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Chapter 1

Introduction

1.1 Motivation

Communication is all around us. We all communicate as soon as we are among
others, which is usually the greatest part of our waking time. We communicate
with our friends about the things we did last weekend or the movie we want to
see next week. We communicate with our family about who will do the dishes
or where we want to go for holidays. And when we go to work, we communicate
with our colleagues in order to do our job.

Communication is a very important way for us to influence and interact with
the things and people around us. If we were unable to communicate this would
entirely change the way we behave and interact. In modern society, communi-
cation with our peers has become even more important than the ability to build
something ourselves.

We can distinguish many different kinds of communication. There is one
distinction that is particularly relevant here. On the one hand there is the live
conversation which is a rapid exchange of short messages, usually single sentences.
On the other hand there is communication with messages that are sent and re-
ceived at separate times. These messages are usually longer. Often the first type
of communication is spoken and the second is written, but there are exceptions to
this rule. For example, instant messaging is a written form of communication of
the first type, and recording messages on a voice mail machine is a spoken form
of communication of the second type.

Communication and knowledge are closely related. Indeed, the goal of commu-
nication is to share information with other people. If this information is known
to be truthful, we may call it knowledge. In any case, every successful act of
communication creates the knowledge that a certain message is communicated.

Communication can be very simple. For example, when I call my flatmate
and tell her that I did the groceries, she will know she will not need to pass by
the supermarket on her way home. But there is more to be observed in this
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2 Chapter 1. Introduction

situation: I also know that she knows I did the groceries. This can be quite
important because when I realize later on that I forgot something, I will call
her again to make sure she does pass by the supermarket. Furthermore, she
knows that I know that she knows that I did the groceries. Therefore, if she
later on realizes she needs something special from the supermarket, she might
call me to say that she will be late for dinner because she is going to pass by
the supermarket after all. This already shows that even in very simple acts of
communication, there is a lot to be analyzed.

But there are also more complex forms of communication. A well known
example of this is the Two Generals Problem, first published in [Akkoyunlu et al.,
1975] and described in the following form in [Gray, 1978]. Suppose there are two
generals, whose armies are situated on opposite hills. In the valley between them
is their common enemy and they want to attack this enemy. If one of them attacks
on his own he will certainly lose. On the other hand, if they attack together they
will probably win. Therefore, they need to coordinate their actions to agree on a
common date and time of attack.

They start communicating by sending each other messages. Each messenger
will have to pass through the valley where the enemy is encamped, and risks his
life by doing so. Therefore, the generals can never be sure that the messages they
send out will reach the other hill. Luckily, the generals have their own personal
seals which make it impossible for the enemy to fake a message and create false
belief among the generals. Will the generals be able to coordinate their attacks?

It may come as a surprise that the answer to this question is “no”. To see
why this is the case, suppose that the first general sends the following message: “I
will attack on Friday morning at nine o’clock!”. Now of course this message may
not reach the other general, but let us give the generals the benefit of the doubt
and suppose the message does reach its destination. Then the second general
will know the date and time of attack. But on Friday morning, the first general
will discuss with his officers and reason as follows: it could be that his message
reached the second general and the second general knows he is supposed to attack
today. But it could also be that the messenger was shot on his way, and then the
second general will not attack today. Then if I attack now, I will be alone and I
will certainly lose. That is a risk the first general is not willing to take.

Therefore the first general changes his message a bit. Instead of just sending
the date and time of attack, he also asks the second general to send a messenger
back in order to confirm their agreement. Supposing this first message reaches
the second general, he will send a messenger back. Suppose this second messenger
reaches the first general again. Then on Friday morning, the second general will
reason as follows: “If the first general received my confirmation, he will attack
with me. But if he did not receive it he will probably not attack and then I will
lose!”. Therefore, the second general will not attack.

The second general could extend the communication protocol even further by
asking the first general to send a confirmation of the confirmation he received,
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but this will only move the problem back to the first general, who would then not
know whether the second general received his confirmation of the confirmation.
This problem cannot be solved: whatever messages the generals send, the one
who sent the last message will never know if the other one received it. Therefore
they cannot coordinate their attacks without risking to attack on their own.

What the generals lack is exactly the type of knowledge that I shared with
my flatmate in the first example. In that situation, she knows I did the groceries,
I know she knows this, she knows I know she knows, I know she knows I know
she knows it, etcetera ad infinitum. We call this kind of knowledge common
knowledge: my flatmate and I have common knowledge of the fact that I did the
groceries. In the example with the generals, after the first message the second
general knows the date and time of attack. After the first general receives a
confirmation from him, he will know that the second general knows the date and
time. If he also sends a confirmation back and this confirmation reaches the
second general, the second general will know that the first general knows that the
second general knows the date and time of attack. However, the first general does
not know this because he does not know whether the last confirmation reached
the second general. In other words, the generals cannot coordinate because they
do not share common knowledge.

The difference between the two situations is that when I talk to my flatmate on
the phone, I am sure she can hear me. We instantly acquire common knowledge
of the content of our conversation. On the other hand, the generals are never sure
their message reaches the other side and therefore they cannot create common
knowledge. This is an example of unreliable communication. In this work we
will mostly assume that messages that are sent by one party are also received
by the other party, and that this fact is common knowledge. An exception to
this rule is Chapter 6 where we will distinguish between potential and definitive
knowledge. In the example of the generals, the generals have potential knowledge
of a message if it is sent to them and they have definitive knowledge of it if they
also sent a confirmation of receiving it. Common knowledge is a very important
concept which is extensively discussed in this work, especially in Chapter 5.

A fairly new form of communication is email communication. For example,
instead of calling my flatmate to tell her I did the groceries, I could send her an
email with this information. Email communication can also be more complex: I
could include more people as Carbon Copy (CC) recipients in order to start a
group conversation over email, or I could even include some Blind Carbon Copy
(BCC) recipients who would receive the email without the other recipients being
aware of this. In the first case, upon reading the email my flatmate would know
that I did the groceries. In the second case, she would also know that the CC-
recipients also know this, if they received the message. In the third case, her
knowledge would be the same as in the second case because she cannot see the
fact that there were BCC-recipients. However, if she takes the time to reflect
on all possibilities she might realise that it is possible I included some BCC-



4 Chapter 1. Introduction

recipients. So in all cases she will consider it possible that more people than that
she is aware of received my email.

All these considerations depend greatly on whether we assume that other
people read their email. This may be a very reasonable assumption. For example,
there are companies where it is required of the employees to check their email
daily and read everything of importance. In private communication this is less
strict, but even then there are people who can be counted upon to read their
email at least daily and sometimes even hourly. On the other hand, there are
also people who forget to check their email, or simply do not read all emails they
receive. And even if we read our email thoroughly, there are spam filters that
may accidentally remove email from our inbox or network errors that may result
in emails being lost.

In the example with me and my flatmate, the situation can be analyzed easily
by hand. It is not hard to figure out who knows what by just looking at the
email I sent her. However, when the number of emails and recipients grows this
analysis becomes a daunting task and infeasible for humans. For example, in
large companies tens of thousands of emails are sent and received every day.
When some secret piece of information was leaked via email, the complexity of
finding out who was the source of this information leak, or who else received
this secret information, is overwhelming. In situations like this, it would be very
helpful if the analysis of people’s knowledge during an email conversation could be
automated. Due to the intricacies involved when studying knowledge, knowledge
about knowledge and common knowledge, logic is a very suitable tool for such an
analysis. This explains the extensive reliance on logic in this thesis.

1.2 Overview of the dissertation

The general set-up of this dissertation is as follows. I first give some preliminary
definitions in Chapter 2. In Chapters 3, 4, 5 and 6, I present four different models
of how knowledge evolves during communication. Each of these models depends
on different assumptions and is therefore suitable for different situations. Chapter
3 focuses on a situation where all possible messages are known by the agents, for
example during a game or during the execution of some protocol. The model
presented in Chapter 4 is a very general model which can be used to model many
types of communication. It is not tailored towards one single situation, but can be
adapted as desired. Chapter 5 and 6 focus specifically on email communication.
The model presented in Chapter 5 is of a more theoretical nature and focuses on
modeling common knowledge. Also, it rests on the assumption that all emails
that are sent are also received and read. On the other hand, the model presented
in Chapter 6 distinguishes two kinds of knowledge in order to make a distinction
between when an email is sent and when it is also read. In Chapter 7, I take
a closer look at the models that are used in Chapter 3. These are the so-called
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action models that are used in epistemic logic to model communicative actions.
In Chapter 8 I show how these models can be used in communication about
beliefs and belief revision and finally, in Chapter 9 I study a situation in which
the agents that communicate are not necessarily truthful, which leads to a study
of the effect of lying. I also present a case study of a game of Liar’s Dice.

The contents of each chapter is briefly sketched below.

Chapter 2 This is an introductory chapter explaining some basic concepts from
epistemic logic.

Chapter 3 In this chapter I propose a framework for modeling message passing
situations that combines the best properties of dynamic epistemic semantics
and history-based approaches. I assume that all communication is truthful
and reliable. I also assume there is a dynamic set of messages that may
be sent, which is known by all agents. The framework consists of Kripke
models with records of sent messages in their valuations. I introduce an
update operation for message sending. With this update I can study the
exact epistemic consequences of sending a message. I define a class of models
that is generated from initial Kripke models by means of message updates,
and axiomatize a logic for this class of models. Next, I add an update
modality and sketch a procedure for defining it by means of equivalence
axioms. This chapter is based on joint work with Jan van Eijck [Sietsma
and van Eijck, 2011].

Chapter 4 In this chapter, I develop a very general framework based on epis-
temic logic that can be adapted to the needs of a great number of different
situations. The network over which the agents communicate is explicitly
specified in this framework, and therefore it can be used to model a situ-
ation where not all agents are able to communicate with each other. By
combining ideas from Dynamic Epistemic Logic and Interpreted Systems,
the semantics offers a natural and neat way of modeling multi-agent commu-
nication scenarios with different assumptions about the observational power
of agents. I relate the logic to the standard DEL and IS approaches and
demonstrate its use by studying a telephone call communication scenario.
This chapter is based on joint work with Yanjing Wang and Jan van Eijck
[Wang et al., 2010].

Chapter 5 Here, I focus on email communication specifically. I consider a frame-
work in which a group of agents communicates by means of emails, with
the possibility of replies, forwards and BCC. I study the epistemic conse-
quences of such email exchanges by introducing an appropriate epistemic
language and semantics. This allows me to find out what agents exactly
learn from the emails they receive. Common knowledge plays a big role
in this framework and I show how to determine when a group of agents
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acquires common knowledge of the fact that an email was sent. I also give
an analysis of BCC and I look at email communication from the perspective
of distributed systems. This chapter is based on joint work with Krzysztof
Apt [Sietsma and Apt, 2012].

Chapter 6 In this chapter I also analyze email communication, but now I focus
on the difference between sending an email and knowing its content has
been read. This is not the same thing, especially when one considers the
existence of network errors, spam filters and people who simply do not
read all the emails they receive. Such an analysis is interesting in many
situations. One example is when someone’s knowledge about some email
at a particular moment may be relevant in a court case. I distinguish two
kinds of knowledge: potential knowledge, which is acquired at the moment
an email is sent to someone, and definitive knowledge, which is acquired
when that person also shows his knowledge of the email by replying to it or
forwarding it. I incorporate both kinds of knowledge in my logic. I present
a semantics for this logic that can be decided quite easily and is therefore
applicable in practice. I also show that from the epistemic point of view, the
BCC feature of email systems cannot be simulated using messages without
BCC recipients. This chapter is based on an unpublished manuscript that
I finished in 2012.

Chapter 7 In this chapter I take a closer look at the models I use in Chapters
3 and 9. These are Kripke models, used to model knowledge in a static
situation, and action models, used to model communicative actions that
change this knowledge. The appropriate notion for structural equivalence
between modal structures such as Kripke models is bisimulation: Kripke
models that are bisimilar are modally equivalent. I would like to find a
structural relation that can play the same role for the action models that
are of great importance in information updating. Two action models are
equivalent if they yield the same results when updating Kripke models.
More precisely, two action models are equivalent if it holds for all Kripke
models that the result of updating with one action model is bisimilar to the
result of updating with the other action model. In this chapter I propose a
notion of action emulation that characterizes the structural equivalence of
the important class of canonical action models. Since every action model
has an equivalent canonical action model, this gives a method to decide the
equivalence of any pair of action models. I also give a partial result that
holds for the class of all action models. This chapter is based on joint work
with Jan van Eijck [Sietsma and van Eijck, 2012].

Chapter 8 This chapter focuses on the interplay between knowledge and be-
lief. Models of knowledge change into models of belief when one drops the
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assumption that all communication is truthful. This corresponds to the as-
sumptions that all relations in the Kripke models are equivalence relations.
In this chapter, the only constraint I impose on these relations is that they
are linked. Linkedness is a new extension of the notion of local connected-
ness for multiple agents. It assures that if there are three alternatives, one
agent prefers the second over the first, and the other agent the third over
the first, that both agents make up their mind about whether they prefer
the second or the third alternative. This is important in consensus-seeking
procedures like Dutch meetings, where the participants vote on different
subjects according to a set agenda. I show how my framework can be used
to model such procedures, and use it to analyze the discursive dilemma, a
well known problem in judgement aggregation [List and Pettit, 2005]. This
chapter is based on joint work with Jan van Eijck [Sietsma and van Eijck,
2008].

Chapter 9 This chapter has a more philosophical flavor as compared to the
other, more technical, chapters. I model lying as a communicative act
changing the beliefs of the agents in a multi-agent system. Following St. Au-
gustine, I see lying as an utterance believed to be false by the speaker and
uttered with the intent to deceive the addressee. The deceit is successful if
the lie is believed by the addressee. I provide a logical sketch of what goes
on when a lie is communicated. I present a complete logic of manipulative
updating, to analyze the effects of lying in public discourse. Next, I turn to
the study of lying in games, in particular the game of Liar’s Dice. First, a
game-theoretical analysis explains how the possibility of lying makes such
games interesting, and how lying is put to use in optimal strategies for
playing the game. I also give a matching logical analysis for the games
perspective, and implement that in the model checker DEMO. There is a
difference between lying in games and the logical manipulative update: in-
stead of taking each utterance to be truthful, in a game the players are
aware of the fact that the other players may lie. This chapter is based on
joint work with Hans van Ditmarsch, Jan van Eijck and Yanjing Wang [van
Ditmarsch et al., 2012].





Chapter 2

Preliminaries

In this chapter I will explain some preliminaries that are useful for understanding
the other chapters of the thesis. I will introduce Kripke models, which can be used
to represent the knowledge of agents in some static situation. I will also discuss
action models, which can be used to update Kripke models when the situation
changes. I will use these models later on to reason about the knowledge of agents
during some message exchange, using Dynamic Epistemic Logic.

2.1 Dynamic Epistemic Logic

2.1.1. Definition. Let a set of agents Ag and a set of propositions P be given.
A Kripke model for Ag and P is a tuple M = (W,R,Val,W0) where W is a
set of worlds, R is a function that assigns to each a ∈ Ag an equivalence relation
Ra on W , Val is a function that assigns to each world in W a subset of P (its
valuation), and W0 ⊆ W is the set of actual worlds. I will sometimes use ∼A for
Ra. Given a Kripke modelM, I use WM, RM,ValM,WM

0 to denote its elements.

The interpretation of these Kripke models is as follows. The worlds in W are
different scenarios the agents consider possible. In each world each proposition
has a truth value given by the valuation of that world. There is a relation between
two worlds w1 and w2 for an agent a if, when in situation w1, agent a considers it
possible that instead of w1, w2 is the case. In other words, agent a does not have
the knowledge to distinguish situation w1 from situation w2. The worlds in W0

are the actual worlds, the situations that are considered possible by the designer
of the model.

To describe and reason about the exact knowledge of the agents I will use
epistemic Propositional Dynamic Logic (PDL) [Kozen and Parikh, 1981].

2.1.2. Definition. Given some set of propositions P and a set of agents Ag, let

9
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L be the language consisting of formulas of the form φ as given below.

φ ::= p | ¬φ | φ ∨ φ | 〈α〉φ where p ∈ P,
α ::= a | ?φ | α;α | α ∪ α | α∗ where a ∈ Ag.

Call α an epistemic program .

I use the usual abbreviations: φ ∧ ψ for ¬(¬φ ∨ ¬ψ) and [α]φ for ¬〈α〉¬φ.
This language can be interpreted on the worlds of a Kripke model. The epis-

temic programs α represent relations that are built from the knowledge relations
of the agents. The program a stands for the relation of agent a. The program ?φ
goes from any world in the Kripke model to itself, if and only if that that world
satisfies φ. It can be used to test the truth value of φ. The program α1;α2 is the
sequential composition of α1 and α2: it goes from one world to another if there
is an α1 relation from the first world to a third world, and an α2 relation from
the third world to the second world. The program α1 ∪ α2 is the choice between
α1 and α2: it goes from one world to another if there is either an α1 or an α2

relation between them. Finally, the α∗ relation stands for repeating α finitely
many times: it goes from one world to another if the second world can be reached
from the first one by following a finite number of α relations.

The formula 〈α〉φ holds in a world if there is an α-related world that satisfies
φ. Dually, [α]φ holds if all α-related worlds satisfy φ. Given some agent a, 〈a〉φ
holds if a thinks it possible that φ. On the other hand, [a]φ holds if a knows that
φ is true.

The formal definition of the semantics is given below. Given some program
α, [[α]]M denotes the relation that interprets the program α in M.

2.1.3. Definition. Let M = (W,R,Val,W0) be a Kripke model. Then the
truth of an L formula φ is given by:

M |=w p iff p ∈ Val(w)
M |=w ¬φ iff M 6|=w φ
M |=w φ1 ∨ φ2 iff M |=w φ1 or M |=w φ2

M |=w 〈α〉φ iff ∃w′ : w[[α]]Mw′ and M |=w′ φ

w[[a]]Mw′ iff w ∼a w′
w[[?φ]]Mw′ iff w = w′ and M |=w φ
w[[α1;α2]]Mw′ iff ∃w′′ ∈ W : w[[α1]]Mw′′ and w′′[[α2]]Mw′

w[[α1 ∪ α2]]Mw′ iff w[[α1]]Mw′ or w[[α2]]Mw′

w[[α∗]]Mw′ iff ∃w1, . . . , wn ∈ W : w1 = w,wn = w′ and
w1[[α]]Mw2[[α]]M . . . [[α]]Mwn.

In the last part of this definition, note that w[[α∗]]w′ if and only if there is a path
from w to w′, which holds in particular when w = w′.
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The relations in the Kripke models are often constrained in order to impose
restrictions on the knowledge of the agents. For example, true knowledge is
represented by Kripke models with relations that are reflexive, symmetric and
transitive. Reflexivity means that there is a relation from every world to itself.
It corresponds to the axiom [a]φ → φ, which expresses that if an agent knows
something, then it is true. Symmetry means that if there is a relation from world
w to world v, then there is also a relation back from v to w. It is characterized by
the axiom φ→ [a]〈a〉φ, which expresses that if φ is true then every agent knows
that it is possible that φ is true. Transitivity means that if there is a relation
from w to v, and from v to u, then there is also a relation from w to u. In other
words, if there is a path from one world to a second one through other worlds,
then there is also a direct relation. It is characterized by the axiom [a]φ→ [a][a]φ,
which expresses that if an agent knows something then she knows that she knows
it. Relations that are reflexive, symmetric and transitive are called equivalence
relations, and Kripke models of which all relations are equivalence relations are
called S5 models. They are used to model knowledge. Another class of models
I will use is the class of KD45 models, that are used to model belief instead of
knowledge. They have relations that are transitive, serial and euclidean. Seriality
means that for every w, there is a relation to some world v. Euclideanness means
that for every w, v and u such that there is a relation from w to v and one from w
to u then there is also one from v to u. In Chapers 3, 4, 5 and 6 I will work with
epistemic relations that are equivalence relations. Chapter 7 does not assume
any restrictions on the relations, and Chapter 8 will propose a new restriction,
namely linkedness. Finally, in Chapter 9 I will focus on KD45 models.

Here, I will first show how Kripke models can be used with a clarifying exam-
ple.

2.1.4. Example. Suppose there are two people, Alice and Bob, who are playing
a game together. They flip a coin under a cup, in such a way that the result is
hidden. Then, Alice looks under the cup and sees that the coin is heads. Now
Alice leaves the room to go to the toilet. When she comes back, she does not know
whether Bob has secretly looked under the cup, so she does not know whether
Bob knows it is heads. Actually, Bob is a very honest person and he has not
looked.

The model for this situation looks as follows:
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M :

w : h v : h

u : h x : h

a

b

a

Here w, v, u and x are the names of the four worlds. The result of the coin
flip is represented by the proposition h, where h denotes that h is true and the
coin lies heads up and h denotes that h is false and the coin lies tails up. The
gray colour of the world w denotes that it is an actual world. In this picture I
have omitted the reflexive relations, which are present for every agent from every
world to itself. Furthermore, since all relations are symmetric I use lines instead
of arrows to represent them. I will continue this convention for S5 models in the
remainder of this dissertation.

In the actual world w, the coin lies heads up. Alice knows this: the only other
world she cannot distinguish from w is world v, where the coin is also heads up.
So h holds in every a-related world, and M |=w [a]h. Bob does not know that
the coin lies heads up: there is a relation from w to u, where h does not hold. So
M |=w ¬[b]h.

Now look at v instead of w. There, there is no other world that Bob cannot
distinguish from v, so Bob knows that the coin lies heads up: M |=v [b]h. Since
Alice confuses the actual world w with the world v, Alice considers this situation
possible. So M |=w 〈a〉[b]h: in the actual world w, Alice holds it possible that
Bob knows h. This follows from the semantics because there is an a-relation from
w to v, and no b relation from v to a world where h does not hold.

Bob does not know the result of the coin flip. Bob does know that Alice
holds it possible that Bob has looked under the cup. So Bob confuses the actual
world where h is true and Alice holds this possible with a world where h is false
and Alice holds this possible. This is world u in the model. Because there is a
relation for Alice to world x, and in world x the formula [b]¬h holds, the world
u satisfies 〈a〉[b]¬h: Alice holds it possible that Bob knows h. Because there is a
relation from w to u, Bob thinks this formula might be true: in the actual world,
〈b〉〈a〉[b]¬h holds. Intuitively, Bob considers it possible that h is false and that
Alice thinks Bob might know this.

Using epistemic programs, more complex notions of knowledge can be ex-
pressed. For example, one could say that Alice thinks it is possible that Bob
thinks it is possible that h is not true with the formula 〈a; b〉¬h. It holds in v
because there one can follow an a-relation and then a b-relation to a ¬h-world u,
but also in w because there is a reflexive a-relation from w to itself (not shown
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in the picture) that can be followed from w to w, after which a b-relation can be
followed to u.

Another property of the model is that in world w both Alice and Bob know
that Alice knows the value of h. This can be expressed as [a ∪ b]([a]h ∨ [a]¬h).
The modality [a ∪ b] expresses that both a and b know something. There is even
something stronger that holds: it is common knowledge among Alice and Bob
that Alice knows the value of h. This means that they both know it, and both
know that the other knows it, and both know the other knows they know it,
etcetera. It is expressed by [(a∪b)∗]([a]h∨ [a]¬h). In general, given a finite group
of agents a1, ..., an, [(a1∪ ...∪an)∗] denotes common knowledge within the group.

Sometimes, two different Kripke models represent exactly the same situation.
In this case they are equivalent. Such an equivalence can be detected by checking
whether there exists a bisimulation between the models. This is a relation between
the worlds of the models that has certain special properties.

2.1.5. Definition. Given two Kripke models M and N , a relation Z : WM ×
WN is a bisimulation if for any w ∈ WM and v ∈ WN such that (w, v) ∈ Z
the following conditions hold:

Invariance ValM(w) = ValN (v),

Zig for any agent a ∈ Ag, if there is a world w′ such that w ∼Ma w′ then there
must be a world v′ such that v ∼Na v′ and (w′, v′) ∈ Z,

Zag for any agent a ∈ Ag, if there is a world v′ such that v ∼Na v′ then there
must be a world w′ such that w ∼Ma w′ and (w′, v′) ∈ Z.

I write (M, w) ↔− (N , v) if there exists a bisimulation between M and N that
links w ∈ WM and v ∈ WN . If there exists a total bisimulation between the
worlds in WM

0 and WN
0 I write M ↔− N and say that M and N are bisimilar .

So two bisimilar worlds satisfy the same propositions, and if one of these
worlds has a relation to a third world then the other should have a relation to a
fourth world that is bisimilar to the third world.

The following result is standard in modal logic, see for example [Blackburn
et al., 2001]:

2.1.6. Theorem. If (M, w) ↔− (N , v) then for any modal formula ϕ,

M |=w ϕ iff N |=v ϕ.

All formulas I will consider in this thesis are modal formulas, so for all my
purposes bisimilar worlds may be considered equivalent.

Sometimes I will be interested in a bisimulation that takes only certain propo-
sitions into account. A restricted bisimulation for Q ⊆ P is a relation that
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satisfies the conditions for bisimulation when taking for the invariance condition
only the propositions in Q into account. If two worlds are related by such a rela-
tion then they are Q-bisimilar, notation: (M, w) ↔−Q (N , v). So the truth value
of propositions in P \Q may differ between Q-bisimilar worlds.

Kripke models represent the knowledge of agents in a static situation. When
communication takes place, the situation changes. Therefore, the Kripke model
needs to be changed as well. I use action models, introduced in [Baltag et al.,
1998], to represent a communicative event that changes the knowledge of agents.
In particular, I use them to represent the event that some message is sent.

An action model is like a Kripke model, only instead of possible worlds it has
possible events which have a formula called a precondition instead of a valuation.
Action models can be applied to Kripke models in order to update them. Then
every world from the Kripke model gets matched with every event from the action
model, provided that the world satisfies the precondition of the event. This
operation is called the product update.

Formally, an action model is defined as follows:

2.1.7. Definition. Let a set of agents Ag and a set of propositions P be given.
An action model for Ag and P is a tuple A = (E,R,Pre, E0) where E is a set
of events, R is a function that assigns to each a ∈ Ag an equivalence relation Ra

on E, Pre is a function that assigns to each event in E an L-formula over P (its
precondition), and E0 ⊆ E is the set of actual events. I will sometimes use ∼a for
Ra, and I will use EA, RA,PreA, EA

0 to denote the elements of the action model.

When a Kripke model is updated with an action model, the knowledge of the
agents represented in the model is changed by changing the relations between the
worlds. If there is a relation between two worlds in the Kripke model and these
worlds are matched with two events in the action model, then the relation is only
preserved if there is also a relation between the two events in the action model.

The formal definition of the product update is as follows:

2.1.8. Definition. Given a Kripke modelM and an action model A, the result
of updating M with A is the model M⊗A = (W ′, R′,Val′,W ′

0) given by

W ′ := {(w, e) | w ∈ WM, e ∈ EA,M |=w PreA(e)},
(w, d)R′a(v, e) iff wRMa v and dRAa e,

Val′((w, e)) := ValM(w),
W ′

0 := {(w, e) ∈ W ′ | w ∈ WM
0 and e ∈ EA0 }

2.1.9. Example. Consider the situation from the previous example. If someone
would come into the room and announce that Bob has not looked under the cup,
then the knowledge of Alice would change. She would get to know that Bob does
not know the result of the coin flip. The action model for this looks as follows:
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A : e : ¬[b]h

It has one world with precondition ¬[b]h. The result of this action is that only
the worlds in the Kripke model that satisfy this precondition, are preserved in
the result of the update. When I update the Kripke model from Example 2.1.4
with this action model, I get the following result:

M⊗A :

w : h

u : h

b

Here, world v has been removed because it did not satisfy ¬[b]h. Now, in the
actual world w, Alice knows that Bob does not know the result of the coin flip:
M⊗A |=w [a]¬[b]h.

This is a quite simple action model: it has only one world. In order to show an
example of a more complex action model, let me introduce another agent, Carol,
who does not know the result of the coin flip. I take a new Kripke model for this
situation:

M0 :

(w, e) : h

(u, e) : h

b, c

In this situation, Alice knows h, Bob and Carol do not, and everyone is aware
of each other’s knowledge. Suppose now that Alice tells Bob the result of the
coin flip. Carol is aware of the fact that Alice tells Bob the truth value of h, but
she does not get to know what that value is. The action model for this looks as
follows.

B : d : h e : ¬h
c
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There are two possible events: one where Alice tells Bob the coin lies heads
up, and one where she tells him it lies tails up. Carol is the only agent who does
not know which of the two events is happening, so she confuses the two worlds.
Actually, Alice tells Bob the result of the coin flip was heads. When I update the
Kripke model with this action model the result is as follows:

M0 ⊗ B :

(w, d) : h

(u, e) : h

c

Because h is true in w, this world matches with the event d. Because h is
false in u, u matches with e. Because there is no b-relation between d and e,
the b-relation between w and u is not preserved. This is exactly what is required
because now Bob knows the result of the coin flip, so he can distinguish the two
situations.



Chapter 3

Message Passing in Dynamic Epistemic
Logic

3.1 Introduction

In this chapter I show how one can model the dynamics of knowledge during
communication using epistemic logic. I will focus on a situation where a number
of agents communicate using messages from a finite set which is known by all
agents. This set is not fixed: during the message exchange, new messages may be
added to the set. Such a set up is relevant in numerous situations. For example,
one could think of computers communicating in accordance with a fixed protocol,
or people playing a game where they have to give certain signals every round. The
example of the two generals mentioned in the introduction could also be modeled
this way, where the possible messages are the possible days of attack. However,
in this chapter I will assume that the communication channel is reliable, so every
message that is sent is also received. This is clearly not the case for the generals.
I also assume that the communication is synchronous, so all the messages that
are sent are immediately received.

I will use Kripke models to model the state of knowledge at a particular
moment. Given some message that is sent and received, I use its structure to
generate the Kripke model that represents the new state of knowledge after re-
ception of the message. This way, sequences of Kripke models can be constructed
from sequences of messages. These sequences show how the knowledge of the
agents changes over time.

The system is designed for reasoning about sequences of messages that have
been sent and received, given some initial situation represented by a Kripke model.
The semantics is designed in a back-and-forth fashion: a Kripke model of the
current situation determines which communication steps are successful on that
model, and each communication step gives rise to an adaptation of the model
to a new Kripke model, which again determines which successive communication
steps are possible, etcetera.

17
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In this chapter I only consider truthful communication. This means that the
content of all the messages that are sent is true. Furthermore, a message can
only be sent if the sender of the message knows that its content is true. Also,
all messages are accepted as true, so if an agent receives a message she gains
knowledge of the contents.

The semantics presented here can be used to model reasoning about the way
the communication took place: agents remember which messages they sent or
received, but are uncertain about which other messages were sent. This engenders
uncertainties about what other agents know and about what messages they may
have exchanged. The construction given in this chapter models these uncertainties
in a very precise way.

The semantics allows for checking properties and effects of communication
sequences that took place in the past, and allows a limited amount of reasoning
about counterfactual situations, like “suppose instead of actual message m, an-
other message, m′ had been sent.” Also, it allows for reasoning about properties
and effects of new communication steps.

In the next section I start out with defining a logical language based on mes-
sages with a certain internal structure. In Section 3.3 I show how I use Kripke
models to interpret this language and I introduce the update that models the
communicative action of sending a message. In Section 3.4 I define a class of
Kripke models that are a realistic result of a sequence of messages. In Section 3.5
I axiomatize the language and the two new modalities I have introduced. Finally,
in Section 3.6 I discuss some related work and I conclude this chapter in Section
3.7.

3.2 The Language of Knowledge and Messages

In this section I will show how to incorporate messages in the epistemic language
introduced in Chapter 2. Including these messages in the language allows for
reasoning about how the knowledge of agents is affected by messages and the
knowledge of the agents about these messages.

I will first define a simple language LMPD
0 that does not contain any knowledge

modalities. I will use this language to represent the semantic content of the
messages. Later on, I will define a richer language that can be used to reason
about the messages and the knowledge of the agents.

Let P be a set of proposition letters. Let Ag be a finite set of agents.

3.2.1. Definition. Let LMPD
0 be the following language:

ψ ::= p | (a, ψ,G) | ¬ψ | (ψ ∨ ψ)
where p ∈ P, a ∈ G ⊆ Ag.
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This is propositional logic enriched with messages. A message is represented
by a tuple (a, ψ,G) where a ∈ Ag is the sender of the message, ψ ∈ LMPD

0 is the
contents of the message and G ⊆ Ag is the group of recipients of the message.
The formula (a, ψ,G) expresses that message (a, ψ,G) was sent at some moment
in the past.

I adopt the convention that a sender always receives a copy herself: any
message (a, ψ,G) has a ∈ G. I will abbreviate (a, ψ, {a, b}) (a message with a
single recipient, plus a copy to the sender) as (a, ψ, b).

I adopt the usual abbreviations: ψ1 ∧ ψ2 for ¬(¬ψ1 ∨ ¬ψ2) and ψ1 → ψ2 for
¬ψ1 ∨ ψ2.

The following is a first example of what these messages look like and how they
can mention previous messages.

3.2.2. Example. Reply on a message (a, p, b) with a quotation of the original
message and some new information q can be expressed as (b, q ∧ (a, p, b), a).
Forwarding of (a, p, b) by agent b to some other agent c can be expressed as
(b, (a, p, b), c).

This example already shows that notation can become a bit thick when nest-
ing messages. Therefore I will often shorten notation by naming the messages
m,m′,m1, etc. These names should be seen as pure abbreviations. If a message
(a, ψ,G) is abbreviated as m then I mean with sm = a the sender of the message,
cm = ψ the content of the message and rm = G the group of recipients of the
message. I also use these abbreviations in the content of other messages: for
example, (b,m, c) is an abbreviation for the message (b, (a, ψ,G), c).

3.2.3. Example. If m is a message, then the message (a,¬m, b) quotes message
m. The formula ¬m expresses that m was not sent. With the message (a,¬m, b),
agent a informs agent b that m was not sent. The formula ¬(a,¬m, b) expresses
that the message (a,¬m, b) was not sent.

Note that the definition of LMPD
0 contains mutual recursion: formulas may

contain messages which contain formulas. Due to this mutual recursion the lan-
guage LMPD

0 is already quite expressive. Even though the content of the messages
cannot contain epistemic operators, a considerable number of useful communica-
tive situations can be expressed.

3.2.4. Example. Send Communication step consisting of a single message m.

Acknowledgement Acknowledgement of the receipt of a message m can be
expressed as (b,m, sm) where b ∈ rm.

Reply Reply to sending of m with reply-contents ψ can be expressed as (b,m ∧
ψ, sm) where b ∈ rm.
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Forward Forwarding of m can be expressed as (b,m, c) where b ∈ rm and c /∈ rm.

Forward with annotation Forwarding of m with annotation ψ can be ex-
pressed as (b,m ∧ ψ, c) where b ∈ rm and c /∈ rm.

CC There is no distinction between addressee list and CC-list. The distinc-
tion between addressee and CC-recipient is in general a subtle matter of
etiquette: usually, an addressee is supposed to reply to a message while
someone on a CC-list incurs no such obligation. I think it is safe to ignore
the difference here.

BCC A message m with BCC recipients b1, . . . , bn can be treated as a sequence
of messages m, (sm,m, b1), . . . , (sm,m, bn). Each member on the bcc list of
m gets a separate message from the sender of m to the effect that message
m was sent. In Chapter 5 I will discuss a subtle difference between such a
“sequence of forwards” and the actual BCC feature. I will prove in Theorem
3.3.8 that the order in which the list (sm,m, b1), . . . , (sm,m, bn) is sent does
not matter.

I will set up the semantics in such a way that I can prove that any message
that is forwarded was already sent at some earlier stage, and an acknowledgement
never precedes a send. The fact that these properties follow from the epistemic
effects of message passing is a corroboration of the appropriateness of my set-up.

The truth value of an LMPD
0 formula depends not only on the truth value of

the propositions in P , but also on the truth value of the messages mentioned in
the formula. For messages, a positive truth value means that the message was
sent, and a negative truth value that it was not sent. In order to know which
messages should be considered I first assign a vocabulary to every formula. This
is the set of all propositions and messages that are relevant to the truth value of
the formula.

3.2.5. Definition. The vocabulary voc(ϕ) of a formula ϕ is defined as follows:

voc(p) := {p}
voc((a, ψ,G)) := {(a, ψ,G)} ∪ voc(ψ)

voc(¬ψ) := voc(ψ)

voc(ψ1 ∨ ψ2) := voc(ψ1) ∪ voc(ψ2)

The following example shows how this definition works out:

3.2.6. Example. If m = (a, p ∨ q, b) and m′ = (b,m, c), then

voc(m′) = {p, q,m,m′}.



3.2. The Language of Knowledge and Messages 21

There is an obvious partial order on the vocabulary of a formula. Note that
vocabulary elements are either proposition letters or messages. These can be
viewed as formulas, which have a vocabulary themselves. Letting x, y range over
vocabulary elements, I set x � y if x ∈ voc(y). I set x ≺ y if x � y and x 6= y.
This partially orders a vocabulary by ‘depth of embedding’. For example 3.2.6,
this gives p, q ≺ m ≺ m′.

This can be used to define vocabularies per se. A vocabulary is a set of mes-
sages and proposition letters that is closed under applications of voc. Intuitively,
what this means is that if a vocabulary contains m, then it also contains every
proposition or message that is mentioned in m.

It is easy to see from this definition that the vocabulary of a formula, and
hence also the vocabulary of a finite set of formulas, is always finite. Now I
can give a truth definition for formulas of LMPD

0 given some valuation of their
vocabulary:

3.2.7. Definition. Let Ψ be a set of LMPD
0 formulas. Let v be a subset of

voc(Ψ), representing the propositions that are true and the messages that are
sent. Call v a valuation for Ψ. Then truth at v is defined as follows for all
formulas in Ψ:

v |= > always
v |= p iff p ∈ v
v |= m iff m ∈ v
v |= ¬ψ iff v 6|= ψ
v |= ψ1 ∧ ψ2 iff v |= ψ1 and v |= ψ2

Truth of m at v expresses that according to v message m was sent (at some
time in the past).

As mentioned above, I will use a richer language with knowledge modalities
to reason about the knowledge of agents and how this is influenced by message
passing. I adapt the language from Chapter 2 to include messages, which leads
to the following definition of the language LMPD.

φ ::= ψ | ¬φ | φ ∨ φ | 〈α〉φ where ψ ∈ LMPD
0

α ::= a | ?φ | α;α | α ∪ α | α∗ where a ∈ Ag.

The semantics of this language interpreted on the world of a Kripke model is
as follows. For the base case φ = ψ ∈ LMPD

0 it is given by Definition 3.2.7, with
respect to the valuation of the world under consideration. For the other clauses
it is as in Chapter 2. Of course, this depends on a vocabulary of propositions
and messages. Therefore, I will introduce Kripke models with vocabularies in the
next section.
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3.3 Modeling Message Passing

I will use Kripke models to represent the knowledge of agents during a sequence
of message exchanges. Usual Kripke models only consider the agents’ knowledge
about basic propositions. Now I also want to consider their knowledge about
messages that may have been sent. In order to do this, I will explicitly add mes-
sages to the models. Because the size of the models usually increases drastically
with the number of messages in the model, I propose the following modeling pro-
cedure. Model the initial situation where no messages are sent with a model with
no messages. Then gradually add messages to the model as they are sent, and
update the models with information concerning who knows about the messages
and who does not. The following example illustrates the idea.

3.3.1. Example. Suppose the initial state is the modelM0 from Example 2.1.9
where Alice knows about h, while Bob and Carol do not. Let m be the message
(a, h, b) sent by Alice, informing Bob that h is the case. Let m′ be the message
(b,m, c) sent by Bob, informing Carol that m was sent. If the model M0 repre-
sents the initial situation, the messages can only be sent with m preceding m′,
for I assume that all messages are truthful, and the formula m is not true before
m is sent. This gives:

M0 M1 M2
m m′

What do the models look like? M0 is the Kripke model from Example 2.1.9.
Omitting the names of the world, it looks as follows:

M0 :

h

h

b, c

Sending message m will inform Bob about h, while Carol still considers it
possible that nothing has happened. I will not only model the knowledge that
Bob gains about h, but also the message itself and Bob’s knowledge of it.

M1 :

h,m h,m

h,m

b, c

c c
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This model has three worlds: one where h is true and the message m is sent,
one where h is true and the message m is not sent, and one where h is false and
m is not sent. Since I only consider truthful communication, it is not possible
that h is false and m is sent. Alice and Bob know that h is true and m is sent,
therefore they do not confuse the actual world with any other world. However,
Carol thinks it possible that m was not sent, and confuses the actual world with
the situation where both Bob and Carol are uncertain about the value of h.

Now Bob sends Carol the message m′, informing her that h is true. Alice does
not know that this message is sent. I model this as follows:

M2 :

h,m,m′ h,m,m′

h,m,m′

h,m,m′

b, c

c c

a

In the actual world, Alice, Bob and Carol all know that h is true. Bob
and Carol know that m′ was sent, but Alice does not know this. Therefore she
considers it possible that m′ was not sent, and that Carol does not know about
m and h. She confuses the actual world with the situation from model M1.

In order to vary the set of messages that are considered in each model, I
will use vocabulary-based Kripke models. These models were introduced in [van
Eijck et al., 2011]. Every vocabulary-based Kripke model has a finite vocabulary.
In my set-up these vocabularies consist of the propositions and messages that
are under consideration. They are the same vocabularies that I defined in the
previous section. The formal definition is as follows.

3.3.2. Definition. Let a set of agents Ag, a set of propositional atoms P and a
set of messages M be given. A vocabulary-based Kripke model for Ag, P , M
is a tuple M = (W,R,Val,Voc,W0) where W is a set of worlds, R is a function
that assigns to each a ∈ Ag an equivalence relation Ra on W , Voc ⊆ P ∪M is
a vocabulary of propositions and messages under consideration, Val is a function
that assigns to each world in W a subset of Voc (its valuation), and W0 ⊆ W is
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the set of actual worlds. I will sometimes use ∼a for Ra. Given a Kripke model
M, I will use WM, RM,ValM,VocM,WM

0 to denote its elements.

When a message is sent, this should be modeled by a vocabulary extension
combined with a knowledge update. First I will add the new message to the
vocabulary of the Kripke model. It is not yet in the valuation of any world, so it
is false in all worlds. Then I will use an action model to both set the truth value
of the new message in the different worlds and immediately model its epistemic
effects. In order to set the truth value of the new message, I need an action
model that can actually change the valuation of the worlds, instead of just the
relations between them. Such models are defined in [van Benthem et al., 2006].
The following definition follows the same lines.

First of all, I define a substitution that can be used to change the valuation
of a world.

3.3.3. Definition. Let a set of agents Ag and a set of propositional atoms P
and a set of messages M be given. A substitution over P , M is a partial
function σ : (P ∪M) 7→ {>,⊥} that assigns a new truth value to a subset of all
propositions and messages. Given a valuation Val ⊆ P ∪M , the result of applying
σ to Val is given by

Val · σ := Val \ dom(σ) ∪ {x ∈ dom(σ) | σ(x) = >}.

Let subP,M be the set of all substitutions over P , M .

A substitution changes the truth value of a number of elements of a vocabulary.
It leaves the truth value of the elements that are not in its domain unchanged. I
will add a substitution to every event of the action model.

3.3.4. Definition. An action model with substitution for Ag, P ∪ M is
a tuple A = (E,R,Pre, Sub, E0) where E,R,Pre, E0 are defined like the corre-
sponding elements of an action model and Sub : E 7→ subP,M is a function that
assigns to each event a substitution over P,M .

The purpose of these action models with substitution is that the substitution
of an event is applied to the valuation of all worlds matched to the event. This
is reflected in the new definition of the product update:

3.3.5. Definition. Given a Kripke modelM and an action model with substi-
tution A over VocM, the result of updating M with A is the model M⊗A =
(W ′, R′,Val′,Voc′,W ′

0) given by

W ′ := {(w, e) | w ∈ WM, e ∈ EA,M |=w Pre(e)},
(w, d)R′a(v, e) iff wRMa v and dRAa e,

Val′((w, e)) := (ValM · SubA(e))(w),
Voc′ := VocM,
W ′

0 := {(w, e) ∈ W ′ | w ∈ WM
0 and e ∈ EA0 }
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Now I am ready to define the action model that represents the act of sending
a message. It should reflect a number of properties of messages. First of all, I
assume that all communication is truthful. Therefore the message may only be
sent if the sender knows its contents to be true. Furthermore, all recipients of the
message should get to know that the message was sent, and outsiders should not
get to know this. The following action model ensures these properties.

Am : em : [sm]cm,m := > em : m := ⊥
Ag \G

Here G = sm ∪ rm is the set of senders and recipients of the message. The
action model has two possible events. In the first one, m is set to true so the
message is sent. It has precondition [sm]cm, so the message can only be sent
if the sender knows its contentss. In the second one m is set to false, so the
message is not sent. he only agents who confuse the two worlds (and thus do not
know whether the message is sent) are those agents that are not involved in the
message.

Note that both events of the action model are in the set of actual events. This
means that this action model does not determine whether the message was sent
or not. It only extends the model with the possibility of sending the message,
taking its content and epistemic consequences into account.

An event in an action model will only be matched with a world in a Kripke
model if this world satisfies the precondition of the event. Therefore one could
wonder whether the events in Am will match the worlds in some Kripke model it
is applied to.

Because the event em has no precondition, for every world w from the original
modelM there will be a world (w,m) in the modelM⊗Am. For the other event
em, things are not so easy. If a world w ∈ WM does not satisfy [sm]cm then it
will not match the event em and there will be no world (w, em) in the final model
M⊗Am. This matches the intuition of the models: it is always possible not to
send a message m but if the sender of m does not know its contents, then it is
not possible to send it so the event representing the situation where the message
is sent does not match any worlds in the Kripke model.

For the sake of brevity, I will define the result of adding a message m to a
model M as

M•m := (WM, RM,ValM,VocM ∪ {m},WM
0 )⊗Am.

I will also abbreviate (w, em) with (w,m) and (w, em) with (w,m).

The following lemma shows that this operation does not change any basic
facts about the world:
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3.3.6. Lemma. For any model M, message m 6∈ VocM and formula ψ ∈ LMPD
0

such that voc(ψ) ⊆ VocM,

M |=w ψ iff M•m |=(w,m) ψ.

Furthermore, if (w,m) ∈ WM•m then

M |=w ψ iff M•m |=(w,m) ψ.

Proof. A simple induction on ψ. �

The following theorem shows that in the case that m was not sent, the knowl-
edge of the agents about basic facts does not change. Furthermore, even if m
was sent the knowledge of the agents who did not receive the message does not
change.

3.3.7. Theorem. For any model M, message m 6∈ VocM and formula ψ ∈
LMPD

0 such that voc(ψ) ⊆ VocM,

M |=w [a]ψ iff M•m |=(w,m) [a]ψ.

Furthermore, if a 6∈ rm then

M |=w [a]ψ iff M•m |=(w,m) [a]ψ.

Proof. Suppose M |=w [a]ψ. Suppose (w,m) ∼a (w′, x). Then w ∼a w′ so
M |=w′ ψ and by Lemma 3.3.6, M•m |=(w′,x) ψ. So M•m |=(w,m) [a]ψ.
Suppose M • m |=(w,m) [a]ψ. Suppose w ∼a w′. As noted above, certainly
(w′,m) ∈ WM•m. Then because w ∼a w′, it also holds that (w,m) ∼a (w′,m) so
M•m |=(w′,m) ψ. Then by Lemma 3.3.6,M |=w′ ψ. So M |=w [a]ψ.

Let a 6∈ rm. Suppose M•m |=(w,m) [a]ψ. Let w ∼a w′. Then since i 6∈ rm,
(w,m) ∼a (w′,m) so M • m |=(w′,m) ψ. Then by Lemma 3.3.6, M |=w′ ψ. So
M |=w [a]ψ.
Suppose M |=w [a]ψ. Let (w,m) ∼a (w′, x). Then w ∼a w′ so M |=w′ ψ. Then
by Lemma 3.3.6, M•m |=(w′,x) ψ. So M•m |=(w,m) [a]ψ. �

Using this framework, I can now show formally that BCCs are unordered.

3.3.8. Theorem. Let M, w be such that M |=w m. Let m′ = (sm,m, a) and
m′′ = (sm,m, b). Then

M•m′ •m′′, ((w,m′),m′′) ↔− M•m′′ •m′, ((w,m′′),m′).
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Proof. Check that

{(((w, x), y), ((w, y), x)) | w ∈ WM, x ∈ {m′,m′}, y ∈ {m′′,m′′}}

is a bisimulation. �

Theorem 3.3.8 and its (easy) proof illustrate how this framework can be used
to formalize and prove subtle properties of message passing.

There is one other problem I have to tackle. Suppose a message is sent that
mentions some other message which is not in the vocabulary of the model. Then
both messages have to be added to the vocabulary: not only the message that is
sent at that moment, but also the message that is mentioned in the first message.
Therefore, I propose the following modeling procedure. When a message m is
considered that mentions some messages of which m1 � ... � mn are the ones
that are not in the vocabulary of the Kripke model M, I define the result of the
update of M with m as

M�m :=M•m1 •m2 • ... •mn •m.

The next example shows how this framework can be used to model the es-
tablishment of ‘common knowledge of learning’. Agent b learns whether p is true
from agent a, and this fact becomes common knowledge, but outsiders do not
learn whether p is true from the interaction.

3.3.9. Example. Consider a situation where agent a knows whether p, while
agent b and c do not (and this is common knowledge). Actually, p is true. This
can be represented with the following model:

p p
b, c

Let m1 be the message (a, p, b) and let m2 be the message (a,¬p, b). The
result M�m1 of updating with m1:

p,m1

p,m1 p,m1
b, c

cc

The result M�m1 �m2 of consecutively updating with m2:
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p,m1,m2

p,m1,m2 p,m1,m2

p,m1,m2

b, c

cc

c

c

Notice that agent c confuses all worlds, since she would not receive either
message m1 or message m2 if they were sent. On the other hand, in the worlds
where m1 or m2 was sent, agent a and b have common knowledge of the truth
value of p. Now suppose that agent a wants to create common knowledge among
the three agents that a and b know the truth value of p, without revealing that
truth value to agent c. Then he could send a third message m3 of the form
(a,m1 ∨ m2, {a, b, c}) that informs the three of them that either m1 or m2 was
sent without revealing which of the two was actually sent. When the model was
updated with this third message, the resulting model would show that in those
worlds where m3 was sent, it holds that [c]([b]p ∨ [b]¬p), so agent c knows that
agent b knows whether p, but neither [c]p nor [c]¬p hold, so agent c does not
know the value of p herself.

It can be very interesting to reason about messages in a hypothetical way.
For example, one could wonder whether the agents know what the epistemic
consequences of sending a certain message would be. In order to express these
questions I add two new constructs to the language LMPD. The formula [[m]]ϕ
stands for “if message m is sent, ϕ holds”. The formula [[m]]ϕ stands for “if the
model is extended with the possibility of sending m but it is not sent, ϕ holds”.
The semantics of these constructs is defined as follows:

M |=w [[m]]ϕ iff M�m |=(w,m) ϕ,
M |=w [[m]]ϕ iff M�m |=(w,m) ϕ.

Note that I use double brackets for modalities that express something about a
different model, for example a model obtained by updating the current model with
an action model, while I use single brackets for modalities that express something
about different worlds in the current model, for example worlds related by an
agent’s relation.

As mentioned before, in the update with Am I do not assume the message is
actually sent. Both the world where m is sent and the world where m is not sent
are actual worlds. In some situations, it is useful to denote in the model that
actually the message was sent. For this purpose I use another action model.
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A+
m : em : m em : ¬mAg

This action model divides the worlds of any Kripke model updated with it
into those that satisfy m and those that do not. The worlds that satisfy m and
that are actual worlds remain actual, while those that do not satisfy m become
non-actual worlds. Because there are relations between em and em for all agents,
all relations that are present in the original model are preserved. So the only thing
this model does is that it makes actual worlds that do not satisfy m non-actual.

The corresponding update is defined as follows. Suppose a message m is actu-
ally sent and it mentions messages m1 � ... � mn that are not in the vocabulary
of M. The result of the positive update of M with m is defined as follows:

M⊕m :=M•m1 • ... •mn •m⊗A+
m.

In situations where m was actually not sent, this can also be denoted in the
model. For this purpose I define yet another action model:

A−m : em : m em : ¬mAg

This model is very similar to A+
m, only now the worlds that do not satisfy m

remain actual. Again, there is also a corresponding update. The result of the
negative update of M with m is defined as follows:

M	m :=M•m1 • ... •mn •m⊗A−m.

With these three action models, I have set up a framework that can be used
to model a large variety of message passing situations and the agents’ knowledge
in them. I imagine a typical modeling task as a situation where messages may
be sent in a sequence of rounds. This may be the case when, for example, two
agents communicate according to a set protocol. Another example is a game of
poker where every player has the possibility to call, raise or fold in every round.
The modeling procedure I propose is to start out with an initial model that has
no messages in the vocabulary, and then gradually update the model whenever a
message is sent (using ⊕) or could have been sent but was not (using 	).

In the next section I will show that not all possible Kripke models represent
a realistic situation and I will define a class of models that do.

3.4 Models with Realistic Properties

In this section I will take a closer look at the axiomatic properties of the models
I introduced. As mentioned above, I assume that all communication is truthful
and reliable. This is also reflected in the update mechanism I proposed, as is
shown by the following theorem.
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3.4.1. Theorem. For any model M and any sequence of messages m1, ...,mn 6∈
VocM such that m1 � ... � mn, the following formulas are valid inM•m1•...•mn

for any mi:
mi → cmi

,
mi → [a]mi for all a ∈ rmi

Proof. I claim that for any 1 ≤ i ≤ n, the above formulas hold inM•m1•...•mi

for all mj with 1 ≤ j ≤ i. I will prove this by induction on i. Suppose i = 1.
I consider M • m1. Every world in M • m1 must be the result of matching a
world fromM with an event from Am1 . Because em1 sets the truth value of m1 to
⊥, the worlds matched with that event will not satisfy m1 so they will certainly
satisfy m1 → cm1 and m1 → [rm1 ]m1. Now consider the other event em1 . It has
precondition [sm1 ]cm1 so it satisfies cm1 and thereby m1 → cm1 . For the second
formula I have to check that the worlds matched with em1 satisfy [a]m1 for any
a ∈ rm. Take such a. Because there is no relation from em1 to em1 for agents
in rm1 , the only worlds that are a-related to worlds matched with em1 are other
worlds matched with em1 . Because em1 sets the truth value of m1 to >, these
worlds satisfy m1. So all worlds matched with em1 satisfy [a]m1 for all a ∈ rm.

For the induction step, suppose M•m1 • ... •mi satisfies both formulas for
all mj with 1 ≤ j ≤ i. ConsiderM•m1 • ... •mi+1. With a reasoning analogous
to that for the previous case I can show that the formulas hold for mi+1. All that
is left is to show that the formulas for m1, ...,mi are preserved in the transition
fromM•m1 • ...•mi toM•m1 • ...•mi+1. For the first formula this follows from
Lemma 3.3.6: note that mj → cm is a formula from LMPD

0 that does not contain
mi+1, for j ≤ i. For the second formula, note that by Lemma 3.3.6 the truth value
of mj is preserved in the update. Also, the update does not add any relations
between worlds, it only possibly removes some relations. So if all a-related worlds
satisfy mj inM•m1 • ... •mi, this will also hold inM•m1 • ... •mi+1. Therefore
both formulas are preserved for all mj with 1 ≤ j ≤ i. �

But these properties are not enough to ensure that the Kripke models are real-
istic. There are more subtle requirements for reasonable models, as the following
example shows.

3.4.2. Example. Consider the following model with three agents a, b and c and
a message m = (b, p, c):

p,m p,m

There are two possible situations, one where m was sent and one where it was
not sent, and none of the agents confuse the two situations. All communication
in this model is truthful and reliable but still there is something strange about
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the model: agent a knows whether the message from b to c was sent, even though
she should not have received it.

It is hard to express the above property in the language LMPD: it will not
do to simply state that agents that are not recipients should not know about a
message, for they may have received a forward of this message and in that case
they should know about it. Problems like the one in the above model would not
occur if one started out with a model without messages in the vocabulary and
then sequentially added new messages. Therefore, the class of models I would
like to consider is the class of properly generated models:

3.4.3. Definition. A modelM is properly generated iff there is some model
M0 and a list of messages m1, ...,mn such that there are no messages in the
vocabulary of M0 and

M ↔− M0 •m1 • ... •mn.

So a model is properly generated if it can be built from a model containing
no messages (I call such a model an initial model) by adding messages. These
are the models I consider realistic. Therefore, I want to find a procedure to check
whether a Kripke model is properly generated. The rest of this section will be
devoted to this task.

Consider a modelM that is updated with a message m. As mentioned in the
previous section, for every world w ∈ WM there will be a world (w,m) ∈ WM•m.
The only difference between w and (w,m) is that the message m is added to the
vocabulary. The relations between ¬m worlds in M • m are the same as the
relations between the worlds inM. The only difference is in the relations to and
between m worlds. Therefore, if one cuts off all worlds that satisfy m and only
considers the ¬m worlds, this gives the original model again. This can be done
with the following action model:

Am− : e : m

I will show how this works out with the following example.

3.4.4. Example. Consider the model from Example 3.3.9 again.

p p
b, c

Updating with m = (a, p, b) gives the following result:
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p,m

p,m p,m
b, c

cc

Now when I update with the action model Am− I get a model which is very
much like the original, but with m in the vocabulary:

p,m p,m
b, c

Apart from the addition of m, the third model is identical to the first one.

The following theorem shows that updating with Am− really gives the original
model from before the update with m, if one does not consider the fact that m
is now in the vocabulary.

3.4.5. Theorem. For any model M such that m 6∈ V ocM, M ↔−\{m}M•m ⊗
Am−.

Proof. Let w ∈ WM. Then (w,m) ∈ WM•m and possibly (w,m) ∈ WM•m.
But since (w,m) satisfies m if it exists, (w,m) 6∈ WM•m⊗Am− . I define the relation
Z between WM and WM•m⊗Am− as follows.

For any w ∈ WM, wZ(w,m).

Clearly, Z is a bisimulation if one does not consider m soM ↔−\{m}M•m⊗Am− .
�

With this action model, I can check whether a model is the result of an update
with the message m by first “undoing” the update by updating with Am− and
then “redoing” it by updating with m. If the result is bisimilar to the original
model then I know that it is the result of the message update. I will extend this
to sequences of messages. In order to do this I first need the following lemma.

3.4.6. Lemma. For any sequence of messages m1, ...,mn such that m1 � ... � mn

and for any two models M,N such that M ↔−\{m1,...,mn} N ,

M•m1 • ... •mn
↔− N •m1 • ... •mn
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Proof. Let Z be a bisimulation between M and N . I define a relation X
between M•m1 • ... •mn and N •m1 • ... •mn as follows. For any two worlds
w ∈ WM and v ∈ WN and any sequence x = x1, ..., xn where xi = mi or xi = mi,

(...(w, x1), x2), ..., xn)X(...(v, x1), x2), ..., xn) iff wZv

Note that the question of whether (w, x) exists depends on whether M |=w

[sm1 ]cm1 if x1 = m1, and whether M |=(w,x1) [sm2 ]cm2 if x2 = m2, etcetera.
Similarly for (v, x) and N . But because m1 � ... � mn, these things only depend
on the propositions and messages that are true in w and in v (which are the same
because wZv) and the earlier messages. So (w, x) exists iff (v, x) exists. So X is
total. It is clear from the definition of message update that X is a bisimulation.
�

Now I can characterize the class of properly generated models using the action
model Am− and the message update:

3.4.7. Theorem. A modelM is properly generated iff there is an order m1, ...,mn

listing all messages in the vocabulary of M such that m1 � ... � mn and

M ↔− M⊗Am−n ⊗ ...⊗Am−1 •m1 • ... •mn.

Proof. ⇒: SupposeM is properly generated. Then there is some initial model
M0 and a list of messages m1, ...,mn such that M ↔− M0 •m1 • ... •mn.
By repeated use of Theorem 3.4.5, I have

M0
↔−\{mn,...,m1}M⊗Am−n ⊗ ...⊗Am−1 .

Then by Lemma 3.4.6,

M ↔− M⊗Am−n ⊗ ...⊗Am−1 •m1 • ... •mn.

⇐: Suppose there is such an order m1, ...,mn. Let N be the model like
M⊗Am−n ⊗ ...⊗Am−1 , but with m1, ...,mn not in the vocabulary. Clearly,

M⊗Am−n ⊗ ...⊗Am−1
↔−\{m1,...,mn} N

so by Lemma 3.4.6,

M⊗Am−n ⊗ ...⊗Am−1 •m1 • ... •mn
↔− N •m1 • ... •mn.

But because m1, ...,mn are all the messages in the vocabulary of M, I conclude
that N is an initial model. This implies thatM⊗Am−n ⊗ ...⊗Am−1 •m1 • ... •mn

is properly generated, and then so is M. �
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3.5 Axiomatization

I have added two modalities [[m]] and [[m]] to the language LMPD. In [van Ben-
them et al., 2006] a technique is developed for translating a language with action
modalities to epistemic PDL. I will use the same technique to show that these
three modalities do not increase the expressive power of LMPD. For each formula
containing a modality I will give a reduction axiom that shows that the formula
with the modality is equivalent to a formula without it. For the Boolean cases,
these reduction axioms look as follows:

[[m]]p ↔ [sm]cm → p
[[m]]m′ ↔ [sm]cm → m′ m′ 6= m
[[m]]m ↔ >
[[m]]¬φ ↔ ¬[[m]]φ
[[m]](φ1 ∨ φ2) ↔ [[m]]φ1 ∨ [[m]]φ2

[[m]]p ↔ p
[[m]]m′ ↔ m′ m′ 6= m
[[m]]m ↔ ⊥
[[m]]¬φ ↔ ¬[[m]]φ
[[m]](φ1 ∨ φ2) ↔ [[m]]φ1 ∨ [[m]]φ2

The reduction axioms for formulas containing epistemic programs (the PDL
modalities α, corresponding to relations in the model) are more complicated.
This is because when a relation is followed in the Kripke model with an epistemic
program, the same relation can only be followed in the model which is the result
of the message update if this relation is not removed by the update.

Recall that the message updates correspond to an update with the following
action model:

Am : em : [sm]cm,m := > em : m := ⊥
Ag \G

A relation will be present in the result of the update if it is both in the original
model and in the action model. So I have to check whether the epistemic program
can be executed in the updated model by checking whether it can be executed
both in the original model and in the action model “concurrently”.

For all epistemic programs, I will compute an epistemic program that is the
equivalent of the original program together with a concurrent step in the action
model Am. With Txy(α) I mean the program that is the equivalent of doing α
in the original model and concurrently moving from state ex to state ey in the
action model. I define it inductively as follows:
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Tmm(a) := ?[sm]cm; a; ?[sm]cm

Tmm(a) :=

{
?⊥ if a ∈ rm

?[sm]cm; a otherwise

Tmm(a) :=

{
?⊥ if a ∈ rm

a; ?[sm]cm otherwise

Tmm(a) := a

Tmm(?ψ) := ?([sm]cm ∧ ψ)

Tmm(?ψ) := ?⊥
Tmm(?ψ) := ?⊥
Tmm(?ψ) := ?ψ

Tmm(α1;α2) := (Tmm(α1);Tmm(α2)) ∪ (Tmm(α1);Tmm(α2))

Tmm(α1;α2) := (Tmm(α1);Tmm(α2)) ∪ (Tmm(α1);Tmm(α2))

Tmm(α1;α2) := (Tmm(α1);Tmm(α2)) ∪ (Tmm(α1);Tmm(α2))

Tmm(α1;α2) := (Tmm(α1);Tmm(α2)) ∪ (Tmm(α1);Tmm(α2))

Tmm(α1 ∪ α2) := Tmm(α1) ∪ Tmm(α2)

Tmm(α1 ∪ α2) := Tmm(α1) ∪ Tmm(α2)

Tmm(α1 ∪ α2) := Tmm(α1) ∪ Tmm(α2)

Tmm(α1 ∪ α2) := Tmm(α1) ∪ Tmm(α2)

The final case is the reduction for α∗. Note that the action model can be seen
as the following automaton:

Tmm

Tmm

Tmm

Tmm

Then the epistemic program giving all finite paths through the action model
starting in em and ending in em is:

Tmm
∗(TmmTmm

∗TmmTmm
∗)∗.
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Similarly, if I take em as start state and em as final state, I get:

Tmm
∗TmmTmm

∗(TmmTmm
∗TmmTmm

∗)∗.

For em as start and as stop state:

Tmm
∗(TmmTmm

∗TmmTmm
∗)∗.

And finally, if I take em as start state and em as stop state:

Tmm
∗TmmTmm

∗(TmmTmm
∗TmmTmm

∗)∗.

All in all I get the following recipe for transforming an epistemic expression
of the form α∗:

Tmm(α∗) := (Tmm(α))∗; (Tmm(α); (Tmm(α))∗;Tmm(α); (Tmm(α))∗)∗,
Tmm(α∗) := (Tmm(α))∗;Tmm(α); (Tmm(α))∗; (Tmm(α); (Tmm(α))∗;

Tmm(α); (Tmm(α))∗)∗,
Tmm(α∗) := (Tmm(α))∗; (Tmm(α); (Tmm(α))∗;Tmm(α); (Tmmα))∗)∗,
Tmm(α∗) := (Tmm(α))∗;Tmm(α); (Tmm(α))∗; (Tmm(α); (Tmm(α))∗;

Tmm(α); (Tmm(α))∗)∗

Now I can give the reduction axioms for the case of epistemic programs:

[[m]][α]φ ↔ [Tmm(α)][[m]]φ ∧ [Tmm(α)][[m]]φ

[[m]][α]φ ↔ [Tmm(α)][[m]]φ ∧ [Tmm(α)][[m]]φ

This gives:

3.5.1. Theorem. The language LMPD and the language LMPD with message
modalities added have the same expressive power.

Proof sketch. Take any formula ϕ from LMPD with message modalities. Any
message modality in ϕ can be replaced with an equivalent subformula that con-
tains no message modalities. The correct equivalent subformulas are prescribed
by the reduction axioms given above. This way, I can find for any formula that
contains message modalities an equivalent formula that does not contain them.
Therefore, the message modalities do not add expressive power to LMPD. �
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3.6 Related Work

The work presented in this chapter was inspired by the wish to incorporate explicit
messages in Dynamic Epistemic Logic (DEL). I will clarify what the added value
of my approach is compared to the usual DEL as in [Baltag and Moss, 2004, van
Benthem et al., 2006, van Ditmarsch et al., 2006]. In the usual DEL, there is
no mention of any messages and the only atoms in the models are propositions.
The models can be updated with so-called action models, of which my message
update is a special case. In my approach I have tailored an action model for a
specific kind of group messages with a sender and a set of recipients. This is very
useful in modeling since it is no longer up to the user of the framework to come up
with the right action model: this is automatically “generated” when defining the
message. This way, I make a step towards formalizing the modeling procedure
which makes it easier and less error-prone.

I have combined DEL with the vocabulary expansion proposed in [van Eijck
et al., 2011] and used this to introduce messages explicitly in the models. This
has the great advantage that it is possible to model agents who reason about
messages that have been sent and even messages about other messages. This
allows for constructions like forward, acknowledgement, BCC recipients etcetera.

In my approach every model has a vocabulary of propositions and messages
that the agents are aware of. The vocabulary of a Kripke model can be viewed as
a global awareness function, indicating the set of propositions and messages that
the agents are aware of across the model. A more extended study of awareness
in a similar setting can be found in [Fagin and Halpern, 1988, van Ditmarsch
and French, 2011]. There, a more subtle notion of awareness is presented, where
different agents may be aware of different vocabularies in different worlds.

My work can be compared to interpreted systems as presented in e.g. [Fagin
et al., 1995]. There, the focus is on a global state that is constructed by combining
local states of the agents. In this set up, two global states are related for an agent
if the corresponding local states of that agent are equivalent. In my approach,
there is no clear distinction between one agent’s and another agent’s information.
One possible such distinction would be to say that an agent’s local state is her
“inbox” of messages she sent or received up to that moment. Then one would
somehow also have to incorporate the messages forwarded to the agent.

The idea of time is clearly incorporated in interpreted systems. In my frame-
work this is less explicit: I can show how the model evolves over time by doing
a sequence of message updates, but once these updates have been done the only
information that is preserved in the model is whether the message has been sent
at some point in time, not when it was sent exactly or an ordering between them.
Of course there is the vocabulary embedding relation ≺, but this only partially
orders the messages. This has the advantage of keeping the model simple, and in
a lot of applications the exact ordering between messages is not so relevant.
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3.7 Conclusion

I have shown how epistemic models can be used to represent the influence of
message passing on the knowledge of agents. The models presented in this chapter
directly show the agent’s knowledge using relations between possible worlds. The
models are finite and I have given an axiomatization. A nice property of this
approach is that the models can be generated automatically given a sequence of
messages that have been sent.

This system has the curious property that agents are affected by an update
with messages that are not addressed to them: they consider the fact that such a
message was sent possible. The history-based system of Parikh and Ramanujam
has the same property, as does the process of updating with S5 action models for
group announcements (see, e.g., [Baltag and Moss, 2004]).

In some situations this property is perfectly realistic, for example in a game
where in every new round the agents know which new messages may be sent.
However, when modeling everyday communication it is less realistic: when two
people are communicating and a third person does not know what they are com-
municating about the third person usually thinks any message is possible, and
does not have a specific possible message in mind.

One possible solution that comes to mind is to give every agent a personal
set of messages she is aware of. However, this does not solve the problem. For
consider an agent a that does not know whether p is the case, and suppose a
message m is sent to some other agent b, informing her that p is the case. Then,
even if a is not aware of m, something changes in the model that a can notice:
after m was sent a must hold it for possible that the other agent b has learnt
something about p.

Look at this informally. How can an agent i ever know for sure that another
agent j does not know whether p? Suppose initially [i](¬[j]p ∧ ¬[j]¬p). Suppose
i holds it for possible that some other agent k knows whether p. In other words,
〈i〉([k]p ∨ [k]¬p) holds. How can this situation persist? How can i be sure that k
does not send a secret message (k, p, j) or (k,¬p, j)?

One possible solution would be to always start from initial models where
[i](¬[j]p∧¬[j]¬p) does not hold, for any i, j, p. However, this has the disadvantage
of blowing up the size of the initial models. In Chapters 5 and 6 I will present
two different approaches that immediately take all possible messages into account,
instead of using a limited vocabulary of messages. This is more realistic in some
situations, but it will become clear that this comes with a price in the form of
infinitely large models. Especially in game-theoretic situations where there is a
limited number of messages or signals that can be sent in each round, or when
the agents are following some known protocol consisting of a limited number of
possible messages, the approach given in this chapter is a lot more appropriate
and efficient.



Chapter 4

Logic of Information Flow on
Communication Channels

4.1 Introduction

In this chapter, I present a framework for modeling communication and knowledge
that is very general and can be adapted to the natural needs of various situations.
The approaches presented in Chapters 3, 5 and 6 are tailored towards specific
situations. This is very convenient when modeling exactly such a situation, but if
those approaches are not applicable then the approach presented in this chapter
will be fit for modeling almost any other situation involving communication and
knowledge. Furthermore, in this chapter I also give an explicit treatment of
protocols which broadens the perspective to include a great number of issues that
come up in practice.

As a running example, consider the following situation. The 1999 ‘National
Science Quiz’ of The Netherlands Organisation for Scientific Research (NWO) 1

had the following question:

Six friends each have one piece of gossip. They start making phone
calls. In every call they exchange all pieces of gossip that they know at
that point. How many calls at least are needed to ensure that everyone
knows all six pieces of gossip?

To reason about the information flow in such a scenario, I want to take into
account the following issues: the messages that the agents possess (e.g. secrets),
the knowledge of the agents, the dynamics of the system in terms of informa-
tion passing (e.g. telephone calls), the underlying communication channels (e.g.
the network of landlines) and the protocol the agents follow (e.g. a method to
exchange all pieces of gossip). I will combine all these different aspects in an

1For a list of references about the problem, cf. [Hurkens, 2000].
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approach that is a new combination of Dynamic Epistemic Logic (DEL) and
Interpreted Systems (IS).

Interpreted Systems, introduced by [Parikh and Ramanujam, 1985] and [Fagin
et al., 1995] independently, are mathematical structures that combine history-
based temporal components of a system with epistemic ones (defined in terms of
local states of the agents). This framework is convenient when modeling knowl-
edge development based on the given temporal development of a system. In IS,
the epistemic structure of a system is generated from the temporal structure in a
uniform way. However, the generation of temporal structures is not specified in
the framework.

A different perspective on the dynamics of multi-agent systems is provided by
DEL [Gerbrandy and Groeneveld, 1997, Baltag and Moss, 2004]. The main focus
of DEL is not on the temporal structure of the system but on the epistemic impact
of events as the agents perceive them. The development of a system through time
is essentially generated by executing action models as discussed in Chapter 3 and
7. The epistemic relations in the initial static model and in the action models
are not generated uniformly as in IS. Instead, they are designed by hand. How
to obtain a reasonable initial model that fits the scenario to be modeled is not
always clear. For real life applications it can be hard to find the correct initial
model. Finding the correct action models that correspond to epistemic events
can be even harder, as is observed in [Dechesne and Wang, 2007].

Much has been said about the comparison of the two frameworks, based on
the observation that certain temporal developments of the system in IS can be
generated by sequences of DEL updates on static models (see, e.g., [van Ben-
them et al., 2009a, Hoshi and Yap, 2009, Hoshi, 2009]). In this chapter, I will
demonstrate further benefits of combining the two approaches by presenting a
framework where epistemic relations are generated by matching local states and
a history of observations as in IS, while keeping the flexibility of explicit actions
as in DEL approaches.

The puzzle of the telephone calls was briefly discussed in [van Ditmarsch,
2000, Ch. 6.6] within the original DEL framework. Van Benthem [van Benthem,
2002] raised the research question whether the communication network can be
made explicit in DEL. An early proposal to fill in this line of research can be
found in [Roelofsen, 2005]. Communication channels in an IS framework made
their appearance in [Parikh and Ramanujam, 2003]. In [Pacuit and Parikh, 2007,
Apt et al., 2009] the information passing on so-called communication graphs or
interaction structures is adressed, where messages are modeled as either atomic
propositions or Boolean combinations of atomic propositions. In [Wang et al.,
2009] a PDL-style DEL language is developed that allows explicit specification of
protocols.

This chapter is organized as follows. I introduce the logic LAg,N
ι in Section 4.2.

Section 4.3 relates the logic to the standard DEL and IS approaches. Section 4.4
introduces a modeling method and illustrates this method by a study of variations
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on the puzzle that was mentioned above. The final section concludes and lists
future work.

4.2 An Adaptable Logic for Communication,

Knowledge and Protocols

In this section I will present a flexible logic that can be adapted to the situation
at hand. I will first give the language with its intuitive meaning. Then I will
define the states on which this language is to be interpreted, together with its
formal semantics.

4.2.1 Language

Let Ag be a finite set of agents, N a finite set of atomic notes and Act a finite set
of basic actions. Later on, I will give each action an internal structure that defines
its meaning, but for now the actions may be considered to be atomic objects.

I define net to be a hypergraph of agents in Ag, representing the communi-
cation network. It is a set of subsets of Ag, just like in the approach presented
in [Apt et al., 2009]. Each subset represents a possible set of recipients of a
single message. For example, if net = {{a, b}, {a, b, c}} then the communication
network allows for private communication between agent a and b and for group
communication between agents a, b and c. This rules out private communication
between b and c or a and c.

The set PAg,M,Act of basic propositions is defined as

p := hasan | com(G) | past(ᾱ) | future(ᾱ),

where a ∈ Ag, n ∈ N , G ⊆ Ag and ᾱ = α1; ...;αn with α1, ..., αn ∈ Act.
The intended meaning of these propositions is as follows. The proposition

hasan means that agent a possesses note n. This is a piece of information that
he may send to other agents. The proposition com(G) means that G is a com-
munication channel, so a group message to the group G is in accordance with
the communication network. The proposition past(ᾱ) means that the sequence
of actions that happened most recently is ᾱ. Finally, the proposition future(ᾱ)
means that the sequence of actions ᾱ could be executed now, in accordance with
the current protocol.

Using these propositons, I define the formulas of LAg,N
ι as follows:

ϕ ::= > | p | ¬ϕ | ϕ1 ∧ ϕ2 | 〈π〉φ | CGϕ,
π ::= α | ε | δ | π1; π2 | π1 ∪ π2 | π∗,

where p ∈ PAg,M,Act, G ⊆ Ag, α ∈ Act and ε, δ are constants for the empty
sequence and deadlock, respectively. I define Π as the set of all possible protocols
π.
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The intended meaning of the formulas is as follows. The meaning of > and
the constructs ¬ and ∧ is as usual. CGφ expresses “the agents in group G have
common knowledge of φ”. A difference between this language and the one pre-
sented in Chapter 3 is that now, 〈π〉φ expresses “the protocol π can be executed,
and at least one execution of π yields a state where ϕ holds”. So instead of
expressing that ϕ holds in a world considered possible by an agent, this formula
now expresses that ϕ holds in a state that is a possible result of the protocol π.
The protocol π is built from actions as the relations in Chapter 3 are built from
the agent’s epistemic relations.

As mentioned above, I will give each action an internal structure . This
internal structure is given for each α ∈ Act as a tuple of the following form:

ι(α) := 〈G, φ,N1, ...N|Ag|, ρ〉

HereG ⊆ Ag is the group of agents that can observe α. φ is a formula of LAg,N
ι that

does not contain any modalities of the form 〈π〉. Moreover, it is the precondition
that should hold in order for α to be executable. I define Obs(ι(α)) = G and
Pre(ι(α)) = φ. Additionally, Pos(ι(α)) = 〈N1, ...N|Ag|, ρ〉 is the postcondition
that should hold after α has been executed. For every agent a, Na is the set
of notes that get delivered to a by action α. Finally, ρ ∈ Π ∪ {#} gives the
protocol that the agents are going to follow after execution of α. If ρ = #,
then the agents should keep following the current protocol. If ρ = π for some
π ∈ Π then they should change their protocol to π. I will assume that an agent
can observe any action by which he receives some note. The converse does not
hold: agents may also observe actions by which no notes are delivered to them.
This happens for example when an agent knows that some other agent receives
a message containing a certain note, but he does not get to know the contents of
the note himself.

Note that by excluding the preconditions of the form 〈π〉ϕ I limit the interde-
pendence of actions. This prevents problems when for example an action would
be mentioned in its own precondition. Even with this constraint I can still express
a lot of useful preconditions. For example, for action α, future(α) is allowed as
a precondition meaning that α can be executed only when it is allowed by the
current protocol.

As usual, I define ⊥, φ ∨ ψ, φ → ψ and [π]φ as the abbreviations of ¬>,
¬(¬φ ∧ ¬ψ), ¬φ ∨ ψ and ¬〈π〉¬φ respectively. Moreover, I use the following
additional abbreviations:

Kaφ := C{a}φ
hasaN :=

∧
n∈N hasan

dhasGN :=
∧
n∈N

∨
a∈G hasan

com(net) :=
∧
G∈net com(G) ∧

∧
G 6∈net ¬com(G)

πn := π; π; ...; π︸ ︷︷ ︸
n times

ΣΠ′ :=
⋃
π∈Π′ π where Π′ ⊂ Π is finite.
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Here Kaφ means that agent a knows φ, dhasGN expresses that the messages
from N are in distributed possession of the agents in G and com(net) specifies
the communication channels in the network.

By having both the has and the K operator in the language, I can make
the distinction between knowing about a message and knowing about its content.
Kahasbn∧¬hasan and Kahasbn∧hasan can express the de dicto and de re reading
of knowing that b has a message, respectively. For example, let n be the hiding
place of Bin Laden, then KCIAhasAl−Qaedan∧¬hasCIAn expresses that CIA knows
that Al-Qaeda knows the hiding place, which is, however, a secret to CIA.

4.2.2 Semantics

In order to interpret the basic propositions in PAg,M,Act I let the finer structure of
the basic propositions correspond with a finer structure in the states, replacing
the traditional valuation in Kripke structures used in DEL-approaches.

4.2.1. Definition. A state for LAg,N
ι is defined as a tuple:

s := 〈net, N I
1 , ..., N

I
|Ag|, ᾱ, N1, ..., N|Ag|, π〉.

Here net is the communication graph, ᾱ is the history of actions that have been
executed, for every a ∈ Ag Na gives the set of notes he possesses and π gives
the protocol the agents are following. I also include for every agent a ∈ Ag the
set N I

a which is the set of notes the agents had in the initial state , which was
the state of the systems before the actions in ᾱ were executed. Given a state
s, I use N(s)(a) to denote Na, the information set of agent a. I use N I(s)(a)
to denote N I

a , the initial information set of agent a. I use Net(s) := net for the
communication graph, H(s) := α for the action history and Prot(s) := π for the
protocol.

Intuitively, each state represents a past temporal development of the system
with its constraint for the future actions. Note that the past is linear (ᾱ is
a single sequence of actions), while the future can be branching (the protocol π
may allow several possible sequences of actions). From the initial information sets
I can construct the initial state of the system before any actions were executed.
For a state s as in the previous definition, this is defined as

Init(s) := 〈net,N I
1 , ..., N

I
|Ag|, ε, N

I
1 , ..., N

I
|Ag|, (ΣAct)∗〉.

The initial state has an empty action history, and the information sets of the
agents are identical to the initial information sets. Also, no protocol has been set
so the protocol is (ΣAct)∗, which allows all sequences of actions. Note that for
any state s, the result of executing the history of past actions on Init(s) should
be s.
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I will interpret the formulas of LAg,N
ι on the states defined above. However, in

order to give the semantics for future(ᾱ) I need a way to check whether a sequence
of actions complies with a certain protocol. Also, in order to give the semantics
for 〈π〉 I need to be able to compute the remainder of the protocol after the action
has been executed, so I know what the new protocol is. For this purpose I will
use the input derivative and the output function (cf. [Brzozowski, 1964,
Conway, 1971]).

I start out with the output function. This function returns ε if the protocol π
can be executed by doing no action, and δ otherwise. It is defined as follows:

o(ε) := ε, o(δ) := δ,
o(α) := δ, o(π ∪ π′) := o(π) ∪ o(π′),

o(π; π′) := o(π); o(π′), o(π∗) := ε.

Given a protocol π and an action α, the remainder of π after executing α is
the input derivative π\α given by:

ε\α := δ, δ\α := δ,
α\α := ε, β\α := δ (α 6= β),

(π ∪ π′) ∪ α := π\α ∪ π′\α,
(π; π′)\α := ((π\α); π′) ∪ (o(π); (π′\α)),

(π∗)\α := π\α; π∗.

Let π\(α0;α1; . . . ;αn) = (π\α0)\α1 . . . \αn. Using these definitions and the
axioms of Kleene algebra I can syntactically derive the remaining protocol after
executing a sequence of basic actions. For example:

(α ∪ (β; γ))∗\β = (α\β ∪ (β; γ)\β); (α ∪ (β; γ))∗

= (δ ∪ (ε; γ)); (α ∪ (β; γ))∗

= γ; (α ∪ (β; γ))∗.

Note that in general it does not hold that β̄; (π\β̄) = π.
Let A(π) be the set of sequences of actions that comply with the protocol π.

It is defined as follows:

A(δ) = ∅ A(ε) = {ε} A(α) = {α}
A(π; π′) = {ᾱ; β̄ | ᾱ ∈ A(π), β̄ ∈ A(π′)}
A(π ∪ π′) = A(π) ∪ A(π′)
A(π∗) = {ᾱ1; . . . ; ᾱn | ᾱ1, . . . , ᾱn ∈ A(π)}

In [Conway, 1971], the following is shown:

4.2.2. Lemma. A(π\ᾱ) = {β̄ | ᾱ; β̄ ∈ A(π)}.

This shows that the input derivative truly computes the remainder of the protocol
after executing some basic action.
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Just like [Cohen and Dam, 2007, Apt et al., 2009], I will give the truth value
of LAg,N

ι formula on single states instead of pointed Kripke models as is usual in
DEL. The interpretation of epistemic formulas depends on a relation ∼xa between
states, which I will define later.

Given a state s = 〈net, N I
1 , ..., N

I
|Ag|, ᾱ, N1, ..., N|Ag|, π〉, the semantics of LAg,N

ι

is defined as follows.

s |= hasa(n) iff n ∈ Na

s |= com(G) iff G ∈ net
s |= past(β̄) iff β̄ is a suffix of ᾱ
s |= future(β̄) iff π\β̄ 6= δ
s |= ¬ϕ iff s 6|= ϕ
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2

s |= 〈π〉ϕ iff ∃s′ : s[[π]]s′ and s′ |= ϕ
s |= CGϕ iff ∀s′ : s ∼xG s′ implies s′ |= ϕ

Here ∼xG is the reflexive transitive closure of
⋃
a∈G ∼xa. As noted above, the

relation ∼xa is the knowledge relation for agent a and it will be more formally
defined later.

The protocols π function as state changers. Each protocol describes a transi-
tion to a new state in the following way:

s[[ε]]s′ iff s = s′

s[[δ]]s′ never
s[[β]]s′ iff s |= Pre(ι(β)) and s′ = s|Pos(ι(β))

s[[π1; π2]]s′ iff ∃s′′ : s[[π1]]s′′ and s′′[[π2]]s′

s[[π1 ∪ π2]]s′ iff s[[π1]]s′ or s[[π2]]s′

s[[(π1)∗]]s′ iff ∃n : s[[π1; π1; ...; π1︸ ︷︷ ︸
n times

]]s′

Given Pos(ι(β)) = 〈N ′1, . . . , N ′|Ag|, ρ〉, s|Pos(ι(β)) is the result of executing action β
at s. It is defined as

s|Pos(ι(β)) = 〈net, N I
1 , . . . , N

I
|Ag|, ᾱ; β,N1 ∪N ′1, . . . , N|Ag| ∪N ′|Ag|, f(ρ)〉,

where f(ρ) =

{
π\β if ρ = #
π′ if ρ = π′

.

So I add the action β to the sequence of past actions, I add for each agent a the
notes he received by β and I change the protocol to a new protocol π′ if this is
prescribed by β, or to the remainder of the old protocol after executing β if no
new protocol is dictated.

Now I will define the epistemic relation of an agent a between states. This
relation depends on the observational power of the agents, which may vary in
different situations. Therefore I represent it as a relation ∼obsa , where obs stands
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for the observational power of the agents. A state s is said to be consistent if
Init(s)[[H(s)]]s. It is easy to see that for any s, Init(s) is always consistent. Note
that I can actually omit the current information sets N(s) in the definition of
a state, and compute them by applying the actions in H(s) to N I(s), thus only
generating consistent states. I keep the current information sets in the definition
of the state in order to simplify the notation and to evaluate basic propositions
more efficiently.

I define that s ∼obsa s′ if and only if the following conditions are met:

consistency s and s′ are consistent.

local initialization N I(s)(a) = N I(s′)(a),

local history H(s)|obsa = H(s′)|obsa , where obs is the type of observational power
of agents.

The type of observational power of the agents defines how the agents observe
the history. In other words, it defines their local historyH(s)|obsa . Many definitions
of H(s)|obsa are possible, giving the agents different observational powers. This is
one of the things that make this framework so flexible and allow for adaptation
to different situations. Several reasonable definitions are:

1. H(s)|seta = {α appearing in H(s) | a ∈ Obs(ι(α))} as in [Apt et al., 2009]
and in Chapter 5 and 6. In this set-up, the agents are aware of the actions
they can observe but not of the ordering between these actions.

2. H(s)|1sta is the subsequence of H(s) consisting of the first occurrence of each
α ∈ H(s)|seta as in [Baskar et al., 2007]. In this set-up, the agents are aware
of the ordering of the first occurrence of the actions they can observe.

3. H(s)|asyna is the subsequence of H(s) consisting of all the occurrences of each
α ∈ H(s)|seta , as in asynchronous systems (cf., e.g., [Shilov and Garanina,
2002]). In this set-up, the agents are aware of all occurrences of the actions
they can observe and the ordering between them.

4. H(s)|τa is the sequence obtained from H(s) by replacing each occurrence of
α 6∈ H(s)|seta by τ , as in synchronous systems with prefect recall (cf., e.g.,
[van der Meyden and Shilov, 1999]). In this set-up, the agents are aware of
all occurrences of the actions they can observe and they are also aware of
the number of actions that have been happened that they cannot observe,
and of the order between the actions they can observe and the actions they
cannot observe. They do not get to know which actions that they cannot
observe have happened.

It is clear from the above definition that ∼obsa is an equivalence relation and
the following holds:
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4.2.3. Lemma. ∼τa ⊆ ∼asyna ⊆ ∼1st
a ⊆ ∼seta .

So the ∼τ relation is the smallest relation, thereby giving the agents the greatest
amount of knowledge, and the ∼seta relation is the largest, giving the agents only
little knowledge.

I call the semantics defined by ∼obsa the obs-semantics, and denote the corre-
sponding satisfaction relation as |=obs.

Recall that the agents can always observe the actions that change their infor-
mation set. This implies the following lemma.

4.2.4. Lemma. For any consistent state s, s ∼obsa s′ implies N(s)(a) = N(s′)(a),
where obs ∈ {set, asyn, 1st, τ}.

Proof. By Lemma 4.2.3, s ∼obsa s′ implies s ∼seta s′ for all obs ∈ {set, asyn, 1st, τ}.
Therefore I only need to prove the claim for obs = set. Suppose s ∼seta s′. Then
by the definition of ∼seta , N(Init(s))(a) = N(Init(s′))(a) and H(s)|seta = H(s′)|seta .
So at s and s′ agent a initially had the same messages and has observed the same
actions. Since agents can always observe the actions that change their informa-
tion set, this implies that the same message passing actions relevant to a have
happened in s and s′. Since the actions can only add notes to the information
sets of the agents and never delete notes from them, it does not matter how often
or in which order those actions have been executed. Therefore the information
sets of agent a in s and s′ are identical. �

By using different semantics in different situations, I can vary the observa-
tional power of the agents as is required. By constructing actions that match
the situation at hand, I can also vary the exact properties of the communicative
events. I will now define some useful basic actions with their internal structure.
These actions correspond to communicative events that often come up in practice.

In order to simplify the presentation, I will omit the explicit mentioning of
the internal structure map ι. So I will use Obs(α) for Obs(ι(α)) etcetera. Recall
that the internal structure of an action α is a tuple

ι(α) := 〈G, φ,N1, ...N|Ag|, ρ〉

such that Na = ∅ for a 6∈ Obs(α). The following table lists some basic actions. In
Section 4.4 I will use these as building blocks for more complex actions.
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α : Obs(α) : Pre(α) : Pos(α) :
sendaG(N) G ∪ {a} com(G ∪ {a}) ∧ future(α)∧ Nb := Nb ∪N, ρ = #

hasaN (b ∈ G)
shareG(N) G com(G) ∧ future(α)∧ Nb := Nb ∪N, ρ = #

dhasGN (b ∈ G)
sendallaG G ∪ {a} com(G ∪ {a}) ∧ future(α) Nb := Nb ∪Na, ρ = #

(b ∈ G)
shareallG G com(G) ∧ future(α) Nb :=

⋃
a∈GNa, ρ = #

(b ∈ G)
informa

G(φ) G ∪ {a} Kaφ ρ = #

exinfo(φ) Ag φ ρ = #
exprot(π) Ag > ρ = π

In the rightmost column of table I have left out from the postconditions the sets
of notes of the agents that do not change, in order to save space.

The first group of actions are communicative actions that are done by the
agents. These actions must abide by the communication channels and the pro-
tocol, which is enforced by having com(Obs(α)) ∧ future(α) in the precondition.
sendaG(N) is the action that a sends the set of notes N to the group G. Apart
from respecting the channels and the protocol, the precondition hasaN enforces
that agent a should possess the notes he wants to send. The postcondition of
sendaG(N) expresses that the messages in N get added to the message sets of
the agents in G. shareG(N) shares the messages from N within the group G. A
precondition is that the messages from N are already distributed knowledge in
the group. sendallaG differs from sendaG(N) in the fact that a sends all the notes
that he has. Similarly for shareallG. informa

G(φ) is the group announcement by
a of an arbitrary formula φ within G ∪ {a}. The precondition for this action is
that agent a knows that φ holds. Since all agents know that the execution of this
action would only be possible if φ would hold, all agents who can observe the
action know that φ holds at the moment it is announced. This way knowledge of
φ is created among the members of G.

The second group of actions are public announcements that do not respect
the channels or the protocol. They model the information that is given to the
agents by some external authority. exinfo(φ) models the public announcement of
a formula φ. The only precondition of this announcement is that φ should hold.
The postcondition is empty. Again, knowledge of φ is created by the fact that the
agents know that the action can only be done if φ holds. exprot(π) announces the
protocol π that the agents are supposed to follow in the future. ts postcondition
changes the protocol to π and knowledge of the protocol is created by the fact
that all agents observe the announcement.
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4.3 Comparison with IS and DEL

The results in this section relate my logic to IS and DEL approaches. Theo-
rem 4.3.1 shows that by the semantics of LAg,N

ι , an interpreted system is im-
plicitly generated from a single state. Together with Theorem 4.3.1, Theorem
4.3.3 demonstrates that compared to DEL, my approach models actions in a very
powerful and concise manner.

I will compare my approach to IS first. In the following I only consider con-
sistent states.

Given a state s with action history H(s) = α1α2...αn, I define the history
of s as the sequence his(s) = s0s1...sn where s0 = Init(s), sn = s and for all
1 ≤ k ≤ n, sk−1[[αk]]sk. Clearly then s0s1 . . . sk = his(sk) for any k ≤ n.

Given some type of semantics obs, let ExpT obs be the Interpreted System
given by {H,→α, {Ri | i ∈ Ag}, V }, where

• H = {his(s) | s is consistent},
• 〈s0 . . . sn〉 →α 〈s0 . . . snsn+1〉 iff sn[[α]]sn+1,

• 〈s0 . . . sn〉Ri〈s′0 . . . s′m〉 iff sn ∼obsi s′m,

• V (〈s0 . . . sn〉)(p) = > iff sn |=obs p, where p ∈ PAg,M,Act.

This is a straightforward adaptation of my logic to the IS framework. The
language LAg,N

ι can be seen as a fragment of Propositional Dynamic Logic (PDL)
with basic actions taken from Act ∪ Ag. Then the CG operator corresponds to
(ΣG)∗. Let |=PDL denote the ususal semantics of this fragment. The following
theorem follows easily:

4.3.1. Theorem. For any formula ϕ ∈ LAg,N
ι and for each consistent LAg,N

ι -state
s:

s |=obs ϕ iff ExpT obs, hist(s) |=PDL ϕ.

This result shows that when I abstract away the inner structure of basic
propositions and actions, then the logic can be seen as a PDL language interpreted
on ISs that are generated in a particular way in accordance with some constraints.

Next, I will compare my work to standard DEL. Consider the following DEL
language LDEL:

φ := > | p | ¬φ | φ1 ∧ φ2 | [[A, e]]φ | CGφ

Here p is taken from a set of basic propositions P , G ⊆ Ag and A is an action
model, as defined in Chapter 2, with e as its designated action. The formula
[[A, e]]φ holds in M, w for some Kripke model M and w ∈ WM iff φ holds in
M⊗A, (w, e).

I would like to see if a translation is possible from LAg,N
ι to DEL. Such a

translation would go from the actions of LAg,N
ι to the action models of DEL. A

protocol π would then correspond to a sequence of action models. The first barrier
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in the way of such a translation is the fact that the ∗ operator allows for arbitrarily
long sequences of actions, while there is no such operator on modalities of action
models in DEL. Therefore, I will consider the star-free fragment of LAg,N

ι .
However, it turns out that even without the ∗ operator it is not possible to

find a translation for all kinds of semantics (set, 1st, etcetera). To see why this
is true, recall the following result from [van Benthem et al., 2009a].

4.3.2. Theorem ([van Benthem et al., 2009a]). If we see [[A, e]] as a basic
action modality in the semantics of the PDL language, then for any formula
ϕ ∈ LDEL and for any model M and state w ∈ WM:

M, w |=DEL φ iff Forest(M,A), (w) PDL φ

Here A is the set of action models and Forest(M,A) is the IS generated by
executing all possible sequences of action models in A on M.

Using this theorem, I will now show that the effects of actions in LAg,N
ι cannot,

in general, be simulated by action models.

4.3.3. Theorem. There is no DEL-modelM such that for all consistent LAg,N
ι -

states s there is some w ∈ WM that satisfies for all formulas ϕ ∈ LAg,N
ι :

s |= ϕ iff M, w |=DEL φ.

Proof. Suppose there was such M. Then by Theorem 4.3.1 and 4.3.2,

(ExpT obs, hist(s)) ↔− (Forest(M,A), (w)),

where ↔− is the bisimulation for transitions labeled with Act∪Ag. In [van Benthem
et al., 2009a] it is shown that any model of the form Forest(M,A) must satisfy
the property of perfect recall . This property states that if the agents cannot
distinguish two sequences of actions ᾱ;α and β̄; β then they cannot distinguish
ᾱ and β̄. But ExpT obs does not satisfy this property for obs ∈ {set, 1st, asyn}.
For example, if γ is some action that b cannot observe then sendab (N); γ ∼obsb
γ; sendab (N), but sendab (N) 6∼obsb γ. So the set-, 1st- and asyn-semantics cannot
be translated to a DEL model. �

4.4 Applications

4.4.1 Common Knowledge

This framework gives an interesting perspective on common knowledge. It may
not be surprising that common knowledge cannot be reached without public com-
munication [Halpern and Moses, 1990]. I first focus on asynchronous semantics.
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One might think that achieving common knowledge becomes easier if the agents
can publicly agree on a common protocol before the communication is limited
to non-public communication. However, in the case of asynchronous semantics
common knowledge still cannot be achieved, even if the agents can publicly agree
on a protocol. Recall that I say an action α respects the communication channels
if Pre(α) |= com(Obs(α)).

4.4.1. Theorem. For any state s with Ag 6∈ Net(s), any protocol π containing
only actions that respect the communication channels, any ϕ ∈ LAg,N

ι and any
sequence of actions ᾱ:

s |=asyn 〈exprot(π)〉(¬CAgϕ→ ¬〈ᾱ〉CAgϕ)

Proof. Let s[[exprot(π)]]t and suppose t |=asyn ¬CAgϕ. Towards a contradic-
tion, let ᾱ be the minimal sequence of actions such that t |=asyn 〈ᾱ〉CAgϕ. Let
ᾱ = β̄;α, t[[β̄]]u and u[[α]]v. Since Ag 6∈ Net(s) and α respects the communication
channel, Obs(α) 6= Ag so there exists a 6∈ Obs(α). Then H(u)|asyna = H(v)|asyna so
u ∼asyna v. Since ᾱ was minimal, u 6|=asyn CAgϕ. But then u |=asyn ¬KaCAgϕ so
v |=asyn ¬KaCAgϕ. So v 6|=asyn CAgϕ. This contradicts my assumption, so there
cannot be such ᾱ. So s |=asyn 〈exprot(π)〉(¬CAgϕ→ ¬〈ᾱ〉CAgϕ). �

Essentially, even if the agents agree on a protocol beforehand, the agents that
cannot observe the final action of the protocol will never know whether this final
action has been executed and thus common knowledge is never established. This
is because in the asynchronous semantics, there is no sense of time. If there would
be some kind of clock and the agents would agree to do an action on every “tick”,
the agents would be able to establish common knowledge. This is exactly what
I try to achieve with the τ -semantics. Here every agent observes a “tick” the
moment some action is executed. This way, they can agree on a protocol and
know when it is finished. I will show examples of how this can result in common
knowledge in the discussion of the telephone call scenario.

Here I will first investigate what happens in τ -semantics if the agents cannot
publicly agree on a protocol beforehand. I will show that in this case they cannot
reach common knowledge of basic formulas. I start out with a lemma stating that
actions preserve the agent’s relations.

4.4.2. Lemma. For any two states s and t and any action α, if s ∼τi t and there
are s′, t′ such that s[[α]]s′ and t[[α]]t′ then s′ ∼τi t′.

Proof. Suppose s ∼τi t. Then H(s)|τi = H(t)|τi . Suppose i ∈ Obs(α). Then
H(s′)|τi = (H(s)|τi ;α) = (H(t)|τi ;α) = H(t′)|τi . Suppose i 6∈ Obs(α). Then
H(s′)|τi = (H(s)|τi ; τ) = (H(t)|τi ; τ) = H(t′)|τi . So s′ ∼τi t′. �
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This result may seem counter-intuitive, since for example a public announce-
ment action may give the agents new information and thus destroy their epistemic
relations. However, in my framework I model the new knowledge introduced by
communicative actions by the fact that these actions would not be possible in
states that do not satisfy the precondition of the action. In this lemma I assume
that there are s′, t′ such that s[[α]]s′ and t[[α]]t′. This means that s and t both
satisfy the preconditions of α, so essentially no knowledge that distinguishes s
and t is introduced by α.

Let Lbool be the following fragment of LAg,N
ι :

φ ::= has im | com(G) | ¬φ | φ1 ∧ φ2

It is trivial to show that any action that does not change the agents’ message
sets or the protocol does not change the truth value of these basic formulas:

4.4.3. Lemma. Let α be an action that does not change the agents’ message sets
or the protocol. For any φ ∈ Lbool and any state s: s |= φ↔ 〈α〉φ.

Combining the properties of the actions from the previous lemma, I call an
action dummy(G) to be a dummy action for a group of agents G if it has the
precondition com(G) ∧ future(dummy(G)), it does not change the message sets
of the agents or the protocol and Obs(dummy(G)) = G. An example of dummy
action is inform i

G(>). One could see it as “idle talk”.

4.4.4. Theorem. Let A be a set of basic actions respecting the communication
channels such that for any agent a there is a dummy action dummy(G) such that
a 6∈ G ⊆ Ag. Let s be a state such that Ag 6∈ Net(s) and it is common knowledge
at s that the protocol is π = (ΣA)∗ (any action in A is allowed). Then for any
φ ∈ Lbool and any sequence of actions ᾱ,

s |=τ ¬CAgφ→ ¬〈ᾱ〉CAgφ

Proof. Suppose towards a contradiction that s |= ¬CIφ and there is a minimal
sequence ᾱ such that s |=τ 〈ᾱ〉CAgφ. Let ᾱ = β̄;α and let a 6∈ Obs(α). Such a
always exists since Ag 6∈ Net(s). Let dummy(G) be a dummy action such that
a 6∈ G. Let s[[β̄]]u. Since ᾱ is minimal, u |=τ ¬CAgφ, so there is a ∼Ag-path from u
to a world t such that t 6|=τ φ. Since it is common knowledge that any action in A
is possible, dummy(G) can be executed at any world on the path from u to t. By
lemma 4.4.2 dummy(G) preserves the relations between states so there are states
u′, t′ such that u[[dummy(G)]]u′, t[[dummy(G)]]t′ and u′ ∼Ag t

′. Also, since t 6|=τ φ
and by lemma 4.4.3, t′ 6|=τ φ. So u′ not |=τ CAgφ. This means that if dummy(G)
would be executed in state u, then CAgφ would not hold in the resulting state.

Let u[[dummy(G)]]u′ and u[[α]]v. Because a 6∈ G, a cannot see the difference
between executing dummy(G) and α: H(u′)|τa = (H(u)|τa; τ) = H(v)|τa so u′ ∼τa v.
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But I just showed that u′ 6|=τ CAgφ, so then v 6|=τ CAgφ. But this contradicts my
assumption that β̄;α induced common knowledge of φ. �

Before turning to the specific scenario of the telephone calls, I propose the
following general modeling method:

1. Select a set of suitable actions Act with internal structures to model the
communicative events in the scenario.

2. Design a single state as the real world to model the initial setting, i.e.,
〈net, N1, ..., N|Ag|, ᾱ, N1, ..., N|Ag|, (ΣA)∗〉 where net models the communica-
tion network and Na models the information possessed by agent a.

3. Translate the informal assumptions of the scenario into formulas ϕ and
protocols π in LAg,N

ι .

4. Use exinfo(ϕ) and exprot(π) to make the assumptions and the protocol
common knowledge.

I will demonstrate how I can use this method to model the telephone call
scenario. Let me first recall the scenario: in a group of people, each person has
one secret. They can make private telephone calls amongst themselves in order
to communicate these secrets. The original puzzle concerns the minimal number
of telephone calls needed to ensure everyone gets to know all secrets.

I start out by selecting a set of suitable actions that fit the scenario. I define
them as follows.

callab := shareall{a,b}
messageab := sendalla{b}

Here callab is the call between agents a and b in which they share all the notes
(or secrets) they possess. Later on I will also be interested in what happens if the
agents can only leave voicemail messages instead of making two-way calls. For
this purpose I use messageab , where agent a sends all secrets he possesses to agent
b. Let A =

⋃
a,b∈Ag callab ∪

⋃
a,b∈Ag messageab .

Next, I define the information sets of the agents. For every agent a, I define
his set of notes as Na = {sa}, where sa is his secret. Let S be the set of all
secrets. The communication network allows for pairwise communication between
the agents. I define it as Net = {{a, b} | a, b ∈ Ag}. Then the initial state is

sI := 〈Net, {s1}, ..., {s|Ag|}, ε, {s1}, ..., {s|Ag|}, (ΣA)∗〉.

I want to vary the communicative powers of the agents in different situations.
Therefore I will define different protocols that restrict the actions the agents can
execute. I define πcall := (

⋃
a,b∈Ag callab )

∗, πmail := (
⋃
a,b∈Ag messageab )

∗ as the
protocols where the agents can only make telephone calls or only send voicemails,
respectively.
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In order to reason about the number of calls the agents need to make to reach
their goal, I will use the following abbreviations:

♦≤nφ := 〈
⋃
k≤n(ΣA)k〉φ

♦min(n)φ := ♦≤nφ ∧ ¬♦≤n−1φ

♦≤nφ expresses that a state where φ holds can be reached by sequentially
executing at most n actions from A. ♦min(n)φ expresses that n is the minimal
such number. Note that A does not contain any actions that change the pro-
tocol, therefore the formulas express whether the agents can achieve φ with the
current protocol. Note that the temporal operator ♦ (sometimes called F ) of IS
approaches (e.g. [Pacuit and Parikh, 2007]) can be defined by 〈(ΣA)∗〉 while ♦≤n

serves as a generalization of the arbitrary announcement that is added to DEL
in [Ågotnes et al., 2009].

Then the following result states that exactly 2|Ag| − 4 calls are necessary to
make sure every agent knows all secrets:

4.4.5. Lemma. For any obs ∈ {set, 1st, asyn, τ},

sI |=obs 〈exprot(πcall)〉♦min(2|Ag|−4)
∧
a∈Ag

hasaS.

A proof of this proposition is given in [Hurkens, 2000]. The protocol given there is
the following: pick a group of four agents 1 ... 4 and let 4 be their informant. Let
agent 4 call all other agents, then let the four agents communicate all their secrets
within their group and let all other agents call agent 4 again. In my framework
this can be expressed as follows:

call4
5; ...; call4

|Ag|; call1
2; call3

4; call1
3; call2

4; call4
5; ...; call4

|Ag|

Now I turn to the question that arises when the agents cannot make direct
telephone calls, but they can only leave voicemail messages. This means that any
agent can tell the secrets he knows to another agent, but he cannot in the same
call also learn the secrets the other agent knows. How many voicemail messages
would the agents need in this case?

The agents could use messageab ; messageba to mimic each callab , which gives

sI |=obs 〈exprot(πmail)〉♦≤4|Ag|−8
∧
a∈Ag

hasaS.

However, they can do much better, as the following lemma shows.

4.4.6. Lemma. For any obs ∈ {set, 1st, asyn, τ},

sI |=obs 〈exprot(πmail)〉♦min(2|Ag|−2)
∧
a∈Ag

hasaS.
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Proof. Consider the following protocol:

message1
2; message2

3; ...; message
|Ag|−1
|Ag| ; message

|Ag|
1 ; message

|Ag|
2 ; ...; message

|Ag|
|Ag|−1.

Clearly, this results in all agents knowing all secrets. The length of this protocol
is 2|Ag| − 2. I claim that this protocol is minimal. To see why this claim holds,
first observe that there has to be one agent who is the first to learn all secrets.
For this agent to exist all other agents will first have to make at least one call to
reveal their secret to someone else. This is already |Ag| − 1 calls. The moment
that agent learns all secrets, since he is the first, all other agents do not know all
secrets. So each of them has to receive at least one more call in order to learn all
secrets. This also takes |Ag| − 1 calls which brings the total number of calls to
2|Ag| − 2. �

As the above results show, it is possible to make sure all agents know all
secrets. However, in these results the secrets are not common knowledge yet, since
the agents do not know that everyone knows all secrets. I will investigate whether
common knowledge of all secrets can be established. I will assume that prior to
the start of the protocol, the distribution of the secrets is common knowlege. For
this purpose I use the following abbreviation:

SecDisAg :=
∧
a∈Ag

(hasasa ∧
∧
b 6=a

¬hasbsa)

If there are only three agents, then achieving common knowledge of all secrets is
possible by making telephone calls:

4.4.7. Lemma. If |Ag| ≤ 3 then for some n ∈ N:

sI |=τ 〈exinfo(SecDisAg); exprot(πcall)〉♦≤nCAg

∧
a∈Ag

hasaS.

Proof. For |Ag| < 3 the proof is trivial. Suppose |Ag| = 3, say Ag = {1, 2, 3}.
A protocol that results in the desired property is call1

2; call2
3; call2

1. After execution
of this protocol all agents know all secrets, and agent 2 knows this. Also, since
agent 1 learned the secret of agent 3 from agent 2, he knows that agent 2 and 3
must have communicated after the last time he spoke to agent 2, so agent 3 must
know the secret of agent 1. Regarding agent 3, he knows agent 2 has all secrets
the moment he communicated with agent 2, and he observed a τ when agent 2
called agent 1 after that. Since there are only three agents, agent 3 can deduce
that agent 1 and 2 communicated so he knows agent 1 knows all secrets. Since
all agents can reason about each other’s knowledge, it is common knowledge that
all agents have all secrets. �
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I do not extend this result to the case with more than three agents. If there
are more than three agents, agents that are not participating in the phone call
will never know which of the other agents are calling, which makes it much harder
to establish common knowledge.

Now imagine a situation where the agents are beforehand allowed to publicly
announce a specific protocol they are going to follow which is more complex than
just the set of actions they can choose from. Then, in the τ -semantics, it is
possible to reach common knowledge:

4.4.8. Proposition. There is a protocol π of call actions such that

sI |=τ 〈exinfo(SecDisAg)〉〈exprot(π)〉♦≤nCAg

∧
a∈Ag

hasaS

Proof. Let π be the protocol given in the proof of proposition 4.4.5. Since each
agent observes a τ at every communicative action, they can all count the number
of communicative actions that have been executed and they all know when the
protocol has been executed. So at that moment, it will be common knowledge
that everyone has all secrets. �

This shows the use of the ability to communicate about the future protocol
and not only about the past and present. There are many more situations where
announcing the protocol is very important, for example in the puzzle of 100 pris-
oners and a light bulb [Dehaye et al., 2003] and in many situations in distributed
computing.

4.5 Conclusion

In this chapter I proposed an expressive framework that combines properties from
dynamic epistemic logic and interpreted systems. The framework is very flexible
and it can be adapted to almost any situation that concerns communication and
knowledge. I specifically include the communication network in my set-up, which
allows for reasoning about the network and about the agents’ knowledge of the
network. I showed how this framework can be used to model communication by
applying it to the example with the telephone calls mentioned in the introduction
of this chapter.

The framework is very flexible in modeling different observational powers of
agents and various communicative actions. For example, the communicative ac-
tion that is used in [Pacuit and Parikh, 2007], “a gets b’s information with-
out b noticing this”, can be modeled as α = downloadab with Obs(α) = {a},
Pre(α) = com({a, b}) and a postcondition containing Na := Na ∪Nb. Because of
the freedom in the design of the actions and observational powers, this framework
can facilitate the comparison of different approaches with different assumptions.



Chapter 5

Common Knowledge in Email
Communication

5.1 Introduction

In the previous chapters I have presented a number of models for the knowledge
of agents in some message passing scenario. These models relied on a number
of assumptions that made them more applicable to certain situations, but they
could usually be applied to a wide range of problems. In this chapter, I will focus
on one specific instance of message passing, namely email communication.

Email is by now a prevalent form of communication. From the point of view
of distributed programming it may look as just another instance of multicasting
- one agent sends a message to a group of agents. However, such features as
forwarding and the blind carbon copy (BCC) make it a more complex form of
communication.

The reason is that each email implicitly carries epistemic information con-
cerning (among others) common knowledge within the group involved in it of the
fact that it was sent. As a result forwarding leads to nested common knowledge
and typically involves different groups of agents at each level. In turn, the BCC
feature results in different information gain by the regular recipients and the BCC
recipients. In fact, in Section 5.7 I show that the BCC feature is new from an
epistemic point of view.

To be more specific, suppose that an agent a forwards a message m to a group
G. Then the group G ∪ {a} consisting of the sender and the recipients of m
acquires (among other knowledge) common knowledge of the fact that m was
sent. Next, suppose that an agent a sends a message m to a group G with a BCC
to a group B. Then the group G ∪ {a} acquires common knowledge of m, while
each member of B separately acquires with the sender of m common knowledge
of the fact that the group G ∪ {a} acquires common knowledge of m.

Combining forward and BCC, satisfaction of the epistemic formulas CA1 ...CAk
m

of arbitrary depth can be realized, where CA stands for ‘the group A has common

57



58 Chapter 5. Common Knowledge in Email Communication

knowledge of’. Furthermore, this combination can lead to a, usually undesired,
situation in which a BCC recipient of an email reveals his status to others by
using the reply-all feature. In general, a chain of forwards of arbitrary length
can reveal to a group of agents that an agent was a BCC recipient of the origi-
nal email. This shows that the email exchanges, as studied here, are essentially
different from multicasting.

Epistemic consequences of email exchanges are occasionally raised by re-
searchers in various contexts. For instance, the author of [Babai, 1990] mentions
‘some issues of email ethics’ by discussing a case of an email discussion in which
some researchers were not included (and hence could not build upon the reported
results).

Another example is the following recent quotation from a blog in which the
writers call for a boycott of a journal XYZ: “We are doing our best to make the
misconduct of the Editors-in-Chief a matter of common knowledge within the
[...] community in the hope that everyone will consider whatever actions may be
appropriate for them to adopt in any future associations with XYZ”.

When studying email exchanges a natural question arises: what are their
knowledge-theoretic consequences? To put it more informally: after an email
exchange took place, who knows what? Motivated by the above blog entry I
could also ask: can sending emails to more and more new recipients ever create
common knowledge?

To be more specific, consider the following example, to which I shall return
later.

5.1.1. Example. Assume the following email exchange involving four people,
Alice, Bob, Clare and Daniel:

• Alice and Daniel got an email from Clare,

• Alice forwarded it to Bob,

• Bob forwarded Alice’s email to Clare and Daniel with a BCC to Alice,

• Alice forwarded the last email to Clare and Daniel with a BCC to Bob.

It is natural to ask, for example, what Alice has actually learned from Bob’s
email. Also, do all four people involved in this exchange have common knowledge
of the original email by Clare?

To answer such questions I study email exchanges focusing on relevant fea-
tures that are encountered in most email systems. More specifically, I make the
following assumptions:

• each email has a sender, a non-empty set of regular recipients and a (possibly
empty) set of blind carbon copy (BCC) recipients. Each recipient receives
a copy of the message and is only aware of the regular recipients and not of
the BCC recipients (except himself if he is one),
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• in the case of a reply to or a forward of a message, the unaltered original
message is included,

• in a reply or a forward, the list of regular recipients is included but the list
of BCC recipients is not,

• in a reply or a forward, one can append new information to the original
message one replies to or forwards.

In order to formalize the agents’ knowledge resulting from an email exchange
I will introduce an appropriate epistemic language and the corresponding seman-
tics. The resulting model of email communication differs from the ones that
were studied in other papers in which only limited aspects of emails have been
considered. These papers are discussed below.

In my setup the communication is synchronous. This matches the actual
situation in the sense that when an email is sent it is in most cases immediately
present in the inbox of the recipients. However, this is a simplification since the
fact that the email is present in the inbox of the agent does not mean the agent
also reads it immediately (or indeed reads it at all). I find that it is natural
to clarify email communication in a synchronous setting first before considering
alternatives. In Chapter 6 I distinguish two different kinds of knowledge based
on the fact that not all emails are read immediately.

5.1.1 Contributions and Plan of this Chapter

To study the relevant features of email communication I will introduce in the
next section a carefully chosen language describing emails. I make a distinction
between a message, which is sent to a public recipient list, and an email, which
consists of a message and a set of BCC recipients. This distinction is relevant
because a forward email contains an earlier message, without the list of BCC
recipients. I also introduce the notion of a legal state that imposes a natural
restriction on the considered sets of emails by stipulating an ordering of the
emails. For example, an email needs to precede any forward of it.

To reason about the knowledge of the agents after an email exchange has taken
place I introduce in Section 5.3 an appropriate epistemic language. Its semantics
takes into account the uncertainty of the recipients of an email about its set of
BCC recipients. This semantics allows me to evaluate epistemic formulas in legal
states, in particular the formulas that characterize the full knowledge-theoretic
effect of an email.

Apart from factual information each email also carries epistemic information.
In Section 5.4 I characterize the latter. It allows me to clarify which groups of
agents acquire common knowledge as a result of an email and what the resulting
information gain for each agent is.
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In Section 5.5 I present the main result of the chapter, that clarifies when a
group of agents acquires common knowledge of the fact that an email has been
sent. This characterization in particular sheds light on the epistemic consequences
of BCC. The proof is given in Section 5.6.

Then in Section 5.7 I show that in this framework, BCC cannot be simulated
using messages without BCC recipients. Finally, in Section 5.8, I provide a dis-
tributed programming perspective of email exchanges. In this view the processes
are agents who communicate with emails. I provide an operational semantics of
such distributed programs. It allows me to clarify various fine points of email ex-
changes in the presence of BCC. I then use distributed programs to characterize
the notion of a legal state.

5.1.2 Related Work

The study of the epistemic effects of communication in distributed systems origi-
nated in the eighties and led to the seminal book [Fagin et al., 1995]. The relevant
literature, including [Chandy and Misra, 1985], deals with the communication
forms studied within the context of distributed computing, notably asynchronous
send.

One of the main issues studied in these frameworks has been the analysis
of the conditions that are necessary for acquiring common knowledge. In par-
ticular, [Halpern and Moses, 1990] showed that common knowledge cannot be
attained in the systems in which the message delivery is not guaranteed. This is
exactly the problem that is faced by the generals in the example given in the in-
troduction. More recently this problem was investigated in [Ben-Zvi and Moses,
2010] for synchronous systems with known bounds on message transmission in
which processes share a global clock. The authors extended the causality rela-
tion of [Lamport, 1978] between messages in distributed systems to synchronous
systems with known bounds on message transmission and proved that in such
systems a so-called pivotal event is needed in order to obtain common knowl-
edge. This in particular generalizes the previous result of [Chandy and Misra,
1985] concerning acquisition of common knowledge in distributed systems with
synchronous communication.

The epistemic effects of other forms of communication were studied in numer-
ous papers. In particular, in [Pacuit and Parikh, 2007] the communicative acts
are assumed to consist of an agent j ‘reading’ an arbitrary propositional formula
from another agent i. The idea of the epistemic content of an email is implic-
itly present in [Parikh and Ramanujam, 2003], where a formal model is proposed
that formalizes how communication changes the knowledge of a recipient of the
message.

In [van Benthem et al., 2006] a dynamic epistemic logic modeling effects of
communication and change is introduced and extensively studied. [Pacuit, 2010]
surveys these and related approaches and discusses the used epistemic, dynamic
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epistemic and doxastic logics.

In Chapter 3 I have presented a framework that studies the knowledge of
agents who communicate via messages. The framework presented there is based
on the assumption that there is a fixed set of a finite number of possible mes-
sages, and this set is common knowledge among the agents. This is a reasonable
assumption in a number of settings, but not in the setting studied in this chapter.
In email communication, the number of possible messages is unlimited. Even if
one abstracts the message contents and focusses on the lists of recipients and the
structure of forwards and replies there is an infinite number of possible combina-
tions. Therefore I need to find a different model for this situation.

Most related to the work here reported is [Apt et al., 2009], which studied
knowledge and common knowledge in a set-up in which the agents send and
forward propositional formulas in a social network. However, the forward did
not include the original message and the BCC feature was absent. Just like in
Chapter 3, there it is assumed that the number of messages is finite. In contrast,
in the setting of this chapter the forward includes the original message, which
results directly in an infinite number of possible messages and emails.

5.2 Preliminaries

5.2.1 Messages

In this section I define the notion of a message. In the next section I introduce
emails as simple extensions of the messages. Let a finite set of agents Ag and a
finite set of notes N be given. The notes represent the contents of the message
or an email, just like in Chaper 4.

I will assume that initially each agent a has a set of notes Na he knows. He
does not know which notes belong to the other agents, but he does know the
overall set of notes. Furthermore, I assume that an agent can send a message to
other agents containing a note only if he holds it initially or has learnt it through
a message he received earlier.

Of course in reality emails may contain propositional or epistemic information
which affects knowledge of the agents at a deeper level than modeled here by
means of abstract notes. To reason about notes containing such information one
could add on the top of my framework an appropriate logic. If every note n
contains some formula ϕn, then one could just add the implications n → ϕn to
this logic to ensure that every agent who knows the note n also knows the formula
ϕn.

This minimal set-up precludes that the agents can use messages to implement
some protocol that was agreed in advance, such as that sending two specific notes
by an agent would reveal that he has some specific knowledge. It allows me to
focus instead on the epistemic information caused directly by the structure of the
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messages and emails.
I inductively define a message as a construct of one of the following forms:

• m := s(a, n,G); the message containing note n, sent by a to the group G,

• m := f(a, n.m′, G); the forwarding by agent a of the message m′ with added
note n, sent to the group G.

So the agents can send a message with a note or forward a message with a new
note appended, where the latter covers the possibility of a reply or a reply-all.
Appending such a new note to a forwarded message is a natural feature present
in most email systems. To allow for the possibility of sending a forward without
appending a new note, I assume there exists a note true that is held by all agents
and identify true.m with m.

Just like in Chapter 3, I use sm and rm for the sender and the group of
recipients of a message m, respectively. So for the above messages m I have
sm = a and rm = G. I do allow that sm ⊆ rm, i.e., that one sends a message to
oneself.

Special forms of the forward messages can be used to model reply messages.
Given f(a, n.m,G) with a ∈ rm, using G = {sm} results in the customary reply
message and using G = {sm}∪rm results in the reply-all message. In the custom-
ary email systems there is syntactic difference between a forward and a reply to
these two groups of agents, but the effect of both messages is exactly the same, so
I ignore this difference. In the examples I write s(a, n, b) instead of s(a, n, {b}),
etc.

5.2.2 Emails

An interesting feature of most email systems is that of the blind carbon copy
(BCC). I will now include this in my framework.

In the previous subsection I defined messages that have a sender and a group
of recipients. Now I define the notion of an email which allows the additional
possibility of sending a BCC of a message. Formally, by an email I mean a
construct of the form mB, where m is a message and B ⊆ Ag is a possibly empty
set of BCC recipients. Given a message m I call each email of the form mB a full
version of m, and say that it is based on m.

An email mB is delivered to the regular recipients, i.e., to the set rm, and to
the set B of BCC recipients. Each of them receives the message m. Only the
sender of mB, i.e., the agent sm, knows the set B. Each agent a ∈ B only knows
that the set B contains at least him.

Since the set of BCC recipients is ‘secret’, it does not appear in a forward.
That is, a forward of an email mB with added note n is a message f(a, n.m,G)
or an email f(a, n.m,G)C , in which B is not mentioned. This is consistent with
the way BCC is handled in most email systems, such as gmail or email systems
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based on the postfix mail server. However, this forward may be sent not only
by a sender or a regular recipient of mB, but also by a BCC recipient. Clearly,
the fact that an agent was a BCC recipient of an email is revealed at the moment
he forwards the message.

A natural question arises: what if someone is both a regular recipient and a
BCC recipient of an email? In this case, no one (not even this BCC recipient
himself) would ever notice that this recipient was also a BCC recipient since
everyone can explain his knowledge of the message by the fact that he was a
regular recipient. Only the sender of the message would know that this agent was
also a BCC recipient. This fact does not have any noticeable consequences and
hence I will assume that for every email mB it holds that ({sm} ∪ rm) ∩B = ∅.

5.2.1. Example. Using the newly introduced language I can formalize the story
from Example 5.1.1 as follows, where I abbreviate Alice to a, etc.:

• Alice and Daniel got an email from Clare:

e0 := m∅, where m := s(c, n, {a, d}),

• Alice forwarded it to Bob:

e1 := m′∅, where m′ := f(a,m, b),

• Bob forwarded Alice’s email to Clare and Daniel with a BCC to Alice:

e2 := m′′{a}, where m′′ := f(b,m′, {c, d}),

• Alice forwarded the last email to Clare and Daniel with a BCC to Bob:

e3 := f(a,m′′, {c, d}){b}.

5.2.3 Legal States

My goal is to analyze a collection of sent emails in order to find out what knowl-
edge the agents acquired from them. In this section I will state some properties
that I will assume such a collection of emails has in order to be realistic.

First of all, I shall assume that for each message m there is at most one full
version of m, i.e., an email of the form mB. The rationale behind this decision
is that a sender of mB and mB′ might just as well send a single email mB∪B′ .
This assumption can be summarized as a statement that the agents do not have
‘second thoughts’ about the recipients of their emails. It also simplifies subsequent
considerations.

I have decided not to impose a total ordering on the emails in the model, for
example by giving each email a time stamp. This makes the model a lot simpler.
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Also, many interesting questions can be answered without imposing such a total
ordering. For example, I can investigate the existence of common knowledge in a
group of agents after an email exchange perfectly well without knowing the exact
order of the emails that were sent.

However, I will impose a partial ordering on the sets of emails. This is useful
because I need to make sure that the agents only send information they actually
know. Moreover, a forward can only be sent after the original email was sent. I
will introduce the minimal partial ordering that takes care of these issues.

First, I define by structural induction the factual information FI(m) con-
tained in a message m as follows:

FI(s(a, n,G)) := {n},
F I(f(a, n.m,G)) := FI(m) ∪ {n}.

Informally, the factual information is the set of notes which occur somewhere in
the message, including those occurring in forwarded messages.

I will represent an email exchange as a state s = (E,N). It is a tuple con-
sisting of a finite set E of emails that were sent and a sequence N = (N1, . . . , Nn)
of sets of notes for all agents. The idea of these sets is that each agent a initially
holds the notes in Na. I use Es and Ns to denote the corresponding elements of
a state s, and N1, ..., Nn to denote the elements of N .

I say that a state s = (E,N) is legal if a strict partial ordering (in short, an
spo) ≺ on E exists that satisfies the following conditions:

L.1: for each email f(a, n.m,G)B ∈ E an email mC ∈ E exists such that mC ≺
f(a, n.m,G)B and a ∈ {sm} ∪ rm ∪ C,

L.2: for each email s(a, n,G)B ∈ E, where n 6∈ Na, an email mC ∈ E exists such
that mC ≺ s(a, n,G)B, a ∈ rm ∪ C and n ∈ FI(m),

L.3: for each email f(a, n.m′, G)B ∈ E, where n 6∈ Na, an email mC ∈ E exists
such that mC ≺ f(a, n.m′, G)B, a ∈ rm ∪ C and n ∈ FI(m).

Condition L.1 states that the agents can only forward messages they previously
received. Conditions L.2 and L.3 state that if an agent sends a note that he did
not initially hold, then he must have learnt it by means of an earlier email.

So a state is legal if its emails can be partially ordered in such a way that
every forward is preceded by its original message, and for every note sent in an
email there is an explanation how the sender of the email learnt this note. As
every partial ordering can be extended to a linear ordering, the emails of a legal
state can be ordered in such a way that each agent has a linear ordering on its
emails. However, such a linear ordering does not need to be unique. For example,
the emails s(a, n, b)∅ and s(a, n, c)∅ can always be ordered in both ways.

Moreover, a strict partial ordering that ensures that a state is legal does not
need to be unique either and incompatible minimal partial orderings can exist.
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Here is an example. Suppose that n ∈ Na\Nb and b ∈ G1∩G2, and consider the set
of messages {s(a, n,G1), s(a, n,G2), s(b, n, c)}. The resulting state (we identify
here each message m with the email m∅) is legal. There are two minimal spos that
can be used to establish this, s(a, n,G1) ≺ s(b, n, c) and s(a, n,G2) ≺ s(b, n, c).
So it cannot be assumed that any specific message sent by agent a has to precede
the message sent by agent b, though it must be so that at least one of them does.

This shows that the causal relation between emails essentially differs from the
causal relation between messages in distributed systems, as studied in [Lamport,
1978]. Furthermore, the assumption that communication is synchronous does not
result in a unique spo on the considered emails.

Because of the lack of a unique spo on the emails it is tempting to use an
alternative definition that stipulates that each email is ‘justified’ by a set of
emails. For instance, in the above example the message s(b, n, c) is justified by
the set {s(a, n,G1), s(a, n,G2)}. Unfortunately, because of the fact that it is
possible to append notes to forwarded messages, this is not a valid alternative.
Indeed, consider the following set of messages

{s(1, p, 2), s(1, q, 3), s(1, r, 4),
f(2, r.s(1, p, 2), 3), f(3, p.s(1, q, 3), 4), f(4, q.s(1, r, 4), 2)},

and assume that p, q, r ∈ N1 and p, q, r 6∈ N2 ∪ N3 ∪ N4. Then each message
has a justification. For example the message f(2, r.s(1, p, 2), 3) can be justified
by the set {s(1, p, 2), f(4, q.s(1, r, 4), 2)}. Indeed, the first message justifies the
’s(1, p, 2)’ component and the second one justifies the ‘r’ component. However,
it is easy to see that this is not a legal state: each of the notes appended to the
forwards can only be known by the sender after one of the other forwards has
been received. Therefore, none of the forwards can be the first forward.

5.3 Epistemic Language and its Semantics

In order to reason about the knowledge of the agents after an email exchange has
taken place I introduce the language LEE of email exchanges as follows:

ϕ := m | i J m | ¬ϕ | ϕ ∧ ϕ | CGϕ
Here m denotes a message. The formula m expresses the fact that m has been
sent in the past, with some unknown group of BCC recipients. The formula i J m
expresses the fact that agent i was involved in a full version of the message m,
i.e., he was either the sender, a recipient or a BCC recipient. The formula CGϕ
denotes common knowledge of the formula ϕ in the group G.

I use the usual abbreviations ∨, → and ↔ and use Kiϕ as an abbreviation of
C{i}ϕ. The fact that an email with a certain set of BCC recipients was sent can
be expressed in this language with the following abbreviation:

mB := m ∧
∧

i∈{sm}∪rm∪B

i J m ∧
∧

i 6∈{sm}∪rm∪B

¬i J m
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Note that this formula expresses the fact that the message m was sent with exactly
the group B as BCC recipients, which captures precisely the intended meaning
of mB.

I will now provide a semantics for this language interpreted on legal states,
inspired by the perspective of epistemic logic and the history-based approaches of
[Pacuit and Parikh, 2007] and [Parikh and Ramanujam, 2003]. For every agent a
I define an indistinguishability relation ∼a, where I intend s ∼a s′ to mean that
agent a cannot distinguish between the states s and s′. I first define this relation
on the level of emails as follows:

mB ∼a m′B′

iff one of the following contingencies holds:

(i) sm = a, m = m′ and B = B′,

(ii) a ∈ rm \ {sm} and m = m′,

(iii) a ∈ B ∩B′ and m = m′.

Recall that I assume that senders and regular recipients are not BCC recipients,
so conditions (i) - (iii) are mutually exclusive. Condition (i) states that the sender
of an email confuses it only with the email itself. In turn, condition (ii) states that
each regular recipient of an email who is not a sender confuses it with any email
with the same message but possibly sent to a different BCC group. Condition
(iii) states that each BCC recipient of an email confuses it with any email with
the same message but sent to a possibly different BCC group of which he is also
a member. Finally, condition (iv) states that if a is no sender, regular recipient
or BCC recipient of m or m′ then he confuses them. It will become clear that
in this case the question of whether a confuses these messages is irrelevant for
the proceedings. Since a has nothing to do with these messages in this case, it is
not important to know whether he can distinguish them. However, the fact that
a confuses the two messages matches the intuition that a knows nothing about
these messages.

5.3.1. Example. Consider the emails e := s(a, n, b)∅ and e′ := s(a, n, b){c}.
Then e 6∼a e′, e ∼b e′ and e 6∼c e′. Intuitively, agent b cannot distinguish be-
tween these two emails because he cannot see whether c is a BCC recipient. In
contrast, agents a and c can distinguish between these two emails.

Next, I extend the indistinguishability relation to legal states by defining

(E,N) ∼a (E ′, N ′)

iff all of the following hold:
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• Na = N ′a,

• for every mB ∈ E such that a ∈ {sm} ∪ rm ∪ B there is an mB′ ∈ E ′ such
that mB ∼a mB′ ,

• for every mB′ ∈ E ′ such that a ∈ {sm} ∪ rm ∪ B′ there is an mB ∈ E such
that mB ∼a mB′ .

So two states cannot be distinguished by an agent if they agree on his notes
and their email sets look the same to him. Since I assume that the agents do not
know anything about the other notes, I do not refer to the sets of notes of the
other agents. Note that ∼a is an equivalence relation.

5.3.2. Example. Consider the legal states s1 and s2 which are identical apart
from their sets of emails:

Es1 := {s(a, n, b)∅, f(b, s(a, n, b), d)∅},
Es2 := {s(a, n, b){c}, f(b, s(a, n, b), d)∅, f(c, s(a, n, b), d)∅}.

I assume here that n ∈ Na and that in each state the emails are ordered by
the textual ordering. So in the first state agent a sends a message with note n to
agent b and then b forwards this message to agent d. Furthermore, in the second
state agent a sends the same message but with a BCC to agent c, and then both
agent b and agent c forward the message to agent d.

From the above definition it follows that s1 6∼a s2, s1 ∼b s2, s1 6∼c s2 and
s1 6∼d s2. For example, s1 6∼a s2 holds because, as noticed above, s(a, n, b)∅ 6∼a
s(a, n, b){c}. Intuitively, in state s1 agent a is aware that he sent a BCC to
nobody, while in state s2 he is aware that he sent a BCC to agent c. In turn,
in both states s1 and s2 agent b is aware that he received the message s(a, b, n)
and that he forwarded the email f(b, s(a, n, b), d)∅. Intuitively, in state s2 agent
b does not notice the BCC of the message s(a, b, n) and is not aware of the email
f(c, s(a, b, n), d)∅.

In order to express common knowledge, I define for a group of agents G the
relation ∼G as the reflexive transitive closure of

⋃
a∈G ∼a. Then I define the truth

of a formula from our language in a state inductively as follows, where s = (E,N):

s |= m iff ∃B : mB ∈ E
s |= a J m iff ∃B : mB ∈ E and a ∈ {sm} ∪ rm ∪B
s |= ¬ϕ iff s 6|= ϕ
s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= CGϕ iff s′ |= ϕ for every legal state s′ such that s ∼G s′

I say that ϕ is valid (and often just write ‘ϕ’ instead of ‘ϕ is valid’) if for all
legal states s, s |= ϕ.
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Even though this definition does not specify the form of communication, one
can deduce from the definition of the relation ∼ that the communication is syn-
chronous, that is, that each email is simultaneously received by all the recipi-
ents. Note also that the condition of the form mB ∈ E present in the second
clause implies that for every email mB the following equivalence is valid for all
a, b ∈ {sm} ∪ rm ∪B:

a J m↔ b J m.

This means that in every legal state (E,N) either all recipients of the email mB

received it (when mB ∈ E) or none (when mB 6∈ E).
However, it should be noted that the agents do not have a common ‘clock’

using which they could deduce how many messages have been sent by other agents
between two consecutive messages they have received. Furthermore, the agents
do not have a local ‘clock’ using which they could count how many messages they
sent or received.

When I say that a messagem′ is mentioned in or a part of another message
m I mean that m is m′ itself, or a forward of m′, or a forward of a forward of m′,
and so on.

The following lemma clarifies when specific formulas are valid. In the sequel
I shall use these observations implicitly.

5.3.3. Lemma.

(i) m→ m′ is valid iff m′ is part of the message m.

(ii) m → a J m′ is valid iff either m → m′ is valid and a ∈ {sm′} ∪ rm′ or for
some note n and group G, f(a, n.m′, G) is part of the message m.

The second item states that m → a J m′ is valid either if a is a sender or a
receiver of m′ (in that case actually m → a J m′ is valid) or if m shows that a
forwarded the message m′. The latter is also possible if a was a BCC receiver of
m′. The claimed equivalence holds thanks to condition L.1.

5.3.4. Example. To illustrate the definition of truth, let me return to Example
5.3.2. In state s2 agent b does not know that agent c received the message s(a, n, b)
since he cannot distinguish s2 from the state s1 in which agent c did not receive
this message. So s2 |= ¬Kbc J s(a, n, b) holds.

On the other hand, in every legal state s3 such that s2 ∼d s3 both an
email f(c, s(a, n, b), d)C and a ‘justifying’ email s(a, n, b)B have to exist such that
s(a, n, b)B ≺ f(c, s(a, n, b), d)C and c ∈ B, where ≺ is an spo such that the emails
of s3 satisfy conditions L.1-L.3 w.r.t. ≺. Consequently s3 |= c J s(a, b, n), so
s2 |= Kdc J s(a, n, b) holds, so by sending the forward agent c revealed himself
to d as a BCC recipient.

I leave it to the reader to check that both s2 |= C{c,d}c J s(a, n, b) and
s2 |= ¬C{b,d}c J s(a, n, b) hold. In words, agents c and d have common knowledge
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that agent c was involved in a full version of the message s(a, n, b), while the
agents b and d do not.

5.4 Epistemic Contents of Emails

In Subsection 5.2.3 I defined the factual information contained in a message. Us-
ing epistemic formulas I can also define the epistemic information contained
in a message or an email. First, I define it for messages as follows:

EI(s(a, n,G)) := C{a}∪Gs(a, n,G),

EI(f(a, n.m,G)) := C{a}∪G(f(a, n.m,G) ∧ EI(m)).

So the epistemic information contained in a message is the fact that the sender
and receivers acquire common knowledge of the message. In the case of a forward
the epistemic information contained in the original message also becomes com-
mon knowledge. This results in nested common knowledge. In general, iterated
forwards can lead to arbitrary nesting of the common knowledge operator, each
time involving a different group of agents.

The definition of the epistemic information contained in an email additionally
needs to capture the information about the agents who are on the BCC list of an
email. I define:

EI(mB) := EI(m) ∧
∧
a∈B

C{sm}∪{a}(EI(m) ∧ a J m) ∧KsmmB.

So EI(mB) states that

• the epistemic information contained in the message m holds,

• the sender of the message and each separate agent on the BCC list have
common knowledge of this epistemic information and of the fact that this
agent received the message,

• the sender knows the precise set of BCC recipients.

The following result shows that indeed the epistemic information in a message
or an email holds in a state if and only if the message or email was sent.

5.4.1. Theorem. The following equivalences are valid:

(i) m↔ EI(m),

(ii) mB ↔ EI(mB).
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Proof. Each relation ∼a on the level of states is an equivalence relation, so for
all formulas ϕ and G ⊆ Ag, the implication CGϕ → ϕ, and hence in particular
EI(m)→ m and EI(mB)→ mB, is valid.

(i) To prove the validity of m → EI(m), take some message m. Let A =
{sm} ∪ rm. Consider an arbitrary legal state s and assume that s |= m. Suppose
s ∼A s′ for some legal state s′. Then there is a path s = s0 ∼a1 s1 ∼a2 . . . ∼al

sl = s′ from s to s′, where a1, . . . , al ∈ A.
For every k ∈ {1, . . . , l} suppose sk = (Ek, Nk). Then for every k ∈ {1, . . . , l},

sk−1 |= m implies that for some B, mB ∈ Ek−1. Now, since ak ∈ {sm} ∪ rm, by
the clauses (i) and (ii) of the definition of the ∼ik relation on the emails for some
group B′ I have mB′ ∈ Ek, which implies sk |= m. Since s |= m, an inductive
argument shows that s′ |= m. This proves that s |= CAm. So I established the
validity of the implication

m→ CAm,

and in particular of s(i, l, G)→ EI(s(i, l, G)).
For the forward messages I proceed by induction on the structure of the mes-

sages. The base case is given by the implication s(i, l, G)→ EI(s(i, l, G)). Con-
sider the message f(a, n.m,G). The implication f(a, n.m,G)→ m is valid, so by
the induction hypothesis the implication f(a, n.m,G)→ EI(m) is valid. Since I
showed already that the implication

f(a, n.m,G)→ C{a}∪Gf(a, n.m,G)

is valid, I conclude that the implication

f(a, n.m,G)→ C{a}∪G(f(a, n.m,G) ∧ EI(m))

is also valid.
(ii) I already established the validity of m→ EI(m). Then by the definition

of mB the implication mB → EI(m) is also valid.
Let a ∈ B. Consider an arbitrary legal state s and assume that s |= mB.

Suppose s ∼{sm}∪{a} s
′ for some legal state s′. Then there is a path s = s0 ∼a1

s1 ∼a2 . . . ∼al
sl = s′ from s to s′, where a1, . . . , al ∈ {sm} ∪ {a} and l ≥ 0.

For every k ∈ {1, . . . , l} suppose sk = (Ek, Nk). Then for every k ∈ {1, . . . , l},
sk−1 |= mB implies that mB ∈ Ek−1 and then by the definition of ∼k, mB′ ∈ Ek
for some B′ such that a ∈ B′. This means that sk |= a J m and sk |= m which
implies by (i) that sk |= EI(m). Since s |= mB an inductive argument then shows
that s′ |= EI(m) ∧ a J m. So s |= C{sm}∪{a}(EI(m) ∧ a J m).

Finally, suppose that s ∼b s′, where {sm} = {b}, and s |= mB. By the
definition of the ∼b relation on the level of states mB ∈ Es′ so s′ |= mB. This
proves s |= KsmmB.

I conclude that the implication mB → EI(mB) is valid. Trivially, EI(mB)→
mB is also valid. �
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Using the above theorem it can be determined ‘who knows what’ after an email
exchange E (taken from a legal state (E,N)) took place. The problem boils down
to computing

∧
e∈E EI(e). When one is interested in a specific fact, for example

whether after an email exchange E took place agent i knows a formula ψ, one
simply needs to establish the validity of the implication

∧
e∈E EI(e)→ Caψ.

Using the epistemic information contained in an email I can define the in-
formation gain of an agent resulting from sending or receiving of an email as
follows. Suppose a ∈ {sm} ∪ rm ∪B. Then

IG(mB, a) :=


EI(mB) if sm = a

EI(m) if a ∈ rm
C{sm}∪{a}(EI(m) ∧ a J m) if a ∈ B

Then the following result is a simple consequence of Theorem 5.4.1.

5.4.2. Corollary. Take a legal state s = (E,N) and an email mB ∈ E. Then
for every agent a ∈ {sm} ∪ rm ∪B,

s |= KaIG(mB, a).

Proof. It follows immediately from Theorem 5.4.1 that for any a ∈ {sm} ∪
rm∪B, s |= IG(mB, a). A closer inspection of the form of IG(mB, a) reveals that
for any such a, IG(mB, a)→ KaIG(mB, a). So s |= KaIG(mB, a). �

5.4.3. Example. Using the notion of an information gain I can answer the first
question posed in Example 5.1.1, namely what Alice learned from Bob’s email.
First I recall the messages and emails defined there:

m := s(c, n, {a, d}),
e1 := m′∅, where m′ := f(a,m, b),
e2 := m′′{a}, where m′′ := f(b,m′, {c, d}).

By definition,

EI(m) = C{a,c,d}m,
EI(m′) = C{a,b}(m

′ ∧ EI(m)),
EI(m′′) = C{b,c,d}(m

′′ ∧ EI(m′)),
IG(e2, a) = C{a,b}(EI(m′′) ∧ b J m′′).

This should be contrasted with the information Alice had after she sent the email
e1, which was EI(m′).
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5.5 Common Knowledge

I will now clarify when a group of agents acquires common knowledge of the
formula expressing that an email was sent. This shows how my framework can
be used to investigate epistemic consequences of email exchanges.

Given a set of emails E and a group of agents A, let the group of emails
shared by the group A be defined as

EA := {mB ∈ E | A ⊆ {sm} ∪ rm or ∃b ∈ B : (A ⊆ {sm} ∪ {b})}.

Note that when |A| ≥ 3, then e ∈ EA iff A ⊆ {sm} ∪ rm. When |A| = 2, then
e ∈ EA also when ∃j ∈ B : A = {sm} ∪ {j}, and when |A| = 1, then e ∈ EA also
when A = {sm} or ∃j ∈ B : A = {j}.

The following theorem uses this definition to provide a simple way of testing
whether a message or an email is common knowledge in a group of agents.

5.5.1. Theorem. Main Theorem Consider a legal state s = (E,N) and a
group of agents A.

(i) s |= CAm iff there is m′B ∈ EA such that m′ → m is valid.

(ii) Suppose that |A| ≥ 3. Then s |= CAmB iff the following hold:

C1 {sm} ∪ rm ∪B = Ag,

C2 for each b ∈ B there is m′B′ ∈ EA such that m′ → b J m is valid,

C3 there is m′B′ ∈ EA such that m′ → m is valid.

Part (i) shows that when I limit my attention to messages, then things are
as expected: a group of agents acquires common knowledge of a message m iff
they receive an email that mentions m. If I limit my presentation to emails with
the empty BCC sets I get as a direct corollary the counterpart of this result for
a simplified framework with messages only.

To understand part (ii) note that it states that s |= CAmB iff

• the email mB involves all agents (recall that Ag is the set of all agents),

• for every agent b that is on the BCC list of mB there is an email shared
by the group A that proves that b was involved in message m, i.e., that b
forwarded the message m,

• there is an email shared by the group A that proves the existence of the
message m.



5.5. Common Knowledge 73

The first of the above three items is striking and shows that common knowledge
of an email is rare. C3 is just the condition used in part (i). So an email mB such
that A ⊆ {sm} ∪ rm does ensure that the group of agents A acquires common
knowledge of m. However, the group A can never know what was the set of the
BCC recipients of mB unless it was the set Ag \ ({sm} ∪ rm) and there is a proof
for this fact in the form of the ‘disclosing emails’ from all members of B.

Having in mind that the usual purpose of the BCC is just to inform its re-
cipients of a certain message (that they are supposed to ‘keep for themselves’), I
conclude that the presence of the BCC feature essentially precludes that a group
of agents can acquire common knowledge of an email. Informally, the fact that
the BCC feature creates ‘secret information’ has as a consequence that common
knowledge of an email is only possible if this secret information is completely
disclosed to the group in question. Moreover, the message has to be sent to all
agents since otherwise the agents might consider the possibility that the other
agents also received a BCC.

Note that using the notion of the information gain introduced in the previous
section I can determine for each agent in a group A what he learned from a
message m or an email mB. In some circumstances, like when m = s(i, l, G) and
A ⊆ G ∪ {i}, this information gain can imply CAm. However, the definition of
EI(mB) implies that the information gain can imply CAmB only in the obvious
case when A = {sm}.

Finally, the above result crucially depends on the fact that the notes are
uninterpreted. If one allows emails that contain propositional formulas of the
language LEE from Section 5.3 augmented by the notes, then an agent could
communicate to a group A the fact that he sent an email mB (with a precise set
of the BCC recipients). Then mB would become common knowledge in the group
A.

As an aside let me mention that there is a corresponding result for the case
when |A| < 3, as well. However, it involves a tedious case analysis concerning the
possible relations between A, {sm}, rm and B, so I do not present it here.

5.5.2. Example. I can use the above result to answer the second question posed
in Example 5.1.1. Let s be the state whose set of emails consist of the considered
four emails, so

e0 := m∅, where m := s(c, n, {a, d}),
e1 := m′∅, where m′ := f(a,m, b),
e2 := m′′{a}, where m′′ := f(b,m′, {c, d}),
e3 := f(a,m′′, {c, d}){b}.

Alice’s set of notes in s consists of n while the sets of notes of Bob, Clare and
Daniel are empty. Note that s is legal. Then it holds that

s 6|= C{a,b,c,d}s(c, n, {a, d}).
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The reason is that
E{a,b,c,d} = ∅.

Indeed, for no m∗ ∈ {m,m′,m′′, f(a,m′′, {c, d})} I have

{a, b, c, d} ⊆ S(m∗) ∪R(m∗)

and for no m∗B ∈ {e0, e1, e2, e3} I have some x ∈ B such that

{a, b, c, d} ⊆ S(m∗) ∪ {x}.

So there are no messages that ensure common knowledge in the group {a, b, c, d}.
So even though there have been three forwards of the original message, it is not
common knowledge.

Clearly, if the original message s(c, n, {a, d}) is not common knowledge then
its forward f(a,m, b) is not common knowledge either. Another way to derive
this is directly from the Main Theorem. Namely, I have

s 6|= C{a,b,c,d}f(b,m′, {c, d}){a}.

The reason is that condition C2 does not hold since no email shared by
{a, b, c, d} exists that proves that Alice received m′′. In contrast,

s |= C{a,c,d}f(b,m′, {c, d}){a}

does hold, since the email e3 is shared by {a, c, d}. Furthermore, if Alice had
included Daniel in the forward instead of sending him a BCC, and had used the
forward f(a,m′′, {b, c, d})∅, then condition C2 would hold and I could conclude
for this modified state s′ that

s′ |= C{a,b,c,d}f(b,m′, {c, d}){a}.

5.6 Proof of the Main Theorem

I first establish a number of auxiliary lemmas. I shall use a new strict partial
ordering on emails. I define

mB < m′B′ iff m 6= m′ and m′ → m.

Note that by Lemma 5.3.3 m 6= m′ and m′ → m precisely if m′ is a forward,
or a forward of a forward, etc, of m. Then for two emails mB and m′B′ from a
legal state s that satisfies conditions L.1-L.3 w.r.t. an spo ≺, mB < m′B′ implies
mB ≺ m′B′ on the account of condition L.1. However, the converse does not need
to hold since mB ≺ m′B′ can hold on the account of L.2 or L.3. Furthermore,
note that the <-maximal elements of E are precisely the emails in E that are not
forwarded.
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Given a set of emails E and E ′ ⊆ E, I define the downward closure of E ′

as
E ′≤ := E ′ ∪ {e ∈ E | ∃e′ ∈ E ′ : e < e′}.

The set of emails E on which the downward closure of E ′ depends will always be
clear from the context.

Next, I introduce two operations on states. Assume a state (E,N) and an
email mB ∈ E.

I define the state
s \mB := (E \ {mB}, N ′),

with

N ′a :=

{
Na ∪ FI(m) if a ∈ rm ∪B
Na otherwise

Intuitively, s \ mB is the result of removing the email mB from the state s,
followed by augmenting the sets of notes of its recipients in such a way that they
initially already had the notes they would have acquired from mB. Note that
s \mB is a legal state if mB is an <-maximal element of E.

Next, given C ⊆ B I define the state

s[mB 7→C ] := (E \ {mB} ∪ {mC}, N ′),

with

N ′a :=

{
Na ∪ FI(m) if a ∈ B \ C
Na otherwise

Intuitively, s[mB 7→C ] is the result of shrinking the set of BCC recipients of m
from B to C, followed by an appropriate augmenting of the sets of notes of the
agents that no longer receive m.

Note that s[mB 7→C ] is a legal state if there is no forward of m by an agent
a ∈ B\C, i.e., no email of the form f(a, n.m,G)D exists in E such that a ∈ B\C.

I shall need the following lemma that clarifies the importance of the set EA
of emails.

5.6.1. Lemma. Consider a legal state s = (E,N) and a group of agents A. Then
for some N ′ the state s′ := ((EA)≤, N

′) is legal and s ∼A s′.

Proof. I prove that for all <-maximal emails mB ∈ E such that mB 6∈ EA (so
neither A ⊆ {sm} ∪ rm nor ∃a ∈ B : (A ⊆ {sm} ∪ {a})) I have s ∼A s \ mB.
Iterating this process I get the desired conclusion.

Suppose mB is a <-maximal email in E such that mB 6∈ EA. Take some
a ∈ A \ ({sm} ∪ rm). Suppose first a 6∈ B. Then s ∼a s \mB so s ∼A s \mB.

Suppose now a ∈ B. Define

s1 := s[mB 7→{a}].
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Then s1 is a legal state and s ∼a s1. Next, define

s2 := s[mB 7→∅].

Now take some b ∈ A \ ({sm} ∪ {a}). Then s1 ∼b s2 ∼a s \mB so s ∼A s \mB.
Note that both s1 and s2 are legal states since mB is <-maximal. �

Using the above lemma I now establish two auxiliary results concerning com-
mon knowledge of the formula a J m or of its negation.

5.6.2. Lemma.

(i) s |= CAa J m iff ∃m′B ∈ EA : (m′ → a J m)
or (A ⊆ {sm} ∪ {a} and ∃mB ∈ EA : (a ∈ B)).

(ii) s |= CA¬a J m iff s |= ¬a J m and (A ⊆ {sm} ∪ {a} or s |= CA¬m).

To illustrate various alternatives listed in (i) note that each of the following
emails in E ensures that s |= Kba J m, where in each case m is the corresponding
send message:

s(a, n,G){b}, f(c, q.s(a, n,G), H){b},
s(c, n, a){b}, f(a, q.s(c, n,G), H){b}, s(b, n,G){a}.

The first four of these emails imply s |= Kba J m by the first clause of (i), the
last one by the second clause.

Proof. (i) (⇒) Suppose s |= CAa J m. Take the legal state s′ constructed in
Lemma 5.6.1. Then s ∼A s′, so s′ |= a J m. Hence for some group B I have
mB ∈ (EA)≤ and a ∈ {sm} ∪ rm ∪B. Three cases arise.

Case 1 : a ∈ {sm} ∪ rm.
Then m → a J m. So if mB ∈ EA, then the claim holds. Otherwise some
email m′B′ ∈ EA exists such that mB < m′B′ . Consequently m′ → m and hence
m′ → a J m. So the claim holds as well.

Case 2 : a 6∈ {sm} ∪ rm and A ⊆ {sm} ∪ {a}.
Then a ∈ B since a ∈ {sm} ∪ rm ∪B. Then by the definition of EA, mB ∈ EA so
the claim holds.

Case 3 : a 6∈ {sm} ∪ rm and ¬(A ⊆ {sm} ∪ {a}).
If for some note n and groups G and C I have f(a, n.m,G)C ∈ (EA)≤, then either
f(a, n.m,G)C ∈ EA or for some m′B′ ∈ EA I have f(a, n.m,G)C < m′B′ . In the
first situation I use the fact that the implication f(a, n.m,G) → a J m is valid.
In the second situation m′ → f(a, n.m,G) and hence m′ → a J m. So in both
situations the claim holds.

Otherwise let s′′ = s′[mB 7→B\{a}]. Note that s′′ is a legal state because a does
not forward m in s′. Take some b ∈ A \ ({sm} ∪ {a}). Then s′ ∼b s′′, so s ∼A s′′.
Moreover, s′′ |= ¬a J m, which yields a contradiction. So this case cannot arise.
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(⇐) The claim follows directly by the definition of semantics. I provide a
proof for one representative case. Suppose that for some email m′B ∈ EA both
A ⊆ S(m′) ∪ R(m′) and m′ → a J m. Take some legal state s′ such that
s ∼A s′. Then for some group B′ it holds that m′B′ ∈ Es′ . So s′ |= m′ and hence
s′ |= a J m. Consequently s |= CAa J m.

(ii) Let s = (E,N).
(⇒) Suppose s |= CA¬a J m. Then s |= ¬a J m. Assume A 6⊆ {sm} ∪ {a} and
s 6|= CA¬m. Then there is some legal state s′ = (E ′, N ′) such that s ∼A s′ and
s′ |= m. Then there is some group B such that mB ∈ E ′. Let b ∈ A\({sm}∪{a})
and let s′′ = (E ′ \ {mB} ∪ {mB∪{a}}, N ′). Then s′ ∼b s′′ so s ∼A s′′. But
s′′ |= a J m which contradicts my assumption.

(⇐) Suppose that s |= ¬a J m and either A ⊆ {sm} ∪ {a} or s |= CA¬m. I
first consider the case that A ⊆ {sm} ∪ {a}. Let s′ be any legal state such that
s ∼A s′. Assume s′ |= a J m. Then mB ∈ Es′ for some group B such that a ∈ B.
Since A ⊆ {sm} ∪ {a}, any legal state s′′ such that s′ ∼A s′′ contains an email
mC ∈ Es′′ for some group C such that a ∈ C. So s′′ |= a J m. In particular, this
holds for the state s, which contradicts my assumption. So s′ |= ¬s(a, n,G) and
hence s |= CA¬s(a, n,G).

Now I consider the case that s |= CA¬m. Let s′ be such that s ∼A s′. Then
s′ |= ¬m. Since a J m→ m is valid, I get s′ |= ¬a J m. So s |= CA¬a J m. �

Now I am ready to prove the Main Theorem.

Proof. (i) (⇒) Suppose s |= CAm. Take the legal state s′ constructed in
Lemma 5.6.1. Then s ∼A s′, so s′ |= m. So for some group B I have mB ∈ (EA)≤.
Hence either mB ∈ EA or some email m′B′ ∈ EA exists such that mB < m′B′ . In
both cases the claim holds.

(⇐) Suppose that for some email m′B ∈ EA it holds that m′ → m. Take some
legal state s′ such that s ∼A s′. Then by the form of EA and the definition of
semantics for some group B′ I have m′B′ ∈ Es′ . So s′ |= m′ and hence s′ |= m.
Consequently s |= CAm.

(ii) By the definition of mB, the fact that the CA operator distributes over
the conjunction, part (i) of the Main Theorem and Lemma 5.6.2 I have

s |= CAmB iff C3-C6,

where

C4
∧
a∈{sm}∪rm∪B ((A ⊆ {sm} ∪ {a} and ∃B′ : (mB′ ∈ EA and a ∈ B′)) or

∃m′B′ ∈ EA : (m′ → a J m)),

C5
∧
a6∈{sm}∪rm∪B (A ⊆ {sm} ∪ {a} or s |= CA¬m),
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C6 s |=
∧
a6∈{sm}∪rm∪B ¬a J m.

(⇒) Suppose s |= CAmB. Then properties C3-C6 hold. But |A| ≥ 3 and
s |= CAm imply that no conjunct of C5 holds. Hence property C1 holds. Fur-
thermore, since |A| ≥ 3 the first disjunct of each conjunct in C4 does not hold.
So the second disjunct of each conjunct in C4 holds, which implies property C2.

(⇐) Suppose properties C1-C3 hold. It suffices to establish properties C4-
C6. For a ∈ {sm} ∪ rm I have m → a J m. So C2 implies property C4.
Furthermore, since C1 holds, properties C5 and C6 hold vacuously. �

5.7 Analysis of BCC

In this framework I built emails out of messages using the BCC feature. So it
is natural to analyze whether and in what sense these emails can be reduced to
messages without BCC recipients.

An email with a BCC recipient can be seen as a message without that BCC
recipient, followed by a forward by the sender of the message to the BCC recipient.
So given a send email s(a, n,G)B, where B = {b1, ..., bk}, it can be simulated with
the following sequence of messages:

s(a, n,G), f(a, s(a, n,G), b1), ..., f(a, s(a, n,G), bk).

Analogous simulations can be formed for the forward email f(a, n.m,G)B. At
first sight, it seems that this simulation has exactly the same epistemic effect as
the original email with the BCC recipients. In both states, each agent b1, ..., bk
separately receives a copy of the message and only the sender of this message is
aware of this. However, there are two subtle differences.

First of all, there is a syntactic difference between the messages that agents
b1, ..., bk receive in the original case and in the simulation. In the original case
they receive exactly the message m, and in the simulation they receive a forward
of it. This also means that if they reply to or forward the message, there is a
syntactic difference in this reply or forward. This difference is purely syntactic and
does not essentially influence the knowledge of the agents, even though it clearly
influences the truth value of the formula b J m which is true for b ∈ {b1, ..., bk}
in the original case but not in the simulation.

The second difference is more fundamental. If agents b1, ..., bk are BCC recip-
ients of m and they do not send a reply to or a forward of m, then each of them
can be sure that no other agent but the sender of m knows he was a BCC recipi-
ent. Indeed, in our framework there is no message the sender of m could send to
another agent, that expresses that agents b1, ..., bk were the BCC recipients of m.

In the case of the simulation however, these recipients do not receive a BCC
but a forward. Since these forwards may have additional BCC recipients of which
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agents b1, ..., bk are unaware, they cannot be sure that the other agents do not
know that they received a forward of the message. Furthermore, the sender of m
could also forward the forward he sent to b1, ..., bk without informing them about
it, thus also revealing their knowledge of m.

A concrete example that shows this difference is the following.

5.7.1. Example. Let
Es = {s(1, n, 2){3}}.

Then s |= K3¬K2K3s(1, n, 2), that is, agent 3 is sure that agent 2 does not know
about his knowledge of the message s(1, n, 2). A simulation of this email without
a BCC recipient would result in the state t with (we abbreviate here each email
m∅ to m)

Et = {s(1, n, 2), f(1, s(1, n, 2), 3)}.
Now consider a state t′ with:

Et′ = {s(1, n, 2), f(1, s(1, n, 2), 3), f(1, f(1, s(1, n, 2), 3), 2)}.

Clearly t ∼3 t
′ and t′ |= K2K3s(1, n, 2). This shows that t 6|= K3¬K2K3s(1, n, 2).

This argument can be made more general as follows. Below, in the context of
a state I identify each message m with the email m∅. Then I have the following
result.

5.7.2. Theorem. Take a legal state s = (E,N), an email mB ∈ E and an agent
b ∈ B such that E does not contain a forward of m by b or to b. Then for every
set of messages (i.e., emails with no BCC recipients) M such that (M,N) is a
legal state, I have for every agent c 6∈ {sm} ∪ {b}

s |= Kbm ∧Kb¬KcKbm,

while
(M,N) 6|= Kbm ∧Kb¬KcKbm.

Proof. Agent b is a BCC recipient of m in s, so by the definition of the seman-
tics, s |= Kbm. I will first show that s |= Kb¬KcKbm. Take some state t such
that s ∼b t. Then by the definition of the semantics there is some group C such
that mC ∈ Et and b ∈ C. Suppose that m is a send email, say m = s(a, n,G).
For the case that m is a forward email the reasoning is analogous. Let u be the
state like t, but with

Eu = Et\{s(a, n,G)C} ∪ {s(a, n,G)C\{b}, s(a, n, b)}.

Note that I implicitly assume that no full version of s(a, n, b) is already present
in Et. If there were such a full version, I could do the same construction without
adding s(a, n, b) to Et.
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Since there are no forwards of m by b or to b in E, and s ∼b t, there are no
forwards of m by b or to b in Et. This shows that u is a legal state and that there
are no forwards of m to b in Eu so u 6|= Kbm. Clearly, for every c 6∈ {sm} ∪ {b} it
holds that t ∼c u. So t 6|= KcKbm, which shows that s |= Kb¬KcKbm.

Take now any set of messages M such that (M,N) is legal and suppose
(M,N) |= Kbm. Then by the Main Theorem there is some message m′ in which
agent b was involved that implies that message m was sent. By the requirements
on the legal states we know that there is such a message m′ of which agent b
was a recipient, and not the sender, since agents can only send information they
initially knew or received through some earlier message. Since there are no BCC
recipients in M , I conclude that agent b is a regular recipient of m′ and that
m′ → m is valid.

Define the set of messages M ′ by

M ′ := M ∪ {f(sm′ ,m
′, c)}.

Note that (M ′, N) is a legal state, and (M ′, N) |= Kcm
′. Since b is a regular

recipient ofm′, m′ → Kbm
′ is valid and sincem′ → m is also valid this implies that

(M ′, N) |= KcKbm. Also, since b is not involved in f(S(m′),m′, c), (M,N) ∼b
(M ′, N). This shows that (M,N) 6|= Kb¬KcKbm. In view of my assumption that
(M,N) |= Kbm I conclude that (M,N) 6|= Kbm ∧Kb¬KcKbm. �

In this theorem I assume that for the BCC recipient b of the message m there
are no forwards of m to b or by b. The theorem shows that under these assump-
tions, s and (M,N) can be distinguished by an epistemic formula concerning the
message m. I will now show that these assumptions are necessary.

5.7.3. Example. Take a legal state s = (E,N) with

E = {s(1, n, 2){3}, f(2, s(1, n, 2), 3)}

and
M = {s(1, n, 2), f(1, s(1, n, 2), 3), f(2, s(1, n, 2), 3)}.

It is clear that (M,N) is a perfect BCC-free simulation of s: for every for-
mula ϕ that holds in s, if I replace the occurrences of 3 J s(1, n, 2) in ϕ by
f(1, s(1, n, 2), 3) then the result holds in (M,N). The reason that I can find such
a set M is that in E there is a forward of s(1, n, 2) to agent 3. This reveals the
‘secret’ that agent 3 knows about s(1, n, 2) and then the fact that agent 3 was a
BCC recipient of s(1, n, 2) is no longer relevant.

5.7.4. Example. A similar example shows the importance of the assumption
that there are no forwards by a BCC recipient. Take a legal state s = (E,N)
with

E = {s(1, n, 2){3}, f(3, s(1, n, 2), 2)}
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and

M = {s(1, n, 2), f(1, s(1, n, 2), 3), f(3, f(1, s(1, n, 2), 3), 2)}.

Again, for every formula ϕ that holds in s, if I replace the occurrences of 3 J
s(1, n, 2) in ϕ by f(1, s(1, n, 2), 3) then the result holds in (M,N). Now the reason
is that agent 3 informed agent 2 that he was a BCC recipient of s(1, n, 2) in s by
sending a forward of this message, so again the fact that agent 3 knows s(1, n, 2)
is not a secret anymore.

It is interesting to note that the impossibility of simulating BCC by means of
messages is in fact caused by my choice of uninterpreted notes as the basic content
of the messages. If my framework allowed one to send messages containing more
complex information, for example a formula of the form b J m, the sender of m
could have informed other agents who were the BCC recipients. Then in Example
5.7.1 I could consider a state s′ with

Es′ = {s(1, n, 2){3}, s(1, 3 J s(1, n, 2), 2)}.

By appropriately extending the semantics I would then have s ∼3 s
′ and s′ |=

K2K3s(1, n, 2), and hence s 6|= K3¬K2K3s(1, n, 2), so the difference between the
above two states s and t would then disappear.

Similarly, if I allowed epistemic formulas as contents of the messages, then in
the above example agent 1 could use the message s(1, K3s(1, n, 2), 2) to inform
agent 2 that agent 3 was a BCC recipient of the message s(1, n, 2). I leave an
analysis of such extensions of my framework and the role of BCC in these extended
settings as future work.

Finally, let me mention another feature of the syntax that cannot be faithfully
simulated by simpler means —that of appending a note to a forwarded message.
Suppose that I allow instead only a ‘simple’ forward f(i,m,G) and simulate the
current forward f(i, n.m,G) by a send and a simple forward, i.e., by the sequence
s(i, n,G), f(i,m,G). Then the fact that the note n was ‘coupled’ with m can in
some circumstances provide a piece of additional information that becomes lost
during the simulation. Here is a concrete example. I do not use BCC here, so
each email m{∅} is written as m.

5.7.5. Example. Suppose that n1, n2 ∈ N1 and n1, n2 6∈ Na for a 6= 1. Let
m := s(1, n, 1) and

Es := {m, f(1, n2.m, 2)}.

Then for all a it holds that s |= K1(Kam → Kan2), that is, agent 1 knows that
every agent who knows the message m also knows the note n2. A simulation of
these two messages with a simple forward would yield the state t with

Et := {m, s(1, n2, 2), f(1,m, 2)}.
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Now consider a state t′ with:

Et′ := {m, s(1, n2, 2), f(1,m, 2), f(2,m, 3)}.

Clearly t ∼1 t
′ and t′ |= K3m ∧ ¬K3n2. This shows that t 6|= K1(K3m→ K3n2).

Note that this example exploits the fact that in this framework the agents
can forward the notes that are ‘buried’ within the received emails (thanks to the
references to n ∈ FI(m) in conditions L.2 or L.3 in Subsection 5.2.3), whereas
they can only forward the messages they received. That is, they cannot forward
messages that are ‘buried’ within the emails they received. This restriction is
realistic in the sense that it holds in most email systems.

5.8 Distributed Systems Perspective

In this section I provide a characterization of the notion of a legal state from the
perspective of distributed systems. In this setting emails are sent in a nonde-
terministic order, each time respecting the restrictions imposed by the legality
conditions L.1-L.3 of Subsection 5.2.3.

I first define an operational semantics in the style of [Plotkin, 1983], though
with some important differences concerning the notions of a program state and
the atomic transitions. Let M be the set of all messages (so not emails). By a
mailbox I mean a function σ : Ag → P(M); σ(a) is then the mailbox of agent
a. If for all a it holds that σ0(a) = ∅, then I call σ0 the empty mailbox. A
configuration is a construct of the form < s, σ >, where s is a legal state and
σ is a mailbox.

Atomic transitions between configurations are of the form

< s, σ > → < s′, σ′ > .

Here ∪̇ denotes disjoint union and

• s := (E ∪̇ {mB}, N),

• s′ := (E,N),

• for a ∈ Ag

σ′(a) :=

{
σ(a) ∪ {m} if a ∈ rm ∪ {sm} ∪B
σ(a) otherwise

I say that the above transition processes the email mB. This takes place
subject to the following conditions depending on the form of m, where N =
(N1, . . . , Nn):



5.8. Distributed Systems Perspective 83

• send m = s(a, n,G). Then I stipulate that n ∈ Na or for some m′ ∈ σ(a)
it holds that n ∈ FI(m′). In the second case I say that m depends on m′.

• forward m = f(a, n.m′, G). Then I stipulate that m′ ∈ σ(a), and n ∈ Na

or for some m′′ ∈ σ(a) it holds that n ∈ FI(m′′). In the case of the first
alternative I say that m depends on m′ and in the case of the second
alternative that m depends on m′ and m′′.

These conditions are essentially equivalent to conditions L.1-L.3, as I will show
later.

Given a legal state s, an email exchange starting in s is a maximal se-
quence of transitions starting in the configuration < s, σ0 >, where σ0 is the
empty mailbox. An email exchange properly terminates if its last configura-
tion is of the form < s′, τ >, where s′ = (∅, N). The way the atomic transitions
are defined clarifies that the communication is synchronous.

Note that messages are never deleted from the mailboxes. Furthermore, ob-
serve that in the above atomic transitions I augment the mailboxes of the re-
cipients of mB (including the BCC recipients) by m and not by mB. So the
recipients of mB only ‘see’ the message m in their mailboxes. Likewise, I aug-
ment the mailbox of the sender by the message m and not by mB. As a result
when in an email exchange a sender forwards his own email, the BCC recipients
of the original email are not shown in the forwarded email. This is consistent
with the discussion of the emails given in Subsection 5.2.2.

Observe that from the form of a message m in the mailbox σ(a) I can infer
whether agent a received it by means of a BCC. Namely, this is the case if and
only if a 6∈ rm ∪ {sm}. (Recall that by assumption the sets of regular recipients
and BCC recipients of an email are disjoint.)

The following result then clarifies the concept of a legal state.

5.8.1. Theorem. The following statements are equivalent:

(i) s is a legal state,

(ii) an email exchange starting in s properly terminates,

(iii) all email exchanges starting in s properly terminate.

The equivalence between (i) and (ii) states that the property of a legal state
amounts to the possibility of processing all the emails in an orderly fashion.

Proof. Suppose s = (E,N).
(i)⇒ (ii). Suppose that s is a legal state. So conditions L.1-L.3 are satisfied

w.r.t. an spo ≺. Extend ≺ to a linear ordering ≺l on E. (Such an extension
exists on the account of the result of [Szpilrajn, 1930].) By the definition of the
atomic transitions I can process the emails in E in the order determined by ≺l.
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The resulting sequence of transitions forms a properly terminating email exchange
starting in s.

(ii)⇒ (iii). Let ξ be a properly terminating email exchange starting in s and
ξ′ another email exchange starting in s. Let mB be the first email processed in ξ
that is not processed in ξ′. The final mailbox of ξ′ contains the message(s) that
m depends on, since their full versions were processed in ξ before mB and hence
were also processed in ξ′. So mB can be processed in the final mailbox of ξ′, i.e.,
ξ′ is not a maximal sequence. This is a contradiction.

(iii)⇒ (ii). Obvious.
(ii)⇒ (i). Take a properly terminating email exchange ξ starting in s. Take

the following spo ≺ on the emails of E: e1 ≺ e2 iff e1 is processed in ξ before e2.
By the definition of the atomic transitions, conditions L.1-L.3 are satisfied w.r.t.
≺, so s is legal. �

Intuitively, the equivalence between the first two conditions means that the
legality of a state is equivalent to the condition that it is possible to execute its
emails in a ‘coherent’ way. Each terminating exchange entails a strict partial (in
fact linear) ordering w.r.t. which conditions L.1-L.3 are satisfied.

5.9 Conclusion

Email is by now one of the most common forms of group communication. This
motivates the study presented in this chapter. The language I introduced allowed
me to discuss various fine points of email communication, notably forwarding
and the use of BCC. The epistemic semantics I proposed aimed at clarifying
the knowledge-theoretic consequences of this form of communication. My pre-
sentation focused on the issues of epistemic content of the emails and common
knowledge.

Communication by email suggests other forms of knowledge. In Chapter 6 I
will consider potential knowledge and definitive knowledge in the context
of email exchanges. When a message is sent to an agent, that agent acquires
potential knowledge of it. Only when he forwards the message he acquires defini-
tive knowledge of the message. The idea is that when a message is sent to an
agent one cannot be sure that he read it. Only when he forwards it one can be
certain that he did read it. The considered framework is an adaptation of the
one presented in this chapter. There, common knowledge is not considered but a
decision procedure is presented for all considered epistemic formulas.

Another extension worthwhile studying is a setting in which the agents com-
municate richer basic statements than just notes. I already indicated in Section
6.4 that sending messages containing a formula a J m increases the expressive-
ness of the messages from the epistemic point of view. One could also consider in
our framework sending epistemic formulas. One step in this direction is already
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present in the approach presented in Chapter 3, where the agents can send each
other basic formulas that do not contain epistemic operators. However, there the
possible messages are limited to those in a finite set which makes the framework
less fit for modeling email communication.

Finally, even though this study was limited to the epistemic aspects of email
exchanges, it is natural to suggest here some desired features of emails. One
is the possibility of forwarding a message in a provably intact form. This form
of forward, used here, is present in the VM email system integrated into the
emacs editor; in VM forward results in passing the message as an attachment
that cannot be changed. Another, more pragmatic one and not considered here,
is disabling the reply-all feature for the BCC recipients so that none of them can
by mistake reveal that he was a BCC recipient. Yet another one is a feature
that would simulate signing of a reception of a registered letter - opening such
a ‘registered email’ would automatically trigger an acknowledgement. Such an
acknowledgement would allow one to achieve in a simple way the above mentioned
definitive knowledge.





Chapter 6

Possible and Definitive Knowledge in
Email Communication

6.1 Introduction

In Chapter 5, I presented a model of the knowledge of agents during an email
exchange. Here, I will study the same situation under different assumptions. In-
stead of focussing on common knowledge, I will distinguish between two different
kinds of knowledge: potential knowledge and definitive knowledge.

When an agent receives some information via email, it is possible that he read
the email and knows its content. However, one cannot be entirely sure of this
because he might have overlooked the email, or he may not have received it at all
due to some error in the email system. Therefore, I consider the second agent’s
knowledge of the email to be potential knowledge. On the other hand, if the
agent replies to an email or he forwards it, then he must have read it. In this
case I consider the second agent’s knowledge to be definitive knowledge. This is
relevant in for example a court case, where someone’s knowledge of an email may
be uncertain if it is only known that someone sent it to him, but his knowledge
of the email would be absolutely certain if he also replied to it.

The language presented here is related to the logic presented in Chapter 5.
There, the language contains propositions about whether an agent was a BCC
recipient of an email and common knowledge modalities, which are not present
in the language presented here. Another difference between the languages is
that in Chapter 5 there is only one type of knowledge while here I distinguish
between potential knowledge and definitive knowledge. Also, in Chapter 5 the
only email conversations that are considered are those that are actually possible
in the sense that no agent sends information he did not receive. In order to
enforce this, certain constraints need to be checked on each email conversation
before the analysis takes place. Here, I take a much simpler approach. I do not
check whether the email conversation is possible in this sense but just analyze
whatever information I can get from it. The advantage of this is that it allows me
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to check email conversations of which some emails are not available for analysis.
Another important advantage of the current approach is that I give a finite

decision procedure. In Chapter 5 the semantics is only defined by epistemic
relations on an infinite number of states. It is unclear whether the model checking
of that semantics is possible in finite time, and if it is, the procedure is in any
case a lot more complex.

For an overview of existing publications related to this chapter, I refer to
Section 5.1.2.

6.1.1 Overview

In the next section, I start out with defining the language based on simple mes-
sages with a sender and a set of recipients. I also define a semantics that is given
by epistemic relations between sets of these messages. In section 6.3 I show that
this semantics can be decided without considering all (possibly infinitely many)
epistemically related states. Actual emails also have a list of BCC recipients that
is only known to the sender and not to the other recipients. In section 6.4 I add
this feature to the semantics and show how it fits in the approach of this chapter.

6.2 The Logic of Messages

In this section I will give a language and semantics based on generic messages
with a sender and a set of recipients. In the next section I will focus specifically on
emails that also have BCC recipients. I do not analyze the content of messages,
only their structure in terms of sender, recipients, and whether they are a forward
of or a reply to previous messages. Just like in the previous chapter, I will consider
the content of a basic message to be some atomic piece of information that I call
a note, usually denoted with n.

Let Ag be a set of agents. I consider messages to have one of two forms:

• A basic message containing a note n, represented by a tuple (a, n,G), where
a ∈ Ag is the sender of the message and G ⊆ Ag is the group of recipients,

• a forward message containing another message, represented by a tuple
(a, n.m,G) where a ∈ Ag is the sender of the message, G ⊆ Ag is the group
of recipients, m is some other message and n is a basic note appended to
the forward.

I will sometimes leave out the braces from singleton sets, writing for example
(1, n, 2) instead of (1, n, {2}). Given some message m, sm denotes its sender and
rm the set of its recipients. This set of recipients can be used to model both
regular and CC recipients of an email. Note that a reply to a message m can be
modeled as (i,m,G) where sm ∈ G. A reply to all recipients can be modeled as
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(a,m,G \ {a}) where a ∈ rm and G = {sm} ∪ rm. For now, I will assume that
the set of recipients is known to the sender and all recipients. In the next section
I will also model the BCC recipients of an email.

6.2.1. Example. The expression (1, n, {2, 3}) stands for a message containing
note n from agent 1 to agent 2 and 3. The message (2, (1, n, {2, 3}), {1, 3}) is a
reply from agent 2 sent to 1 and 3.

When an agent sends an email to a second agent, the email is usually not read
immediately. Sometimes the email is not read at all, for example when it ends
up in the spam folder or when the second agent is not very diligent in reading
all his emails. Therefore, the first agent cannot be sure that the second agent
knows the contents of the email. On the other hand, if the first agent received a
reply from the second agent then he is sure the second agent read the email. In
the first case, I will say the second agent has potential knowledge of the email:
he may have read it, but then again he may not. In the second case I will say
the second agent has definitive knowledge of the email: since he replied on it,
he must have read the email. These two kinds of knowledge are reflected in the
following definition.

6.2.2. Definition. The logic of messages and potential and definitive knowledge
LPD is defined as follows:

ϕ ::= m | ¬ϕ | ϕ ∧ ϕ | K̂aϕ | K̄aϕ

Here m is some message of the form (b, n,G) or (b,m′, G) and a ∈ Ag is some
agent.

The formula m expresses the fact that message m was sent. K̂aϕ stands for
potential knowledge of agent a, which is achieved when agent a receives a message
that implies ϕ. K̄aϕ stands for definitive knowledge of agent a, which is achieved
when agent a replies to or forwards a message that implies ϕ. I will use the
usual abbreviations ϕ ∨ ψ and ϕ → ψ. Note that knowledge operators may be
nested, for example K̄aK̂bm expresses that agent a definitively knows that agent
b possibly knows m. This may be the case if agent a and b are both recipients of
m and agent a forwarded m.

6.2.3. Example. The formula K̂2(1, n, {2, 3}) denotes that agent 2 possibly knows
that the message (1, n, {2, 3}) was sent. This is the case whenever this message
was sent, because agent 2 is a recipient of it. The formula K̄2(1, n, {2, 3}) de-
notes that agent 2 definitely knows about the message, which is the case when
he replied to it.
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This language is interpreted on a set of messages M , which I will sometimes
call a state. I do not bother to define an ordering between the messages in M .
Unlike in the approach presented in Chapter 5, here I do not check whether the set
of messages is ‘correct’ in the sense that for instance no agent forwards a message
he did not receive. I just take whatever information is in M and see what I can
infer from that. This has the advantage that if not all messages are available for
analysis, I can still get the most out of the messages that are available.

In order to really get all information from the messages that are available,
even if they are forwards of messages that are themselves not in the set M , I
define a closure operation:

6.2.4. Definition. Given a message m or a set of messages M , I define its
closure as follows:

Cl(m) := {m′ | m′ is mentioned in m},
Cl(M) :=

⋃
m′∈M Cl(m′).

Just like in the previous chapter, when I say that a message m′ is mentioned in
another message m I mean that m is m′ itself, or a forward of m′, or a forward
of a forward of m′, and so on.

6.2.5. Example. If M = {(2, (1, n, {2, 3}), {1, 3})}, then

Cl(M) = {(1, n, {2, 3}), (2, (1, n, {2, 3}), {1, 3})}.

I will now define the semantics of the language LPD. I start out with the first
three clauses.

M |= m iff m ∈ Cl(M)
M |= ¬ϕ iff M 6|= ϕ
M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ

So I consider M to be evidence for the fact that some message m was sent if m
is in the closure of M , that is, if some message in M mentions m.

For the semantics of potential and definitive knowledge of some agent a I will
use the perspective of epistemic logic. For every agent, I will define two relations
∼Pa and ∼Da between states, based on the messages in the states. Then I will say
that an agent (potentially or definitively) knows a formula in a certain state if
that formula holds in all states related to the original state.

For defining these relations ∼Pa and ∼Da between states, I will not look at all
messages in M but only to those that agent a sent or received and those that he
sent, respectively.

6.2.6. Definition. For each agent a I define two projections on a set of messages
M , one for potential knowledge and one for definitive knowledge:

Πa(M) := {m ∈M | a ∈ {sm} ∪ rm},
∆a(M) := {m ∈M | a = sm}.
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The messages in Πa(M) are exactly those messages for which the fact that
they were sent implies that agent a has potential knowledge of this fact. Similarly,
the messages in ∆a(M) are those messages for which the fact that they were sent
implies that agent a has definitive knowledge of that fact.

6.2.7. Example. Let M = {(2, n′.(1, n, {2, 3}), {1, 3})}. Then

∆1(M) = ∅,
Π2(M) = {(2, (1, n, {2, 3}), {1, 3})},
Π3(M) = {(2, (1, n, {2, 3}), {1, 3})},
Cl(M) = {(1, n, {2, 3}), (2, (1, n, {2, 3}), {1, 3})},
∆1(Cl(M)) = {(1, n, {2, 3})},
Π2(Cl(M)) = {(1, n, {2, 3}), (2, (1, n, {2, 3}), {1, 3})},
Π3(Cl(M)) = {(1, n, {2, 3}), (2, (1, n, {2, 3}), {1, 3})}.

Note that I should first take the closure of M before taking the projection if
I want to consider all messages mentioned in M . For example, if I take the
projection ∆1 of M , I do not get the original message sent by agent 1. Only if
I first take the closure Cl(M) and then the projection ∆1 do I get the complete
result {(1, n, {2, 3})}. This is correct: agent 1 has definitive knowledge of the
message (1, n, {2, 3}) because he sent it.

Because one should always take the closure before taking a projection, I will
define the following shorthand:

6.2.8. Definition. I define:

Π∗a(M) := Cl(Πa(Cl(M))),
∆∗a(M) := Cl(∆a(Cl(M))).

Now that I have these projections in place, I can continue with defining the
relations ∼Pa and ∼Da .

6.2.9. Definition. For any two states M and N , I define

M ∼Pa N iff Π∗a(M) = Π∗a(N),
M ∼Da N iff ∆∗a(M) = ∆∗a(N).

With these relations in place, I define the semantics of the knowledge operators
as follows:

M |= K̂aϕ iff N |= ϕ for all N such thatM ∼Pa N
M |= K̄aϕ iff N |= ϕ for all N such thatM ∼Da N

Intuitively, this semantics can be interpreted as follows. Π∗a(M) is the ‘view’
that agent a has on state M , when considering his potential knowledge, that is,
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assuming that he read every message that was sent to him. On the other hand,
∆∗a(M) is the view of agent a on state M if one considers his definitive knowledge,
so assuming that he read only the messages which he replied to or forwarded. Now
two states look the same to agent a if his view on them is identical. Therefore,
the agent knows something in a certain state if it holds in all states on which he
has the same view as on the current state.

Note that the potential knowledge operator and the definitive knowledge op-
erator are not each other’s dual. It is not necessarily the case that if M |= ¬K̂a¬ϕ
then also M |= K̄aϕ, or vice versa.

6.2.10. Example. Again, let M = {(2, (1, n, {2, 3}), {1, 3})}. Then

∆∗2(M) = {(1, n, {2, 3}), (2, (1, n, {2, 3}), {1, 3})}.

Because (1, n, {2, 3}) ∈ ∆∗2(M), it holds that M |= K̄2(1, n, {2, 3}). So in M agent
2 has definitive knowledge of the message (1, n, {2, 3}). This is correct because
agent 2 sent a forward of this message.

For agent 3 this gives:

∆∗3(M) = ∅.

Since ∆∗3(∅) = ∅, it holds that ∅ ∼D3 M . Because ∅ 6|= (1, n, {2, 3}),
M 6|= K̄3(1, n, {2, 3}). So agent 3 has no definitive knowledge of the message
(1, n, {2, 3}). This is correct because even though agent 3 should have received
the original message and the forward by agent 2, he did not reply to this messages
or forward them so it is possible that these messages were lost or he did not read
them.

I will not give an axiomatization of these semantics. In fact I believe that a
complete axiomatization does not exist in the language that is presented here. A
complete axiomatization should express the fact that the knowledge of the agents
is limited: an agent does not know about a message m if he did not receive some
message that mentions m. There is no way to express “there is no message that
mentions m” in the language LPD. If there was only a finite number of possible
messages then this might be expressed as the negation of a disjunction of messages
mentioning m, but since the number of possible messages is unlimited, this cannot
be done. Therefore I am convinced that there is no complete axiomatization of
the semantics. However, in the next section I will give a way to do model checking
of this semantics.

Even though I will give no complete axiomatization, I can give a number of
axioms that are valid on all sets of messages under these semantics. They show
that the semantics fit the intuition of email communication and possible and
definitive knowledge.
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6.2.11. Theorem. The following axioms hold on all sets of messages:

(a, n.m,G) → m (6.1)

m → K̄am (a = sm) (6.2)

m → K̂bm (b ∈ {sm} ∪ rm) (6.3)

K̄aϕ → K̂aϕ (6.4)

Proof. Take some set of messages M .
(6.1): Clearly, if (a, n.m,G) ∈ Cl(M) then m ∈ Cl(M).
(6.2): If m ∈ Cl(M) and a = sm then m ∈ ∆a(M), so m ∈ ∆∗a(M). Let
N ∼Da M . Then ∆∗a(N) = ∆∗a(M) so m ∈ ∆∗a(N). Then m is mentioned in some
m′ ∈ ∆a(Cl(N)) ⊆ Cl(N), so m ∈ Cl(N).
(6.3): The proof is similar to that for (6.2).
(6.4): I will first show that if M ∼Pa N , then M ∼Da N . Suppose M ∼Pa N .
Then Π∗a(M) = Π∗a(N). Take some m ∈ ∆∗a(M). Then m is mentioned in some
m′ ∈ ∆a(Cl(M)). Then a = sm′ , so certainly a ∈ {sm′}∪rm′ . So m′ ∈ Πa(Cl(M))
and m′ ∈ Π∗a(M). But then m′ ∈ Π∗a(N). Then m′ is mentioned in some m′′ ∈
Πa(Cl(N)) ⊆ Cl(N). So m′ ∈ Cl(N) and because a = sm′ , m

′ ∈ ∆a(Cl(N)).
So because m′ mentions m, m ∈ ∆∗a(N). This shows that ∆∗a(M) ⊆ ∆∗a(N) and
analogously I can prove the converse. So M ∼Da N .
Now suppose M |= K̄aϕ and let M ∼Pa N . Then M ∼Da N so N |= ϕ. Since N
was arbitrary this shows that M |= K̂aϕ. �

6.3 Model Checking

The semantics given in the previous section are very nice in theory. However, can
they also be applied in practice? Can it be decided whether a formula holds given
some set of messages? It is not complicated to check formulas without epistemic
operators. However, when a formula of the form K̂iψ or K̄iψ needs to be checked
in a state M , all states M ′ with Π∗i (M) = Π∗i (M

′) or ∆∗i (M) = ∆∗i (M
′) have to

be checked, respectively. For all we know, there may be infinitely many of these
states. In this section I circumvent this problem and I present a way to check
formulas with epistemic operators.

6.3.1. Definition. With a literal I mean a message or its negation. If l is a
literal, then its negation l is ¬m if l = m and m if l = ¬m. I call the disjunction
of two literals l ∨ l′ a tautology iff it is of the form m ∨ ¬m′ (or, equivalently,
¬m′ ∨ m), where m ∈ Cl(m′). I call the disjunction of n literals l1 ∨ ... ∨ ln a
tautology iff there are two literals li and lj occurring in that disjunction such that
li ∨ lj is a tautology. I call the conjunction of n literals l1 ∧ ...∧ ln a contradiction
if there are two literals li and lj occurring in that conjunction such that li ∨ lj is
a tautology.
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It is not hard to see that if l1 ∨ ... ∨ ln is a tautology then for any M , M |=
l1∨...∨ln. Similarly, if l1∧...∧ln is a contradiction then for any M , M 6|= l1∧...∧ln.

The general idea of my approach is to define for every formula ϕ a family
F(ϕ) of sets of literals. Then I claim that for any model M , M |= ϕ iff for every
F ∈ F(ϕ) there is some l ∈ F such that M |= l. One could say that F(ϕ)
represents a conjunctive normal form of ϕ, using only literals. Because the truth
value of literals is easy to check this makes checking the truth value of ϕ a lot
simpler.

So how can any epistemic formula be equivalent to a conjunction of disjunc-
tions of literals? Intuitively, for example the formula K̂am can only be true if there
was some message sent or received by agent a mentioning message m. Therefore
the disjunction of all such messages is a condition for the satisfaction of K̂am. But
because the message sets can contain forwards of forwards of forwards etcetera
up to arbitrary depth, there are infinitely many such messages. Therefore, I only
consider messages up to a certain depth.

6.3.2. Definition. The depth δ(ϕ) of a formula ϕ is defined as follows.

δ((a, n,G)) := 1
δ((a,m,G)) := 1 + δ(m)
δ(¬ψ) := δ(ψ)
δ(ψ1 ∧ ψ2) := max(δ(ψ1), δ(ψ2))

δ(K̂aψ) := 1 + δ(ψ)
δ(K̄aψ) := 1 + δ(ψ)

The depth of a set of messages M is defined as δ(M) := max({δ(m) | m ∈ M}).
Note that if m ∈ Cl(m′) then δ(m) ≤ δ(m′). This implies that for any M ,
δ(M) = δ(Cl(M)).

I will construct F(ϕ) with literals up to a certain depth. I will later show that
for any state and formula a bound can be found on the depth of the literals that
need to be considered.

6.3.3. Definition. Given a message m, let Mn
Ag(m) be the set of all possible

messages m′ of depth ≤ n between the agents in Ag such that m ∈ Cl(m′).

6.3.4. Definition. Let ϕ be a formula with δ(ϕ) ≤ n. I define a family of sets
of literals Fn(ϕ) as follows. For ϕ = m, let

Fn(m) := {{m}}.

For ϕ = ¬ψ, suppose Fn(ψ) = {F1, ..., Fn}. Then

Fn(¬ψ) := {{l1, ..., ln} | l1 ∈ F1, ..., ln ∈ Fn}.
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For ϕ = ψ1 ∧ ψ2, let

Fn(ψ1 ∧ ψ2) := Fn(ψ1) ∪ Fn(ψ2).

For ϕ = K̂aψ, let

Fn(K̂aψ) := { {m ∈ F | a ∈ {sm} ∪ rm} ∪
{m′ ∈Mn

Ag(m) | m ∈ F, a 6∈ {sm} ∪ rm, a ∈ {sm′} ∪ rm′} ∪
{¬m′ | ¬m ∈ F,m′ ∈ Cl(m), a ∈ {sm′} ∪ rm′} | F ∈ Fn(ψ)}

For ϕ = K̄aψ, let

Fn(K̄aψ) := { {m ∈ F | a = sm} ∪
{m′ ∈Mn

Ag(m) | m ∈ F, a 6= sm, a = sm′} ∪
{¬m′ | ¬m ∈ F,m′ ∈ Cl(m), a = sm′} | F ∈ Fn(ψ)}

I will explain this definition step by step. The definition for ϕ = m is obvious:
clearly, M |= m iff there is some l ∈ {m} such that M |= l. For ϕ = ¬ψ, note
that M |= ¬ψ if M 6|= ψ, so if there is F ∈ Fn(ψ) such that for any l ∈ F ,
M |= l. But this is exactly the case if there is for any F ′ ∈ Fn(¬ψ) some l ∈ F ′
such that l ∈ F and M |= l. For ϕ = ψ1 ∧ ψ2, note that the necessary condition
holds for every F1 ∈ Fn(ψ1) and for every F2 ∈ Fn(ψ2) iff it holds for every
F ∈ Fn(ψ1) ∪ Fn(ψ2).

For ϕ = K̂aψ, I consider every literal in some member of Fn(ψ) separately. If
it is a messagem such that a ∈ {sm}∪rm thenm is equivalent to K̂am so I preserve
m in some member of Fn(ϕ). If it is a message m with a 6∈ {sm}∪ rm then agent
a has possible knowledge of m if some forward or a forward of a forward etcetera
was sent by or to agent a. Therefore I replace m by all members of Mn

Ag(m)
which were sent to or by agent a. Note that here I only consider messages of
depth ≤ n. For the case that the literal is the negation of a message ¬m, note
that agent a knows that m was not sent if there is some message mentioned in m
of which he was a sender or a recipient, which was not sent. Therefore I replace
¬m with these messages.

The definition for ϕ = K̄aψ is very similar to that for K̂aψ, only now I only
look at messages sent by agent a, instead of those sent or received by agent a.

The following theorem states that for every model and formula, I can find a
number such that the satisfaction of that formula in that model can be decided
by looking at a family of sets of literals of depth up to that number:

6.3.5. Theorem. For any set of messages M and formula ϕ there is a finite
number nM,ϕ ≥ δ(M) such that for every k ≥ nM,ϕ,

M |= ϕ iff any F ∈ Fkϕ contains a literal l ∈ F such that M |= l.
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Proof. See Section 6.7. �

Now I can check whether a formula ϕ holds in a state M by only considering
the literals in FnM,ϕ(ϕ). However, I have no idea how large nM,ϕ will be, and I
may have to check a very large number of literals. This apparent problem quickly
disappears with the following realisation. For any message m with δ(m) > δ(M),
certainly M |= ¬m. So I can remove any m with δ(m) > δ(M) from any member
of FnM,ϕ(ϕ). Also, any member of FnM,ϕ(ϕ) that contains some literal ¬m with
δ(m) > δ(M) can be removed altogether, because certainly M |= ¬m.

6.3.6. Definition. Given a formula ϕ and two numbers n > k, I define the
restriction of Fn(ϕ) to depth k as follows:

Fn(ϕ)|k := { {l ∈ F | δ(l) ≤ k} |
F ∈ Fn(ϕ), F contains no ¬m such that δ(m) > k}.

6.3.7. Theorem. For any state M , formula ϕ and number n > δ(M), there is
for every F ∈ Fn(ϕ) some l ∈ F such that M |= l, if and only if the same holds
for Fn(ϕ)|δ(M).

Proof. Suppose for every F ∈ Fn(ϕ) there is some l ∈ F such that M |= l.
Take some F ′ ∈ Fn(ϕ)|δ(M) and let F be the set on which F ′ is based. Take
l ∈ F such that M |= l. Because M |= l, either l = ¬m for some message m with
δ(m) > δ(M) or δ(l) ≤ δ(M). In the first case, F ′ 6∈ Fn(ϕ) by definition so this
is not possible. In the second case, l ∈ F ′ so the requirement is satisfied for F ′.

Conversely, suppose for every F ′ ∈ Fn(ϕ)|δ(M) there is some l ∈ F ′ such that
M |= l. Take some F ∈ Fn(ϕ). Suppose there is ¬m ∈ F such that δ(m) > δ(M).
Then M |= ¬m so the requirement is satisfied for F . Suppose there is no such
¬m ∈ F . Then there is F ′ ∈ Fn(ϕ)|δ(M) based on F . Then there is some l ∈ F ′
such that M |= l. But F ′ ⊆ F so then l ∈ F and the requirement is satisfied for
F . �

This theorem already reduces the collection of literals that need to be checked
to those of depth ≤ δ(M). Furthermore, checking the truth value of these literals
can be optimized in many ways. In many cases a disjunction of all possible
messages with a certain sender or recipient will need to be checked, so a data
structure that indexes the messages in a state by the agents involved in them
might help a lot. All in all, I am convinced that this semantics is a promising
basis for an efficient model checker of the language LPD.

6.4 Blind Carbon Copy

In this section I will extend my semantics to an approach specifically tailored
to emails. The difference between the earlier messages and emails is that emails
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have a set of BCC recipients. These BCC recipients receive the email as well, but
this fact is only known to the sender of the email.

Just like in Chapter 5 I define an email to be a construct of the form e = mB,
where m is a message as defined in the previous section and B ⊆ Ag is a set
of BCC recipients. I will use se, re and B(e) to denote the sender, the set of
regular recipients and the set of BCC recipients of an email e. So if e = mB, then
se = sm, re = rm and B(e) = B. Given an email e = mB I will say that e is based
on the message m. I will identify a message without a set of BCC recipients that
is a member of a set of emails m ∈ E with the same message with an empty set
of BCC recipients: m∅.

Just like in reality, the BCC recipients of a message that is forwarded are not
mentioned in the forward. So a forward of an email mB is an email of the form
(i,m,G)C . Note that B is not mentioned in the forward.

I do not change the language with the addition of BCC recipients. This means
that the BCC recipients are not mentioned in the logic at all. This differs from the
approach presented in Chapter 5, where an extra language construct is introduced
in order to make the BCC recipients explicit in the language. However, I will show
that it is very well possible to analyze the agents’ knowledge in a situation with
BCC recipients without mentioning them explicitly in the language.

Let E be some set of emails. Just like in the previous section, I will define
the closure of the set E. However, this becomes a bit more complicated because I
have to take the BCC recipients into account. The following example shows how
this complicates matters.

6.4.1. Example. Suppose Alice sends an email to Bob, with a BCC to Carol.
Then Bob does not know that Carol received the message. However, now Carol
sends a reply to this email to both Alice and Bob. Then Bob gets to know
that Carol received the original email. By sending the reply, Carol revealed her
identity as a BCC recipient.

Formalizing this example, let agent 1 be Alice, agent 2 be Bob and agent 3 be
Carol. The original email would be formalized as (1, n, 2)3 and the reply by Carol
as (3, (1, n, 2), {1, 2}). From the second email it can be deduced that 3 was a BCC
recipient of the first email. Therefore, the closure of the set {(3, (1, n, 2), {1, 2})}
should include the message (1, n, 2) with a BCC to agent 3, even though this BCC
recipient is not mentioned explicitly.

In order to define the closure, I first compute for each message its BCC recip-
ients, according to some set of emails.

B(m,E) := { b ∈ Ag\({sm} ∪ rm) |
∃C : mC ∈ E and b ∈ C or
∃G : (b,m,G) is mentioned in some e ∈ E}

So an agent b is in B(m,E) if it can be deduced from the set E that b was a BCC
recipient of E. This is the case if there is some email mC in E that shows that b
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was a BCC recipient because b ∈ C, or if b forwarded m to some other group of
agents.

Using this definition I define the closure of a set of emails as follows:

Cl(E) := {mB(m,E) | ∃e ∈ E : m is mentioned in e}

So I take any message that is mentioned in some email in E, and add the BCC
recipients that can be deduced from E.

Now that I have defined the closure of a set of emails, I should also define the
projections for the agent’s knowledge. In order to simplify the definitions, I first
define a new notion of union that takes BCC recipients into account:

E ∪∗ E ′ := {mB ∈ E | ¬∃B′ : mB′ ∈ E ′} ∪
{mB′ ∈ E ′ | ¬∃B : mB ∈ E} ∪
{mB∪B′ | mB ∈ E,mB′ ∈ E ′}

This notion of union is designed to make sure that if a message occurs in both
E and E ′ with different BCC recipients, the BCC recipients are joined in one set
instead of including the message twice.

I continue with the projection for potential knowledge. In this definition I
carefully make out which BCC recipients of each email are visible to the agent.
If the agent is the sender of the email, all BCC recipients are visible to him. If
he is a regular recipient and not a BCC recipient, then none are visible. If he is
a BCC recipient himself, then he only knows that he himself is a BCC recipient
and he does not know the identity of any other BCC recipients.

Πa(E) := {mB ∈ E | a = sm} ∪∗
{m∅ | ∃B : mB ∈ E, a ∈ rm} ∪∗
{m{a} | ∃B : mB ∈ E, a ∈ B}

Note that in this definition I ignore what the agent can deduce about the BCC
recipients of an email by looking at forwards sent by those BCC recipients. That
is why, after applying a projection, I will always take the closure of the result.

Now I turn to the projection for definitive knowledge. This is quite simple:
since I only look at emails where the agent is the sender, all BCC recipients are
visible to him so they are all preserved by the projection.

∆a(E) := {mB ∈ E | a = sm}

Again, I define a shorthand for taking the projection and the closure:

Π∗a(E) := Cl(Πa(Cl(E))),

∆∗a(E) := Cl(∆a(Cl(E))).
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Note that if one views a message as an email with an empty set of BCC
recipients, then the new definitions for closure and projections coincide with the
ones given in Section 6.2.

The semantics of the language on sets of emails is defined in the same way as
for sets of messages. I define that E ∼Pi E ′ iff Π∗i (E) = Π∗i (E

′), and similarly for
∼Di and ∆∗i . Then the semantics for sets of emails is given by:

E |= m iff ∃B : mB ∈ Cl(E)
E |= ¬ϕ iff E 6|= ϕ
E |= ϕ ∧ ψ iff E |= ϕ and E |= ψ

E |= K̂aϕ iff E ′ |= ϕ for all E ′ such that E ∼Pa E ′
E |= K̄aϕ iff E ′ |= ϕ for all E ′ such that E ∼Da E ′

The following example shows how this semantics works out.

6.4.2. Example. Suppose agent 1 sends an email to agent 2, with a BCC to 3
and 4. Then agent 3 forwards this email to agent 2. I formalize this as follows:

E = {(1, n, 2){3,4}, (3, (1, n, 2), 2)},
Cl(E) = E.

In order to analyze the knowledge of agent 3, I compute the projections
Π∗3(E) and ∆∗3(E):

Π∗3(E) = {(1, n, 2)3, (3, (1, n, 2), 2)},
∆∗3(E) = {(1, n, 2)3, (3, (1, n, 2), 2)}.

Because (1, n, 2)3 ∈ Π∗3(E), it holds that E |= K̂3(1, n, 2). This was to be ex-
pected: agent 3 possibly knows about the email (1, n, 2) because he received a
BCC of it.
Because (3, (1, n, 2), 2) ∈ ∆3(Cl(E)) it holds that (1, n, 2)3 ∈ ∆∗3(E) and E |=
K̄E(1, n, 2). Intuitively speaking, agent 3 definitively knows about (1, n, 2) be-
cause he sent a forward of it.
Now I consider the knowledge of agent 4 about agent 3’s knowledge:

Π∗4(E) = {(1, n, 2)4},
Π∗3(Π∗4(E)) = ∅.

Because (1, n, 2) 6∈ Π∗3(Π∗4(E)), it holds that E |= ¬K̂4K̂3(1, n, 2). So agent 4
does not know that 3 knows about the first email. This is because agent 4 does
not know that 3 was also a BCC recipient. However, agent 1 does know this, as
is shown by the following projections:

Π∗1(E) = {(1, n, 2){3,4}},
Π∗3(Π∗1(E)) = {(1, n, 2)3},
∆∗3(Π∗1(E)) = ∅.
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Because agent 1 is the sender of the first email, agent 3 is preserved as a BCC
recipient in the projection Π∗1(E). Then when I take the potential knowledge
projection for agent 3 the original message is again preserved so (1, n, 2){3} ∈
Π∗3(Π∗1(E)). Therefore, E |= K̂1K̂3(1, n, 2).
However, the forward by agent 3 is not in Π∗1(E), nor is any other email sent
by agent 3, so when I take the definitive knowledge projection for agent 3 then
the result is the empty set: ∆∗3(Π∗1(E)) = ∅. Therefore, (1, n, 2) 6∈ ∆∗3(Π∗1(E))
and E |= ¬K̂1K̄3(1, n, 2): agent 1 does not know that agent 3 definitively knows
about the original message, because he did not receive agent 3’s forward. This
means that agent 1 cannot be entirely sure that his email actually reached agent
3. Agent 2, on the other hand, did receive agent 3’s forward. Let me consider
the projections for agent 2:

Π2(Cl(E)) = {(1, n, 2), (3, (1, n, 2), 2)},
Π∗2(E) = {(1, n, 2)3, (3, (1, n, 2), 2)},

Π3(Cl(Π2(Cl(E))) = {(1, n, 2)3, (3, (1, n, 2), 2)},
Π∗3(Π∗2(E)) = {(1, n, 2)3, (3, (1, n, 2), 2)},
∆∗3(Π∗2(E)) = {(1, n, 2)3, (3, (1, n, 2), 2)}.

When I take the projection Π2(Cl(E)), then initially no BCC recipients of (1, n, 2)
are preserved because as a regular recipient, agent 2 does not know the identity
of the BCC recipients. However, because agent 3 forwarded the email (1, n, 2),
agent 2 knows that agent 3 was a BCC recipient. This is reflected by the fact that
in the closure Cl(Π2(Cl(E))), agent 3 is a BCC recipient of (1, n, 2). This shows
exactly why it is important to apply the closure after applying a projection.

Because 3 is a BCC recipient of (1, n, 2) in Π∗2(E), the message (1, n, 2) is
preserved in Π∗3(Π∗2(E)), and because of that

E |= K̂2K̂3(1, n, 2).

Something even stronger can be said: because

(3, (1, n, 2), 2) ∈ Π∗2(E)

it also holds that

(1, n, 2)3 ∈ ∆∗3(Π∗2(E)),

which means that

E |= K̂2K̄3(1, n, 2).

Intuitively, agent 2 knows that agent 3 definitely knows about the first message
because he received the forward by agent 3.
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6.5 Model Checking with BCC

Now that I have extended the semantics with BCC, I can ask again the question
of whether it is possible to do model checking of the semantics in finite time. I
think this is certainly possible.

When a message m has to be sent with a set of BCC recipients B, this can
be done as an email mB. But another option is for the sender of m to first send
the message m, and then send a forward (sm,m, b) for every b ∈ B. This is the
simulation I already mentioned in Chapter 5. I will make this formal as follows.

6.5.1. Definition. Given a message m, let β(m) be the message constructed
from m by replacing all occurrences in m of some message (b,m′, G) where b 6∈
{sm′} ∪ rm′ by the message (b, (sm′ ,m

′, b), G). Similarly, for a formula ϕ, β(ϕ) is
constructed by replacing all occurrences of messages m in ϕ by β(m).

So if some agent forwarded a message of which he was not the sender or a
regular recipient, in which case he must have been a BCC recipient, then I replace
the forward by a forward of a forward by the sender of the first message. Using
this transformation β I can transform a set of emails to a set of messages as
follows:

6.5.2. Definition. Given a set of emails E, I construct β(E) by replacing each
email mB with the messages in

{m} ∪ {(sm,m, b) | b ∈ B}

and subsequently replacing every message m in the result by β(m).

This transformation can be interchanged with the application of the projec-
tion.

6.5.3. Lemma (22). For any set of emails E and any agent a,

β(Πa(E)) = Πa(β(E)).

Similarly for ∆a.

Proof. Take some m ∈ β(Πa(E)).
Suppose m = β(m1) for some m1

B ∈ Πa(E). Then there is m2
C ∈ Πa(Cl(E))

mentioning m1. Then a ∈ {sm2}∪rm2 ∪C and m2 is mentioned in some m3
D ∈ E.

Then β(m3) ∈ β(E) and β(m2) is mentioned in β(m3) so β(m2) ∈ Cl(β(E)). Sup-
pose a ∈ sm2∪rm2 . Then β(m2) ∈ Πa(Cl(β(E))) and because β(m1) is mentioned
in β(m2) then m ∈ Π∗a(β(E)). Suppose a ∈ C. Then a ∈ B(m2, E). Then either
there is some set C ′ such that a ∈ C ′ and m2

C′ ∈ E or there is some group G such
that (a,m2, G) ∈ E. Suppose the first case. Then (sβ(m2), β(m2), a) ∈ β(E)
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so (sβ(m2), β(m2), a) ∈ Πa(Cl(β(E))) and β(m1) ∈ Π∗a(β(E)). Suppose the
second case. Then (a, (sm2 , β(m2), a), G) ∈ β(E) so (a, (sm2 , β(m2), a), G) ∈
Πa(Cl(β(E))) and β(m1) ∈ Π∗a(β(E)).

Suppose m = (sm′ , β(m′), b) for some m′B ∈ Πa(E) with b ∈ B. Then
b ∈ B(m′,Πa(Cl(E))). Suppose there is C such that b ∈ C and m′C ∈ Πa(Cl(E)).
Then a ∈ {sm′} ∪ {b} and b ∈ B(m′, E). Suppose there is D with b ∈ D
and m′D ∈ E. Then (sm′ , β(m′), b) ∈ β(E). Since a ∈ {sm′} ∪ {b} then
(sm′ , β(m′), b) ∈ Π∗a(β(E)). Suppose there is no such D. Then (b,m′, G) is
mentioned in Cl(E) for some group G. Then (b, (sm′ , β(m′), b), G) ∈ Cl(β(E))
and because a ∈ {sm′} ∪ {b} then (b, (sm′ , β(m′), b), G) ∈ Πa(Cl(β(E))) so
(sm′ , β(m′), b) ∈ Π∗a(β(E)). Now suppose there is no such C. Then there is
G′ such that (b,m′, G′) is mentioned in Πa(Cl(E)). By a similar reasoning as
above then (b, (sm′ , β(m′), b), G′) ∈ Πa(Cl(β(E))) so m ∈ Π∗a(β(E)).

For the converse, take some m ∈ Πa(β(E)). Then there is some m′ ∈
Πa(Cl(β(E))) mentioning m. Then a ∈ {sm′} ∪ rm′ and m′ is mentioned in
some m′′ ∈ β(E). Suppose m′′ = β(m1) for some m1

B ∈ E. Then there is
some m2 mentioned in m1 such that m′ = β(m2). Then a ∈ {sm2} ∪ rm2 so
m2
C ∈ Πa(Cl(E)) for some C. Then there is some m3 mentioned in m2 such that

m = β(m3). So then there is some D such that m3
D ∈ Π∗a(E) and m ∈ β(Π∗a(E)).

Now suppose m′′ = (sm1 , β(m1), b) for some m1
B ∈ E with b ∈ B. Then there

is m2 mentioned in m1 such that m′ = β(m2). Because a ∈ {sm′}∪rm′ then there
is some C such that m2

C ∈ Πa(Cl(E)). Then there is some m3 mentioned in m2

such that m = β(m3). Then m3 ∈ Π∗a(E) so m ∈ β(Π∗a(E)). �

In Chapter 5, two differences between the original emailmB and the simulation
with forwards are mentioned. The first one is that every agent in B receives a
forward of m instead of m itself. This syntactic difference is preserved when the
agents in B forward the message or the forward of the message. However, it does
not influence the agent’s knowledge about m or about each other’s knowledge of
m.

The second difference is that when an agent is a BCC recipient, and he does
not reveal this fact to others by sending a forward, then he knows that the other
agents do not know he received the message. This is because the BCC recipients
are not included in forwards of the original message. On the other hand, if the
sender of the message sent a separate forward to the former BCC recipient then
the sender may forward this forward to other agents, thereby informing them
that the former BCC recipient knows about the message. In other words, the
BCC feature makes the fact that these agents receive the message a secret, while
a separate forward does not.

This may seem contradictory to Lemma 6.5.3 because it seems that that result
implies that the transformation β does not influence the knowledge relations. This
apparent contradiction is caused by the fact that it is possible that there are two
sets of emails E and E ′ such that Πa(β(E)) = Πa(β(E ′)) while Πa(E) 6= Πa(E

′).



6.5. Model Checking with BCC 103

Then, clearly β(E) ∼a β(E ′) while E 6∼a E ′. The following example shows how
this can occur.

6.5.4. Example. Consider the following sets of emails:

E1 : {(1, n, 2)3}
E2 : {(1, n, 2), (1, (1, n, 2), 3), (1, (1, (1, n, 2), 3), 2)}

Then E1 6∼3 E2. Note that E2 |= K̂2K̂3(1, n, 2) while E1 6|= K̂2K̂3(1, n, 2). In
fact, there is no E ′ such that E1 ∼3 E ′ and E ′ |= K̂2K̂3(1, n, 2), so E1 |=
K̂3¬K̂2K̂3(1, n, 2).

Now look at the transformed sets of emails:

β(E1) = {(1, n, 2), (1, (1, n, 2), 3)}
β(E2) = {(1, n, 2), (1, (1, n, 2), 3), (1, (1, (1, n, 2), 3), 2)}

I have β(E1) ∼3 β(E2). However, β(E2) |= K̂2K̂3(1, n, 2) so

β(E3) 6|= K̂3¬K̂2K̂3(1, n, 2).

This shows that even though the β transformation gives a good simulation of
a set of emails without using BCC, it is not perfect. In other words, BCC really
adds something new from an epistemic perspective. Therefore, for deciding the
model checking problem with BCC it is not enough to simply translate the sets
of emails to sets of messages and handle the model checking as in Section 6.3.

A better way to solve the model checking problem would be to adapt the
definition of Fn(ϕ) from the previous section for the case with BCC recipients.
This new definition of Fn(ϕ) will have the same function as for the semantics
without BCC. However, now the sets in Fn(ϕ) will not only contain literals, but
also constructs of the form mj and negations of these constructs. Here m is a
message and j is a single agent. The satisfaction of these constructs in a state is
defined as follows:

E |= mb iff there is B ⊆ Ag : mB ∈ E, b ∈ B.

Note that I do not want to extend the logic with this new construct mj. I only
use it to decide the truth value of the formulas.

I continue with the new definition of Fn(ϕ).

6.5.5. Definition. Let ϕ be a formula with δ(ϕ) ≤ n. I define a family of sets
of literals Fn(ϕ) as follows. For ϕ = m, let

Fn(m) := {{m}}

For ϕ = ¬ψ, suppose Fn(ψ) = {F1, ..., Fn}. Then

Fn(¬ψ) := {{l1, ..., ln} | l1 ∈ F1, ..., ln ∈ Fn},
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where l is given by ¬m if l = m and m if l = ¬m. For ϕ = ψ1 ∧ ψ2, let

Fn(ψ1 ∧ ψ2) := Fn(ψ1) ∪ Fn(ψ2).

For ϕ = K̂aψ, let

Fn(K̂aψ) := {
⋃
l∈F

Fn
K̂a

(l) | F ∈ Fn(ψ)},

where Fn
K̂a

(l) is given by

{m} if l = m, a ∈ {sm} ∪ rm,
{m′ ∈Mn

Ag(m) | a ∈ {sm′} ∪ rm′} ∪
{m′a | m′ ∈Mn

Ag(m)} if l = m, a 6∈ {sm} ∪ rm,
{¬m′ | m′ ∈ Cl(m), a ∈ {sm′} ∪ rm′} if l = ¬m,
{mb} if l = mb, a ∈ {sm} ∪ {b},
{¬mb} if l = ¬mb, a ∈ {sm} ∪ {b},
{(b,m,G) | G ⊆ Ag, a ∈ G} ∪
{m′ ∈Mn

Ag((b,m,G))
| G ⊆ Ag, a ∈ {sm′} ∪ rm′ , a 6∈ G} ∪

{m′a | m′ ∈Mn
Ag((b,m,G)), G ⊆ Ag, a 6∈ G} if l = mb, a 6∈ {sm} ∪ {b},

{¬m′ | m′ ∈ Cl(m), a ∈ {sm′} ∪ rm′} if l = ¬mb, a 6∈ {sm} ∪ {b}.

For ϕ = K̄aψ, let

Fn(K̄aψ) := {
⋃
l∈F

Fn
K̄a

(l) | F ∈ Fn(ψ)},

where Fn
K̄a

(l) is given by

{m} if l = m, a = sm,
{m′ ∈Mn

Ag(m) | a = sm′} if l = m, a 6= sm,
{¬m′ | m′ ∈ Cl(m), a = sm′} if l = ¬m,
{mb} if l = mb, a = sm,
{m′ ∈Mn

Ag((b,m,G)) | a = sm′} if l = mb, a 6= sm,
{¬mb} if l = ¬mb, a = sm,
{¬m′ | m′ ∈ Cl(m), a = sm′} if l = ¬mb, a 6= sm.

The first three clauses of this definition are identical to the definition for the
semantics without BCC. The difference is in the knowledge operators. Suppose
ϕ = K̂aψ. Again, I consider each literal in some member of Fn(ψ) separately.

If l = m and a ∈ {sm} ∪ rm then m implies K̂am so I preserve m.
If l = m and a 6∈ {sm}∪ rm then a potentially knows m iff he sent or received

some message in Mn
Ag(m), or if he was a BCC recipient of such a message.

If l = ¬m then a potentially knows m iff there is some message in Cl(m) of
which he was the sender or a recipient which was not sent.
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If l = mb or l = ¬mb and a ∈ {sm} ∪ {b} then a certainly knows whether b
was a BCC recipient of m so I preserve mb or ¬mb.

If l = mb and a 6∈ {sm}∪{b} then a knows that b was a BCC recipient of m if
a has received a forward (b,m,G) of m by b or a is the sender, recipient or BCC
recipient of some message in Mn

Ag((b,m,G)) for such a (b,m,G).
If l = ¬mb and a 6∈ {sm} ∪ {b} then a knows b was not a BCC recipient of m

if a knows that m was not sent, which is the case when some message in Cl(m)
of which a is a sender or a recipient was not sent.

For the case that ϕ = K̄aψ, I also consider each literal separately.
If l = m and a = sm I preserve m. If a 6= sm then a has definitive knowledge

of m if he is the sender of some message in Mn
Ag(m).

If l = ¬m then a has definitive knowledge of l if a is the sender of some
message in Cl(m) that was not sent.

If l = mb and a = sm then I preserve mb. If a 6= sm then a definitively knows
that b was a BCC recipient if he sent some message in Mn

Ag((b,m,G)), for some
group of agents G.

If l = ¬mb and a = sm then I preserve ¬mb. If a 6= sm then a definitively
knows b was not a BCC recipient of m if he definitively knows that m was not
sent, which is the case if he was the sender of some message in Cl(m) that was
not sent.

I am convinced that the equivalent of Theorem 6.3.5 and 6.3.7 also hold for
the case with BCC recipients.

6.5.6. Conjecture. For any set of messages M and formula ϕ there is a finite
number nM,ϕ ≥ δ(M) such that for every k ≥ nM,ϕ, M |= ϕ iff any F ∈ Fkϕ
contains a literal l ∈ F such that M |= l.

6.5.7. Conjecture. For any state M , formula ϕ and number n > δ(M), there
is for every F ∈ Fn(ϕ) some l ∈ F such that M |= l, if and only if the same
holds for Fn(ϕ)|δ(M).

This would give a way to decide the semantics for the case with BCC recipi-
ents.

6.6 Conclusion

I have presented a logic that reasons about the knowledge of agents after a certain
collection of messages or emails have been sent. Specifically I have focussed on
the difference between having received a message and having replied to it. In the
first case, it is not sure that the recipient has received the email in good order
and also read it. In the second case it is. I have given a semantics based on the
epistemic logic perspective, that is based on relations between states given by
sets of messages or emails. The difference between messages and emails is that
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the first only have a public list of recipients, while the second also have a secret
list of BCC recipients.

Since the number of related states may be infinite, this perspective does not
immediately give a way to decide the truth value of the formulas in finite time.
Therefore I presented a way to decide each formula by looking at the truth value of
certain literals. This decision procedure is proved correct for the case of messages.
I also give a definition of this procedure for emails.

All in all I have presented a strong basis for a formal model checker that can
be applied to sets of messages or emails in order to analyze who knows what in
any situation where messages or emails are sent.
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6.7 Proof of Theorem 6.3.5

I first state some facts that I will implicitly use throughout this section. I omit
their proof, but they follow easily from the definition of closure and the semantics.
For any two sets of messages M and N and any agent a ∈ Ag, the following hold:

• Cl(Cl(M)) = Cl(M),

• Cl(M ∪N) = Cl(M) ∪ Cl(N),

• If N ⊆M then Cl(N) ⊆ Cl(M),

• If N ⊆ Cl(M) then Cl(N) ⊆ Cl(M),

• M ∼Pa Cl(M) and M ∼Da Cl(M),

• If M ∼Pa N and M |= K̂aϕ then N |= K̂aϕ,

• If M ∼Da N and M |= K̄aϕ then N |= K̄aϕ.

6.7.1. Lemma. For any set of messages M , Π∗a(M) ⊆ Cl(M). Similarly for ∆∗a.

Proof. Supposem ∈ Π∗a(M) = Cl(Πa(Cl(M))). Then there ism′ ∈ Πa(Cl(M))
that mentions m. Then m′ ∈ Cl(M), so because m′ mentions m,

m ∈ Cl(Cl(M)) = Cl(M).

So Π∗a(M) ⊆ Cl(M). �

6.7.2. Lemma. For any two sets of messages M and N , M ∼Pa N iff

Πa(Cl(M) \ Cl(N)) = ∅

and
Πa(Cl(N) \ Cl(M)) = ∅.

Similarly for ∼Da and ∆a.

Proof. Take two sets of messages M and N and suppose M ∼Pa N . For the
sake of contradiction, suppose one of the sets mentioned above is non-empty.
Without loss of generality, suppose there is some m ∈ Πa(Cl(M) \Cl(N)). Then
a ∈ {sm} ∪ rm and m ∈ Cl(M) and m 6∈ Cl(N). Then m ∈ Πa(Cl(M)) so
m ∈ Π∗a(M). But because M ∼Pa N , Π∗a(M) = Π∗a(N) so then m ∈ Π∗a(N).
But by Lemma 6.7.1 Π∗a(N) ⊆ Cl(N), so m ∈ Cl(N). But I already knew that
m 6∈ Cl(N). This is a contradiction, so such m cannot exist and these sets must
be empty.
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For the converse I use contraposition. Suppose M 6∼Pa N . Then Π∗a(M) 6=
Π∗a(N). Without loss of generality, take m ∈ Π∗a(M) \ Π∗a(N). Then there is
m′ ∈ Πa(Cl(M)) that mentions m. Then a ∈ {sm′} ∪ rm′ and m′ ∈ Cl(M).
Suppose m′ ∈ Cl(N). Then m′ ∈ Πa(Cl(N)) so because m′ mentions m, m ∈
Π∗a(N). This contradicts my assumption, so I conclude that m′ 6∈ Cl(N). So then
m′ ∈ Cl(M) \ Cl(N). Then because a ∈ {sm′} ∪ rm′ , m′ ∈ Πa(Cl(M) \ Cl(N)).
So Πa(Cl(M) \ Cl(N)) 6= ∅. �

6.7.3. Lemma. For any set of messages M and any message m ∈ Cl(M), M |=
K̂am iff m ∈ Π∗a(M). Similarly for K̄a and ∆∗a.

Proof. Suppose m ∈ Π∗a(M). Then for any M ′ such that M ∼Pa M ′, m ∈
Π∗a(M

′) ⊆ Cl(M ′) so M ′ |= m. So M |= K̂am. Conversely, suppose M |= K̂am.
Let M ′ = Cl(M) \ {m′ ∈ Cl(M) | m′ mentions m}. Clearly, M ′ 6|= m so M 6∼Pa
M ′. Note that Cl(M ′) \ Cl(M) = ∅ and Cl(M) \ Cl(M ′) = {m′ ∈ Cl(M) |
m′ mentions m}. So then by Lemma 6.7.2, there is m′ ∈ Πa(Cl(M) \ Cl(M ′)).
Then m′ mentions m and a ∈ {sm′} ∪ rm′ . Then m′ ∈ Π∗a(M) and m ∈ Π∗a(M).
�

6.7.4. Lemma. For any set of messages M and message m, either M |= K̂a¬m
or M ∼Pa M ∪ {m}. Similarly for K̄a and ∼Da .

Proof. Suppose M 6∼Pa M ∪ {m}. Then by Lemma 6.7.2 either Πa(Cl(M ∪
{m}) \Cl(M)) 6= ∅ or Πa(Cl(M) \Cl(M ∪ {m})) 6= ∅. Clearly, Cl(M) \Cl(M ∪
{m}) = ∅ so Πa(Cl(M)\Cl(M ∪{m})) = ∅. So I can take some m′ ∈ Πa(Cl(M ∪
{m}) \ Cl(M)). Then m′ ∈ Cl(M ∪ {m}) and m′ 6∈ Cl(M). So m′ ∈ Cl({m}).

Take some M ′ such that M ∼Pa M ′. Suppose m ∈ Cl(M ′). Then because
m′ ∈ Cl({m}), m′ ∈ Cl(M ′) and because a ∈ {sm′} ∪ rm′ , m′ ∈ Πa(Cl(M

′)).
Then also m′ ∈ Π∗a(M

′). But M ∼Pa M ′ so Π∗a(M
′) = Π∗a(M) and m′ ∈ Π∗a(M).

But by Lemma 6.7.1 Π∗a(M) ⊆ Cl(M), so m′ ∈ Cl(M). But we already saw that
m′ 6∈ Cl(M). This is a contradiction so m 6∈ Cl(M ′) and M ′ 6|= m. But M ′ was
chosen arbitrarily, so M |= K̂a¬m.

The proof for K̄a and ∼Da is analogous. �

6.7.5. Lemma. For any set of messages M and message m, either M |= K̂am
or M ∼Pa Cl(M) \ {m′ ∈ Cl(M) | m′ mentions m}.

Proof. Let N = {m′ ∈ Cl(M) | m′ mentions m}. Suppose M 6∼Pa Cl(M) \N .
Then by Lemma 6.7.2 either Πa(Cl(M) \Cl(Cl(M) \N)) 6= ∅ or Πa(Cl(Cl(M) \
N) \ Cl(M)) 6= ∅. Cl(M) \ N ⊆ Cl(M) so Cl(Cl(M) \ N) ⊆ Cl(M) so
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Πa(Cl(Cl(M)\N)\Cl(M)) = ∅. So I can take some m′ ∈ Πa(Cl(M)\Cl(Cl(M)\
N)). Then a ∈ {sm′} ∪ rm′ , m′ ∈ Cl(M) and m′ 6∈ Cl(Cl(M) \ N). Then
m′ 6∈ Cl(M) \ N , so because m′ ∈ Cl(M), m′ ∈ N . So m′ mentions m. Since
a ∈ {sm′} ∪ rm′ and m′ ∈ Cl(M), m′ ∈ Πa(Cl(M)). So m ∈ Π∗a(M). Take some
M ′ such that M ∼Pa M ′. Then Π∗a(M) = Π∗a(M

′) so m ∈ Π∗a(M
′). By Lemma

6.7.1 Π∗a(M
′) ⊆ Cl(M ′), so m ∈ Cl(M ′) and M ′ |= m. But M ′ was chosen

arbitrarily, so M |= K̂am. The proof for ∆a is analogous. �

6.7.6. Lemma. Let l1, ..., ln be literals such that l1∨ ...∨ ln is not a tautology. Let
M be a set of messages such that M |= K̂a(l1∨...∨ln). Then M |= K̂al1∨...∨K̂aln.
Similarly for K̄a.

Proof. I will give a proof with induction on the number of literals n. If n = 1
then the result becomes trivial. Suppose the result holds for n and take literals
l1, ..., ln+1 and a set of messages M such that M |= K̂a(l1 ∨ ... ∨ ln+1). If M |=
K̂a(l1∨...∨ln) then the result follows by induction hypothesis. Suppose otherwise.
Then there is some M ′ such that M ∼Pa M ′ and M ′ |= ¬l1 ∧ ... ∧ ¬ln. Then
because M |= K̂a(l1 ∨ ... ∨ ln+1), it must be the case that M ′ |= ln+1. We claim
that M |= K̂aln+1. Suppose otherwise.

Suppose ln+1 = m for some messagem. LetN = {m′ ∈ Cl(M ′) | m′ mentions m}.
By Lemma 6.7.5, the fact that M ′ 6|= K̂aln+1 implies that M ′ ∼Pa Cl(M ′) \ N .
Clearly, Cl(M ′)\N 6|= ln+1. Suppose there is some la such that Cl(M ′)\N |= la. I
already know that M ′ 6|= la, so then it must be the case that la = ¬m′ and m′ ∈ N .
But then m′ mentions m and l1 ∨ ... ∨ ln is a tautology. So Cl(M ′) \N 6|= la for
any la. But I assumed that M |= K̂a(l1 ∨ ... ∨ ln+1), so this is a contradiction.

Suppose ln+1 = ¬m for some message m. By Lemma 6.7.4 the fact that
M ′ 6|= K̂aln+1 implies that M ′ ∼Pa M ′ ∪{m}. Clearly, M ′ ∪{m} 6|= ln+1. Suppose
there is some la such that M ′ ∪ {m} |= la. I already know that M ′ 6|= la so
then it must be the case that la = m′ for some message m′ ∈ Cl(m). But then
l1 ∨ ... ∨ ln is a tautology. So M ′ ∪ {m} 6|= la for any la. But I assumed that
M |= K̂a(l1 ∨ ... ∨ ln+1), so this is a contradiction.

I conclude that M |= K̂aln+1. The proof for K̄a is analogous. �

6.7.7. Lemma. Let M,M ′ be sets of messages and let l1, ..., ln be literals such
that M ∼Pa M ′ and M ′ |= l1 ∧ ... ∧ ln. Then there is M ′′ such that M ∼Pa M ′′,
M ′′ |= l1 ∧ ... ∧ ln and δ(M ′′) ≤ max(δ(M), δ(l1), ..., δ(ln)). Similarly for ∼Da .

Proof. First note that because M ∼Pa M ′ and M ′ |= l1 ∧ ... ∧ ln, for any la I
have that M 6|= K̂a¬la. Let M+ = {m ∈ {l1, ..., ln} |M 6|= m}. For any m ∈M+,
M 6|= K̂a¬m so then by repeated application of Lemma 6.7.4 I get that M ∼Pa
M ∪M+. Let M− = {m ∈ Cl(M ∪M+) | m mentions some m′ such that ¬m′ ∈
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{l1, ..., ln}}. For any ¬m′ ∈ {l1, ..., ln} it holds that M 6|= K̂am
′ so then M∪M+ 6|=

K̂am
′. Then by repeated application of Lemma 6.7.4 I get that M ∼Pa Cl(M ∪

M+)\M−. Clearly, every la of the form la = ¬m is satisfied in Cl(M∪M+)\M−.
Now take some la of the form la = m. Clearly, m ∈ Cl(M ∪ M+). Suppose
Cl(M ∪M+) \M− 6|= m. Then m ∈ M−, so m mentions some m′ such that
¬m′ ∈ {l1, ..., ln}. But then l1 ∧ ... ∧ ln is a contradiction which is not possible
because M ′ |= l1 ∧ ... ∧ ln. So Cl(M ∪M+) \M− |= l1 ∧ ... ∧ ln. It is not hard to
see that δ(Cl(M ∪M+) \M−) ≤ max(δ(M), δ(l1), ..., δ(ln)). �

6.7.8. Corollary. Let M be a set of messages and l1, ..., ln be literals. Suppose
that for any M ′ ∼Pa M with δ(M ′) ≤ max(δ(M), δ(l1), ..., δ(ln)), M ′ |= l1∨ ...∨ ln.
Then for any M ′′ such that M ∼Pa M ′′, M ′′ |= l1 ∨ ... ∨ ln.

6.7.9. Theorem. For any set of messages M and formula ϕ there is a finite
number nM,ϕ ≥ δ(M) such that for every k ≥ nM,ϕ,

M |= ϕ iff any F ∈ Fkϕ contains is a literal l ∈ F such that M |= l.

Proof. I will give a proof with structural induction on ϕ.
Suppose ϕ = m. Let nM,ϕ = max(δ(M), δ(m)). Then for any k ≥ nM,ϕ,
Fk(ϕ) = {{m}} and the desired result follows immediately.
Suppose ϕ = ¬ψ. Let nM,ϕ = nM,ψ and take some k ≥ nM,ϕ. Suppose M |= ¬ψ.
Then there is F in Fk(ψ) such that for every l ∈ F , M |= l. Then for every
F ′ ∈ Fk(¬ψ) there is l ∈ F ′ such that l ∈ F and M |= l. For the converse I
will use contraposition. Suppose that M |= ψ. Then for every F ∈ Fk(ψ) there
is some l ∈ F such that M |= l. Let F ′ ∈ Fk(¬ψ) be the set containing the
negation of exactly these literals. Then there is no l ∈ F ′ such that M |= l. So
then it does not hold that every F ′ ∈ Fk(¬ψ) contains some l′ ∈ F ′ such that
M |= l′.
Suppose ϕ = ψ1 ∧ ψ2. Let nM,ϕ = max(nM,ψ1 , nM,ψ2). The result follows by
definition and induction hypothesis.
Suppose ϕ = K̂aψ. Construct nM,ϕ as follows. If M |= K̂aψ then nM,ϕ =
max(δ(ψ), nM,ψ). Otherwise, let k1 be the minimal number such that k1 =
nM1,ψ for some state M1 such that M1 |= ¬ψ and M ∼Pa M1. Let nM,ϕ =
max(δ(ψ), nM,ψ, k1). Take some k ≥ nM,ϕ.

Suppose M |= K̂aψ. Take some F ∈ Fk(K̂aψ). Then there is some F ′ ∈
Fk(ψ) on which F is based. Suppose F ′ = {l1, ..., ln}. Let M be the collection of
sets of messages M ′ such that M ∼Pa M ′ and δ(M ′) ≤ k. This collection is finite.
For any M ′ ∈M, M ′ |= ψ and by induction hypothesis, M ′ |= l1 ∨ ... ∨ ln. Note
that max(δ(M), δ(l1), ..., δ(ln)) ≤ k. So by Corollary 6.7.8, M |= K̂a(l1 ∨ ... ∨ ln).

Then by Lemma 6.7.6, M |= K̂al1 ∨ ... ∨ PKaln. Take some lj such that

M |= K̂alj. I claim that M |= l for some l ∈ F based on lj.
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Suppose lj = m and a ∈ {sm} ∪ rm. Then let l = m and I am done.

Suppose lj = m and a 6∈ {sm} ∪ rm. Because M |= K̂am, I have by Lemma 6.7.3

that m ∈ Π∗a(M). So there must be some m′′ ∈ Π
(
aCl(M)) mentioning m. Then

a ∈ {sm′′} ∪ rm′′ so m′′ 6= m and there must be b,G such that m′′ = (b,m′, G),
where m′ mentions m and a ∈ {b} ∪G. Also, m′′ ∈ Cl(M) so M |= m′′. Clearly,
m′′ ∈ F ′. I let l = m′′ and I am done.
Suppose lj = ¬m. Let M ′ = M ∪ {m}. Then because M |= K̂a¬m, M 6∼a M ′.
Note that Cl(M)\Cl(M ′) = ∅ so then by Lemma 6.7.2 there is m′ ∈ Πa(Cl(M

′)\
Cl(M)). But if m′ ∈ Cl(M ∪ {m}) \ Cl(M) then m′ ∈ Cl({m}). So m′ is
mentioned in m. Also, if m′ ∈ Πa(Cl(M

′) \ Cl(M)) then a ∈ {sm′} ∪ rm′ so
¬m′ ∈ F ′. But m′ 6∈ Cl(M) so M |= ¬m′.

Since F was chosen arbitrarily from Fk(K̂aψ), this proves the desired result.
Now, suppose that for any F ∈ Fk(K̂aψ), there is l ∈ F such that M |= l.

For the sake of contradiction, suppose M 6|= Kaψ. Then by construction of nM,ϕ

there is some M1 such that M1 |= ¬ψ, M ∼Pa M1 and nM1,ψ ≤ nM,ϕ.
I claim that for any F ′ ∈ Fk(ψ), there is l′ ∈ F ′ such that M1 |= l′. Take such

F ′. Let F ∈ Fk(ϕ) be the set based on F ′ and take l ∈ F such that M |= l. Let
l′ ∈ F ′ be the literal on which l is based. I claim that M1 |= l′.
Suppose l = l′ = m and a ∈ {sm} ∪ rm. Then m ∈ Π∗a(M) and by Lemma 6.7.3,
M |= K̂am so M1 |= m.
Suppose l = (j,m′, G), l′ = m, m′ mentions m, a 6∈ {sm} ∪ rm and a ∈ {b} ∪ G.
Then (b,m′, G) ∈ Π∗a(M), so again by Lemma 6.7.3 M1 |= (b,m′, G). But since
m ∈ Cl(m′) and m′ ∈ Cl((b,m′, G)), then M1 |= m.
Suppose l = ¬m′, l′ = ¬m, m mentions m′ and a ∈ {sm′} ∪ rm′ . For the sake
of contradiction suppose M1 |= m. Then because m′ ∈ Cl(m), M1 |= m′. But
a ∈ {sm′} ∪ rm′ so then m′ ∈ Π∗a(M1) and by Lemma 6.7.3 M |= m′. But
this contradicts my assumption that M |= l. So then it must be the case that
M1 |= ¬m.

Suppose nM1,ψ ≤ k. Then we can apply the induction hypothesis to derive that
M1 |= ψ, which is a contradiction with my earlier claim. So nM1,ψ > k ≥ nM,ϕ.
But this contradicts the construction of M1. We conclude that our assumption
that M 6|= K̂aψ was false, so M |= K̂aψ.
Suppose ϕ = K̄aψ. The proof is analogous to that for K̂aψ. �





Chapter 7

Action Emulation

7.1 Introduction

In this thesis I often use Kripke models to model the knowledge of a group of
agents in a certain situation. In Chapters 3 and 8 I also use action models to
update these models when the situation changes. In this chapter I will address
an important technical question concerning these models, namely: when are two
action models equivalent? And how can one detect such an equivalence?

Kripke models may be used to interpret any modal logic and they are well
studied. In particular, it is well known (see e.g. [Blackburn et al., 2001]) that two
Kripke models are semantically equivalent if and only if there exists a relation
between them that is a bisimulation.

Action models were introduced in [Baltag et al., 1998] as a way to model
communicative actions rather than static situations. Two action models are con-
sidered equivalent if they have the same effect on all possible Kripke models.
However, up to now there is no notion corresponding to bisimulation for action
models. In other words, there is no easy way to tell whether two action models are
equivalent just by looking at their structure. This chapter is dedicated to finding
the right definition of a relation between action models called action emulation,
such that there exists an action emulation between two action models if and only
if they are equivalent.

The problem I study here has been addressed before in [van Eijck et al., 2012].
There, a partial solution is provided. A notion of action emulation parameterized
by the worlds of a canonical Kripke model is constructed. The union of all
these relations is shown to coincide with action model equivalence. This is a
step forward, but not the final word. Using this notion of action emulation one
would have to construct a relation between the action models for every world
from a canonical Kripke model, which is tedious work. I would like to improve
on this result by giving a direct definition of action emulation between action
models. The definition I propose here is a lot simpler than the one from [van

113
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Eijck et al., 2012] because it does not involve worlds from a canonical Kripke
model and is constructed as one single relation, rather than being the union of
multiple relations. This is an advantage because the canonical Kripke model has
a great number of worlds and computing a relation for each of these worlds takes
a lot of time.

This chapter is set up as follows. First I give some established definitions re-
lated to Kripke models and action models. Then I introduce the class of canonical
action models and show that every action model has an equivalent canonical ac-
tion model. I give a definition of action emulation and show that the existence of
an action emulation between two action models implies their equivalence. Then
I prove that the converse holds for the class of canonical action models. Because
any action model has an equivalent canonical action model, this way any two
action models can be compared.

7.2 Definitions

Let P be a countable set of proposition letters an let A be a finite set of action
labels. The modal language LM over P and A is given by:

φ ::= p | ¬φ | φ ∨ φ | ♦aφ

where p ranges over P and a over A. This is very similar to the language of DEL
presented in Chapter 2, only instead of epistemic programs I use a modality,
♦aφ. It may stand for knowledge, obligation, or any other of a wide range of
interpretations.

I will use the usual shorthands: φ ∧ ψ for ¬(φ ∨ ψ), φ → ψ for ¬φ ∨ ψ and
�aφ for ¬(♦a¬φ). The modality �aφ is the dual of ♦aφ.

Given a formula ϕ, I define its single negation as follows: if φ is of the form
¬ψ, then ∼φ = ψ, and otherwise ∼φ = ¬φ. I will implicitly use the equivalences
of ¬�aφ and ♦a∼φ, of ¬♦aφ and �a∼φ, of ¬(φ∧ψ) and ∼φ∨∼ψ, and of ¬(φ∨ψ)
and ∼φ ∧ ∼ψ.

The definition of single negation allows me to define the closure of a formula
or a set of formulas.

7.2.1. Definition. Given a formula φ, I define its closure C(φ) as the smallest
set containing φ that is closed under taking subformulas and single negations.
Given a finite set of formulas Φ, I define C(Φ) :=

⋃
φ∈Φ C(φ).

The following example shows how this definition works out.

7.2.2. Example. p ∧ ♦a¬p has the following closure:

C(p ∧ ♦a¬p) = {p ∧ ♦a¬p,¬p ∨�ap, p,¬p,♦a¬p,�ap}.
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7.2.3. Definition. An atom over a finite set of formulas Φ is a maximal subset
of C(Φ) which is consistent (in the K axiomatisation of multi-modal logic).

An atom over Φ can be seen as a complete description of a possible state of
the world, if one only considers the formulas in Φ. I will use these atoms later on
to construct canonical models.

7.2.4. Example. {p ∧ ♦a¬p} has four atoms:

• {p ∧ ♦a¬p, p,♦a¬p},

• {¬p ∨�ap,¬p,♦a¬p},

• {¬p ∨�ap, p,�ap},

• {¬p ∨�ap,¬p,�ap}.

I will interpret the formulas from LM on Kripke models. These are defined in
Chapter 2. I will use a set of action labels A instead of a set of agents. This is
because the modalities ♦a and �a do not necessarily represent the knowledge of
an agent.

In Chapter 2, the relations of a Kripke model were assumed to be reflexive,
symmetric and transitive. Here, I no longer make this assumption. Therefore
instead of using ∼a as an alternate notation for Ra, I will now use

a→.
The semantics of LM is mostly as defined in Chapter 2. A formal definition

is as follows:

M |=w p iff p ∈ Val(w)
M |=w ¬φ iff M 6|=w φ

M |=w φ1 ∨ φ2 iff M |=w φ1 or M |=w φ2

M |=w ♦aφ iff ∃w′ : wRaw
′ and w′ |= φ.

The semantics of the modality ♦a is straightforward: ♦aφ holds if it is possible
to do an a-step to a world where φ holds. Dually, �aφ holds if every world that
is reachable with an a-step satisfies φ.

7.3 Bisimilar Action Models

As discussed in Chapter 2, two Kripke models are considered equivalent when they
are bisimilar. If they are bisimilar, they satisfy exactly the same modal formulas.
They can be considered two different models of the exact same situation.

Action models model a communicative event. Just like Kripke models, some-
times two different action models model the same thing. In the case of action
models, this means they model the same communicative event. This is signified
by the fact that they have the same effect on all Kripke models. That is, if the
two different action models are applied to the same Kripke model, the resulting
models will be bisimilar.
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7.3.1. Definition. Take two action models A and B over a set of agents Ag and
a set of propositions P . I will say that A and B are equivalent, notation A ≡ B,
if for any Kripke model M over Ag and Q, where P ⊆ Q,

M⊗A ↔− M⊗B.

Note that if two action models are equivalent, then the result of updating
a Kripke model with one of them is bisimilar to the result of the update with
the other, even if the model mentions propositions that are not mentioned in
the action models. Usually, I will apply action models over a certain set of
propositions to Kripke models over the same set of propositions. However, in
Lemma 7.3.7 I will make use of the fact that equivalence still holds when the
Kripke model has propositions that are not mentioned in the action model.

The problem I face in this chapter is to find a structural relation between ac-
tion models that signifies their equivalence, just like bisimulation does for Kripke
models. When two action models A and B are equivalent, every world that
matches an event of A should also match an event of B and vice versa. Further-
more, the results of these matchings should be bisimilar.

The first solution that comes to mind is to apply bisimulation to action models.
One could replace the requirement that the worlds have the same valuation with
the requirement that their preconditions are semantically equivalent. This gives
the following definition:

7.3.2. Definition. Two action modelsA and B are bisimilar if there is a relation
Z : EA ×EB which is total on EA0 ×EB0 , such that the following conditions hold
for any x, y such that xZy:

Invariance PreA(x) ≡ PreB(y),

Zig for any action label a ∈ A, if there is a world x′ such that x
a→
A
x′ then

there must be a world y′ such that y
a→
B
y′ and (x′, y′) ∈ Z,

Zag for any action label a ∈ A, if there is a world y′ such that y
a→
B
y′ then

there must be a world x′ such that x
a→
A
x′ and (x′, y′) ∈ Z.

Here ≡ signifies logical equivalence.

However, this bisimulation for action models does not have the required prop-
erties. The following example, which is inspired by [van Eijck et al., 2012], shows
why not.

7.3.3. Example. Consider the following two action models, where all relations
are symmetric, and reflexive relations are present for all events but not drawn in
the picture.
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A :

xA : p

yA : >

a

B :

xB : p

yB1 : p yB2 : ¬p

a a

a

These two models are not bisimilar: there is no event in B that has a precon-
dition which is logically equivalent to the precondition of yA in A. Therefore the
a-step from the actual world xA to yA cannot be matched by an a-step from xB

to a world that is bisimilar to yA.
However, they are equivalent. One can see this as follows. Clearly any world

that matches event xA in A will match event xB in B and vice versa. Furthermore,
any world that matches event yA in A will match yB1 in B if it satisfies p, and
yB2 in B if it does not satisfy p. Since the relations between xB and yB1 and yB2
in B are the same as the relations between xA and yA in A, the results of these
matchings are bisimilar.

More formally, ifM is a Kripke model then I define the relation Z on WM⊗A×
WM⊗B as follows. For any w ∈ WM,

(w, xA)Z(w, xB),
(w, yA)Z(w, yB1 ) if w |= p,
(w, yA)Z(w, yB2 ) otherwise.

It is not hard to check that Z is indeed a bisimulation betweenM⊗A andM⊗B.

The above example shows that the problem of detecting equivalence between
action models is not solved by simply adapting the definition of bisimulation.
Therefore I would like to find a more sophisticated relation between action models.
I will define such a relation later in this chapter, but first I will show that there is
a way to detect action model equivalence by looking at canonical Kripke models.

A canonical Kripke model is a model that has a world for every possible atom
over a certain set of formulas. It models all possible truth values of these formulas
and their subformulas.

7.3.4. Definition. If Φ is a finite set of formulas and Σ the set of atoms over
Φ, then the canonical Kripke model Mc = (W c,Valc, Rc,W c

0 ) over Φ is defined
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as
W c := Σ
Valc(σ) := P ∩ σ
σ

a→
c
σ′ iff

∧
σ ∧ ♦a

∧
σ′ is consistent

W c
0 := Σ

Every world in the canonical model corresponds to an atom, and there is an a-
relation from one atom to another if the formulas in the first atom are consistent
with ♦aφ, for any formula φ in the second atom. The following is shown in
[Blackburn et al., 2001].

7.3.5. Theorem. LetMc be the canonical model over a set of formulas Φ. Then
for any atom σ over Φ and for any formula φ ∈ C(Φ),

Mc |=σ φ iff φ ∈ σ.

Given an action model A, I define its language ΛA as the closure of the union
of the preconditions of all its events. In [van Eijck et al., 2012], the following
very useful observation is made about canonical Kripke models and action model
equivalence:

7.3.6. Theorem. Take two action models A and B such that Φ = ΛA ∪ ΛB and
let Mc be the canonical Kripke model over Φ. Then the following holds:

A ≡ B iff Mc ⊗A ↔− Mc ⊗ B.

A proof of this theorem is given in [van Eijck et al., 2012]. However, the proof
given there is slightly lacking: it makes an assumption that is not properly shown
to be true. In order to be entirely correct, the proof would need to be preceded by
the following lemma. It states that if two action models A and B are equivalent
and they are applied to some epistemic model M then one can find not only a
bisimulation between M⊗A and M⊗B, but also one that connects only pairs
that result from the same world in WM.

7.3.7. Lemma. Take two action models A and B such that A ≡ B. Then for any
model M of countable size there is a bisimulation Z between M⊗A and M⊗B
such that (w, x)Z(v, y) implies w = v.

Proof. Take some modelM. Let P be the set of propositions. For every world
w ∈ WM construct a new proposition pw which is not in P . Let M′ be a model
over P ∪ {pw | w ∈ WM} which is identical to M, except for the fact that the
valuation is extended in such a way that every new proposition pw is true in world
w and false in all other worlds. Because A ≡ B, there must be a bisimulation Z
betweenM′⊗A andM′⊗B. Because every world in WM′ has a unique valuation
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that is preserved in the action update, it holds that (w, x)Z(v, y) implies w = v.
But clearly, Z is also a bisimulation betweenM⊗A andM⊗B. So I have shown
that for any modelM there exists such a bisimulation with the desired property.
�

Using this lemma, the proof of Theorem 7.3.6 goes as follows. This follows
[van Eijck et al., 2012] almost precisely, except for the fact that there the existence
of a bisimulation as constructed in Lemma 7.3.7 is not proven.

Proof of Theorem 7.3.6. The proof for the left to right direction is immedi-
ate by the definition of action model equivalence. For the right to left direction,
suppose Mc ⊗ A ↔− Mc ⊗ B. Then by Lemma 7.3.7 there is a bisimulation
Z : WMc⊗A×WMc⊗B with the special property that (w, x)Z(v, y) implies w = v.
Take any Kripke model M. Define a relation Y : WM⊗A ×WM⊗B as follows:

(w, x)Y (v, y) iff w = v and (w∗, x)Z(w∗, y),

where given some w ∈ WM, w∗ ∈ WMc
is defined as the atom that consists of

all elements of C(Φ) that are satisfied in w. I will show that Y is a bisimulation.
Suppose (w, x)Y (w, y). Then (w∗, x)Z(w∗, y).

To see that Invariance is satisfied, observe that the valuations of (w, x) and
of (w, y) are both inherited from w and therefore identical.

For Zig, suppose (w, x)
a→ (w′, x′). Then w

a→ w′ and x
a→ x′. Because

M |=w

∧
w∗ andM |=w′

∧
w′∗, then

∧
w∗∧♦a(

∧
w′∗) is consistent, so w∗

a→ w′∗.
Because M |=w′ Pre(x′), it holds that Pre(x′) ∈ w′∗. So (w∗, x)

a→ (w′∗, x′).
But since (w∗, x)Z(w∗, y), then there must be (v, y′) such that (w∗, y)

a→ (v, y′)
and (w′∗, x′)Z(v, y′). Then by the special property of Z I have v = w′∗, so
(w′∗, x′)Z(w′∗, y′). So (w′, x′)Y (w′, y′). Since (w∗, y)

a→ (w′∗, y′) it holds that
y

a→ y′. Since I already knew that w
a→ w′, this shows (w, y)

a→ (w′, y′).
The proof for Zag is analogous.
To see that Y is total, take some (w, x) ∈ WM⊗A

0 . Then M |=w Pre(x) so
Pre(x) ∈ w∗. Then Mc |=w∗ Pre(x), so (w∗, x) ∈ Mc ⊗ A. Then by the special
property of Z there is some y ∈ B such that (w∗, x)Z(w∗, y). SoMc |=w∗ Pre(y),
and then Pre(y) ∈ w∗ so M |=w Pre(y). So (w, x)Y (w, y). �

This theorem demonstrates a straightforward procedure to check whether two
action models are equivalent: simply construct the canonical Kripke model for
the set of formulas consisting of their preconditions, and see whether the update
results on this model bisimulate. Even though this is not complicated, it is a very
inefficient method: the size of the canonical Kripke model is exponential in the
number of subformulas of the preconditions.

I am looking for a definition of a direct relation between action models that
signifies their equivalence. Inspired by the above theorem, in [van Eijck et al.,
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2012] a relation is constructed which is parameterized by worlds in the canonical
Kripke model. This parameterized action emulation does not yet lead to an
efficient method, because every world in the canonical Kripke model has to bee
computed. However, I take it as a starting point for further investigations. It is
defined as follows.

7.3.8. Definition. Given two action models A and B, let Σ be the set of atoms
over ΛA ∪ ΛB. Given some x ∈ EA ∪ EB, let S(x) = {σ ∈ Σ | Pre(x) ∈ σ}.
An action emulation between A and B is a set of indexed relations {Eσ}σ∈Σ such
that whenever xEσy the following conditions hold:

Invariance Pre(x) ∈ σ and Pre(y) ∈ σ.

Zig If x
a→ x′ then for any σ′ ∈ S(x′) such that σ

a→ σ′ there is y′ ∈ EB with
y

a→ y′ and x′Eσ′y
′. In a picture:

x y

x′ y′

σ

σ′

a a

Zag If y
a→ y′ then for any σ′ ∈ S(y′) such that σ

a→ σ′ there is x′ ∈ EA with
x

a→ x′ and x′Eσ′y
′. In a picture:

x y

x′ y′

σ

σ′

a a

I say that A and B emulate parameterized by the canonical model if for every
x ∈ EA0 and for every σ ∈ S(x) there is y ∈ EB0 with xEσy, and vice versa.
Notation: A�S B.

It is shown in [van Eijck et al., 2012] that this relation indeed characterizes
action model equivalence:
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7.3.9. Theorem. For any two action models A and B,

A ≡ B iff A�S B.

To see why this definition works, observe that any world w from any Kripke
model M has a corresponding atom w∗. Then if A �S B, there must be for
every x ∈ EA such that M |=w Pre(x) some event y ∈ EB such that xEw∗y.
Then M |=w Pre(y), and it is not hard to show that (w, x) is bisimilar to (w, y).

However, this definition leaves me with the same problem as before: it requires
the computation of a large number of atoms. One even has to compute a separate
relation for every possible atom! This is very inefficient. Therefore I want to
improve on this by finding a non-parameterized notion of action emulation.

Checking whether two action models are equivalent is complicated because one
world from a Kripke model may match multiple events in the action model and
one event in the action model may match multiple worlds in the Kripke model.
Moreover, usually there is no direct mapping between A and B such that an event
in A matches the exact same worlds in the Kripke model as the related event in
B. To circumvent these complications I consider canonical action models.

7.3.10. Definition. An action model A is canonical over a finite set of LM
formulas Φ if every precondition is the conjunction of an atom over Φ and for
every x, x′ ∈ EA such that x

a→ x′, Pre(x) ∧ ♦aPre(x′) is consistent.

Note the difference between canonical Kripke models and canonical action
models: a canonical Kripke model has a world for every possible atom, and has
a relation between two worlds if and only if this relation is consistent with the
contents of the atoms. On the other hand, a canonical action model may be
incomplete in the sense that there may be atoms that are not represented as the
precondition of an event in the model. Also, a relation between two events may
not be present even though it would be consistent with the preconditions of the
events.

7.3.11. Example. Consider the following action model (reflexive relations present
but omitted in the picture):

A :

xA : p ∧�ap

yA : ¬�ap

a

This action model is not canonical. The reason for this is that the precondition
of world yA is not the conjunction of an atom over the set of formulas {p,�ap}.
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It is not even an atom over the set of formulas {�ap}, because p is a subformula
of �ap.

On the other hand, in the following action model all preconditions are con-
junctions of atoms over {p,�ap}:

B :

xB : p ∧�ap

yB : p ∧ ¬�ap zB : ¬p ∧ ¬�ap

a a

a

However, this model is still not canonical because there is an a-relation from xB

to zB, even though p ∧�ap ∧ ♦a(¬p ∧ ¬�ap) is inconsistent.

The following model does not have any of these inconsistent relations:

C :

xC : p ∧�ap

yC : p ∧ ¬�ap zC : ¬p ∧ ¬�ap

a

a

This model is canonical. All its preconditions are conjunctions of atoms over
{p,�ap} and all its relations are consistent. Note that not all atoms are repre-
sented in the model: ¬p∧�ap is not present. Also, not all consistent relations are
present: for example, there is no relation from yC to xC, even though this would
be allowed.

The nice thing about canonical action models is that each event completely
determines the truth value of all formulas in Φ. In this section I will construct
a notion of action emulation that corresponds to action model equivalence for
canonical action models. But first I will show that every action model has an
equivalent canonical action model.

7.3.12. Theorem. Every finite action model has an equivalent canonical action
model.
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Proof. Take an action model A = (E,Pre, R,E0). Let Σ be the set of atoms
over ΛA. I construct a new action model Ac = (Ec,Prec, Rc, Ec

0) as follows:

Ec := {(x, σ) | x ∈ E, σ ∈ Σ,Pre(x) ∈ σ},
Prec(x, σ) :=

∧
σ,

(x, σ)
a→ (x′, σ′) iff x

a→ x′ and
∧
σ ∧ ♦a

∧
σ′ is consistent,

Ec
0 := {(x, σ) ∈ Ec | x ∈ E0}.

It follows from this definition that Ac is canonical. I claim that A ≡ Ac.
Take some model M. Define a relation Z on M⊗A×M⊗Ac as follows:

(w, x)Z(v, (y, σ)) iff w = v and x = y.

I will start out by showing that Z is total. Take some (w, x) ∈ WM⊗A. Let
σ = {ϕ ∈ ΛA | M |=w ϕ}. Then σ ∈ Σ and Pre(x) ∈ σ so (x, σ) ∈ Ec.
Clearly, M |=w

∧
σ so (w, (x, σ)) ∈ WM⊗Ac and (w, x)Z(w, (x, σ)). Now take

some (w, (x, σ)) ∈ WM⊗Ac . By definition of Ac, M |=w

∧
σ and Pre(x) ∈ σ so

M |=w Pre(x) and (w, x)Z(w, (x, σ)).
Now I will show that Z is a bisimulation. Suppose (w, x)Z(w, (x, σ)). Invari-

ance is satisfied because both (w, x) and (w, (x, σ)) inherit their valuation from
w. For Zig, suppose (w, x)

a→ (w′, x′). Let σ′ = {ϕ ∈ ΛA | M |=w′ ϕ}. By defi-
nition of Z, M |=w

∧
σ and clearly M |=w′

∧
σ′ so

∧
σ ∧ ♦a

∧
σ′ is consistent.

Then by definition of Rc I have (x, σ)
a→ (x′, σ′) so (w, (x, σ))

a→ (w′, (x′, σ′)).
Furthermore, (w′, x′)Z(w′, (x′, σ′)). This shows satisfaction of Zig.

For Zag, suppose (w, (x, σ))
a→ (w′, (x′, σ′)). Then w

a→ w′ and x
a→ x′ so

(w, x)
a→ (w′, x′). Furthermore, (w′, x′)Z(w′, (x′, σ′)). This shows the satisfaction

of Zag. �

So for every world in the original model, I construct the possible atoms cor-
responding to that world. I preserve only the relations from the original model
that are consistent. This way I construct an equivalent canonical action model.
Note that in the previous example, the action model C would be the result of
constructing equivalent canonical models for A and B in this manner.

Now I will define a new notion of action emulation. I will use some notation
adopted from [van Eijck et al., 2012]:

• If
a→ is a relation on X×Z, x ∈ X and Y ⊆ Z then I write x

a→ Y to mean
that x

a→ y for every y ∈ Y ,

• If E is a relation on X × Z, x ∈ X and Y ⊆ Z then I write x
−→
EY to mean

that xEy for every y ∈ Y ,

• If E is a relation on Z × Y , X ⊆ Z and y ∈ Y then I write X
−→
Ey to mean

that xEy for every x ∈ X.
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7.3.13. Definition. Given two finite action models A and B, a relation E :
EA × EB is an action emulation if for any x ∈ EA, y ∈ EB such that xEy the
following hold:

Consistency Pre(x) ∧ Pre(y) is consistent.

Zig If x
a→ x′ then there is Y ′ ⊆ EB such that y

a→ Y ′, x′
−→
EY ′ and

Pre(x) ∧ Pre(y) |= �a(Pre(x′)→
∨
y′∈Y ′

Pre(y′)).

In a picture:

x y

x′ Y ′

E

−→
E

a a

Zag If y
a→ y′ then there is X ′ ⊆ EA such that x

a→ X ′, X ′
−→
Ey′ and

Pre(x) ∧ Pre(y) |= �a(Pre(y′)→
∨
x′∈X′

Pre(x′)).

In a picture:

x y

X ′ y′

E

−→
E

a a

I will say that A and B emulate, notation A� B, if there is an action emulation

E such that for every x ∈ EA0 there is Y ⊆ EB0 such that x
−→
EY and Pre(x) |=∨

y∈Y Pre(y), and vice versa.

So if A and B emulate, every event in A corresponds to a number of events in
B, and vice versa. The preconditions of corresponding events are consistent with



7.3. Bisimilar Action Models 125

each other. Furthermore, if x corresponds to y then any relation from x to a new
event x′ is matched by a relation from y to a set Y ′. This set is chosen such that
if a world of a Kripke model matches x and y and has a successor that matches
x′, then this successor also matches a member of Y ′.

This notion of action emulation is sufficient for action model equivalence.

7.3.14. Theorem. For any two finite action models A and B, if A � B then
A ≡ B.

Proof. Suppose A � B and let E be an action emulation between A and B.
Let M be an arbitrary Kripke model. I define a relation Z on M⊗A×M⊗B
as follows:

(w, x)Z(v, y) iff w = v and xEy.

I will first show that this relation is total on the actual worlds of M⊗ A and
M ⊗ B. Recall that UM⊗A is the set of actual worlds of the model M ⊗ A.
Suppose (w, x) ∈ UM⊗A. Then x ∈ EA0 so there must be some Y ⊆ EB0 such that

x
−→
EY and Pre(x) |=

∨
y∈Y Pre(y). Then M |=w

∨
y∈Y Pre(y), so there is some

y ∈ Y such that M |=w Pre(y). But then (w, x)Z(w, y). The proof for the other
direction is analogous, so I conclude that Z is total.

Next, I will show that Z is a bisimulation. Suppose (w, x)Z(w, y). Then xEy.
Invariance is satisfied because both (w, x) and (w, y) inherit their valuation from
w. For zig, suppose (w, x)

a→ (w′, x′). Then x
a→ x′. By the fact that xEy there

must be Y ′ ⊆ EB such that y
a→ Y ′, x

−→
EY ′ and

Pre(x) ∧ Pre(y) |= �a(Pre(x′)→
∨
y′∈Y ′

Pre(y′)).

It holds that M |=w Pre(x) ∧ Pre(y) and M |=w′ Pre(x′) and this gives M |=w′∨
y′∈Y ′ Pre(y′), so there must be some y′ ∈ Y ′ such thatM |=w′ Pre(y′). Because

y′ ∈ Y ′ it holds that y
a→ y′ and x′Ey′ so (w, y)

a→ (w′, y′) and (w, x′)Z(w, y′).
This shows the satisfaction of Zig. The proof for Zag is analogous, so I conclude
that M⊗A ↔− M⊗B and, because M was arbitrary, A ≡ B. �

This result gives one half of a correspondence between action emulation and
action model equivalence.

Turning to the other half, I will show that for canonical action models, action
emulation is also necessary for action model equivalence.

7.3.15. Theorem. If A and B are canonical and A ≡ B then A� B.
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Proof. Suppose A and B are canonical and A ≡ B. Let M be the canonical
Kripke model over ΛA∪ΛB. Since A ≡ B, by Lemma 7.3.7 there is a bisimulation
Z between M⊗A and M⊗B such that (w, x)Z(v, y) implies w = v. Define a
relation E : EA × EB as follows:

xEy iff ∃w ∈ WM : (w, x)Z(w, y).

I will show that E is an action emulation. Suppose xEy and (w, x)Z(w, y). I
know that Pre(x)∧Pre(y) is consistent becauseM |=w Pre(x)∧Pre(y). Suppose
x

a→ x′.
I need to show that there is a set Y ′ such that y

a→ Y ′, x′
−→
EY ′ and Pre(x) ∧

Pre(y) |= �a(Pre(x′)→
∨
y′∈Y ′ Pre(y′)). Let

Y ′ := {y′ ∈ EB | ∃w′ ∈ WM : (w, x)
a→ (w′, x′),

(w, y)
a→ (w′, y′),

(w′, x′)Z(w′, y′)}.

It follows from the definition of Y ′ that y
a→ Y ′ and x′

−→
EY ′.

Now I need to show that Pre(x) ∧ Pre(y) |= �a(Pre(x′) →
∨
y′∈Y ′ Pre(y′)).

Suppose there is some model N and worlds v, v′ ∈ WN such that N |=v Pre(x) ∧
Pre(y), v

a→ v′ and N |=v′ Pre(x′). Let w′ :=
⋃
{ϕ ∈ ΛA ∪ ΛB | N |=v′ ϕ}.

Then w′ ∈ WM and Pre(x)∧Pre(y)∧♦aw′ is consistent. Note that because A is
canonical over ΛA, B over ΛB andM over ΛA∪ΛB, each world inM is completely
determined by matching an event from A and one from B. So since M |=w

Pre(x)∧Pre(y), w ≡ Pre(x)∧Pre(y). So w∧♦aw′ is consistent, and becauseM is
canonical, w

a→ w′. Since Pre(x′) ∈ w′ then (w, x)
a→ (w′, x′). Since (w, x)Z(w, y)

then there must be y′ such that (w, y)
a→ (w′, y′) and (w′, x′)Z(w′, y′). Then

y′ ∈ Y ′ and Pre(y′) ∈ w′, so N |=v′ Pre(y′) and N |=v′
∨
y′∈Y ′ Pre(y′). I conclude

that Pre(x) ∧ Pre(y) |= �a(Pre(x′) →
∨
y′∈Y ′ Pre(y′)). The proof for Zag is

analogous. This shows that E is an action emulation.
To see that E is total on the actual events of A and B, suppose x ∈ EA0 .

Let Wx = {w ∈ WM | M |=w Pre(x)}. By totality of Z and the fact that
(w, x)Z(v, y) implies w = v I have that for evey w ∈ W there is an y such that

(w, x)Z(w, y). Let Y = {y ∈ EB | ∃w ∈ Wx : (w, x)Z(w, y)}. Then x
−→
EY and

Pre(x) |=
∨
w∈W w and∨

w∈W w |=
∨
y∈Y Pre(y), so

Pre(x) |=
∨
y∈Y Pre(y).

The proof for totality in the other direction is analogous. This shows that A� B.
�

Together this gives:
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7.3.16. Theorem. For any two canonical action models A and B,

A ≡ B iff A� B.

So for canonical action models, action emulation characterizes action model
equivalence. This gives a procedure to check whether any two action models are
equivalent: just compute the corresponding canonical action models and check
whether there is an emulation between them. This is less work than computing
the canonical Kripke model as is necessary for checking the existence of a param-
eterized action emulation, since not all atoms are represented in the canonical
action model. Sometimes it may not even be necessary to compute the canonical
action model: I have shown that action emulation is sufficient for action equiv-
alence in the general case. So if there is already an action emulation between
two non-canonical action models, there is no need to compute the corresponding
canonical action models.

7.4 Propositional Action Emulation

In this section, I will compare my notion of action emulation to the notion of
propositional action emulation presented in [van Eijck et al., 2012]. It is shown
there that propositional action emulation corresponds to action model equivalence
for a restricted class of action models, namely the propositional action models.

7.4.1. Definition. An action model is propositional if all preconditions of its
events are formulas of classical propositional logic.

Unlike the class of canonical action models, this is a proper subclass of the
class of all action models. It is not possible to find for every non-propositional
action model an equivalent propositional one.

7.4.2. Example. Consider the following action model:

A : xA : ♦a>

This action model selects all worlds that have an a-successor. There is no way to
construct an equivalent action model that has only propositional preconditions.
The following Kripke model demonstrates this:

M : wM vM
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The result of updating this model with A is the shown below.

M⊗A : wM⊗A

In the result, the world w is preserved because it has an a-successor. The world
v is removed because it has no successors. There is no propositional difference
between w and v, so any propositional action model that preserves w will also
preserve v. Furthermore, the model M⊗A is not bisimilar to any result of an
update in which v is preserved, because there are no relations departing from v
so v is not bisimilar to wM⊗A. In other words, M⊗A is not bisimilar to the
result of the update ofM with a propositional action model. Therefore A is not
equivalent to a propositional action model.

This example shows that the class of propositional action models is indeed a
proper subclass of the class of all action models.

Now I will give the definition of propositional action emulation.

7.4.3. Definition. Given two finite action models A and B, a relation EP :
EA × EB is an action emulation if for any x ∈ EA, y ∈ EB such that xEPy the
following hold:

Consistency Pre(x) ∧ Pre(y) is consistent.

Zig If x
a→ x′ then there is a non-empty set Y ′ ⊆ EB such that y

a→ Y ′, x′
−→
E PY

′

and
Pre(x′) |=

∨
y′∈Y ′

Pre(y′).

In a picture:

x y

x′ Y ′

EP

−→
E P

a a

Zag If y
a→ y′ then there is a non-empty set X ′ ⊆ EA such that x

a→ X ′, X ′
−→
E Py

′

and
Pre(y′) |=

∨
x′∈X′

Pre(x′).

In a picture:
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x y

X ′ y′

EP

−→
E P

a a

I will say that A and B propositionally emulate, notation A �P B, if for every

x ∈ EA0 there is Y ⊆ EB0 such that x
−→
E PY and Pre(x) |=

∨
y∈Y Pre(y), and vice

versa.

It is shown in [van Eijck et al., 2012] that for propositional action models,
propositional action emulation corresponds to action model equivalence.

7.4.4. Theorem. For propositional action models A and B,

A ≡ B iff A�P B.

I will now compare my notion of action emulation to the notion of proposi-
tional action emulation. The main difference is in the Zig and Zag conditions,
more specifically in the constraint on the preconditions of the events in the sets
X ′ and Y ′. For propositional action emulation, the constraint for the Zig case is:

Pre(x′) |=
∨
y′∈Y ′

Pre(y′).

So every world that matches x′ should also match one of the events in Y ′. This
condition assures that whenever a world is matched by a successor x′ of x then it
is also matched by a successor in Y ′ of y′. However, this condition also constrains
worlds that match x′ but are not a successor of a world that matches x. Therefore,
I think this condition is too strong. In my definition of action emulation I use a
weaker condition:

Pre(x) ∧ Pre(y) |= �a(Pre(x′)→
∨
y′∈Y ′

Pre(y′)).

This condition states that if a world matches x and y then all its successors that
match x′ match one of the worlds in Y ′. This way it only constrains the worlds
that are successors of worlds that match both x and y. This more subtle condition
says exactly what is needed to define action equivalence between canonical models.
The fact that the first condition is too strong is shown by the following example.

7.4.5. Example. Consider the following two action models:
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A : xA : p

yA2 : ¬p

yA1 : p

a

a

B :

xB1 : p ∧�ap

yB1 : p ∧�ap

yB2 : p ∧ ¬�ap

a

a

xB2 : p ∧ ¬�ap

yB3 : p ∧�ap

yB4 : p ∧ ¬�ap

yB5 : ¬p ∧�ap

yB6 : ¬p ∧ ¬�ap

a

a

a

a

These action models are canonical and equivalent, but they do not propositionally
emulate.

To see that these models are equivalent, suppose that some world w matches
the event xA in the first model A. If w satisfies �ap then it will match xB1 in B
and otherwise it will match xB2 in B. Suppose w has some successor that matches
yA1 . Then this successor satisfies p so it will match either yB1 or yB2 if w matched
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xB1 , or yB3 or yB4 if w matched xB2 . Suppose w has some successor that matches yA2 .
Then this successor does not satisfy p, so w does not satisfy �ap, so w matched
xB2 . In this case the successor of w will match yB5 or yB6 .

Another way to see that these canonical models are equivalent is by checking
that the relation given by

E = {(xA, xB1 ), (yA1 , y
B
1 ), (yA1 , y

B
2 ), (xA, xB2 ), (yA1 , y

B
3 ), (yA1 , y

B
4 ), (yA2 , y

B
5 ), (yA2 , y

B
6 )}

is an action emulation between A and B.

To see that the models do not propositionally emulate, observe that xB1 does
not emulate with xA (or any other event in A). This is because from xA there is a
relation to yA2 , while there is no set of successors of xB1 such that the precondition
¬p implies the disjunction of preconditions of events in this set.

This shows that propositional action emulation does not characterize action
equivalence between canonical action models, nor action model equivalence be-
tween action models in general.

7.5 Conclusion

In this chapter I studied the properties of action models. Action models are
applied on Kripke models and they are equivalent if they give equivalent results
for all possible Kripke models. I tried to find a relation between action models
that signifies when they are equivalent, just like bisimulation does for Kripke
models.

Finding an appropriate relation that signifies equivalence of action models is
complicated by the fact that multiple worlds in the Kripke model may match
one world in the action model, and vice versa. I circumvent this complication
by considering canonical action models. My main result is a notion of action
emulation that is sufficient for action model equivalence of general action models.
For canonical action models, this notion of action emulation is also necessary
for equivalence. Because every action model has an equivalent canonical action
model this gives a method to determine whether any two action models are equiv-
alent. One can first try to find an action emulation between the models, which
is already sufficient for equivalence. If that does not succeed one can construct
the corresponding canonical action models and check whether there exists an ac-
tion emulation between those, which gives a conclusive answer. The question of
whether my notion of action emulation is equivalent to action model equivalence
for all action models, not just the canonical ones, is left for future work.

I compared my notion of action emulation to two notions given in [van Eijck
et al., 2012]: that of parameterized action emulation and that of propositional
action emulation. My notion of action emulation has clear advantages compared
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to both these notions. The advantage compared to parameterized action emula-
tion is that there is no need to compute a separate relation for every world in the
canonical Kripke model. This makes my method a lot more efficient. The ad-
vantage compared to propositional action emulation is that propositional action
emulation only works for propositional action models, while my method works
for all canonical action models. Because every action model has an equivalent
canonical action model, this gives a solution for the entire class of action models.



Chapter 8

Knowledge, Belief and Preference

8.1 Introduction

Knowledge is often described by philosophers as justified true belief. In this
chapter, I will investigate the interplay between knowledge and belief. I will
propose a way to model different kinds of belief, one of which is knowledge, and
show how this modeling procedure works out by analyzing a scenario of judgement
aggregation in a Dutch meeting.

In [van Eijck and Wang, 2008] it is shown how propositional dynamic logic
(PDL) can be interpreted as a logic of belief revision that extends the logic of
communication and change (LCC) given in [van Benthem et al., 2006]. This new
version of epistemic/doxastic PDL does not impose any constraints on the basic
relations and because of this it does not suffer from the drawback of LCC that
these constraints may get lost under updates that are admitted by the system.

Here, I will impose one constraint, namely that the agent’s plausibility rela-
tions are linked. Linkedness is a natural extension of local connectedness to the
multi-agent case and it ensures that the agent’s preferences between all relevant
alternatives are known. Since the belief updates that are used in [van Eijck and
Wang, 2008] may not preserve linkedness, I will limit myself to a particular kind
of belief change that does preserve it.

My framework has obvious connections to coalition logic [Pauly, 2002] and
social choice theory [Taylor, 2005]. I will show how it can be used to model
consensus seeking in plenary Dutch meetings. In Dutch meetings, a belief update
is done for all agents in the meeting if a majority believes the proposition that is
under discussion. A special case of these meetings is judgement aggregation, and
I will apply my framework to the discursive dilemma in this field.

The discursive dilemma is considered in [List and Pettit, 2005]. This problem
is the case of three judges a, b, c with a, b agreeing that p, and b, c agreeing that
q, so that both p and q command a majority, but p ∧ q does not. The example
shows that majority judgement is not closed under logical consequence. To see

133
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the relevance of the example for the practice of law, assume that p expresses that
the defendant has done action X, and q expresses that the defendant is under a
legal obligation not to do X. Then p∧ q expresses that the defendant has broken
his contract not to do X. This is a standard paradox in judgement aggregation
called the discursive dilemma or doctrinal paradox.

The discursive dilemma is an example of a situation where multiple agents
have different beliefs. I will present an epistemic/doxastic framework that can
be used to model such situations, and present a way to update these frameworks
with new beliefs. In the above example, this gives a protocol for judgement
aggregation.

In the previous chapters, I interpreted the relations of my models as knowledge
relations for the agents. In this chapter, I allow for multiple interpretations. The
relations can be seen as plausibility relations representing the belief of the agents
which relates my approach to epistemic logic and the knowledge relations in the
other chapters. They can also be seen as representing the preference of the agents,
which connects my work to social choice theory. In the rest of this chapter I will
refer to the relations as ‘preference relations’, but I do not wish to exclude other
interpretations.

8.2 Belief Revision Without Constraints

In this section I will introduce a logic that is interpreted on Kripke models with
preference relations. To start out with, there are no constraints on these prefer-
ence relations. In particular, they do not need to be equivalence relations. This
is exactly what makes the difference between knowledge and belief. I will also
show how knowledge relations which are reflexive, symmetric and transitive can
be constructed from these preference relations by using PDL.

Kripke models are defined in Chapter 2. In order to make a distinction be-
tween knowledge and preference relations, I will refer to the relations of a Kripke
model M as PM rather than RM.

When the relations of the Kripke models were interpreted as the agent’s knowl-
edge relations, a relation between two worlds meant that in one world, the agent
considered the other one possible. Now, a relation from w to v means that in world
w, the agent considers v possible and at least as plausible or at least as preferred
as w.

The logic I will use is very much like the language presented in Chapter 2.
Let LPr be the language with φ ∈ LPr defined as follows:

φ ::= p | ¬φ | φ ∨ φ | 〈α〉φ where p ∈ P,
α ::= a | ǎ | ?φ | α;α | α ∪ α | α∗ where a ∈ Ag.

This language is interpreted as defined in Chapter 2. The only new construct
is the program ǎ . This expresses the converse of a: if there is an a-relation
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from w to v then there is an ǎ relation from v to w. In the case of knowledge
relations, this construct would be quite useless because all relations would be
symmetric. Now, it is a very useful construct that expresses that the ǎ -related
world is considered at most at preferable or at most as plausible as the current
world by agent a. Recall that given some program α, [[α]]M denotes the relation
that interprets the program α in M.

As mentioned above, if there is a relation from v to w then the agent considers
v at least as plausible or preferable as w. If there is also a direct or indirect path
from v back to w, then the agent considers both worlds equally plausible or
preferable. If there is no path from v to w, then the agent considers v more
plausible or preferable than w.

Using the programs α, one can express a great number of different notions of
belief and knowledge. I will focus on knowledge, strong belief, plain belief and
conditional belief.

Knowledge an agent knows something if it holds in all possible worlds, re-
gardless of how plausible or preferable these worlds are. I construct an
equivalence relation representing knowledge by constructing the union of
the preference relation with its converse, and taking the reflexive transitive
closure of the result. This gives:

∼a:= (a ∪ ǎ )∗.

The formula [∼a]φ expresses that agent a knows φ.

Strong belief an agent strongly believes something if it holds in all worlds that
he considers at least as plausible or preferable as the current world. The
relation for strong belief is constructed by taking the reflexive transitive
closure of the preference relation:

≥a:= a∗.

The formula [≥a]φ expresses that a strongly believes that φ.
Note that since the relations point to the more preferred worlds, w ≥a v
means that v is at least as preferred as w.

Plain belief an agent has plain belief in φ if it holds in the worlds the agents
considers most plausible or preferable. This holds if there is some world the
agent considers possible, such that all worlds at least as plausible as that
world satisfy φ. One could think of that world as the least plausible world
where φ holds. Therefore plain belief can be expressed as follows:

[→a]φ⇔ 〈∼a〉[≥a]φ.

The formula [→a]φ expresses that a has plain belief in φ.
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Conditional belief an agent believes φ conditional to ψ if he has plain belief
that φ is true, given the fact that ψ holds. This holds if there is some ψ-world
the agent considers possible, such that all ψ-worlds at least as plausible as
that world satisfy φ. Trivially, it also holds if ψ is false. Conditional belief
can be expressed as follows:

[→ψ
a ]φ⇔ 〈∼a〉ψ → 〈∼a〉(ψ ∧ [≥a](ψ → φ)).

The formula [→ψ
a ]φ expresses that a has plain belief in φ, conditional to ψ.

Note that plain belief can also be expressed as belief conditional to truth:

[→a]φ⇔ [→>a ]φ.

Any preference relation Pa can be turned into a pre-order by taking its reflexive
transitive closure Pa

∗. The abbreviation for strong belief introduces ≥a as names
for these pre-orders. The knowledge abbreviation introduces ∼a as names for the
equivalence relations given by (Pa ∪ Pa )̌∗.

The definition of →φ
a (conditional belief for a, with condition φ) is from

[Boutilier, 1992]. This definition, also used in [Baltag and Smets, 2008], states
that conditional to φ, a believes in ψ if either there are no accessible φ worlds, or
there is an accessible φ world in which there is strong belief in φ→ ψ. The defini-
tion of →φ

a matches the well-known accessibility relations →V
a for each definable

subset V of the domain, given by:

→V
a := {(x, y) | x∼ay ∧ y ∈ MIN≥aV },

where MIN≥aV , the set of minimal elements of V under ≥a, is defined as

{w ∈ V : ∀v ∈ v(v ≥a w ⇒ w ≥a v)}.

Note that since w ≥a v expresses that v is at least as preferred as w, the elements
of MIN≥a are the most preferred worlds, according to agent a.

8.2.1. Example. Consider the following model:
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M :

w : p, q, r

v : p, q, r

u : p, q, r

a

a

Here the relations represent the belief of agent a. In world v, agent a knows that
p is true because it holds in all worlds she considers possible:

M |=v [∼a]p.

She has strong belief in q ∨ r, since it holds in all worlds that she considers at
least as plausible as v:

M |=v [≥a](q ∨ r).

She has plain belief in r, since it holds in the world she considers most plausible:

M |=v [→a]r.

Finally, agent a believes that q holds given the fact that r does not hold, so she
has plain belief in q conditional to ¬r. This holds because q is true in all preferred
¬r-worlds.

M |=v [→¬ra ]q.

This logic is completely axiomatized by the standard PDL rules and axioms
([Segerberg, 1982, Kozen and Parikh, 1981]) plus the following axioms that de-
scribe the relation between the basic programs a and ǎ :

` φ→ [a]〈ǎ 〉φ,
` φ→ [ǎ ]〈a〉φ.
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If the Pa are well-founded, MIN≤aP will be non-empty for non-empty P . The
canonical model construction for PDL yields finite models; since each relation on
a finite model is well-founded, there is no need to impose well-foundedness as a
relational condition.

This yields a very expressive complete and decidable PDL logic for belief
revision, to which one can add mechanisms for belief update and for belief change.

Note that the definitions for knowledge and strong belief are given as single
unary modalities (a ∪ ǎ )∗ and a∗, while plain and conditional belief are defined
in terms of the box modality. This is because in order to express plain and
conditional belief as single unary modalities, I would have to extend the language
of PDL with a new construct.

Suppose I would add the construct α as a program, with the semantics that
wαv holds iff wαv does not hold. Let α − β be shorthand for the “subtraction”
of β from α:

α− β := α ∪ β,
which holds between w and v iff α holds between w and v and β does not. Then
I could express plain and conditional belief as single unary modalities as follows:

Plain belief plain belief could be expressed as a relation pointing to all the most
preferred worlds. These are the worlds in which there is no strictly better
world, according to ≥a. In other words, there is no world reachable by a
≥a-step that is not reachable by a (≥a)̌ step.

→a := ∼a; ?([≥a −(≥a)̌ ]⊥).

Conditional belief belief conditional to ψ could be expressed as a relation
pointing to all the most preferred ψ-worlds. These are the worlds in which
there is no strictly better ψ-world, according to ≥a. In other words, there
is no ψ-world reachable by a ≥a-step that is not reachable by a (≥a)̌ step.

→ψ
a := ∼a; ?(ψ ∧ [≥a −(≥a)̌ ]¬ψ).

Unfortunately, the logic of PDL with the complement operator is undecidable
[Harel, 1984]. Therefore, I will not add the complement operator to my logic LPr.
Instead I will only use the →a and →ψ

a operators inside a box modality.

8.3 Belief Revision with Linked Preference Re-

lations

The preference relations that serve as the basis for construction of a prefer-
ence pre-order in Section 8.2 leave something to be desired. Compare an op-
tometrist who collects answers for a number of lenses she tries out on you: “Bet-
ter or worse?”, (change of lens), “Better or worse?” (change of lens), “Better or
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worse?”. . . . If you reply “worse” after a change of x to y, and “worse” after a
change from y to z, she will most probably not bother to collect your reaction to
a change from x to z. But what if you answer “better” after the second swap?
Then, if she is reasonable, she will try to find out how x compares to z. It makes
sense to impose this as a requirement on preference relations.

There are several ways to do this. Recall that I did not impose a requirement
of transitivity on the basic preference relations. Here is a definition that does not
imply transitivity, but yields that the transitive closures of the basic preference
relations are well-behaved.

8.3.1. Definition. A binary relationR is forward linked if the following holds:

∀x, y, z((xRy ∧ xR∗z)→ (yR∗z ∨ zR∗y)).

R is linked if both R and Rˇ are forward linked.

The following picture shows the idea, where one of the gray relations should be
present whenever the black relations are:

R

R∗

R∗ R

R∗

R∗

Note that this is different from the notion of weak connectedness: a relation
R is weakly connected if

∀x, y, z((xRy ∧ xRz)→ (yRz ∨ y = z ∨ zRy)).

The following theorem shows the interplay between forward linkedness and weak
connectedness.

8.3.2. Theorem. R is forward linked iff R∗ is weakly connected.

Proof. The right to left direction is immediate. For the left to right direction,
assume R is forward linked. Let wR∗w1 and wR∗w2. Then there is an n ∈ N
with wRnw1. I will prove the claim by induction on n. If n = 0 then w = w1

and w1R
∗w2, and I am done. Otherwise, assume the claim holds for n. I have to

show it holds for n + 1. Suppose wRn+1w1. Then for some w′, wRw′Rnw1. By
forward linking of R, either w′R∗w2 or w2R

∗w′. In the first case, use the induction
hypothesis to get w1R

∗w2 or w2R
∗w1. In the second case, it follows from w2R

∗w′

and w′Rnw1 that w2R
∗w1. �
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Starting from relations that are linked, one can upgrade the method from the
previous section to construct ‘belief revision models’ in the style of [Grove, 1988,
Board, 2002, Baltag and Smets, 2006, 2008].

It is well-known that the following principle characterizes weak connectedness
of Pa (cf. [Goldblatt, 1992]):

[a]((φ ∧ [a]φ)→ ψ) ∨ [a]((ψ ∧ [a]ψ)→ φ).

The notion of forward linking is characterized by:

[a]((φ ∧ [a∗]φ)→ ψ) ∨ [a∗]((ψ ∧ [a∗]ψ)→ φ). (*)

8.3.3. Theorem. Principle (*) holds in a belief revision frame iff Pa is forward
linked.

Proof. Let (W,P ) be a frame where Pa is forward linked, and let M =
(W,P, V ) be some model based on the frame. I will show that (*) holds. Let
w be a world in M. Assume M 6|=w [a]((φ ∧ [a∗]φ) → ψ). I have to show that
M |=w [a∗]((ψ ∧ [a∗]ψ) → φ). From the fact that M 6|=w [a]((φ ∧ [a∗]φ) → ψ), I
get that there is a world w1 with wPaw1 and M |=w1 φ ∧ [a∗]φ ∧ ¬ψ.

Let w2 be an arbitrary world with wP ∗aw2. Then by forward linking of Pa,
either w1P

∗
aw2 or w2P

∗
aw1.

In the first case, it follows from M |=w1 [a∗]φ that M |=w2 φ, and therefore
M |=w2 (ψ ∧ [a∗]ψ) → φ. In the second case, it follows from M |=w1 ¬ψ that
M |=w2 ¬[a∗]ψ, and therefore M |=w2 (ψ ∧ [a∗]ψ) → φ. So in both cases,
M |=w2 (ψ ∧ [a∗]ψ) → φ, and since w2 was an arbitrary world with wP ∗aw2, it
follows that M |=w [a∗]((ψ ∧ [a∗]ψ)→ φ).

Next, assume a frame (W,P ) where Pa is not forward linked. I will construct
a model M = (W,P, V ) and an instance of (*) that does not hold. If Pa is not
forward linked, there are w,w1, w2 with wPaw1, wP ∗aw2, and neither w1P

∗
aw2 nor

w2P
∗
aw1. Construct the valuation of M by setting p true in w1 and in all worlds

w′ with w1P
∗
aw
′ and false everywhere else, and setting q true in w2 and in all

worlds w′′ with w2P
∗
aw
′′, and false everywhere else. Note that since not w1P

∗
aw2,

p will be false in w2, and that since not w2P
∗
aw1, q will be false in w1. So I get

M |=w1 p ∧ [a∗]p ∧ ¬q and M |=w2 q ∧ [a∗]q ∧ ¬p. It follows that

M |=w 〈a〉(p ∧ [a∗]p ∧ ¬q) ∧ 〈a∗〉(q ∧ [a∗]q ∧ ¬p),

i.e.,
M 6|=w [a]((p ∧ [a∗]p)→ q) ∨ [a∗]((q ∧ [a∗]q)→ p),

showing that this instance of (*) does not hold in M. �

In the multi-agent case there is a further natural constraint. Consider a sit-
uation where Alice and Bob have to decide on the chairperson of a program
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committee. Carol is mediator. Alice says she prefers y to x. Bob counters by
saying that he prefers z to x. What should Carol do? Clearly, she should urge
both of them to compare y and z.

x

y

z

Alice

Bob

?

Translating this example to my logic of belief, I want to require that if x ≥a y
and x ≥b z, then either y ≥a z or z ≥a y and either y ≥b z or z ≥b y. This
motivates the following extension of the definition of linkedness to the multi-
agent case.

8.3.4. Definition. A set of binary relations R on a domain W is forward
linked if for all R, S in R, if xRy and xS∗z, then either yS∗z or zS∗y. R is
backward linked if the set {Rˇ | R ∈ R} is forward linked. R is linked if R is
both forward and backward linked.

The following picture shows the idea.

R

S∗

S∗ R

S∗

S∗

It follows from Definition 8.3.4 that the set {R} is forward linked iff R is
forward linked according to Definition 8.3.1. So Definition 8.3.4 gives a natural
extension of linking (and of local connectedness) to the multi-agent case.

The following theorem shows that my definition satisfies the motivating re-
quirement that if x ≥a y and x ≥b z then either y ≥a z or z ≥a y:

8.3.5. Theorem. If R and S are linked then for any x, y, z, if xR∗y and xS∗z
then either yR∗z or zR∗y.
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Proof. Suppose xR∗y and xS∗z. I will prove that for any w on the path from
x to z, either wR∗y or yR∗w. This clearly holds for w = x. Suppose w is the
successor of w′ on the path, and the result holds for w′. Suppose w′R∗y. Since
w′Sw the result holds by forward linking of R and S. Suppose yR∗w′. w′Sw and
w′R∗w′ so either w′R∗w or wR∗w′. In the first case trivially yR∗w. In the second
case the result holds by backward linking of R. �

If one assumes that relations are linked, there is an interesting interplay be-
tween common knowledge and common belief. The following theorem shows that
in this case common knowledge equals the union of strong common belief and
strong reverse common belief:

8.3.6. Theorem. If R and S are linked, then

(R ∪Rˇ∪ S ∪ S )̌∗ = (R ∪ S)∗ ∪ (Rˇ∪ S )̌∗.

Proof. The inclusion from right to left is obvious. For the inclusion from left
to right, assume x(R ∪ Rˇ∪ S ∪ S )̌∗y. Letting X and Y range over R and S,
observe that each X ◦ Y ∗̌ link can be replaced by either a Y ∗ or a Y ∗̌ link, and
similarly for Xˇ◦Y ∗ links, by linking of R and S. Continuing this process until all
one-step links are of the form R∪S or of the form Rˇ∪S ,̌ this yields x(R∪S)∗y
or x(Rˇ∪ S )̌∗y. �

This theorem shows that linking of relations simplifies the notion of common
knowledge.

The modal characterization of relation linking is given by:

[a]((φ ∧ [b∗]φ)→ ψ) ∨ [b∗]((ψ ∧ [b∗]ψ)→ φ) (LINK)

8.3.7. Theorem. The set of LINK principles (with a, b ranging over the set of
all agents) holds in a belief revision model iff the basic plausibility relations in the
model are forward linked.

Proof. Analogous to the proof of Theorem 8.3.3. �

8.4 Belief Update and Belief Change

In Chapter 2 I introduced action models and defined the update product. In
[van Benthem et al., 2006] it is shown how extending the PDL language with a
extra modality [A, e]φ does not change its expressive power. The interpretation
of the new modality is as follows: [A, e]φ is true in w in M if success of the
update of M with action model A to M⊗A implies that φ is true in (w, e) in
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M⊗A. The language of PDL with this new action update modality was called
the Logic of Communication and Change or LCC. But LCC as it was proposed
in [van Benthem et al., 2006] has a design flaw. It starts out with relations for
the agents that are constrained in some way that is appropriate for notions of
knowledge or belief. For example, KD45 models are often used to give a realistic
reprsentation of belief. However, there is a problem with updating KD45 models.
When a KD45 Kripke model is updated with a KD45 action model, the result
may be a non-KD45 model. This means that the resulting relations cannot be
interpreted as belief relations anymore. This issue is remedied in [van Eijck and
Wang, 2008], where it was first proposed to construct the relational properties for
belief from more basic relations by means of PDL operations. Here, I propose the
same for the different notions of belief. Action update by means of the update
construction can now be seen as belief update.

8.4.1. Example. Consider the following model of a situation where a coin has
been tossed and agent a does not know the value of the coin. The proposition h
signifies that the coin lies heads up, and agent a considers this less plausible than
the situation where the coin lies tails up.

w : h v : h
a

So in this example, agent a believes that the coin lies tails up. Now, if the
model is updated with an action model that signifies that the coin lies heads up,
the result is that world v disappears.

Belief change is something different from belief update. Belief update can
only remove worlds and arrows. It can never reverse the direction of arrows or
introduce new arrows, for the arrows in the update result are the arrows that are
both in the original model and in the action model. Belief change is something
more radical than this: replacing existing preference relations by new ones. Here,
I will focus on belief change rather than belief update. Belief change can be
compared to factual change. Factual change is what happens when the value of a
proposition changes. For example, suppose a coin lies heads up which is signified
by the truth of some proposition h. Now it is tossed again and it lies tails up.
This is the factual change of h = > to h = ⊥.

In [van Benthem et al., 2006], it was proposed to handle factual change by
propositional substitution. I already used this in Chapter 3 to model the factual
change that occurs when a message is sent in some message exchange. The
factual change of the coin from heads to tails can be modeled as the propositonal
substitution {h 7→ ¬h}. Something similar can be done for belief change. Suppose
agent a prefers x to y, she changes her preference, and now she prefers y to
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x. Or suppose she reverses all her preferences. This can also be handled as a
substitution, namely {a 7→ ǎ }.

Relational substitutions were proposed for belief change in [van Benthem,
2007], and it was shown in [van Eijck, 2008] that adding relational substitutions
for preference change to epistemic PDL makes no difference for expressive power:
the resulting system still reduces to PDL.

A preference substitution (or plausibility substitution) is a map from agents
to programs that can be represented by a finite set of bindings

{a1 7→ α1, . . . , an 7→ αn}

where the aj are agents, all different, and where the αi are programs. It is assumed
that each a that does not occur in the left hand side of a binding is mapped to
itself. Call the set {a ∈ Ag | ρ(a) 6= a} the domain of ρ. If M = (W,P, V,W0)
is a preference model and ρ is a preference substitution, thenMρ is the result of
changing the preference map P of M to P ρ given by:

P ρ(a) :=

{
Pa for a not in the domain of ρ,
[[ρ(a)]]M for a in the domain of ρ.

Now I will extend my PDL language with a modality [[ρ]]φ for preference change,
with the following interpretation:

M |=w [[ρ]]φ iff Mρ |=w φ.

An important thing to note is that since there are constraints on the prefer-
ence relations Pa (namely that they are linked), I need to ensure that the belief
changing substitutions satisfy these constraints. Therefore, I will use the general
definition of preference substitution to define an update that preserves linkedness.

Consider the suggestive upgrade ]aφ discussed in [van Benthem and Liu, 2004]:

]aφ := ?φ; a; ?φ ∪ ?¬φ; a; ?¬φ ∪ ?¬φ; a; ?φ.

This is a variation on what is called the lexicographic upgrade in the belief revision
community (see e.g., [Nayak, 1994]). The suggestive upgrade removes all relations
from φ-worlds to ¬φ-worlds. Belief revision with suggestive upgrade does not
preserve linking of relations, as the following example shows.

8.4.2. Example. Consider a case where wPaw1 and wP ∗aw2 and w1P
∗
aw2, with

φ true in w1 but not in w and w2.

w : ¬φ

w1 : φ

w2 : ¬φ

a

a∗

a∗
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This model is linked. After the suggestive upgrade for φ the a-path from w1 to
w2 will be removed:

w : ¬φ

w1 : φ

w2 : ¬φ

a

a∗

Clearly, now the model is not linked anymore.

So the suggestive upgrade does not preserve linking. However, if I revise the
upgrade procedure so that it adds extra links instead of removing them, as follows,
I get a variation that preserves linking:

\aφ := ?φ; a∗; ?φ ∪ ?¬φ; a∗; ?¬φ ∪ ?¬φ; (a∗ ∪ ǎ ∗); ?φ.

Thus, instead of removing the relations from φ-worlds x to ¬φ-worlds y, they
get reversed, and extra links to x get added to ‘support’ the new link from y to
x. Moreover, φ to φ links and ¬φ to ¬φ links are strengthened to deal with the
problem of detours through worlds that assign a different truth value to φ.

8.4.3. Example. Consider again the linked model from the previous example.

w : ¬φ

w1 : φ

w2 : ¬φ

a

a∗

a∗

If I apply the update \aφ instead of ]aφ, I get the following result:

w : ¬φ

w1 : φ

w2 : ¬φ

a

a

a
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Now instead of removing the relation from w1 to w2 it has been reversed. Clearly
this model is still linked, and belief in φ has been created.

The following theorem shows that the update \aφ does preserve linkedness.

8.4.4. Theorem. If M = (W,P, V,W0) is a belief revision model where Pa and
Pb are linked, and φ is a PDL formula, then [[\aφ]]M and Pb are also linked.

Proof. Write a for Pa, b for Pb, and \aφ for [[\aφ]]M. First note that for any
worlds x and y, if xa∗y then either x(\aφ)y or y(\aφ)x.

Suppose xby and x(\aφ)∗z. I will show that either wa∗y or ya∗w for all w on
the path from x to z.

Firstly let w = x. Since xby and xa∗x, either xa∗y or ya∗x by linking of a and
b. Now let w′ be the predecessor of w on the path, so x(\aφ)∗w′ and w′(\aφ)w.
Suppose either ya∗w′ or w′a∗y. Since w′(\aφ)w, either w′a∗w or wa∗w′. If ya∗w′

and w′a∗w or wa∗w′ and w′a∗y, then trivially ya∗w or wa∗y. Suppose w′a∗y and
w′a∗w. By forward linking of a and Theorem 8.3.2, wa∗y or ya∗w. Suppose ya∗w′

and wa∗w′. By backward linking of a and Theorem 8.3.2, ya∗w or wa∗y. So then
for any w on the path wa∗y or ya∗w, so za∗y or ya∗z, so z(\aφ)y or y(\aφ)z.

Suppose x(\aφ)y and xb∗z. Then either xa∗y or ya∗x. In the first case the
result follows by Theorem 8.3.5. Suppose ya∗x. I will show that for any w on the
path from x to z, yb∗w or wb∗y. Firstly let w = x. ya∗x and yb∗y so by Theorem
8.3.5 the result holds. Suppose w′ is the predecessor of w on the path and the
result holds for w′. Suppose yb∗w′. Then since w′bw, trivially yb∗w. Suppose
w′b∗y. Then the result holds by linkedness of b. �

Now call a substitution where all bindings are of the form a 7→ \aφ a linked
substitution. Then I construct a complete logic for belief change with linked
substitutions, by means of reduction axioms that ‘compile out’ the belief changes
(see [van Eijck, 2008], cf. Chapter 3):

8.4.5. Theorem. The logic of epistemic preference PDL with belief change modal-
ities for linked substitutions is complete.

Proof. The preference change effects of [[ρ]] can be captured by a set of reduc-
tion axioms for [[ρ]] that commute with all sentential language constructs, and
that handle formulas of the form [[ρ]][π]φ by means of reduction axioms of the
form

[[ρ]][π]φ ↔ [Fρ(π)][[ρ]]φ,
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with Fρ given by:

Fρ(a) :=

{
ρ(a) if a in the domain of ρ,
a otherwise,

Fρ(?φ) := ?[[ρ]]φ,
Fρ(π1; π2) := Fρ(π1);Fρ(π2),
Fρ(π1 ∪ π2) := Fρ(π1) ∪ Fρ(π2),
Fρ(π

∗) := (Fρ(π))∗.

It is easy to check that these reduction axioms are sound, and that for each for-
mula of the extended language the axioms yield an equivalent formula in which [[ρ]]
occurs with lower complexity, which means that the reduction axioms can be used
to translate formulas of the extended language to PDL formulas. Completeness
then follows from the completeness of PDL. �

8.5 Analyzing Plenary Dutch Meetings

A plenary Dutch meeting (Dutch: ‘Vergadering’) is a simultaneous preference or
belief change event where the following happens. Assume an epistemic situation
M with actual world w, and assume proposition φ is on the agenda.

• If a majority prefers φ to ¬φ, i.e., if

|{i ∈ Ag | M |=w [→i]φ}| > |{i ∈ Ag | M |=w [→i]¬φ}|

then simultaneous belief or preference change {i 7→ \iφ | i ∈ Ag} takes
place.

• If a majority prefers ¬φ to φ, i.e., if

|{i ∈ Ag | M |=w [→i]φ}| < |{i ∈ Ag | M |=w [→i]¬φ}|

then simultaneous belief or preference change {i 7→ \i¬φ | i ∈ Ag} takes
place.

• If there is no majority either way, nothing happens.

In fact, Dutch meetings are procedures for judgement aggregation [List and
Pettit, 2005]. Let me return to the example of three judges a, b, c with a, b agreeing
that p, and b, c agreeing that q, so that both p and q command a majority, but
p∧ q does not. Using my logic, I can picture the situation as a preference model.
I assume that every agent has greater belief in worlds that match her beliefs in
more propositions. This results in the following model:
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pq pq̄

p̄q

b, c

a

a, b

c

a
b

c

So a has the greatest belief in the world where p and not q hold, but after that
she has more belief in a world where p and q both hold than in the world where q
and not p hold, because in the first world at least her belief in p is right. Similarly
for c. For b, she believes in the world where p and q hold, and values the other
worlds equally plausible.

In this model the following formulas hold:

[→a]p, [→b]p, [→b]q, [→c]q, [→a]¬(p ∧ q), [→c]¬(p ∧ q).

This shows that there are majority believes in p and in q, but there is also a
majority belief in ¬(p ∧ q). If the judges decide to have a Dutch meeting about
p, the result will be unanimous belief in p:

pq pq̄

p̄q

b, c

a

a, b, c a, b, c

Now if the judges hold a subsequent Dutch meeting about q, the result will be
unanimous belief in q:

pq pq̄

p̄q

a, b, c

a, b, c a, b, c
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Now the judges unanimously believe in p ∧ q, so the defendant will be judged
guilty. However, if a Dutch meeting about p ∧ q was held in the first place, the
result would be belief in ¬(p ∧ q):

pq pq̄

p̄q

a, b, c

a, b, c
a

b

c

Clearly, in this case the defendant would be acquitted.
Experienced judges are of course familiar with this phenomenon. Procedural

discussions about how to decompose a problem, and in which order to discuss the
component problems may seem beside the point of a legal issue, but they turn
out to be highly relevant for the outcome of the legal deliberations.

8.6 Conclusion

In this chapter I have studied the interplay between knowledge and belief. I
have proposed a way to model knowledge and belief by using Kripke models with
plausibility or preference relations. Unlike earlier approaches to modeling beliefs,
I have not imposed strong requirements on the relations in my models. Instead, I
have constructed modalities with the appropriate properties from unconstrained
relations. This way I have shown how propositional dynamic logic with converse
can be used as a basis for developing a very expressive system of multi-agent
belief revision and belief change.

I have also studied the constraint for beliefs to be linked as a natural require-
ment for multi-agent belief change. Linkedness can be seen as a weaker version
of local connectedness, extended to the multi-agent case. I have constructed an
update mechanism that influences the belief of the agents while retaining the
property of linkedness.

Since my logic provides a general mechanism for simultaneous belief change, it
can be used to describe and analyze topics in judgement aggregation, the effects
of agenda setting, the effects of subgroup meetings to create general belief, and
many further issues of collective rationality.





Chapter 9

The Logic of Lying

9.1 Introduction

In the first part of this thesis I considered models of truthful communication.
Furthermore, in Chapter 8 I considered a model of belief and belief revision, which
can alternatively be viewed as a model of preference and preference aggregation.
Here, I will investigate what happens when agents hear a lie, which they may
believe or not. This chapter has a somewhat more philosophical flavour than the
previous chapters, which are of a more technical nature.

The first question I would like to ask is the following: What is a lie?

The church father St. Augustine, who wrote at length about lying in De
Mendacio [St. Augustine, 1988], holds a subtle view on what lying is and what
it is not. I will take his view as our point of departure. Here is his famous quote
on what lying is not.

For not every one who says a false thing lies, if he believes or opines
that to be true which he says. Now between believing and opining
there is this difference, that sometimes he who believes feels that he
does not know that which he believes, (although he may know himself
to be ignorant of a thing, and yet have no doubt at all concerning
it, if he most firmly believes it:) whereas he who opines, thinks he
knows that which he does not know. Now whoever utters that which
he holds in his mind either as belief or as opinion, even though it be
false, he lies not. For this he owes to the faith of his utterance, that
he thereby produce that which he holds in his mind, and has in that
way in which he produces it. Not that he is without fault, although
he lie not, if either he believes what he ought not to believe, or thinks
he knows what he knows not, even though it should be true: for he
accounts an unknown thing for a known.

151



152 Chapter 9. The Logic of Lying

St. Augustine, De Mendacio (On Lying), ca. AD 395 [St. Augustine,
1988]

And on what lying is:

Wherefore, that man lies, who has one thing in his mind and utters
another in words, or by signs of whatever kind. Whence also the
heart of him who lies is said to be double; that is, there is a double
thought: the one, of that thing which he either knows or thinks to be
true and does not produce; the other, of that thing which he produces
instead thereof, knowing or thinking it to be false. Whence it comes
to pass, that he may say a false thing and yet not lie, if he thinks
it to be so as he says although it be not so; and, that he may say a
true thing, and yet lie, if he thinks it to be false and utters it for true,
although in reality it be so as he utters it. For from the sense of his
own mind, not from the verity or falsity of the things themselves, is
he to be judged to lie or not to lie. Therefore he who utters a false
thing for a true, which however he opines to be true, may be called
erring and rash: but he is not rightly said to lie; because he has not
a double heart when he utters it, neither does he wish to deceive, but
is deceived. But the fault of him who lies, is the desire of deceiving in
the uttering of his mind; whether he do deceive, in that he is believed
when uttering the false thing; or whether he do not deceive, either in
that he is not believed, or in that he utters a true thing with will to
deceive, which he does not think to be true: wherein being believed,
he does not deceive though it was his will to deceive: except that he
deceives in so far as he is thought to know or think as he utters.

St. Augustine, [St. Augustine, 1988]

I cannot do better than to follow St. Augustine in assuming that the inten-
tion to mislead is part of the definition of a liar. Thus, to me, lying that p is
communicating p in the belief that ¬p is the case, with the intent to be believed.

The deceit involved in a lie that p is successful, if p is believed by the addressee
after the speaker’s utterance. This is my perspective. As is common in dynamic
epistemic logic, I model the agents addressed by the lie, but I do not (necessarily)
model the speaker as one of those agents. Dynamic epistemics model how to
incorporate novel information after the decision to accept that information, just
like in belief revision. I do not claim that this decision is irrelevant, far from
that, but merely that this is a useful abstraction allowing me to focus on the
information change only. This further simplifies the picture: I do not need to
model the intention of the speaker, nor do I need to distinguish between knowledge
and belief of the speaker: he is the observer of the system and his beliefs are taken
to be the truth by the listeners. In other words, instead of having a precondition
‘the speaker believes that p is false’ for a lie, I have as a precondition ‘p is false’.
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In the previous chapters on truthful communication, the relations of the mod-
els I used were equivalence relations. In other words, the models were S5 models.
In Chapter 8 I already briefly mentioned the fact that while truthful commu-
nication corresponds to S5 models, belief is often taken to correspond to KD45
models. I will now focus on these KD45 models. The logic also allows for even less
specific notions than knowledge or belief. My analysis applies to all equally, and
for all such epistemic notions I will use a doxastic modal operator Bap, for ‘agent
a believes that p’. My analysis is not intended as a contribution to epistemology.
I am aware of the philosophical difficulties with the treatment of knowledge as
(justified) true belief [Gettier, 1963].

It is also possible to model the speaker explicitly in a modal logic of lying (and
I will do so in examples) and extend my analysis to multi-agent systems wherein
the deceptive interaction between speakers and hearers is explicit in that way.
However, I do not explore that systematically here.

The intention to be believed can also be modeled in a (modal) logical language,
namely by employing, for each agent, a preference relation that is independent
from the accessibility relation for belief. This is to account for the fact that
people can believe things for which they have no preference, and vice versa. This
perspective is, e.g., employed in [Sakama et al., 2010] - this contains further
references to the expansive literature on beliefs and intentions.

The moral sides to the issue of lying are clarified in the ninth of the ten
commandments (‘Thou shalt not bear false witness’) and the fourth of the five
Buddhist precepts (‘I undertake the precept to refrain from false speech’). On
the other hand, in the Analects of Confucius, Confucius is quoted as condoning
a lie if its purpose is to preserve social structure:

The Governor of She said to Confucius, ‘In our village we have an
example of a straight person. When the father stole a sheep, the son
gave evidence against him.’ Confucius answered, ‘In our village those
who are straight are quite different. Fathers cover up for their sons,
and sons cover up for their fathers. In such behaviour is straightness
to be found as a matter of course.’ Analects, 13.18.

Among philosophical treatises, the quoted text of St. Augustine is a classic. For
more, see [Bok, 1978] and [Arendt, 1967] and the references therein.

Rather than dwell on the moral side of the issue of lying, here I will study its
logic, focusing on simple cases of lying in game situations, and on a particular
kind of public announcement that may be deceptive and that I call ‘manipulative
update’. Thus, I abstract from the moral issues. I feel that it is important to
understand why lying is tempting (why and how it pays off) before addressing
the choice between condemnation and absolution.

The rest of the chapter is structured as follows. First, in Section 9.2, I develop
a logic of lying in public discourse, treating a lie as an update with a communica-
tion believed to be truthful. Next, I turn to lying in games, by analyzing the game
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of Liar’s Dice, first in terms of game theory (Section 9.3), next in terms of (an
implementation of) my logical system (Section 9.4). Section 9.5 concludes with
a reflection on the difference between my logic of lying as manipulative update
and lying in Liar’s Dice.

9.2 The Logic of Lying in Public Discourse

We get lied to in the public domain, all the time, by people who have an interest
in obfuscating the truth. In 1993 the tobacco company Philip Morris tried to
discredit a report on Respiratory Health Effects of Passive Smoking by founding,
through a hired intermediary, a fake citizen’s group called The Advancement of
Sound Science or TASSC, to cast doubt on it. Exxon-Mobile used the same
organisation to spread disinformation about global warming.1 Their main ploy:
hang the label of ‘junk science’ on peer-reviewed scientific papers on smoking
hazards or global warming, and promote propaganda disguised as research and
‘sound science’. It worked beautifully for a while, until the New York Times
exposed the fraud [Montague, April 29, 1998]. As a result, many educated people
are still in doubt about the reality of global warming, or think the issues are just
too hard for them to understand.

It has frequently been noted that the surest result of brainwashing
in the long run is a peculiar kind of cynicism, the absolute refusal to
believe in the truth of anything, no matter how well it may be estab-
lished. In other words, the result of a consistent and total substitution
of lies for factual truth is not that the lie will now be accepted as truth,
and truth be defamed as lie, but that the sense by which we take our
bearings in the real world -and the category of truth versus falsehood
is among the mental means to this end - is being destroyed.

Hannah Arendt, “Truth and Politics”, 1967 [Arendt, 1967].

Now this situation where complete cynicism reigns is one extreme attitude to
confront lying. This is of course at the price of also no longer believing the truth.
This attitude will be explored in my analysis of the game Liar’s Dice, where the
rules of the game allow any utterance regardless of its truth. The only thing that
counts is winning. As everyone knows this, this is some kind of fair play.

The other extreme is the attitude where all lies are believed. This will be the
logic of successful lies, where I take successful to mean that the addressees accept
the lie as truth, even at the price of believing inconsistencies. Below I will give a
logic of possibly deceptive public speech acts, to model the effects of lying as in
politics. Proposition 9.2.10 below can be seen as a clear vindication that Arendt
is right about the grave consequences of lying in politics.

1See http://www.exxonsecrets.org/html/orgfactsheet.php?id=6.
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I will use Kripke models as defined in Chapter 2 to model the beliefs of a
group of agents, and the modal language presented there to reason about them.
I will use Baφ as a shorthand for [a]φ. It expresses that agent a believes φ. I will
use action models with substitutions as defined in Chapter 3, Definition 3.3.4 to
model the event that the agents hear a lie. The constraint I will put on these
models is that they are KD45 models, as defined in Chapter 2. The class of KD45
models is characterized by the following axioms:

¬Ba⊥
Baφ → BaBaφ
¬Baφ → Ba¬Baφ

The first axiom states that no agent believes an inconsistency. The second is called
positive introspection , and it states that if an agent believes something, then
he believes that he beliefs it. The third axiom is negative introspection : if an
agent does not believe something, then he believes that he does not believe it.

If I would also want to model the intention to deceive, I would need to use
doxastic preference models (W,V,R, S), where S is a second relation for prefer-
ence. Then it is reasonable to let S satisfy the KD45 postulates, or the constraint
of linkedness that I presented in Chapter 8. But rather than carry such preference
relations along in the exposition, I will indicate at appropriate places how they
can be dealt with.

As I already indicated in Chapter 8 there is a problem with the logic of KD45
structures with KD45 updates, namely that this model class is not closed under
execution of such updates. A single-agent example suffices to demonstrate this:
consider a KD45 agent incorrectly believing that p: ¬p ∧ Bip. Now inform this
agent of the truth of ¬p. Then his accessibility relation becomes empty and is no
longer serial. Another way to see that KD45 is no longer satisfied is by observing
that the axiom ¬Ba⊥ no longer holds. The agent now believes everything! This
means that the logic that incorporates updates with any action model as modal
operators such as proposed in [van Benthem et al., 2006] cannot be complete with
respect to the class of KD45 Kripke models. Therefore, I will not include a modal
operator that consists of the update with an arbitrary action model in my logic.
Rather, I will introduce certain updates representing a lie that will preserve the
KD45 properties.

First, take the prototypical example of lying about p. Picture an initial situ-
ation where agent a knows that p, and agent a knows that agents b and c do not
know that p. One way to picture this initial situation is like this:
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2 : p 3 : p

0 : p 1 : p

bc bc

bc

bc bc

abc

abc abc

abc abc

The gray shading indicates that 0 is the actual world. Because the relations are
no longer assumed to be reflexive, in this chapter I will explicitly draw all reflexive
relations. Note that agent a believes that p (agent a even knows that p, but this
difference is immaterial to my analysis), but agents b, c also consider it possible
that agent a believes the opposite (which is the case in world 1), or that agent a
has no beliefs whatsoever about p (the situation in worlds 2 and 3).

In typical examples of bearing witness in court, the situation is often a bit
different. In cases of providing an alibi, for example, the question ‘Was the
accused at home with you during the evening of June 6th?’ is posed on the
understanding that the witness is in a position to know the true answer, even if
nobody can check that she is telling the truth.

Let us assume that everyone knows that a knows whether p. The picture now
becomes:

0 : p 1 : pbc
abc abc

Assume agent a sends a group communication to b, c to the effect that ¬p. Would
the following action model be a correct representation of the lie that ¬p?

0 : ¬p 1 : >
a

abc abc

It is easy to see that this cannot be right. The result of this update is a model
that has no actual worlds, i.e., an inconsistent model, since the actual world has
p true, and the precondition of the actual action is ¬p.
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Rather, the misleading communication should be modeled as a KD45 action
model, as follows:

0 : > 1 : ¬pbca abc

The misleading agent a knows that no truthful communication is being made,
but the two agents b, c mistakenly believe that ¬p is truthfully being asserted.
The fact that the originator of the lie does believe that p is true can be taken on
board as well, of course:

0 : Bap 1 : ¬pbca abc

This update can equally be seen as agent a lying about p, or as an observer,
not modeled in the system, lying about agent a believing that p. It cannot be
called an explicit of a lie by agent a, because it cannot be distinguished from the
(in fact more proper) perspective of an observer ‘knowing’ (believing, and with
justification, as he is omniscient) that Bap.

In the context of doxastic preference models, the precondition for the actual
action could be extended even further, with the intent to mislead: in a’s most
preferred worlds, his victims believe that ¬p. I will omit the formal details in the
interest of readability.

Updating the initial model with this action model gives:

(0, 0) : p (1, 1) : p
bc

a abc

This is a model where a believes that p, where b, c mistakenly believe that ¬p,
and where b, c also believe that a believes that ¬p. Note that the model is KD45:
beliefs are still consistent ([a]φ→ 〈a〉φ holds in the model), but the model is not
truthful anymore (there are φ and a for which [a]φ→ φ does not hold, i.e., there
are false beliefs).

This way to model lying suggests a natural generalization of the well-studied
concept of a public announcement. In the logic of public announcements [Plaza,



158 Chapter 9. The Logic of Lying

1989, Gerbrandy, 1999], a public announcement !φ is always taken to be a true
statement. A more realistic version of public announcements leaves open the
possibility of deceit, as follows. A possibly deceptive public announcement φ is
a kind of ‘if then else’ action. In case φ is true, the announcement is a public
update with φ, in case φ is false, the public is deceived into taking φ as true.
The manipulative update with p by an outside observer (the announcer/speaker,
who is not modeled as an agent in the structure), in a setting where the public
consists of a, b, c, looks like this:

0 : ¬p

1 : p

2 : p

abc

abc

abc

There are two actual events, one for the situation where p is true - in this case,
the public is duly informed - and one for the situation where p is false - in this
case the public is misled to believe that p. This action model can be simplified,
as follows:

0 : ¬p 1 : pabc
abc

Call this the two-pointed manipulative update for p. I will refer to this action
model as Up. I will refer to the variation on this action model where only event
0 is actual as U0

p . This action model denotes the lie with p. I will refer to the
variant with only event 1 actual as U1

p . This action model denotes the public
announcement with p.

Let me introduce operations for these actions. The manipulative update with
φ is denoted ‡φ, and its two variants are denoted ¡φ (for the lie that φ) and !φ
(for the public announcement that φ).

I will include these updates as modal operators in my language. Define the
logic of individual belief and manipulative update LBM as follows:

φ ::= p | ¬φ | φ1 ∧ φ2 | Biφ | [‡φ1]φ2 | [¡φ1]φ2 | [!φ1]φ2

Interpretation as sketched above:
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• [‡φ]ψ is true in a model M at a world w if ψ is true in both (w, 0) and (w, 1)
of the updated model M ⊗ U .

• [¡φ]ψ is true in a model M at a world w if ψ is true in (w, 0) of the updated
model M ⊗ U0.

• [!φ]ψ is true in a model M at a world w if ψ is true in (w, 1) of the updated
model M ⊗ U1.

Now it turns out that the logic of individual belief and manipulative update
has a simple axiomatisation in terms of reduction axioms, just like the logic of
individual knowledge and public announcement. These reduction axioms are as
follows. I start out with the reduction axioms for the [‡φ] modality:

[‡φ]ψ ↔ [¡φ]ψ ∧ [!φ]ψ

This defines the effect of [‡φ] in terms of those of [!φ] and [¡φ]. Next, there are
the usual reduction axioms for public announcement:

[!φ]p ↔ φ→ p

[!φ]¬ψ ↔ φ→ ¬[!φ]ψ

[!φ](ψ1 ∧ ψ2) ↔ [!φ]ψ1 ∧ [!φ]ψ2

[!φ]Biψ ↔ φ→ Bi[!φ]ψ

Finally, the reduction axioms for lying:

[¡φ]p ↔ ¬φ→ p

[¡φ]¬ψ ↔ ¬φ→ ¬[¡φ]ψ

[¡φ](ψ1 ∧ ψ2) ↔ [¡φ]ψ1 ∧ [¡φ]ψ2

[¡φ]Biψ ↔ ¬φ→ Bi[!φ]ψ

The final axiom of this list is the most interesting: it expresses that believing ψ
after a lie that φ amounts to the belief that a public announcement of φ implies
ψ, conditioned by ¬φ.

Since all these axioms have the form of equivalences, completeness of the
calculus of manipulation and individual belief follows from a reduction argument,
as in the case of public announcements with individual knowledge. I refer to [van
Benthem et al., 2006] for a general perspective on proving communication logics
complete by means of reduction axioms.

9.2.1. Theorem. The calculus of manipulation and individual belief is complete
for the class of the (multi-)modal KD45 models.
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Another way to see that the logic is complete is by means of the observation
that this is the special case of the Logic of Communication and Change (LCC,
[van Benthem et al., 2006]) where updates are restricted to manipulations, an-
nouncements and lies, and where doxastic programs are restricted to individual
accessibilities.

Interestingly, my logic of manipulation is closely related to the variation on
public announcement that is used in [Gerbrandy, 2007, Kooi, 2007] (and going
back to [Gerbrandy, 1999]) to analyze the ‘surprise exam puzzle’, where public
announcement of φ is defined as an operation that restricts the doxastic alterna-
tives of the agents to the worlds where φ is true, i.e., all relations to ¬φ worlds
are destroyed. Using †φ for this alternative announcement, the corresponding
reduction axiom is [†φ]Biψ ↔ Bi(φ→ [†φ]ψ).

A forerunner of this logic is the analysis of suspicions and lies in [Baltag, 2002],
which is further elaborated in [Baltag and Smets, 2008] and [van Ditmarsch, 2008];
the latter (actually a follow-up of the first version of the paper, [van Ditmarsch
et al., 2012], on which this chapter was based) addresses more agency aspects in
lying, such as the assumption that the addressee does not yet (firmly) believe the
opposite of the lie - you don’t want to be caught out as a liar!

At first sight, this alternative semantics for announcement takes me outside
of the framework sketched above. However, if †φ is an alternative announcement,
then I have:

9.2.2. Proposition. M,w |= [†φ]ψ iff M,w |= [‡φ]ψ.

Alternative announcement turns out to be the same as manipulative updating,
and this analysis can be viewed as a decomposition of alternative announcement
into public lying and (regular) public announcement.

Regular public announcements can be expressed in terms of manipulative
updating:

9.2.3. Proposition. ` [!φ]ψ ↔ (φ→ [‡φ]ψ).

The proof is by induction on ψ and is left to the reader.
The logic of public announcement and the logic of manipulation have the

same expressive power: this follows from the fact that they both reduce to multi-
modal KD45. But note that the logic of manipulative updating has greater ‘action
expressivity’ than the logic of public announcement: the logic of [!φ] has no means
to express an operation mapping S5 models to KD45 models, and [‡φ] is such an
operation.

As an example of reasoning with the calculus, I use the axioms to show that
a manipulative update followed by a belief is equivalent to a belief followed by
the corresponding public announcement:

9.2.4. Proposition. ` [‡φ]Biψ ↔ Bi[!φ]ψ.
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Proof.
[‡φ]Biψ ↔ ([¡φ]Biψ ∧ [!φ]Biψ)

↔ ((¬φ→ Bi[!φ]ψ) ∧ (φ→ Bi[!φ]ψ))
↔ Bi[!φ]ψ.

�

An important difference between manipulative update and public announce-
ment shows up when I work out the preconditions of inconsistency after an update.
For public announcements I get:

9.2.5. Proposition. ` [!φ]⊥ ↔ ¬φ.

Proof.
[!φ]⊥ ↔ [!φ](p ∧ ¬p)

↔ ([!φ]p ∧ [!φ]¬p)
↔ ([!φ]p ∧ (φ→ ¬[!φ]p))
↔ ((φ→ p) ∧ (φ→ ¬p))
↔ ¬φ

�

This shows that a public announcement with φ leads to an inconsistent state
iff the negation of φ is true. Similarly, it is easy to work out that a public lie that
φ leads to an inconsistency iff φ is true, i.e., I can derive

9.2.6. Proposition. ` [¡φ]⊥ ↔ φ.

Using these propositions I can work out the preconditions for inconsistency after
a manipulative update:

9.2.7. Proposition. ` [‡φ]⊥ ↔ ⊥.

Proof.
[‡φ] ↔ ([!φ]⊥ ∧ [¡φ]⊥)

↔ (¬φ ∧ φ)
↔ ⊥

�

This means that a manipulative update in a consistent state will never lead to
inconsistency (although, of course, it may lead to an agent having an inconsistent
set of beliefs, which is different).

The following proposition about public announcements can be proved by in-
duction on φ. It shows that if one updates with an inconsistency, the resulting
model is inconsistent:
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9.2.8. Proposition. ` [!⊥]φ↔ >.

In the case of manipulatively updating with an inconsistency, the result is not
an inconsistent model, but a model where all accessibilities have vanished. In the
particular case of the belief of agent a, this gives:

9.2.9. Proposition. ` [‡⊥]Baφ↔ >.

Proof.
[‡⊥]Baφ ↔ ([!⊥]Baφ ∧ [¡⊥]Baφ)

↔ (> ∧Ba[!⊥]φ)
↔ Ba[!⊥]φ

Prop 9.2.8↔ Ba>
↔ >.

�

After a manipulative update with an inconsistency, the public will no longer
be able to distinguish what is false from what is true.

Finally, the following proposition spells out under what conditions our ‘sense
by which we take our bearings in the real world’ is destroyed. This happens
exactly when we are manipulated into accepting as truth what flatly contradicts
our firm belief:

9.2.10. Proposition. ` [‡φ]Bi⊥ ↔ Bi¬φ.

Proof.
[‡φ]Bi⊥ ↔ ([!φ]Bi⊥ ∧ [¡φ]Bi⊥)

↔ ((φ→ Bi[!φ]⊥) ∧ (¬φ→ Bi[!φ]⊥))
↔ ((φ→ Bi¬φ) ∧ (¬φ→ Bi¬φ))
↔ Bi¬φ.

�

I can generalize my logic to a full logic of manipulative updating, i.e., accord-
ing to the full relational action description in the Logic of Communication and
Change. For details, see Section 9.6.

In this section I have investigated the effect of lying in public discourse. In
such a setting the agents assume that they are told the truth and in the event of
a lie, the agents hearing the lie do not believe that the announcement is actually
a lie. This causes them to believe a false thing. In Section 9.4 I will analyze
lying in a different setting, where the agents are playing a game of Liar’s Dice
and following a game strategy. But first, I will give a game-theoretical analysis
of the game to see how lying affects a game’s outcome.
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9.3 Liar’s Dice — Game-Theoretical Analysis

In his later years as a saint, St. Augustine held the opinion that lying, even
in jest, is wrong, but as the young and playful sinner that he was before his
turn to seriousness he may well have enjoyed an occasional game of dice. I will
examine a simplified version of two-person Liar’s Dice, and show by means of a
game-theoretical analysis that it is precisely the possibility of lying - using private
information in order to mislead an opponent - that makes the game interesting.

In my simplified version of Liar’s Dice, the die is replaced by a coin. A typical
move of the game is tossing a coin and inspecting the result while keeping it
hidden from the other player. Here is a description of what goes on, and what
the options of the two players are.

• Players a and b both stake one euro: Player a bets on heads, Player b bets
on tails.

• Player a tosses a coin under a cup and observes the outcome (heads or tails),
while keeping it concealed from player b.

• Player a announces either ℵHead or ℵTail.

• If a announces ℵTail, then she simply loses her one euro to player b and
game ends (for a bets on heads, so she announces defeat).

• If a announces ℵHead, she adds one euro to the stake and the game con-
tinues.

• In response to ℵHead, b either passes (gives up) or challenges “I don’t
believe that, you liar”) and adds 1 euro to the stake.

• If b passes, a wins the stake, and the game ends.

• If b challenges, and the toss was heads, a wins the stake, otherwise b wins
the stake. The game ends.

Player a has two information states: Heads and Tails, while player b has a
single information state, for player b cannot distinguish the two possible outcomes
of the toss. I will give a game-theoretic analysis of how player a can exploit her
‘information advantage’ to the utmost, and of how player b can react to minimize
her losses, on the assumption that the procedure is repeated a large number of
times. The following picture gives the extensive game form. The first move is
made by Chance; this move gives the outcome of the coin toss. Then player a
reacts, letting her move depend on the toss outcome. Finally, player b decides
whether to pass or challenge. This decision does not depend on the coin toss;
player b cannot distinguish the state where a announced ℵHead after seeing heads
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Chance

a a

H T

−1, 1 b

ℵT ℵH

b −1, 1

ℵH ℵT

1,−1 2,−2

P C

1,−1 −2, 2

P C

Figure 9.1: Extensive game form for Liar’s Dice game.

from the state where she is bluffing. In the picture of the extensive game form
(Figure 9.1) this is expressed by a dotted line.

The leaves of the game tree indicate the payoffs. If the game sequence is
Heads, ℵTail, the payoffs are −1 euro for player a and 1 euro for player b. The
same for the sequence Tails, ℵTail. Player a gets 1 euro and player b gets −1
euro for the sequences Heads, ℵHead, Pass, and Tail, ℵHead, Pass (these are the
sequences where 2 gives up). The sequence Heads, ℵHead, Challenge is a win
for player a, with payoff 2 euros, and −2 euros for player b. The sequence Tails,
ℵHead, Challenge, finally, is a win for player b, with payoff 2 euros, and −2 euros
for player a.

Player a has four strategies: (ℵHead, ℵHead) (ℵHead in case of heads and
in case of tails), (ℵHead, ℵTail) (ℵHead in case of heads, ℵTail in case of
tails), (ℵTail, ℵHead), and (ℵTail,ℵTail). Player b has two strategies: Pass
and Challenge. To find the strategic game form, one has to take the average of
the expected payoffs for the two cases of heads and tails. E.g., if player a plays
(ℵHead, ℵTail) and player b responds with Challenge, then in the long run in
1
2

of the cases the outcome will be heads, and player a wins 2 euros, and in 1
2

of
the cases the outcome will be tails, and player a loses 1 euro. Thus, the expected
payoff is 1

2
× 2− 1

2
× 1 = 1

2
euro for player a, and because the game is zero sum,

−1
2

euro for player b. The strategic game form is given by:

Pass Challenge
ℵHead, ℵHead 1,-1 0,0
ℵHead, ℵTail 0,0 1

2
,−1

2

ℵTail, ℵHead 0,0 −3
2
, 3

2

ℵTail, ℵTail -1,1 -1,1
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It is easy to see that there is no pure strategy Nash equilibrium. A Nash equilib-
rium is a combination of strategies, one for each player, with the property that
neither of the players can improve their payoff by unilaterally deviating from her
strategy (see, e.g., [Osborne and Rubinstein, 1992]). Clearly, none of the eight
strategy pairs has this property.

Now let’s consider the strategy (ℵTail, ℵTail) for a. This is the strategy
of the doomed loser: even when the toss is heads the player still announces
ℵTail. This is obviously not the best thing that a can do. Always announcing
ℵHead gives a much better payoff in the long run. In other words, the strategy
(ℵTail,ℵTail) is strictly dominated by (ℵHead, ℵHead). Similar for the strategy
of the unconditional liar: (ℵTail,ℵHead). It is also strictly dominated by the
strategy (ℵHead,ℵHead). Thus, I am left with:

Pass Challenge
ℵHead,ℵHead 1,-1 0,0
ℵHead, ℵTail 0,0 1

2
,−1

2

Suppose a plays (ℵHead, ℵHead) with probability p and (ℵHead, ℵTail)
with probability 1 − p. Then her expected value is p for her first strategy, and
1
2
(1− p) for her second strategy. Any choice of p where the expected payoff for p

is different from that for 1 − p can be exploited by the other player. Therefore,
player a should play her first strategy with probability p = 1

2
(1− p), i.e., p = 1

3
,

and her second strategy with probability 1 − p = 2
3
. For player b, I can reason

similarly. Suppose b plays Pass with probability q and Challenge with probability
1−q. Again, the expected values for q and 1−q should be the same, for otherwise
this mixed strategy can be exploited by the other player. The expected value is
−q for her first strategy and −1

2
(1− q) for her second strategy. Thus, she should

play her first strategy with probability q = 1
2
(1 − q), i.e., q = 1

3
. Neither player

can improve on her payoff by unilateral deviation from these strategies, so the
mixed strategy where a plays (ℵHead, ℵHead) in 1

3
of the cases and b plays Pass

in 1
3

of the cases is a Nash equilibrium. In other words, the best thing that player
a can do is always announcing the truth and raising the stakes when her toss
is heads, and lying in one third of the cases when her toss is tails, and b’s best
response to this is to Pass in one third of all cases and Challenge two thirds of
the time.

The game-theoretic analysis yields that lying pays off for player a, and that
player b, knowing this, may reasonably expect to catch player a on a lie in one
sixth of all cases. The value of the game is 1

3
euro, and the solution is 1

3
(ℵHead,

ℵHead), 2
3

(ℵHead, ℵTail) as player a’s optimal strategy, and 1
3

Pass, 2
3

Challenge
as player b’s optimal strategy. It is clear that the honest strategy (ℵHead, ℵTail)
is not the optimal one for player a: given that player b plays 1

3
Pass and 2

3

Challenge, the expected payoff for player a is only 1
6

if she sticks to the honest
strategy. Lying indeed pays off sometimes.
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If I modify the game so that player a cannot lie anymore, by refusing her the
privilege of having a peek at the toss outcome, the game immediately becomes
a lot less interesting. In the extensive game form for this version, an extra dot-
ted line indicates that player a cannot distinguish the outcome Heads from the
outcome Tails. See Figure 9.2.

Chance

a a

H T

−1, 1 b

ℵT ℵH

b −1, 1

ℵH ℵT

1,−1 2,−2

P C

1,−1 −2, 2

P C

Figure 9.2: Modified game where player a has no information advantage.

Player a has just two strategies left, ℵHead and ℵTail, and the strategic form
of the game becomes:

Pass Challenge
ℵHead 1,-1 0,0
ℵTail -1,1 -1,1

The strategy ℵTail for player a is weakly dominated by ℵHead, so it can be
eliminated, and we are left with:

Pass Challenge
ℵHead 1,-1 0,0

The strategy pair (ℵHead, Challenge) is a Nash equilibrium. The game-theoretic
analysis predicts that a rational player a will always play ℵHead, and a rational
player b will always Challenge, and the game becomes a pure zero-sum game of
chance. Surely, it is the possibility of lying that makes Liar’s Dice an interesting
game.

9.4 Liar’s Dice — Doxastic Analysis

In the game of Liar’s Dice, when player a announces Heads while she actually
saw that the outcome of the toss was Tails, she is announcing something which
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she believes to be false with the intent to be believed. This certainly seems to be
a lie. However, we usually do not condemn people who tell such a lie in a game
as untruthful. In fact, in this game player a is supposed to lie sometimes, or she
would never win. This is an important point: player a intends player b to believe
her, but she probably does not expect it, because player b may very well expect
player a to lie sometimes. As I have already shown, it is completely immaterial
in Liar’s Dice whether an announcement is true or false: the only reasons for one
or the other are strategic, and in view of winning the game. In this section I will
analyze the game of Liar’s Dice from a doxastic viewpoint in order to answer the
question: is lying really lying, when one is actually supposed to lie?

For my analysis I will use the doxastic model checker DEMO [van Eijck, 2007].
Using DEMO, I can automatically check the truth of formulas in a doxastic model.
I have extended DEMO with factual changes to allow action models with substitu-
tions and also with the possibility to store integer values in my Bachelor’s Thesis
[Sietsma, 2007]. I will use this extended model checker. The code of this model
checker is available from http://www.cwi.nl/~jve/software/demolight0/. I
show how the game of Liar’s Dice can be modeled using DEMO, and I demon-
strate the doxastic models that I get if I trace a particular run of the game. For
full details, see Section 9.7.

The conclusion of this analysis is that, even though in the game of Liar’s Dice
lying takes place according to the definition of Augustine, no misleading is taking
place and the players are never duped into believing a falsehood. This is shown
by the fact that all updates in the games, as modeled in the Appendix, are S5
updates: instead of unquestioningly taking for granted what they are being told,
all players consider the opposite of what they are being told equally likely. In the
resulting models there are no false beliefs, only true knowledge.

9.5 Conclusion

First of all, I will compare the approach presented here to that of Chapter 8.
There, the only constraint on the basic relations is that they are linked and from
these basic relations four different notions of belief are constructed using PDL.
Here, all relations satisfy the KD45 axioms and I only use one notion of belief.
The notion used here is probably closest to the notion of strong belief discussed
there, although the relations in my model do not need to be reflexive while strong
belief is constructed as the reflexive transitive closure of the basic relations. Using
one single notion of belief allowed me to focus on the effects of lies on an agent’s
belief. The update discussed here differs from the one proposed in Chapter 8
because it results in “stronger” belief of the formula that is communicated. This
is appropriate for the interpretation as a lie that is believed by the agents who
hear it. In Chapter 8 the agents’ relations represent preference or a “softer”
form of belief, that allows for different levels of plausibility or preference. Such
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an interpretation is more appropriate for the modeling of belief revision and
judgement aggregation.

There are still two discrepancies that I have to address. The first one is
between my treatment of lying in public discourse and my treatment of lying in
games. As I have shown, lying in public discourse can lead to KD45 models,
which illustrates the fact that genuine misleading takes place. I argued that the
players in a game like Liar’s Dice are never actually misled, so in a sense no real
lying takes place here at all. But one might also say that lying is attempted, but
due to the smartness of the opponent, these attempts are never really believed.
So lying in public discourse and lying in games are connected after all.

The difference between the two settings could be seen as a difference in the
protocol the agents are following. In public discourse, the agents usually assume
that they are following the protocol “only speak the truth”. Therefore, when one
of them deviates from the protocol by telling a lie, the others believe him and
are misled. In the game of Liar’s Dice, the protocol is “say anything in order
to improve your payoff”. Since all agents know that the others are following the
protocol, under the assumption of common knowledge of rationality, they do not
believe each other’s lies. The issue of protocol dynamics in epistemic modeling is
explored further in [Wang, 2010].

The second discrepancy is between the game-theoretical analysis of lying in
games in terms of mixed strategies that use probabilities, and the logical analysis
in terms of truth values. To see that these perspectives still do not quite match,
consider the game situation where player a tosses the coin, observes the result,
and announces ‘heads’. In my logical analysis this does not lead to the false belief
of player b that the coin has landed heads; it does not lead to a belief change at
all. But the game-theoretical analysis reveals that a rational agent would have
formed a belief about the probability that the claim is true. So it seems that the
logical analysis is still too crude.

This defect could be remedied by using probabilistic beliefs and probabilistic
updates, in the style of [van Benthem et al., 2009b], which would allow me to
express the probability of actions in the game. With these, one can model the
fact that the game-theoretical analysis in terms of mixed strategies is common
knowledge. For if this is the case, it is common knowledge that if the toss is tails,
then player a will announce ‘heads’ with probability 1

3
and ‘tails’ with probability

2
3
.

Interestingly, this is also relevant for the first discrepancy. For why are the
players not duped into believing falsehoods, in the game of Liar’s Dice? Because
they look further than a single run of the game, and they know that as the game
gets repeated they can adhere to mixed strategies. Therefore, an analysis in
terms of manipulative probabilistic updates might work for both lying in public
discourse and lying in games.



9.6. Appendix: The Full Logic of Manipulative Updating 169

9.6 Appendix: The Full Logic of Manipulative

Updating

The full logic of manipulative updating extends the logic of lies and individual
beliefs from Section 9.2 to doxastic PDL. It consists of doxastic PDL extended
with manipulative updates, lies and announcements:

α ::= i |?φ | α1;α2 | α1 ∪ α2 | α∗

φ ::= p | ¬φ | φ1 ∧ φ2 | [α]φ | [‡φ1]φ2 | [¡φ1]φ2 | [!φ1]φ2

There is a complete axiomatisation: the axioms and rules of PDL, the axioms of
KD45, necessitation for [‡φ], [¡φ], [!φ], and the following reduction axioms for the
three update modalities.

The definition of ‡ in terms of ¡ and ! is as in Section 9.2:

[‡φ]ψ ↔ [¡φ]ψ ∧ [!φ]ψ

Reduction axioms for public announcement are as follows:

[!φ]p ↔ φ→ p

[!φ]¬ψ ↔ φ→ ¬[!φ]ψ

[!φ](ψ1 ∧ ψ2) ↔ [!φ]ψ1 ∧ [!φ]ψ2

[!φ][a]ψ ↔ [?φ; a][!φ]ψ

[!φ][?χ]ψ ↔ [?φ; ?χ][!φ]ψ

[!φ][α1;α2]ψ ↔ [!φ][α1][α2]ψ

[!φ][α1 ∪ α2]ψ ↔ [!φ]([α1]ψ ∧ [α2]ψ)

[!φ][α∗]ψ ↔ [α′
∗
][!φ]ψ

where α′ such that [!φ][α]ψ ↔ [α′][!φ]ψ

It can be shown by an inductive argument that for every doxastic program α,
every announcement !φ, and every postcondition ψ a doxastic program α′ exists
such that [!φ][α]ψ ↔ [α′][!φ]ψ. This α′, which does not have to be unique, can be
found by applying the above reduction axioms.
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Reduction axioms for public lies:

[¡φ]p ↔ ¬φ→ p

[¡φ]¬ψ ↔ ¬φ→ ¬[¡φ]ψ

[¡φ](ψ1 ∧ ψ2) ↔ [¡φ]ψ1 ∧ [¡φ]ψ2

[¡φ][a]ψ ↔ [?¬φ; a][!φ]ψ

[¡φ][?χ]ψ ↔ [?¬φ; ?χ][!φ]ψ

[¡φ][α1;α2]ψ ↔ [¡φ][α1][α2]ψ

[¡φ][α1 ∪ α2]ψ ↔ [¡φ]([α1]ψ ∧ [α2]ψ)

[¡φ][α∗]ψ ↔ [α′;α′′
∗
][!φ]ψ

where α′ such that [¡φ][α]ψ ↔ [α′][!φ]ψ

and α′′ such that [!φ][α]ψ ↔ [α′′][!φ]ψ

Again, it can be shown by an inductive argument that for every doxastic program
α, every lie ¡φ, and every postcondition ψ, a doxastic programs α′ exists such that
[¡φ][α]ψ ↔ [α′][!φ]ψ.

The α′ and α′′ in the axioms for α∗ can be viewed as the transformed ver-
sions of the programs α, where the update operator acts as a doxastic program
transformer. To give an example, suppose α = a ∪ b, and I want to calculate the
way common belief of a and b is transformed by a public lie that φ. Then the
transformed program for a ∪ b becomes ?¬φ; a ∪ b, i.e., I have:

[¡φ][a ∪ b]ψ ↔ [?¬φ; a ∪ b][!φ]ψ.

Similarly for the way common belief of a and b is transformed by a public an-
nouncement: the transformed program for a ∪ b becomes ?φ; a ∪ b, and I have:

[!φ][a ∪ b]ψ ↔ [?φ; a ∪ b][!φ]ψ.

Using these transformed programs, one can see that the reduction axiom for
(a ∪ b)∗ takes the shape:

[¡φ][(a ∪ b)∗]ψ ↔ [?¬φ; a ∪ b; (?φ; a ∪ b)∗][!φ]ψ.

This expresses that after a lie with φ, a and b have a common belief that ψ iff
in the model before the lie it holds that along all a ∪ b paths that start from a
¬φ world and that pass only through φ worlds, [!φ]ψ is true. Note that this is
a ‘relativized common belief’ similar to the relativized common knowledge that
is needed to get a reduction style analysis going of public announcement in the
presence of common knowledge.

In fact, the style of axiomatisation that I have adopted is borrowed from
the reduction axioms formulated in terms of program transformations, in [van
Benthem et al., 2006]. In the same manner as in [van Benthem et al., 2006] I can
derive (with the restriction to multi-K models, not to multi-KD45 models):

9.6.1. Theorem. The calculus of manipulative updating is complete.
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9.7 Appendix: Liar’s Dice in DEMO

First I will closely examine the different actions that take place in the game and
their representations as action models. Let p represent the value of a coin, with
1 signifying heads, and 0 signifying tails. Let agents a and b represent the two
players, and let C1 represent the contents of the purse of player a (C for cash),
and C2 that of player b, with natural number values representing the amounts
in euros that each player has in her purse. These natural number registers are
available in the new extension of DEMO that was presented in [Sietsma, 2007].
Let S1, S2 represent the money at stake for each player. Factual change can be
thought of as assignment of new values to variables. This is an essential ingredient
of the various actions in the game:

Initialisation Both players put one euro at stake, and they both know this.
S1 := 1, C1 := C1−1, S2 := 1, C2 := C2−1, together with public announce-
ment of these factual changes.

Heads Factual change of the propositional value of a coin p to 1, with private
communication of the result to player a (p = 1 signifies heads).

Tails Factual change of the propositional value of a coin p to 0, with private
communication of the result to player a. (p = 0 signifies tails).

Announce Player a announces either ℵHead or ℵTail. There are several ways
to model this and I will come back to this later.

Pass Player b passes and loses, player a gets the stakes. C1 := C1 +S1 +S2, S1 :=
0, S2 := 0.

Challenge Public setting of C2 := C2 − 1, S2 := S2 + 1, followed by public
announcement of the value of p. If the outcome is p then C1 := C1 +S1 +S2,
otherwise C2 := C2 + S1 + S2 and in any case S1 := 0, S2 := 0.

I will show how these actions can be defined as doxastic action models in
Haskell code using DEMO.

module Lies

where

import ModelsVocab hiding (m0)

import ActionVocab hiding (upd,public,preconditions,

vocProp,vocReg)

import ChangeVocab

import ChangePerception

import Data.Set (Set)

import qualified Data.Set as Set
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type EM = EpistM Integer

I first define the cash and stakes of each player as integer registers.

c1, c2, s1, s2 :: Reg

c1 = (Rg 1); c2 = (Rg 2)

s1 = (Rg 3); s2 = (Rg 4)

This declares four integer registers, and gives them appropriate names. The
initial contents of the purses of the two players must also be defined. Let us
assume both players have five euros in cash to start with.

initCash1, initCash2 :: Int

initCash1 = 5

initCash2 = 5

Initialisation of the game: both players put one euro at stake. This is modeled
by the following factual change: S1 := 1, C1 := C1 − 1, S2 := 1, C2 := C2 − 1.
Representating this in my modeling language is straightforward. I just represent
the contents of the registers at startup.

initGame :: EM

initGame = (Mo

[0]

[a,b]

[]

[s1, s2, c1, c2]

[(0,[])]

[(0,[(s1,1),(s2,1),

(c1,(initCash1-1)),(c2,(initCash2-1))])]

[(a,0,0),(b,0,0)]

[0])

Tossing the coin is a factual change of p to 0 or 1. The coin is tossed secretly
and before player a looks both players are unaware of the value of the coin.
Therefore there are two worlds, one where p is set to 0 and one where p is set to
1, and neither of the two players can distinguish these worlds.
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toss :: Integer -> FACM State

toss c ags = (Acm

[0,1]

ags

[(0,(Top,([(P 0,Neg Top)],[]))),

(1,(Top,([(P 0,Top)],[])))]

[(ag,w,w’) | w <- [0,1],

w’ <- [0,1], ag <- ags]

[c])

Note that the action model has a list that assigns to each world a precondition,
a change to the propositions, and a change to the registers. In world 0, the
precondition is > and the change is to set p to value ¬>, i.e., ⊥ (and there is
no change to the registers), and in world 1, the precondition is again > and the
change is to set p to value > (and again, there is no change to the registers).

After the coin has been tossed player a looks under the cup without showing
the coin to player b. I define a generic function for computing the model of the
action where a group of agents looks under the cup. These models consist of two
worlds, one where p is true (heads) and one where p is false (tails), the agents in
the group can distinguish these two worlds and the other agents cannot.

look :: [Agent] -> FACM State

look group ags = (Acm

[0,1]

ags

[(0,(p,([],[]))),(1,(Neg(p),([],[])))]

([(ag,w,w’) | w <- [0,1], w’ <- [0,1],

ag <- ags, notElem ag group] ++

[(ag,w,w) | w <- [0,1], ag <- group])

[0,1])

In this case, there are no changes to propositions or registers, but world 0 has
precondition p, and world 1 has precondition ¬p.

Now I define the models of the situation after the coin has been tossed and
player a has looked at the outcome, distinguishing the two outcomes of the toss:
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headsg :: EM

headsg = upd (upd initGame (toss 1)) (look [a])

tailsg :: EM

tailsg = upd (upd initGame (toss 0)) (look [a])

Before looking at the way to model the announcement of an outcome of the
toss by player a I will first define the action models for passing and challenging.

When player b passes, the stakes are added to player a’s cash: C2 := C2 +
S1 + S1, S1 := 0, S2 := 0. Player b never gets to see the actual value of the coin
so there are no changes in the knowledge of the agents about p. The model for
this has only one world that indicates the changes in the stakes and cash.

pass :: FACM State

pass ags = (Acm

[0]

ags

[(0,(Top,([],

[(s1,(I 0)),

(s2,(I 0)),

(c1,ASum [Reg c1,Reg s1,Reg s2])])))]

[(ag,0,0) | ag <- ags]

[0])

Note that here for the first time there are changes of the registers.

When player b decides to challenge player a, the cup is lifted and both players
get to know the value of p. Then the stakes are added to the cash of player a in case
of heads and player b in case of tails, together with one extra euro from the cash
of player b that player b added to the stakes while challenging player a. So instead
of S2 := S2+1, C2 := C2−1 and after that C1 := C1+S1+S2 in case of heads
and C2 := C2+S1+S2 in case of tails, I use C1 := C1+S1+S2+1, C2 := C2−1
in case of heads and C2 := C2 + S1 + S2 in case of tails. The action model for
this has one world for the case of heads and one world for the case of tails. Both
players can distinguish these worlds because the cup was lifted, and the stakes
are divided differently in the two worlds.
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challenge :: FACM State

challenge ags =

Acm

[0,1]

ags

[(0,(Neg(p),([],

[(s1,(I 0)),

(s2,(I 0)),

(c2,ASum [Reg c2,Reg s1,Reg s2])]))),

(1,( p ,([],

[(s1,(I 0)),

(s2,(I 0)),

(c2,ASum [Reg c2,I (-1)]),

(c1,ASum [Reg c1,Reg s1,Reg s2,I 1])])))]

[(ag,w,w) | w <- [0,1], ag <- ags]

[0,1]

When player a announces ℵHead or ℵTail the stakes change. In case of ℵHead
C1 := C1−1, S1 := S1+1 and in case of ℵTail C2 := C2+S1+S2, S1 := 0, S2 := 0.

announceStakes :: Integer -> FACM State

announceStakes 0 ags =

Acm

[0]

ags

[(0,(Top,([],[(s1,(I 0)),

(s2,(I 0)),

(c2,ASum [Reg c2,Reg s1,Reg s2])])))]

[(ag,0,0) | ag <- ags]

[0]

announceStakes 1 ags =

Acm

[0]

ags

[(0,(Top,([],[(s1,ASum [Reg s1,I 1]),

(c1,ASum [Reg c1,I (-1)])])))]

[(ag,0,0) | ag <- ags]

[0]
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Now the only thing I have to decide is how I will model the announcement
of ℵHead or ℵTail. Suppose I would use the manipulative update ‡p or ‡¬p for
this. This would imply that the other player believes the claims that are made.

I first define a generic function that computes the model for any manipulative
update. This is the model with two worlds, one where the formula that is an-
nounced is true and one where it is false, and relations from the world where it is
false to the world where it is true for the agents that believe the announcement.

manipulative :: Form -> [Agent] -> FACM State

manipulative f group ags =

(Acm

[0,1]

ags

[(0,(Neg f,([],[]))),(1,(f,([],[])))]

([(ag,w,w’) | w <- [0,1], w’ <- [0,1],

ag <- ags, notElem ag group ] ++

[(ag,w,1 ) | w <- [0,1], ag <- group ])

[0,1])

Now when player a announces ℵHead or ℵTail two things happen: the ma-
nipulative update is made to player 2, and player 1 adds one euro to the stakes
in case of ℵHead or player b wins the stakes in case of ℵTail. I first model the
manipulative update. In case of announcement of ℵHead this is the manipulative
update with p, otherwise it is the manipulative update with ¬p.

announceManip :: Integer -> FACM State

announceManip c = manipulative (fct c) [b]

where fct 0 = Neg (Prp (P 0))

fct 1 = (Prp (P 0))

I can combine these action models in a function on doxastic models:

announce’ :: Integer -> EM -> EM

announce’ c m =

upd (upd m (announceManip c)) (announceStakes c)

Now I have a complete way to model any game of Liar’s Dice. However,
though this way to model things seems correct, it is not. When I model player
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a’s announcement with manipulative updates player b will actually believe player
a’s announcement. I can use the model checker to show this:

*Lies> isTrue (announce’ 0 headsg) (K b (Neg p))

True

*Lies> isTrue (announce’ 0 tailsg) (K b (Neg p))

True

*Lies> isTrue (announce’ 1 headsg) (K b p)

True

*Lies> isTrue (announce’ 1 tailsg) (K b p)

True

However, in a real game of Liar’s Dice player b knows that player a might
very well be bluffing and she does not really believe player a’s claim at all. So
to correctly model the game I should not use the manipulative update. When
player a makes an announcement this does not even change player b’s knowledge
and beliefs because player b does not believe player a.

So instead of the manipulative update I should only use the model for changing
the stakes to model the announcement:

announce :: Integer -> FACM State

announce = announceStakes

Now player b does not know whether p is true, but she knows she doesn’t
know:

bKnows :: Form

bKnows = Disj [(K b (Neg p)), (K b p)]

*Lies> isTrue (upd tailsg (announce 0)) bKnows
False
*Lies> isTrue (upd tailsg (announce 0)) (K b (Neg bKnows))
True
*Lies> isTrue (upd headsg (announce 0)) bKnows
False
*Lies> isTrue (upd headsg (announce 0)) (K b (Neg bKnows))
True
*Lies> isTrue (upd tailsg (announce 1)) bKnows
False
*Lies> isTrue (upd tailsg (announce 1)) (K b (Neg bKnows))
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True
*Lies> isTrue (upd headsg (announce 1)) bKnows
False
*Lies> isTrue (upd headsg (announce 1)) (K b (Neg bKnows))
True

Note that since I did not use the manipulative update to model player a’s
announcement the resulting models are still S5-models.

Lies> isS5Model (upd headsg (announce 1))
True
Lies> isS5Model (upd headsg (announce 0))
True
Lies> isS5Model (upd tailsg (announce 1))
True
Lies> isS5Model (upd tailsg (announce 0))
True

This means that no actual misleading is taking place at all! This is actually
very plausible because player b knows that player a’s announcement might very
well be false. This shows that lying only creates false belief if the person who lies
is believed to be telling the truth.

Now I can use these action models to do a doxastic analysis of a game of Liar’s
Dice. The different possible games are:

1. Player a tosses tails and announces ℵTail

2. Player a tosses heads and announces ℵTail

3. Player a tosses tails and announces ℵHead and player b passes

4. Player a tosses tails and announces ℵHead and player b challenges

5. Player a tosses heads and announces ℵHead and player b passes

6. Player a tosses heads and announces ℵHead and player b challenges

The models for these games are:

game1, game2, game3, game4, game5, game6 :: EM

game1 = gsm (upd tailsg (announce 0))

game2 = gsm (upd headsg (announce 0))

game3 = gsm (upd (upd tailsg (announce 1)) pass)

game4 = gsm (upd (upd tailsg (announce 1)) challenge)

game5 = gsm (upd (upd headsg (announce 1)) pass)

game6 = gsm (upd (upd headsg (announce 1)) challenge)
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I will now consider these six different cases in turn.
Game 1 is the game where player 1 tosses tails and admits this.
In this case both players stake one euro and player b wins the stakes, so in the

end player a lost one euro and player b won one euro. This can be checked with
DEMO:

*Lies> isTrue game1 (Eq (Reg c1) (ASum [I initCash1,I (-1)]))
True
*Lies> isTrue game1 (Eq (Reg c2) (ASum [I initCash2,I 1]))
True

Player b does not get to know what the value of the coin was:

*Lies> isTrue game1 bKnows
False

The model for game 1 is:

*Lies> displayS5 game1
[0,1]
[p]
[R1,R2,R3,R4]
[(0,[]),(1,[p])]
[(0,[(R1,4),(R2,6),(R3,0),(R4,0)]),
(1,[(R1,4),(R2,6),(R3,0),(R4,0)])]
(a,[[0],[1]])
(b,[[0,1]])
[0]

A picture of this model is below. There are two worlds, one where the toss
was heads and one where it was tails. Player a can distinguish these worlds, but
player b cannot because player b never got to see the coin. In both worlds the
cash of player a is 4 and that of player b is 6 euros, because the division of the
stakes does not depend on the value of the coin. Reflexive arrows are not shown.

0 :
p,R14, R26,
R30, R40

1 :
p,R14, R26,
R30, R40

b

Game 2 is the game where player a falsely announces ℵHead. Just like in
game 1, player a loses one euro and player b wins one euro, and player b does not
get to know the value of the coin.
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*Lies> isTrue game2 (Eq (Reg c1) (ASum [I initCash1,I (-1)]))
True
*Lies> isTrue game2 (Eq (Reg c2) (ASum [I initCash2,I 1]))
True
*Lies> isTrue game2 bKnows
False

The model for this game is almost the same as for game 1: the difference is
that now the world where p is true is actual instead of the world where p is false.

*Lies> displayS5 game2
[0,1]
[p]
[R1,R2,R3,R4]
[(0,[]),(1,[p])]
[(0,[(R1,4),(R2,6),(R3,0),(R4,0)]),
(1,[(R1,4),(R2,6),(R3,0),(R4,0)])]
(a,[[0],[1]])
(b,[[0,1]])
[1]

The picture of this model (reflexive arrows not shown) is:

0 :
p,R14, R26,
R30, R40

1 :
p,R14, R26,
R30, R40

b

The third game is the case where player a tosses tails but falsely announces
ℵHead and player b passes. In this case player a stakes two euros and player b
stakes one euro, and player a gets to keep the stakes, so the final payoff is that
player a wins one euro and player b loses one euro:

*Lies> isTrue game3 (Eq (Reg c1) (ASum [I initCash1,I 1]))
True
*Lies> isTrue game3 (Eq (Reg c1) (ASum [I initCash1,I 1]))
True

Player b passes, so the cup is never lifted and player b does not know the value
of the coin:

*Lies> isTrue game3 bKnows
False
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The model for this game is:

*Lies> displayS5 game3
[0,1]
[p]
[R1,R2,R3,R4]
[(0,[]),(1,[p])]
[(0,[(R1,6),(R2,4),(R3,0),(R4,0)]),
(1,[(R1,6),(R2,4),(R3,0),(R4,0)])]
(a,[[0],[1]])
(b,[[0,1]])
[0]

This model has the same two worlds as the models for game 1 and 2 except
for the changes in the player’s cash.

In the fourth game, player a tosses tails but falsely announces ℵHead and
player b challenges player a. This means that both players stake one extra euro
and then the cup is lifted and player b gets the stakes.

In this case player b does know the value of the coin:

*Lies> isTrue game4 bKnows
True

The payoffs are −2 euros for player a and 2 euros for player b:

*Lies> isTrue game4 (Eq (Reg c1) (ASum [I initCash1,I (-2)]))
True
*Lies> isTrue game4 (Eq (Reg c1) (ASum [I initCash1,I (-2)]))
True

The model for this game is:

*Lies> displayS5 game4
[0]
[p]
[R1,R2,R3,R4]
[(0,[])]
[(0,[(R1,3),(R2,7),(R3,0),(R4,0)])]
(a,[[0]])
(b,[[0]])
[0]

This model has only one world because none of the players consider any other
world possible. This is because both players know the values of the coin. In this
world p is false (because the toss was tails), player a’s cash is 3 euros and player
b’s cash is 7 euros. A picture of this model is below.
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0 :
p,R13, R27,
R30, R40

The fifth game is the game where player a tosses heads and truthfully an-
nounces this and player b passes. In this case the cup is not lifted so player b does
not know the value of the coin again:

*Lies> isTrue game5 bKnows
False

The payoffs are 1 for player a and −1 for player b:

*Lies> isTrue game5 (Eq (Reg c1) (ASum [I initCash1,I 1]))
True
*Lies> isTrue game5 (Eq (Reg c2) (ASum [I initCash2,I (-1)]))
True

The model for game 5 has two worlds again because player b does not know
the value of the coin.

*Lies> displayS5 game5
[0,1]
[p]
[R1,R2,R3,R4]
[(0,[]),(1,[p])]
[(0,[(R1,6),(R2,4),(R3,0),(R4,0)]),
(1,[(R1,6),(R2,4),(R3,0),(R4,0)])]
(a,[[0],[1]])
(b,[[0,1]])
[1]

In game 6 player a tosses heads and truthfully announces this and player b
challenges player a. In this case both players add one extra euro to the stakes,
the cup is lifted and player a gets to keep the stakes. The model for this has one
world where p is true, player a has 7 euros and player b has 3 euros.

*Lies> displayS5 game6
[0]
[p]
[R1,R2,R3,R4]
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[(0,[p])]
[(0,[(R1,7),(R2,3),(R3,0),(R4,0)])]
(a,[[0]])
(b,[[0]])
[0]

In this case player b knows the value of the coin and the payoffs are 2 euros
for player 1 and −2 euros for player 2:

*Lies> isTrue game6 bKnows
True
*Lies> isTrue game6 (Eq (Reg c1) (ASum [I initCash1,I 2]))
True
*Lies> isTrue game6 (Eq (Reg c2) (ASum [I initCash2,I (-2)]))
True





Chapter 10

Conclusion

In this thesis I have studied the evolution of knowledge during communication be-
tween agents from a logical viewpoint. The great number of different perspectives
I take in the different chapters show that there are many forms of communica-
tion. I mostly focussed on one-way communication through messages but even
within this framework there are a lot of differences. This becomes very clear in
Chapter 4. There, I give a very general approach in which many forms of commu-
nication can be modeled by adapting the model to the needs of the situation at
hand. Several types of communicative actions can be defined, each with its own
parameters, and every combination of parameters gives its own results in terms
of knowledge evolution. I also give a clear definition of the network over which
the agents communicate. The network can even be changed during the process
of communication with a special action. It would be an interesting line of fu-
ture research to see how this communication network can be incorporated in the
approaches presented in the other chapters, which are more tailored to specific
forms of communication. For example, in Chapters 5 and 6, which focus on email
communication specifically, one could imagine the existence of certain “mailing
lists” through which certain groups of agents can receive one shared email, while
other agents can only be reached individually. Also, some agents may not know
the email address of other agents, preventing them from contacting these agents
directly. Then they might send their email to some third agent of which they
do have the email address so this third agent can forward the message to the
intended recipient.

Another potential topic of further work is to combine the concept of common
knowledge discussed in Chapter 5 with the concepts of potential and definitive
knowledge from Chapter 6. Such a study could start out with interpreting com-
mon knowledge under the assumption that everyone reads their messages imme-
diately to arrive at “possible common knowledge” or under the assumption that
everyone has only read email that they replied to in order to define “definitive
common knowledge”. But more complicated extensions are also possible, for ex-
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ample one where the “reading behaviour” varies between agents. Then one could
assume that there is one group of agents who always reads their email, and an-
other group who can only be counted upon to have read emails they replied to.
This could even lead to nested expressions like “it is possible common knowledge
in group A that it is definitive common knowledge in group B that this message
was sent”. Continuing this line of thought, another interesting extension would
be to investigate more kinds of reading behaviour than just “read everything
immediately” or “read only what you reply to”.

It is also promising to investigate whether one could extend the contents
of the messages discussed in Chapters 6 and 5 to formulas rather than basic
notes. This can be extremely powerful, especially if these formulas also contain
epistemic operators. Then the agents could send each other emails containing
information like “Alice knows about this message, but Bob does not know she
knows it”. It would require an intricate system of processing new information
received by the agents. Such an approach would essentially combine and extend
the strengths of Chapters 6 and 5 on the one hand and Chapter 3 on the other. In
that chapter, the messages do contain formulas. These formulas do not contain
epistemic operators, but because they can contain previous messages the language
is already quite expressive. However, the downside of this approach is that the
number of messages available to the agents must be limited to a finite set, which
makes the set-up less general. It is still very suitable for many applications where
a fixed protocol is being followed and it is also very relevant to many topics in
game theory. If the limitation on the possible messages would be lifted this would
result in a model of infinite size. This is essentially what happens in Chapter 5,
where the complete model of all possible states is indeed infinite and therefore not
represented explicitly. The model presented there is still a very nice theoretical
representation, which allows for logical reasoning about the knowledge of the
agents, in particular the common knowledge of a group of agents. However, I
have not found a decision procedure for that model. This open question is solved
for the framework presented in Chapter 6. There, the number of possible states
is still infinite, but I have found a limit on the states that need to be evaluated in
order to determine whether an agent knows something. This is a good solution
for the problem of the infinite number of states. However, a finite model would
allow for a better representation of the models in a way that is easy to understand
for humans.

Another important open question concerns the work presented in Chapter 7.
There, I present a notion of action emulation which is a relation between action
models, meant to characterize their equivalence. For canonical action models, it
does. For non-canonical action models, action emulation implies equivalence but
it is yet unclear whether the converse is also true. Therefore, the open question is:
does action model equivalence imply action emulation for non-canonical action
models? If this holds then the notion of action emulation I presented is truly a
new standard for action model equivalence. So far, I have found neither a proof
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nor a counterexample.
In Chapter 8 I have studied the difference between knowledge and belief. I

showed how knowledge relations in a model such as the ones used in Chapter
3 can be adapted to belief relations, and what consequences this has on the
conditions we should impose on these relations. I also propose a new condition,
that leads to the possibility to model a number of different kinds of belief. It
would be interesting to combine this with the approach from Chapter 3 to a
logic of messages and belief. One way to do this would be to give every message
some “level of credibility” that determines how strongly the other agents believe
its contents. This level of credibility might vary between the different agents
depending on how prone they are to believe the message. It would be a big
next step in epistemic logic to use a quantitative approach here, allowing one to
compute for every agent the probability he gives to every possible event.

Such an approach would also be very relevant to Chapter 9, where I study
the logic of lying. In this chapter I show how the act of telling a lie can be mod-
eled as the manipulative update of an epistemic model. Furthermore, I study
a game of Liar’s Dice where the players may either speak the truth or lie as a
part of their strategy to win the game. Probabilities play a big role there be-
cause both opponents want to maximize their expected profit after a number of
rounds of the game. Therefore, a probabilistic approach is indeed very promising.
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van Benthem, Benedikt Löwe, and Dov Gabbay, editors, Interactive Logic,
volume 1 of Texts in Logic and Games. Amsterdam University Press, 2007.
Cited on pages 40, 54, 56, 60, and 66.

Rohit Parikh and Ram Ramanujam. Distributed processes and the logic of knowl-
edge. In Proceedings of the Conference on Logic of Programs, pages 256–268,
1985. Cited on page 40.

Rohit Parikh and Ram Ramanujam. A knowledge based semantics of messages.
Journal of Logic, Language and Information, 12(4):453–467, 2003. Cited on
pages 40, 60, and 66.



BIBLIOGRAPHY 193

Marc Pauly. A modal logic for coalitional power in games. Journal of Logic and
Computation, 12:149–166, 2002. Cited on page 133.

Jan A. Plaza. Logics of public communications. In Proceedings of the 4th Inter-
national Symposium on Methodologies for Intelligent Systems, pages 201–216,
1989. Cited on page 157.

Gordon Plotkin. An operational semantics for CSP. In Formal Description of
Programming Concepts II, pages 199–225. North Holland, 1983. Cited on page
82.

Floris Roelofsen. Exploring logical perspectives on distributed information and
its dynamics. Master’s thesis, University of Amsterdam, 2005. Cited on page
40.

Chiaki Sakama, Martin Caminada, and Andreas Herzig. A logical account of
lying. In JELIA 2010, volume 6341 of Lecture Notes in Computer Science,
pages 286–299, 2010. Cited on page 153.

Krister Segerberg. A completeness theorem in the modal logic of programs. Uni-
versal Algebra, 9:31–46, 1982. Cited on page 137.

Nikolay V. Shilov and Natalya O. Garanina. Model checking knowledge and
fixpoints. In Fixed Points in Computer Science, pages 25–39, 2002. Cited on
page 46.

Floor Sietsma. Model checking for dynamic epistemic logic with factual change.
Bachelor’s thesis, University of Amsterdam, 2007. Cited on pages 167 and
171.

Floor Sietsma and Krzysztof R. Apt. Common knowledge in email exchanges.
ACM Transactions on Computational Logic, 2012. To appear. Cited on page
6.

Floor Sietsma and Jan van Eijck. Multi-agent belief revision with linked plausi-
bilities. In Logic and the Foundations of Game and Decision Theory - LOFT
8, pages 174–189, 2008. Cited on page 7.

Floor Sietsma and Jan van Eijck. Message passing in a dynamic epistemic logic
setting. In Proceedings of the Thirteenth Conference on Theoretical Aspects of
Rationality and Knowledge, pages 212–220, 2011. Cited on page 5.

Floor Sietsma and Jan van Eijck. Action emulation between canonical models.
In Proceedings of the 10th Conference on Logic and the Foundations of Game
and Decision Theory, 2012. Cited on page 6.



194 BIBLIOGRAPHY

St. Augustine. De mendacio. In P. Schaff, editor, A Select Library of the Nicene
and Post-Nicene Fathers of the Christian Church, volume 3 (1956). Eerdmans,
1988. URL http://www.newadvent.org/fathers/. Translated by Rev. H.
Browne. Cited on pages 151 and 152.

Edward Szpilrajn. Sur l’extension de l’ordre partiel. Fundamenta Mathematicae,
16:386–389, 1930. Cited on page 83.

Alan D. Taylor. Social Choice and the Mathematics of Manipulation. Cambridge
University Press, 2005. Cited on page 133.

Johan van Benthem. ‘One is a lonely number’: On the logic of communication.
In Logic Colloquium ’02, pages 96–129. ASL & A.K. Peters, 2002. Cited on
page 40.

Johan van Benthem. Dynamic logic for belief revision. Journal of Applied Non-
Classical Logics, 2:129–155, 2007. Cited on page 144.

Johan van Benthem and Fenrong Liu. Dynamic logic and preference upgrade.
Journal of Applied Non-Classical Logics, 14(2):157–182, 2004. Cited on page
144.

Johan van Benthem, Jan van Eijck, and Barteld Kooi. Logics of communication
and change. Information and Computation, 204(11):1620–1662, 2006. Cited on
pages 24, 34, 37, 60, 133, 142, 143, 155, 159, 160, and 170.

Johan van Benthem, Jelle Gerbrandy, Tomohiro Hoshi, and Eric Pacuit. Merg-
ing frameworks for interaction. Journal of Philosophical Logic, 38(5):491–526,
2009a. Cited on pages 40 and 50.

Johan van Benthem, Jelle Gerbrandy, and Barteld Kooi. Dynamic update with
probabilities. Studia Logica, 93:67–96, 2009b. Cited on page 168.

Ron van der Meyden and Nikolay V. Shilov. Model checking knowledge and time
in systems with perfect recall. In Proceedings of the 19th Conference on the
Foundations of Software Technology and Theoretical Computer Science, volume
1738 of Lecture Notes in Computer Science, 1999. Cited on page 46.

Hans van Ditmarsch. Knowledge Games. PhD thesis, Groningen University, 2000.
Cited on page 40.

Hans van Ditmarsch. Comments on ‘the logic of conditional doxastic actions’. In
New Perspectives on Games and Interaction, volume 4 of Texts in Logic and
Games, pages 33–44. Amsterdam University Press, 2008. Cited on page 160.



BIBLIOGRAPHY 195

Hans van Ditmarsch and Tim French. Becoming aware of propositional variables.
In Logic and its Applications, volume 6521 of Lecture Notes in Computer Sci-
ence, pages 204–218. Springer, Berlin/Heidelberg, 2011. Cited on page 37.

Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic, volume 337 of Synthese Library. Springer, 2006. Cited on page 37.

Hans van Ditmarsch, Jan van Eijck, Floor Sietsma, and Yanjing Wang. On the
logic of lying. In Jan van Eijck and Rineke Verbrugge, editors, Games, Actions
and Social Software, volume 7010 of Lecture Notes in Computer Science, pages
41–72. Springer, 2012. Cited on pages 7 and 160.

Jan van Eijck. DEMO - A demo of epistemic modelling. In Interactive Logic -
Proceedings of the 7th Augustus de Morgan Workshop, volume 1 of Texts in
Logic and Games, pages 305–363, 2007. Cited on page 167.

Jan van Eijck. Yet more modal logics of preference change and belief revision. In
Krzysztof R. Apt and Robert van Rooij, editors, New Perspectives on Games
and Interaction, volume 4 of Texts in Logic and Games, pages 81–104. Ams-
terdam University Press, 2008. Cited on pages 144 and 146.

Jan van Eijck and Yanjing Wang. Propositional dynamic logic as a logic of
belief revision. In Proceedings of Wollic ’08, number 5110 in Lecture Notes in
Artificial Intelligence, pages 136–148, 2008. Cited on pages 133 and 143.

Jan van Eijck, Yanjing Wang, and Floor Sietsma. Composing models. Journal of
Applied Non-Classical Logics, 21:397–425, 2011. Cited on pages 23 and 37.

Jan van Eijck, Ji Ruan, and Tomasz Sadzik. Action emulation. Synthese, 185(1):
131–151, 2012. Cited on pages 113, 116, 118, 119, 120, 123, 127, 129, and
131.

Yanjing Wang. Epistemic Modelling and Protocol Dynamics. PhD thesis, ILLC,
Amsterdam, 2010. Cited on page 168.

Yanjing Wang, Lakshmanan Kuppusamy, and Jan van Eijck. Verifying epistemic
protocols under common knowledge. In Proceedings of the 12th Conference on
Theoretical Aspects of Rationality and Knowledge, pages 257–266, 2009. Cited
on page 40.

Yanjing Wang, Floor Sietsma, and Jan van Eijck. Logic of information flow on
communication channels. In Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems, pages 1447–1448, 2010. Cited
on page 5.





Abstract

The goal of this dissertation is to give a logical representation of the knowledge
dynamics that takes place during communication. I present a number of different
logical frameworks for a number of different scenarios, ranging from an email
conversation where all information that is sent is considered to be true, to a game
of Liar’s Dice where lying is expected of the players.

In Chapter 3, I present a framework for modeling the knowledge of agents
who exchange messages, using Dynamic Epistemic Logic. This framework uses
Kripke models to represent the agents’ knowledge in a static situation, and action
models to update these Kripke models when the situation changes. Because the
models are supposed to be finite, and all messages are represented explicitly in
the model, the messages that are considered possible by the agents are limited to
a finite set. This framework is useful in a situation in which there is a number
of rounds in each of which a finite set of new messages becomes available to the
agents. These messages can gradually be added to the model.

The framework presented in Chapter 4 is of a more general nature. It models
a setting where agents communicate with messages over a specific network in
accordance to a certain protocol. This framework is very flexible because the
nature of communicative events and the observational power of the agents can
be adapted to the situation at hand. It combines properties of the Dynamic
Epistemic Logic approach with the perspective of Interpreted Systems.

In Chapter 5 and 6 I focus on email communication specifically. I first study
the existence of common knowledge in a group of agents who communicate via
emails. Unlike the approach presented in Chapter 3, all possible emails are rep-
resented in the model, which is therefore of infinite size. I prove a number of
properties of finite states in this infinite model, and show that common knowl-
edge of an email with BCC recipients is rare.

Apart from common knowledge, I consider two new kinds of knowledge: po-
tential and definitive knowledge. These two types of knowledge make a distinction
between the assumption that every agent immediately reads every email he re-
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ceives, or that every agent has only read the emails he replied to or forwarded. I
also present a method to do model checking, even though the model is of infinite
size.

Chapter 7 is a study of the properties of action models, which are used to
model communicative events. I define a notion of action emulation that signifies
when two canonical action models are equivalent. Because every action model
has an equivalent canonical action model which can be computed, this gives a
general method to determine action model equivalence.

In Chapter 8 I move from knowledge to belief. I use the same Kripke models
as for knowledge, only without the assumption that all relations are equivalence
relations. I propose a different assumption, namely that the relations are linked.
I also give a number of updates of these models that preserve this property,
representing communicative events.

Finally, Chapter 9 gives different perspectives on the issue of lying. It includes
a complete logic of manipulative updating, which can be used to represent the
effects of lying in a group of agents. I also analyze a game of Liar’s Dice and
implement this scenario in the model checker DEMO. Furthermore, I show that
in a game where lying is considered normal, a lie is no longer a lie: because the
agents who hear the lie do not believe it, no false belief is created.



Samenvatting

Het doel van dit proefschrift is het geven van een logische representatie van de
kennisdynamica die plaatsvindt tijdens communicatie. Ik presenteer een aantal
verschillende logische systemen voor verschillende scenario’s, variërend van een
email conversatie waarin alle verzonden informatie als waar wordt beschouwd,
tot een spelletje blufpoker waarbij liegen van de spelers verwacht wordt.

In Hoofdstuk 3 presenteer ik een systeem voor het modelleren van de kennis
van agenten die berichten uitwisselen, waarbij ik gebruik maak van Dynamische
Epistemische Logica. Dit systeem gebruikt Kripke modellen om de kennis van
de agenten in een statische situatie te representeren, en actiemodellen om deze
Kripke modellen bij te werken als de situatie verandert. Omdat ik aanneem dat
de modellen eindig zijn, en omdat alle berichten expliciet worden gerepresenteerd
in het model, zijn de berichten die de agenten mogelijk achten gelimiteerd tot een
eindige verzameling. Dit systeem is nuttig in situaties waarin sprake is van een
aantal rondes waarin telkens een eindige verzameling nieuwe berichten voor de
agenten beschikbaar wordt. Deze berichten kunnen gradueel worden toegevoegd
aan het model.

Het systeem dat gepresenteerd wordt in Hoofdstuk 4 heeft een meer alge-
meen karakter. Het modelleert een situatie waarin agenten communiceren over
een specifiek netwerk, in overeenstemming met een bepaald protocol. Dit sys-
teem is erg flexibel omdat de aard van de communicatieve gebeurtenissen en de
observerende vermogens van de agenten kunnen worden aangepast aan de situ-
atie. Het combineert eigenschappen van Dynamische Epistemische Logica met
het perspectief van Gëınterpreteerde Systemen.

In Hoofdstuk 5 en 6 concentreer ik me op email communicatie. Ik bestudeer
eerst het ontstaan van gezamenlijke kennis in een groep agenten die communiceren
via email. In tegenstelling tot de aanpak van Hoofdstuk 3 worden in dit model alle
mogelijke emails gerepresenteerd in het model, wat dan ook van oneindige grootte
is. Ik bewijs een aantal eigenschappen van de eindige toestanden binnen dit
model, en ik laat zien dat gezamenlijke kennis van een email met BCC ontvangers
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erg zeldzaam is.
Buiten gezamenlijke kennis beschouw ik twee nieuwe vormen van kennis: po-

tentiële en definitieve kennis. Deze twee vormen van kennis maken een onder-
scheid tussen de aanname dat iedere agent iedere email die hij ontvangt onmid-
dellijk leest, en de aanname dat iedere agent alleen de emails heeft gelezen die hij
heeft beantwoord of doorgestuurd. Ik presenteer ook een manier om de waarheid
van een formule in mijn model te controleren, ondanks het feit dat het model
oneindig groot is.

Hoofdstuk 7 is een studie van de eigenschappen van actiemodellen, die ge-
bruikt worden om communicatieve gebeurtenissen te modelleren. Ik definieer
een notie van actie emulatie die aangeeft wanneer twee canonieke actiemodellen
equivalent zijn. Omdat ieder actiemodel een equivalent canoniek actiemodel heeft
dat ook berekend kan worden, geeft dit een algemene methode om te beslissen of
twee actiemodellen equivalent zijn.

In Hoofdstuk 8 verschuift mijn aandacht van kennis naar geloof. Ik gebruik
dezelfde Kripke modellen als voor kennis, alleen zonder de aanname dat alle
relaties equivalentierelaties zijn. Ik stel een nieuwe eis voor, namelijk dat de
relaties verbonden zijn. Ik geef ook een aantal manieren om deze modellen bij
te werken die deze eis respecteren, en communicatieve gebeurtenissen kunnen
representeren.

Als laatste geeft Hoofdstuk 9 verschillende perspectieven op het concept van
liegen. Ik geef onder andere een complete logica van manipulatieve communi-
caties, die gebruikt kan worden om de effecten van liegen in een groep agenten
te representeren. Ik analyseer ook een spelletje blufpoker en ik implementeer dit
scenario in de modelbevrager DEMO. Ik laat zien dat in een spel waarin het nor-
maal is om te liegen, een leugen niet langer een leugen is: omdat de agenten die
de leugen horen hem niet geloven, wordt er geen onwaar geloof gecreëerd.



Titles in the ILLC Dissertation Series:

ILLC DS-2006-01: Troy Lee
Kolmogorov complexity and formula size lower bounds

ILLC DS-2006-02: Nick Bezhanishvili
Lattices of intermediate and cylindric modal logics

ILLC DS-2006-03: Clemens Kupke
Finitary coalgebraic logics

ILLC DS-2006-04: Robert Špalek
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