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Erratum

Throughout this paper the inequalities o, B, Yy > —1 must be re-

placed by a, B, vy > =1, a+y+3/2 > 0, g+y+3/2 > 0.

Remark

This report appeared under the modified title
"Orthogonal polynomials in two variables which are eigenfunctions of
two algebraically independent partial differential operators, I, II"

in Proc. Kon. Ned. Akad. Wetensch. A 77 (= Indag. Math. 36) (1974),
48-58, 59-66.



Abstract

Let for o, B, v > =1 and n 2 k =2 O the orthogonal polynomials

pi’E’Y(u,v) be defined as polynomials in u and v with "highest" term
d
un”kvk which are obtained by orthogonalization of the sequence

2 2 3 2 : , .
ly uy vy u, uv, v, u, uv, .o... With respect to the weight function

(1--u+v)a(1+u+v)8(u2--4v)Y on the region bounded by the lines 1 = u + v =0

and 1 + u + v = 0 and by the parabola u2 - 4v = 0. Two explicit linear

partial differential operators D?’B’Y and D%’B’Y of orders two and four,

respectively, are obtained such that the polynomials pa’B’Y(u,v) are

n,k
eigenfunctions of D?’B’Y and D%’B’Y. It 1s proved that if a differential

operator D has the polynomials pi’i’Y(u,v) as eigenfunctions then D can be
b

?,B,Y and Dg,B,Y'
The special case Y = =; can be reduced to Jacobi polynomials by the

]
identity pz’i’ 2(x+y,xy) = const.(Péa’B)(X) Péa’B)(y) +

expressed 1n one and only one way as a polynomial in D

+ Péa’s)(x) Péa’s)(y)). For certain values of a, B, vy and in terms of the

coordinates s, t, where u = cos s + cos t, v = cos s cos t, the operator
Q. : : : ,
Dl’"B’Y 1s the radial part of the Laplace~Beltrami operator on certain

compact Riemannian symmetric spaces of rank two.



l. Introduction

Compared with orthogonal polynomials in one variable very few things
are known about orthogonal polynomials in several variables. A short
survey of the subject can be found in the Bateman project [3, Chap. 12].
In the twenty years after the publication of this reference not many new

results have been obtained. However, it seems to the author that there

are still quite a lot of interesting problems on orthogonal polynomials

in several variables, both in the general theory and in the study of the
speclal cases. Especially those aspects of the field which are not trivial
extensions of the one-variable case would be worthwile to consider.

In the omne-variable case the so-~called classical orthogonal poly-
nomials are characterized by the property that these polynomials are eigen-
functions of a second order linear differential operator (cf. Bochner [2],
Erdélyi [3, 8 10.6]. Krall and Scheffer [5] generalized this property to
the case of orthogonal polynomials in two variables as follows.

Let the class Hn of orthogonal polynomials of degree n on a two~dimensional

region R with respect to a positive weight function w consist of all poly-

nomials p(x,y) of degree n such that

JJ p(x,v) X yJ w(x,y) dx dy 0 if 1 + j < n,

R

Then these orthogonal polynomials may be called classical if there exists
a linear second order partial differential operator D in two variables for

which each class Hn is an eigenspace, l1.e. Dp = Anp for all p ¢ Hn.

Krall and Scheffer [5] classified all such differential operators D. Not
all cases of interest can be obtained in this way. Thils can be seen from

the example that Hn.is spanned by the products PQSQB)(X) Pﬁa’B)(y),

k = 0,1,...,n, of two Jacobi polynomials. In this simple case and 1in
several less trivial examples there still exists a linear second—-order

partial differential operator D in two variables such that each class Hn

1s spanned by eigenfunctions of D. But no longer two eigenfunctions
belonging to the same class Hn need to have the same eigenvalue. If such
an operator D exists for a particular class of orthogonal polynomials and



if all eigenvalues of D have multiplicity one then there is a natural way

to choose an orthogonal basis for each class Hn' This should be compared

with the case of general orthogonal polynomials in two variables. Then

there is usually no distinguished way to choose an orthogonal basis for
Hn (cf. Erdélyi [3, § 12.11]).

v

The concept of ''classical" orthogonal polynomials in two variables

as 1ntroduced by Krall and Scheffer may be further modified. In the
present paper and 1n one or more subsequent papers the author will con-

sider examples of orthogonal polynomials in two variables, where for each

class Hﬁ an orthogonal basis {Pn,O’ pn,l""’ pn,n} 1s chosen such that

the following holds. There exist two algebraically independent partial

differential operators D1 of order two and D2 of arbitrary non—zero order

such that the polynomials P k(x,y) are joint eigenfunctions of D] and D2'
b

In the example considered in the present paper the second order

operator Dl 1s related to compact Riemannian symmetric spaces of rank two.

Apart from the two independent variables the operator D1 = D?’B’Y depends

on three parameters o, f, y. It turns out that the operator D, = DD"”"%’Y

2 2
has order four. The joint eigenfunctions pi’E’Y(u,v) of Da’B’Y and
p%sBsY ’

1
5 are polynomials in u and v with "highest" term u kvk which are

obtained by orthogonalization of the sequence
2 2 3 2 : , :
l, u, v, u , uv, v 4 u , U Vy..... With respect to the weight function

(1~u+v)u(]+u+v)8(u2~-4v)Y on a region bounded by the two perpendicular

straight lines 1 —u + v =0, 1 + u + v =0 and by the parabolau2 - 4v =0

touching these lines. For reasons of convergence it is required that

dy By, Y > =1. These polynomials pz’ﬁ’Y(u;v) form a large interesting class
>

of orthogonal polynomials in two variables which resembles the class of

Jacobi polynomials Péa’B)(x). If vy = =3 then the polynomials pi’E’Y(u,v)
-+ 9
can be expressed in terms of Jacobi polynomials by the identity

Pi:i’“%(x+y,xy) = const-(Pga’B)(X) Péa’B)(y) + Pﬁa’e)(x) Pﬁa’B)(y))-

For general values of y the polynomials pi:E’Y(u,v) are not yet known 1in
some explicit form, but the differential equations satisfied by these
polynomials can be proved from the orthogonality properties.

In 8 2 of this paper the oper...-':ltcxr:'D(;"’B"'Y 1s 1ntroduced and 1t 1s

transformed into algebraic form. § 3 deals with the special case y = —3.



—

In § 4 we prove that the polynomials pi’E’Y(u,v) are eigenfunctions of
?

D?’B’Y. Next, in §8 5 the fourth order operator D%’B’Y is obtained as the

product D%’B’Y = Di’B’YDi’B’Y of two second order operators. These
operators D2 P Y and DS’B’Y have the property that

-+
Qs By QsBsY , atl.B+1,y Gy B,y _atl,B+1,y
D~ pn,k const. pn-l,kml and D

Finally, in § 6 a theorem is proved stating that each differential

operator which has for fixed o, B, Yy all polynomials pi’E’Y as eigen-—
2

- Oy By
pn*l,k-] const. Pn,k .

functions can be expressed in one and only one way as a polynomial in the

operators D?’BfY and D%’B’Y.

The results of this paper might be applied to certain compact
Riemannian symmetric spaces of rank two in order to characterize the
spherical functions on these spaces as orthogonal polynomials and to
obtain an expliclit expression for an invariant differential operator on
such a space which is independent of the Laplace-Beltrami operator.

In one or more forthcoming papers the author will consider other
examples of orthogonal polynomials which are eigenfunctions of two inde-
pendent partial differential operators. Some of these examples are rather
elementary, because the polynomials can be written as products of Jacobi
polynomials and of elementary functions. However, one particular example
seems to be much deeper. In this example the operator D1 1s also related

to compact symmetric spaces of rank two and the region of orthogonality is

the interior of the so—-called Steiner hypocycloid.

Yet another paper can be announced in which Ida Sprinkhuizen will

continue the analysis of the polynomials pi’E’Y(u,v) introduced in the
, |

present paper. Among her results will be a Rodrigues type formula, the

a’B’Y(u,v) and the value of pu’B’Y(Z,l).

quadratic norm of P 1 Ok
9 J

Notation. Throughout this paper the order a, B, y may be deleted as upper

index of a function or operator if no confusion is possible. For instance,

we may write P_ k(u,v) instead of pi’E’Y(u;v).
» ®



2.
Consider for arbitrary real numbers o, B, Yy the function
(2.1) wa’B’Y(s,t) = (sin is s:i".1:1.%t)20£'+1
. (cos 4s cos 3t)°P*! (sin J(s+t) sin §(t-s))2Y*!

0 0 s B,
(2.2) D?’ﬁB,Y — - B ] BQS"WG’B’Y(S’t)'é_g)'" "é""".'E'(Wa B Y(S,t)'ég“g):lu
w2 ’Y(S,t)

Formula (2.2) can be written in explicit form as

2 2
(2.3) Da’B’Y = .9 + S
t 832 Btz

+ L(a+3) cotg 3s — (B+}) tg is + (y+1) cotg L(s+t)
+ (y+3) cotg 3(s-t)] --895-
+ [(a+3) cotg 3t = (B+}) tg it + (y+1) cotg }(t+s)
+ (y+3) cotg %(t--s)]-;-g :

Al though the operator D] 1s defined by (2.2) only if 0 < s < t < T, 1t
follows from (2.3) that D1 has a unique analytic continuation for all
complex values of s and t except possibly on the singular lines sin s = 0,
sin t = 0, sin }(s+t) = 0, sin i(s~t) = 0.
The operator Dl has the following interpretation on certain symmetric
spaces. Consider a compact Riemannian symmetric space of rank two for
which the restricted root vectors have Dynkin diagram 0 = 0 (cf. Araki

L1, pp. 32,33]). The corresponding vector diagram is then given by

figure 1.



figure 1

3 2%1 and AZ

20 = 2B, 28 + 1 and 2y + 1, respectively,

Then it follows from Harish-Chandra [4, p. 270, Corollary 1] that the

Oy BsY
]

Beltrami operator on such a symmetric space. The values of o, B, Y for

which D?’B’Y

from Araki [ 1, pp. 32, 33]. In the following the operator D

Let the restricted roots A in figure 1 have multiplicities

operator D given by (2.2) denotes the radial part of the Laplace-

admits an interpretation on a symmetric space can be obtained

Oy ByY
1

be considered from an analytic point of view for arbitrary real values of

will only

o, B and v.

The singular lines of D, divide the (s,t)-plane into triangular

|
regions with angles n/2, /4, n/4 (cf. figure 2).

ML

figure 2
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The operator D] 1s invariant under reflections with respect to the singu-
lar lines. If a function f depending on s,t and defined for all real
values of s,t is invariant under reflections with respect to these lines

then, equivalently, f satisfies for all S, £ the symmetry relations

f(s+2m,t) = f(s,t) , f(s,t+21) = £(s,t) ,
(2.4) f(-s,t) = f(s,t) , f(s,-t) = f(s,t) ,
f(t,S) = f(S,t) .

Let R denote the triangular region
(2.5) R={(s,t) | 0<s <t <7},

1f £ 1s continuous and satisfies (2.4) then f is completely determined by

1ts restriction to R.

The function w defined by (2.1) is positive on the region R. The

integral

jJ WG’B’Y(s,t) ds dt
R

1s finite if and only a, Bs Y > =1. From now on it will always be supposed
that a, B and vy satisfy this inequality. The theorem below states that the

operator D, 1s self-adjoint on R with respect to the weight function w and

THEOREM 2.1. Let a, By v > =1. Let f and g be functions depending on s,t

satisfying (2.4) which have continuous second derivatives. Then

(2.6) ff (Dcl)"’B"Y £f) g WQ’B’Y(s,t) ds dt
L |

= JJ f (D(;L"B"Y 2) WQ’B’Y(s,t) ds dt .
R



-]

Proof. Let for positive and sufficiently small § Rs be a triangular
region similar to and included in R such that the sides of RCS are on
distances O from the respective sides of R. Integration by parts and

application of Gauss's theorem gives

JJ (le) gtw ds dt = J[ ((wfs)S + (wft)t)g ds dt

Ré RS
= - (f g + f g )wds dt + . *gé-g w dl
s°s t=t omn ’
R.CS BRS
It follows from (2.4) that on the boundary BR‘S of RS-%E-W O(8) 1f & ¥ 0.
Thus
J %Eg w dl = 0(62mm(°"8’7) N 2) if § + 0 .
BRS

Hence, by letting § + 0 it follows that

jJ(D]f) g w ds dt = - JJ(ngS + ftgt) w ds dt.
R R

A similar equality can be derived by reversing the roles of f and g and

formula (2.6) follows. Q.e.d.

Let us transform the operator D1 into algebraic form by the transfor-

mation

(2.7) X

cos s , y = cos t .

The transformed operator will also be denoted by D, and it equals

1

2 2
(2.8) D?’B’Y = (1~x2) ELE- + (lﬂyz)'iia'
dX 0V
1~x2 o



] - 0
+ [B = a = (a+B+2)y + (2Y+1) -;;‘Y;{-—] 3y

In terms of the function

(2.9) 2B Y (% v) = (1= 1+ P (1) (1+9) P (=) 2L, —1<yex<t
we can also write
OBy _ 1 9 _ Oy ByY 3
(2.10) D, == Ey - L oaxt(lx “)m (%,¥) 3%
m (X’Y)

ay ((1-y )mq B’Y(x,y)'“")] .
The mapping (s,t) - (x,y) defined by (2.7) is a regular one—to-one

mapping from each square region {(s,t) | km < s <(k+1)m, 1m < t <(1+1)w} ,

k,1 integers, onto the square region {(x,y) l -1 <x< 1, -1l <y < 1} .

In particular, the region R in the (s,t)-plane defined by (2.5) 1s mapped

in a one—to—one and regular way onto the triangular region

{(x,vy) ! ~1 < y < x < 1}, which will also be denoted by R (cf. figure 3).

figure 3

Note that i1f f 1s a function in s and t, defined for all real wvalues
of s and t and satisfying (2.4) then there is a unique function g in x and
y, defined for x,y € [-1,+1] and satisfying g(x,y) = g(y,x), such that
g(cos s, cos t) = f(s,t) for all real s and t. Conversely if g is a

symmetric function in x and y, defined for x,vy € [~1,+1], then the func-



