assume from the outset,that
for all ¢+ and 9 ‘

(1.6) piz = 2, [.(2) 9.09).

p=1

We prefer to start with the stationary absolute probability distribution
of the vector (ya, yn+1). We assume that the bivariate probability distribu-
tion of that vector is given by

(1-7) P{Yn = 1, Yn+l = ]} = aiaf:)"‘*‘b’lbj:

which is symmetric 2) in ¢ and j. If now we compute P{y,=1%}, we find

(1.8) P{yn = ?/} = Qi -+ b;b,
1) If the range of summation 18 not indicated, the set of integers {1, 2, ..., 7}
1S meant.

2) Hence an irreducible aperiodic chain M; with r» = 2 is always symmetric.
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where a= »;a; and b= >; b;. Hence

aiQj+ bib;
1‘9 e W ——————————— Nt et .
(1.9) Pi; a;a - b;b

In order that (1.7) and (1.8) describe probability distributions and

(1.9) a set of transition probabilities, the a’s and b’s must satisfy the
conditions (1.4).

We consider only irreducible aperiodic Markov chains M;. It will be
seen that a necessary and sufficient condition to that effect is

(1.10) c| <1,
where

def (a,,;b—-—-bia)z
(111) C — ; m.

In section 2 we derive some theorems for the y,, which simplify to
classic results of renewal theory if the y, are assumed independent.
In that section we use only simple theorems from KEMENY and SNELL
(1960) in our proots and need not bother with more general theory.

In section 3 the waiting-time problem is treated. Here use is made
of the general method discussed in RUNNENBURG (1960), chapter IV.
The service-times sy, S1, S2, ... of the Oth, 1st, 2nd, ... customer are assumed

to be independent, identically distributed random wvariables, with an
exponential distribution

P{spn<s}=1—e# (s >0),

where u 1s a positive constant. The service-times are independent of the
arrival-intervals. '

Finally in section 4 we compare the results obtained in sections 2 and 3
with well-known theéorems for independent y,.

2. Renewal theory for Markov-dependent renewal-intervals

If 5=0 in (1.4), then a?2=1 and so a=1 or a= — 1. By changing the
sign of all a;’s (if necessary), we obtain a=1 and a;>0 for all 7. If 5520,
we replace a; and b; by a; and b;, defined by

def

(2 ].) di — a‘ia_l_b’iba
' b; &£ —a.b+bsa.
Because >; b;= —ab+ba=0 and >; a;=a2+b2=1, we again arrive at

b=0 and @2=1. It is thus no restriction to assume as we now do (instead
of (1.3)) that the transition matrix of the Markov chain M; has entries

(2.2) Py = a5+ — by,



with (corresponding to (1.4))

(2.3)

where the b; must be either all real or all imaginary.
In order to obtain the eigenvalues of the transition matrix, we compute
det (pi;—20ij), where 8;;=1 if =49 and 0 otherwise. It is not hard to

verify, that
(2.4) det (pi; —2dy) = (—2)"2 (1 —2) (c—2),
where ¢ is given by (1.11), which now reads

(2.5) - . ¢ <= -Z?-f

i Q1
Our assumption (1.10), i.e. |¢| <1, is hence necessary and sufficient to
make the matrix p;; irreducible and aperiodic, cf. FELLER (1950). We
only need the eigenvalue theory to explain why the restriction (1.10) is
imposed, it will not be used. | '

Next we consider

(2.6) pi(2) = 2 piPer-1 for |z|<1,

N == 1

w

where p;;(®) denotes the probability of reaching state 5 from state ¢ in
n steps. By solving the system of linear equations

(2.7) Pis(2) = piy + 2 % PirPxi(2),
we easly find

b; b
(2.8) Pis(2) = S B P

We thus have

(2.9) lim P = ay,

N> OO

showing that p;; is a regular transition matrix in the sense of Kemeny
and Snell (all entries of ps{™ are positive for some finite n), while

moreover

(2.10) lim {pij(z) — -------} =— .

z2—>1
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Kemeny and Snell define a matrix Z (with entries z;;) for each regular
transition matrix P (with entries p;;) by

(2.11) h 21ij -?Fe-t: 0ij -+ E { (m ‘“‘“CLJ}

n=1

def - ... . .
where a;= lim p;®. This conforms with our notation, because of

n— 00

(2.9). They prove, that z;; has finite entries and use the matrix Z to
obtain a number of interesting relations. We use the corollary to their
theorem 4.6.1 (page 86): If f(yx) is a function of the state y; entered at
the kth step in a regular Markov chain, with f(yz)=/f: if yx=¢, then

(2.12) lim - var E f(ye) = 2 2 ficisf3,

independent of the qo(z) (the initial absolute probability distribution),
where 1)

def
(2. 1 3) Cij = AR5 —+- Ui24¢ — aiéw — Qilj.

From (2.10) we have for the chain M;

(2.14) 2i] = Oy + ZZ 1?_0.
If we take

(2.15) [ =

then

(2.16) : éjl f(yx) = ;1 Y,

from which we find with (2.12), (2.13) and (2.14) after some reductions

2
(2.17) Iim -}- var Z Vi = o(a)d + 2 #a(5)
ﬂ-+00n k=1 1"““"‘""'6

7

where we have used the abbreviations

(2.18) ' i

1) Qur dy is the well-known Kronecker delta and differs from the dy used by
Kemeny and Snell. Their definition of cg is incorrect.
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To obtain renewal theorems for the Markov chain M, we introduce
a new Markov chain Mz, with states described by a vector (i, ) with
l1<i<r and 1<j<. If 1, denotes the number of the last customer having
moment of arrival < n, then the state after the nth step (in the figure:
length of yj, and height at time n) 1s given by (4, ), where 1 =1t;4+1 —¢;
and j=t—n if l,=1, t;={, and tij+1=1¢;41. The Markov chain Ms has
transition probabilities

(1 ifk=341=j—1,
def

(2.19) Pisskl =<{pix W 9)=1, k=1,
0 otherwise.
5 3 4 i [
|

S5 S4 53 52 51 33 32 31 4 43 42 41 ty, n T
¢————Mm——P— — P ¢ 3 >
o 5 i1 3 LY. 4 ]

>

Fig. 1

Let (%, 7) denote the absolute probability of entering state (¢, 7) at
the nth step for the chain Ms, given the initial probability distribution
qo(?, 7) (with qo(?, 9) =0 for ¢+, because we assumed that an arrival occurs
at to=0). We may ask for the probability U,(?), that time n 1s the moment
of arrival of some customer, under the condition that the chain starts
at time O in state (z,2). Now

(2.20) ' Un(i) = > D355
/]

where p{,, denotes the probability of reaching state (k, [) at the nth step

1

(in the chain M) starting from state (¢, 7). The absolute probability U,
of having an arrival occur at time » is given by

(2.21) Un = 2, 90(¢, %) Un(s).
Take
(2.22) pij: ki(z) = § y S for |2| < 1.
n=1

We may again write down a system of linear equations like (2.7). Its
solution is not as easily obtained as before. However, now .we only need
pi1:55(2). Because

(2.23) Dii; k(2) = 2 1pig 428 >, Pig Pigs xn(2),
J
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we have by (2.2), if we use the abbreviations

def
ax(z) = D a; iz xk(2),

w

(2.24) L
 bi(z) = 2, by piss wn(2);
and
(2.25)
that
(2 96) g CLk(Z) o akz—lA(z) -{—bkzwlB(z) +CL]¢(Z)A(Z) —I—b;c(Z)B(z),
2 br(2) = axz=1B(2) + brz—10(2) +ax(z) B(z) +-bi(z) C(z).

Solving these equations for ax(z) and brx(z), we obtain

_ax[A(2){1 — C(2)} + B(2)%] + br B(z)
Sza’"(z) T T I—AR@HI-Ck)I-BrZ

2.27
( ) 8 2bi(2) = axB(z) +br[C(2){1 — A(2)}+ B(z)2]
{1-A(){1-C(2)}—B(2)2
Because
(2.28) Pii; kx(2) = 2V lag - 2t1 b4 br +2tar(z) + 2° s bx(z),

%) g

we have if the chain M, is regular

255

(2.29) lm P, = m (1 —2) pi;xe(z) = lim (1 —2)ax(z) =
n — 00 2 =] z—>1 [u’l(a')

»

Now the chain M, is certainly irreducible (i.e. every state can be reached

in a finite number of steps from any state) because the same is true for
the chain M;. Hence (2.29) holds if the chain My is aperiodic. This can
be verified in any particular case by finding the greatest common divisor
g of those n for which p{?;,;>0 for some conveniently chosen . If g=1,
the chain M is aperiodic, otherwise it is periodic with period g, all states
having the same period. The chain M3 is certainly aperiodic if p11;11>0,

1.e. 1
(2.30) @12 + 612> 0.
Because of (2.21), (2.20) and (2.29) we have for aperiodic Mo

22 . 1
p(a)  pa(a)

(2.31) lm U, = z Z qo(?, ¢) lim Pé?;)iim 2 Z qo(?, )
3 ? 7

n—> OO i n—» OO
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Next we consider 1,, the number of the last customer having a moment
of arrival <n. Let (in, j») be the random vector, denoting the state of
the chain M, at time n. If now f*(ix, jz) is a function of the state at time £,
with f*(ig, jg)=fy if ix=1¢ and jiz=j, then again the relation (2.12) of
Kemeny and Snell may be applied. We take in particular

(2.32) fis = 84y,

for then

(2.33) ' 1, = z *(x, Jx)-
=1

Hence we immediately have

(2.84) &, = 2 Ef* (ix, jx) = 2 2 2 90(2, 1) P

k=1 k=1 1 1

and so, whether Ms is aperiodic or not,

(2.35) lim — co‘""ln = 2 Z go(?,2) lim — z P . = 2 Zqo(z 7)

n— oo N n-—>00 N =1

1
Ml( ) wi(a)’

the value of the Cesaro-limit followmg from (2.29) (it always exists as
15 well-known).

Instead of (2.11) we now write

(2.36) Zij; Kkl = 011051 + 2 pi?)m“‘a'kl)
n==7]

where

(2.37) Akl £ lim — E Pi;c)kz

(cf. KEMENY and SNELL (1960), page 102 for this generalization). It is

here again irrelevant whether the chain M. is aperiodic or not. We have
to replace (2.12) and (2.13) by

1 |
(2.38) - Im —var E f*(r, Ju) = 2 2 2 2, fig Coss k1 fra
”“*“’ﬂ' k=1 i 7 k 1
and |
(2.39) Cijs k1 = Qij iz, k1 + Akl Rkl; 45 — Aig Oik 051 — @ij Akl .

where as before the limit does not depend on the initial probability
distribution, 1.e. on the qo(s, 7).
We need only use

a7y
2.40 ar;; = lim — ou = ,
( ) = lm kg Dii-u (@)

a. consequence of (2.29). For by (2.32)

1
(2.41) lim - varl, = Z Z Z z 015 Ci; 151.:1 Z D Cit; kk
. k

n-—> 00 W
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and cs;:xx can be found from 2ii;kk- 1T now we substitute (2.27) in (2.28)
and use the result together with (2.40) to calculate (2.36), there results

b
gzii;lckméik‘f'“i {wakmﬂ?_l__+bk ! }4_

(2.42) " m@{l=c)  “l=c]
e S RS I LB |
2ur(@)? " (@R(l—c) (@) " (@) (I —c)
If now we use (2.38), we obtain
.1 1 (5)2
2.43 1 —_—V n == 2 1d1u1
( ) ninc}on\a,rl m(a)s{cr(a) + 2 1--0}'

3. The warting-time problem

From theorem 2.3.1 in RUNNENBURG (1960) it follows that under the

present assumptions, if the chain M; is irreducible and aperiodic (i.e. if
the condition |c|<1 is imposed) and if

(3.1) | s < ui(a),
then we have for w,, the waiting-time of the nth customer,

where F(w) is a distribution function. One can extend the theory and
show, that

(3.3) lim P{yn =k, Wns1 < w} = axFi(w),

17— OO0

where Fr(w) is a distribution function for each &k with 1<k<r and

(3.4:) F(‘LU) = Z a;;ch(w).
x
Moreover, the initial situation is irrelevant, i.e.
(3.5) Iim P{yn == 70, W+l < ’MJ| yow’i, W = wl} == (Lka(*LU),

independent of the value of + and wj.

For the particular chain M; considered here we shall obtain the Laplace—
Stieltjes transform of the Fx(w). To this end consider

o0

(3.6) C(v, w1k, §;2) = z 2™ f e~ dy P{yn=k, Wn+1<?/UIYO=——“i, Wlmwl}
0-—

n==()

for |z| <1, where Re £>0. If we consider only real z, we have

(3.7) li)]r:n (1—2) D> 22 P{yn =k, Wps1<W|Yyo = ¢, W1 = wy} = agFp(w)
zT1 n==0

and hence

(3.8) akf’k(f) gg 437 f e W dF}g('LU) = Jim (l mZ) O(’b, w1, 70, E; Z)

0 — z11
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1t i1s convenient to introduce

OO0
(3.9) C@, w: k, &; 2) g*--e:-fj' e~ dyy, Cl2, wis K, &; 2)

0

for Re w >0, where we take

for wy <0
As
(3.11) C@,0;k, & 2) =—C(@,0; k, & 2),
we also have |
(3.12) lim (1-2) O, 05 &, &; 2) = — anFu(8),

from which Fy(w) can be obtained by inverting the Laplace—Stieltjes
transform.

In order to find a set of equations from which C(z, w; k, &: z) can be
obtamed, we use the fact that

PiYynri=Fk, Wnra<w|yo=1, wi=w1} =

(3.13) S = > pi [ P{yn1=E, Waie <W|y1=7, Wa=w1+8—j} ue~# ds =
' | J 0

( = > Pij J P{yn=Fk, Wn+1 <w|yo=1, Wi=w1+8—)} ue~#* ds.
. 4 -
If now we take the Laplace—Stieltjes transform with respect to w (with

parameter &), multiply the resulting equa,tlon by 27+l and sum over n
from 0 to oo, we obtain for w;>0

g Clr, wi; k, &; 2) =

(3.14) , . :
2 =0, w1 K, &;0)+2 > piy [ C(f, wr+8—7; k, &; 2) ue~# ds.
j 0

Next we apply the Laplace—Stieltjes transformation with respect to wl

(with parameter w). This leads to (cf. RUNNENBURG- (1960), pages 108
~and 119 for an indirect derwatmn)

CE, w; k, &; 2) mé(z w; k, £; 0) +
(3.15)

M — ‘“"‘”(7(7, w; k, &;2) me“’“é(y,pc, k, &: z)}

This system of linear equa,tmns for C(i, w; k, £;2) we have to solve in
order to obtain Fy(&).

For w1>0 we find

(316) O(ia wl;k: E O f 6“5"’ de{yg---k W1<wly0“@ Wl""“wl} 6@1, 6‘5101
0~
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and hence

3

Oik -
L

(3.17) 0(’5, Q) k" 5; O) — (Sik' f e“ml d@“f‘tm et s
0
We rewrite (3.15) and substitute (3.17)

00, w;i k, &; 2) =

3

4w ,u,-—--co #CG pi ks €3 2)

|

Here we have for fixed w, k, £ and z a system of r linear equations for the
r functions C(2, w: k, &: 2), provided the C(s, w; k, &;2z) are known.
We further introduce for [z| <1, Re w>0
xp(w; 2) gs_e-goc(w; k, &: z)--- 2 aj e ’“’0(7, w; k, &; 2)
(3'19) def def
o Br(w; z) = B(w; k, &; 2) --...:Zb;e”""é(y,w;k,é;z)
| J

and rewrite (3.18) by means of (2.2) in terms of «x(w; z) and Bx(w; 2)

O(i, w; k, &;2) — /iz {oax(w; 2) -I— 21 ﬁk(w 2)} =
(3.20) “ 5
=~ T 0 . w{fxzc(ﬂ, 2) + ﬁk(ﬂa 2)}.

From (3.20) we find for «x(w; 2) and Bix(w; 2)

= 5—560 ar e"‘""“’——ock(y, 2)

(3.21) , '
” — o 2) )+ {1 — ﬂizw 0(6"“’)} {Br(w; 2) —Br(u; 2)} =
= — b e Bl 2)

with A4(z), B(z) and C(2) as in (2.25). The determinant of the system
(3.21) is o ' o o o

L]

(8:22) Do z)gg[ MI w ....m)} { ﬂizw O(euw)} I {u @ _m)}

By Schwarz’s inequality we have
(3.23) A(e=*) Ce=®) = {B(e™*)}2

unless b;=2a; for some constant A for all 7. But then 0= Y>ibi=2 and
hence b;=0 for all ¢. This case we exclude from the following discussion,
i.e. we have (3.23) and hence u is a pole of D(w; z) of order two.
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In order to find the zero’s of D(w; z) in the region Re w>0, we need
the fact that both

(3.24) u—ow—uz A(e=?)
under the condition (3.1) and
(3.25) u—ow—uz Cle™?)

under the condition (1.10) have exactly one zero in Re w>0 for each z

with 0<z< 1. If wq(z) is the zero of (3.24) and w.(z) the zero of (3.25),
then for O<z<1

(3.26) 0 < wal?z) < u

(3.27) g 0 <we(z) <p if all b; are real,

21“<wc(z) if all b; are imaginary.

This can be proved with Rouché’s theorem: “If two functions f(w) and
g(w) are analytic for all w € G (where GG is a domain in the complex plane
with the curve K as boundary, K being a simple closed contour contained
in G) and satisfy |f(w)| <|g(w)| for all w € K, then f(w)+g(w) and g(w)
have the same number of zero’s inside K’’. For K we take a contour
consisting of a segment of a line

(3.28) {w]Rew-—-—-a and mRQImwQR}
together with a segment of a circle 1
(3.29) {w|Re w>0c and |w—o|=R},

where the two positive constants ¢ and R are conveniently chosen. We
take g(w)=w—u and f(w)=uz A(e~*®) (to deal with (3.24)) and f(w)=
=uz C(e~®) (for (3.25)). The roots wqg(z) and w.z) are found to be real
(and to satisfy (3.26) and (3.27)) by inspection of the graph of the
functions f(w)+g(w) for real w.

Next we apply Rouché’s theorem to

(3.30) % flw) = — {uz B(e™) 2
g(w) ={u—w—uz d(e~ )} {up—w—uz Cle™*)},

where again z is a constant and 0<z< 1. We use the same contour K.
For Re w =0 and a sufficiently small constant >0

{1_- (e A(e“")}{lm He O(e"“’)}

= {1“ - A(e“")} {1--- a C’(e“")} —

(3.31) = p—e =9 ‘”“"1
— (L[]} { (@) — 3} o+ 0(0)
and
(3.32) | £ B(e““’)|2<{ - lB(e““)l}z = | pa(B)|2 02+ 0(o®)
o p—o u—c ' A |
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Hence we have |f(w)| <|g(w)| for all v with Re w=0c because of (1.10)
and (3.1) for small ¢. For sufficiently large R (large enough to have u
and w¢(z) inside K) we also have |f(w)| <]g(w)|, because A(e~®), Ble™?)
and C(e~®?) are bounded functions for Re w >0 and so f(w) is a bounded
function, while g(w) behaves like w?2.

The number of zero’s of f(w)+ ¢g(w) inside K is two, say wi(z) and ws(z)
(for each z with 0<z<1), because g(w) has zero’s wg(z) and wc(z). To
avoid complications (equal roots) we assume

(3.33) B(e=®:®) B(e=®:®) £ ( for 0<1—2<,

where 0 is a positive constant.
For real w>0 and 0<1—2<d we then find

(3.34) " D(cb; z)>0 for w=o,

(3.35) D(w*(z);2)<0 for w*(2) = wg(z) and we(z), if all b; are real,
| D(u;z)<0 if all b; are imaginary,

(3.36) D(w; 2)>0 for large w>0.

The second inequality in (3.35) is a consequence of Schwarz’s inequality.
Hence D(w; 2)=0 has for 0 <1 —2z< d two real roots wi(z) and wz(z) with

0 <wi(z) <min (wg(z), we(z)) <KMax (wa(z), we(2)) <wa(z) <u
(3.37) if all 6; are real,
0 <wga(z)<<wi(z) <u<wsz(z)<we(z) if all b; are 1maginary.

th

From (3.37) we see that wi(z)<ws(z) for 01l —2<0d. Of course wi(z)

and wg(z) are analytic functions of z.
From (3.21) we find

D(w; 2) {061.:(60; 2)— o ; z)} —

¢ N P . I TI I ...w]_n
== [a,;.;e {1 y-—-—-wO(e )} + bre ﬂ_wB(e ) | +

— ox(p; 2) {1—- & 0(6““’)} — Bi(u; 2) —— B(e~®)

U—@ U —

D(w; z) {Br(w; 2) — fr(p; 2)} =

(3.38)

= — g | are e Bl e 1 (e | +
- ocr(pes 2) p&ff..za) B(e=®) — Br(u; 2) {1 — yizwA(e_m)} |

Take w=0 in the first, equation.of (3.38), then we find with (3.22)

(3.39) (1 —-Z)(l -—_cz) {cxk(O; z)-—--ock(,u; z)} = — a,k(l FCZ)-*---OC}G(‘LL; Z) -(1 --—-CZ)
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and so by (3.12)

(3.40) () 2 lim op(u; 2)

z 11

exists, because

: , — 2 O: -
(3.41) llFl ka(/«t; Z) = ]1;’11 —_ S_LMM — aka(E) — .
271 z11 %

Next take w=wi(z) in the first equation of (3.38). This yields for z 4 1
the existence of

(3.42) Br() = lim Br(u; 2).

211

Now substitute w = w,(z) (where » is either 1 or 2) in the second equation
of (3.38). If

(3.43) Bi(w;2) ¥ aret L2 Ble=o) 1 pre—ke {1 - = A(e‘“’)},
p—w H—w

then the result may be written

Uz —wy(2)) . I 2 o L
8‘ _ ETY0 Bi(,(2); 2).

To prove that the determinant of the system (3.44), i.e.

Az) & E2 __ B(e~ o) {1 K A(e-wn_w))} +

(3.45) p— wi(2) zﬂme(z) z
Y { = Wy(2 — ,’u_______.._..____ — W (Z
e 2 {1 i A

1s not equal to zero for any z with 0<1—2<4, we sum in (3.44) over
all values of k. The right-hand side then becomes

3

(3.46) e

B(B_ w,,(z))

and so for any z with 0<1—2<¢ the resulting system of equations for
dror(u; z) and Dy Sr(u; 2), which is not contradictory, can never consist
of two equations which can be obtained one from the other by multiplying
with a constant which does not depend on &. But then

(3.47) A(z) 5% 0 for 0<1 —2z<é.
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We thus find from (3.44)

— o P 2) {1~ (e |+
o Belexe)i ) {1 = s Al
=+ 3 +i1( ) Br(wi(z) ; 2) p Z(z) B(e™ ™) +
B 5-1—5)2(2:) Biloald); ) =y Bl

and so we can easily calculate both the xp(u) and the Sx(u). From (3.21)
we obtain on substituting w=0 ‘

( lmz){ockO z)——-cx;c,u, }mma;{;mak(,u, )

and so by (3.20)

(3.49)

(3.50) é(’b 0 ]G E z)-*--- -—"(Si]c—JrZ[{ak O < wock(y z }—I— {ﬁk 0 z ﬁk(,u,;z}].

Hence by (3.12), (3.50), (3.49) and (3.48), writing w; for w;i(l) and w2
for wa(1),

arFr(&) = — lim (1—2) 0@, 0; &, &; 2) = lim {ax+ ox(u; 2)} =

z11 z11
_ _ 1 3 % — w,
(3.51) . ax + k(M) ak+ A1) | T E+ Bi(wi; 1) { ﬂmwzﬁ(é )}+
& o u . :I
| +§+wz Bp(ws; 1) {1 — o Ale )} ,

from which we further obtain by (3.4) and (3.43)

NP & B(e™*) B o,
(3.52) T e am {1 rE— )} i
. + 5 B(e““coa) {1"’“ A(e.—-ml)}
E+aws A(1) U — w1 '

The real numbers w1, ws, A(e~%:), A(e~*:), B(e~“) and B(e~ ), which
are the only functions occurring in (3.52), are obtained by solving the
equation D(w; 1)=0 for w; and wz. We could have shortened the derivation
of (3.52), but then the far more useful (3.51) would not have been obtained.

4. Comparison with independent Ynp

In sections 2 and 3 a number of results have been obtained, which
can be compared with well-known theorems, derived for independent

random variables yg.
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The related results can be obtained in section 2 by specialization of
the formulae. For independent y, we specify the probability distribution

by
(4-1) P{ynmi}m(%@,

which means that we take ;=0 for all +. In all formulae from (2.2)
onwards this specialization can be made. We thus obtain: a trivial result
in (2.17), a renewal theorem due to Feller (and proved by him in the
case of infinitely many states, here possible values of y,) In (2.31), a
weaker version of this theorem in (2.35) and another renewal theorem,

also due to Feller (and also proved by him for infinitely many states)
in (2.43). Quite unexpectedly we find from (2.17) and (2.43)

=0 var z Yk #
k=1

for dependent as well as for independent y,. It would be very interesting
to know whether this result i1s even more generally truel). One can
expect the relations proved in section 2 to be true for infinite 7, i.e.
infinitely many states, still with p;; as specified in (2.2) and (2.3).
The related results for section 3 can also be obtained by specialization,
i.e. by substitution of 6;=0 for all :. There is here a slight difficulty: the
substitution of B(e~%)=0, C(e~*)=0 leads to the kind of special difficulties
we did not wish to bother with, e.g. in (3.23) the inequality sign must

be replaced by an equality sign. It i1s not hard to obtain the solution
in this particular case. We find '

v M+HE w1

where w; is the only root with Re wi; >0 of
(4.4) u—w—ude=*)=0,

This is also a well-known result and can be found in Porraczex (1957),
page 85. Our derivation for this special case hardly differs from his.
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