
ABSTRACT 

COMPACTNESS IN SEMANTICS 

FOR MERGE AND FAIR MERGE 

J.W. de Bakker 

Mathematical Centre, Kruislaan 413, 1098SJ Amsterdam 

Free University, Amsterdam 

J.I. Zucker 

Compute~ Science Department, SUNY at Buffalo, NY 

An analysis of the role of compactness in defining the semantics of the merge 

and fair merge operations is provided. In a suitable context of hyperspaces (sets of 

subsets) a set is compact iff it is the limit of a sequence of finite sets; hence, 

compactness generalises bounded nondeterminaay. The merge operation is investigated 

in the setting of a simple language with elementary actions, sequential composition, 

nondeterministic choice and recursion. Metric topology is used as a framework to 

assign both a linear time and a branching time semantics to this language. It is 

then shown that the resulting meanings are compact trace sets and compact processes, 

respectively. This result complements previous work by De Bakker, Bergstra, Klop & 

Meyer. For the fair merge, an approach using scheduling through random choices is 

adopted - since a direct definition precludes the use of closed, let alone of compact 

sets. In the indirect approach, a compactness condition is used to show that the fair 

merge of two fair processes yields a fair process. 
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0. INTRODUCTION 

In the last few years we have seen a remarkable increase in the importance of 

topological tools in denotational semantics. Topology has always played a role in 

Scott's domain theory (for a recent example see Scott [25]; much information is 

contained in the comprehensive volume Gierz et al. [15]). An extension of its area 

of application was initiated by Nivat and his school (e.g. Arnold & Nivat [4,5], 

Nivat [21,22]) who use metric techniques, especially when dealing with the study of 

infinite words and infinite computations. Further recent evidence for our observation 

is provided by papers such as Arnold [3] or Smyth [26]. 

The present paper is devoted to two case studies concerning the role of compactnes.s 

in semantics. We adopt the metric approach, continuing the above mentioned inves­

tigations of Nivat et al., and, furthermore, our own work as described in De Bakker & 

Zucker [8,9], De Bakker, Bergstra, Klop & Meyer [7], and De Bakker & Zucker [JO]. 

More specifically, we take as starting point the latter two papers, and investigate 

the role of compactness in the development of linear time and branching time semantics 

for a language with recursion and merge, and of the definition of fair merge based 

on an appropriate alternation of random choices. 

Before going into somewhat more detail about the aims and achievements of our 

paper, we make a few remarks on the role of metric topology and compactness in general. 

Classical denotational semantics - in particular when concerned with sequential 

programming - has relied primarily on order structures (lattices, complete partially 

ordered sets, etc.). As a consequence of the vigorous current interest in concurrency, 

new questions have arisen for which an approach solely in terms of order is not 

necessarily the most convenient one. Semantics of concurrency requires the preservation 

of intermediate stages of the computation in order to deal with phenomena such as 

interleaving, synchronization etc. In the simplest case they appear as traces, i.e. 

(possibly infinite) sequences of elementary actions. Two traces, e.g. abcd, abce, 

have no natural order relation, but a distance can be conveniently defined for them: 

ak 2- 3 ' 1 2-n+I h I • h f" • . h h We t e , or, in genera , , w ere n ~ is t e irst position w ere t e 

sequences differ. Distances can be defined as well for sets of sequences, and appro­

priate limit considerations can be based on well-known metric tools. 

Compactness is a generalization of finiteness. In fact, it can be seen as a 

direct counterpart of the familiar property of bounded nondetermina.cy in sequential 

denotational semantics (see, e.g., De Bakker [6]; Apt & Plotkin [2] discuss the 

effects of lifting the boundedness condition). More specifically, we shall develop 

a topological framework in which it is the case that a set is compact iff it is 

the limit of a sequence of finite sets. Compactness is a desirable property since 

it is preserved by various operations. For example, continuous mappings preserve 

compactness, a result which turns out to be quite fruitful below. In many situations, 

compactness is a direct consequence of the finiteness of the alphabet of elementary 
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actions which underlies the model at hand. Our paper does not impose this finiteness 

condition; more effortis then needed to obtain certain compactness results. 

In the first part of the paper, we are concerned with a simple language L which 

features, besides elementary actions~.~,.::_, .•. , fundamental concepts such as sequential 

composition (s 1 ;s2), recursion, nondeterministic choice (S 1 u s2), and merge (s 111 s2 , 

denoting arbitrary interleaving of the elementary actions of s1 and s2). In [7] we 

have provided a detailed semantics for this language based on a combination of cpo-

and metric techniques. We distinguish the so-called "linear time" (LT) and "branching 

time" (BT) semantics for L, adopting a terminology inspired by the model theory of 

temporal logic. The crucial difference between LT and BT is illustrated by the 

difference between the treatment of the two programs (~;E_) u (~;~) and ~; (E_ u .::.) • 

In LT, both have as meaning the trace set {ab,ac}. In BT we obtain, respectively, the 

trees 

a(\a 

b I I c 
and 

thus preserving the difference in the moment of choice between the two cases. 

Technically, in BT we do not require left-distributivity of ";", over "u". Moreover, 

as a consequence of our wish to impose commutativity and idempotence of choice 

(s 1 u s2 = s2 u s1, and Su S = S) as a feature of our model, we cannot, in general, use 

trees. Instead, we need another notion, viz. that of process (first described in a 

metric setting in [8,9]). A process is like an unordered tree, but without repetitions 

in its successor sets. Also, processes are closed objects: they contain all their 

limit points, in a sense to be made precise below. In [7] we have used a cpo structure 

on trace sets for LT, and (closed) processes for BT. What we shall present below is 

a metric approach for both cases, based on compact trace sets for the first, and on 

compact processes for the second case. Besides a certain uniformity obtained in 

using the metric approach throughout, we also circumvent the restriction to a finite 

alphabet which was imposed at certain essential points in the development in [7] (in 

particular in theorem 2.10 of that paper). The results of part I can be summarized 

as follows: For each S E L, its LT semantics [s] 1 is a compact set, and its BT 

semantics [S]B is a compact process. Moreover, there exists a continuous mapping 

trace which maps [S]B to [S]L. An important technical role is played by a theorem of 

Michael [19] which can be paraphrased (in the context of hyperspaces) as "a compact 

union of compact sets is compact". 

The second half of the paper is devoted to an analysis of fair merge. Consider, 

e.g., two sequences Ow and lw (aw denotes an infinite sequence of a's). Their £air 

merge excludes all sequences (Ou I)* (Ow u lw), i.e., sequences with, eventually, only 

zero's or ones. Hence, the resulting set cannot be closed (since it does not contain 

all limits of sequences of finite approximations), let alone compact. Thus, a direct 

approach based on compactness does not work. In [10] we have instead proposed an 
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indirect approach based on "implementing" fairness through suitable alternation of 

random choices (continuing an idea of Plotkin [23]; random assignement is also used 

extensively in Apt & Olderog [!]),What we shall do below is to present a proof - not 

provided in [10] - that the fair merge of two fair processes (defined as in [JO]) is 

again fair. In the argument an essential role is played, once more, by a compactness 

property of the processes involved. 

The organisation of the paper is as follows: You are now reading section 0 which 

gives the introduction. In section I we briefly describe some of the topological 

notions and results which are necessary for the development below. Section 2 presents 

the announced result for LT semantics, and section 3 for BT semantics. Section 4, 

finally, is devoted to the fair merge. 

Besides the already mentioned literature, we would like to refer to the papers 

by Golson and Rounds [16], and Rounds [24], which are also concerned with the use 

of metric topology in general, and the role of compactness in particular, in the 

semantics of concurrency. Processes in general ha~e been studied extensively by 

Milner, e.g. [20]; the aZgebra of processes is pursued by Bergstra & Klop, e.g. 

[11, 12]. 

I. TOPOLOGICAL PRELIMINARIES 

We assume known the notions of metric space, Cauchy sequence (CS) in a metric 

space, isometry (distance-preserving bijection), limits and clpsed sets, completeness 

of a metric space, and the theorem stating that each metric space (M,d) can be 

completed to (i.e., isometrically embedded in) a complete metric space. Throughout 

our paper, we shall only consider distances d with values in the interval [0,l]. 

Explicit mentioning of the metric d is often omitted. 

We first present the standard definitions of aontin:uous and aontraating functions: 

DEFINITION I . I . 

a. Let M1 , M2 be two metric spaces. A function cp: M1 + M2 is called continouos whenever, for 

each CS <x. > ".' 0 in M1 , we have that <cj>(x. )> ".' 0 is a CS in M2, and cp (lim.x.) = lim. cp(x.). 
]. i.• ]. i.= ]. 1. 1. 1. 

b, Let cp: M + M. We call cp contracting whenever, for each x,y E: M, d(cj>(x) ,<P(y)) ~ c*d(x,y), 

for some constant c with 0 ~ c < !. 

A well-known classical result is Banach's fixed point theorem: 

THEOREM 1.2. Let cp: M + M be contracting. Then cp has a unique fixed point x satisfying 

x = limi cpi(x0), for any x0 "M. 0 

Let (M,d) be a complete metric space. (It simplifies matters to assume completeness 

from now on; certain definitions or ~laims made below would, in fact, remain valid 

without this requirement;) For X,Y .s. M we can define the so-called Hausdorff distance 

d(X,Y): 
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DEFINITION 1.3. Let x,y €Mand X,Y .S. M. 
~ 

a. 4(x,Y) = inf y d(x,y) 
~ YE ~ 

b. d(X,Y) = max(sup X d(x,Y), 
XE: 

(By convention, inf !ii = l, sup 

We have 

snp y d(y,X)) 
YE 

!ii = o.) 

LEMMA 1.4. Let P (M) be the collection of all eZosed subsets of M. Then (P (M),d) 
c ~ c 

is a metric space. Moreover, (if Mis complete) (Pc(M),d) is complete, and, for 

<Xi>i a CS in Pc(M), we have that 

Proof. For the first part see, e.g., Engelking[14]. The second statement is due to 

Hahn [ 17]. 

Next, we introduce the important notion of aompaatness. Also, the definition of 

a set being totaZZy bounded is given. 

DEFINITION I • 5. 

a. A subset X of M is called compact if each open cover of X has a finite subcover. 

b. Let, for each£ > 0 arld x € M, N (x)c~.{y I d(x,y) < d. A subset X of Mis 
£ 

called totally bounded if, for all £ > O, there exists a finite set F .s. M such that 

X £. U NE(x). 
X€F 

The following theorem characterizes compactness in a nu:inber of different ways: 

THEOREM 1.6. For any X s M, the following are equivalent: 

a. X is compact 

b. X is closed and totally bounded 

c. X is the limit (in the Hausdorff metric) of a sequence of finite sets. 

Proof. Standard topology (see [13] or [14]). D 

The following properties of compact sets are important in the sequel: 

THEOREM 1 • 7. 

a. Each closed subset of a compact set is compact 

b. The continuous image of a compact set is compact. I.e., if~: M + N is continuous, 

X £.Mis compact, and ~(X) d£. {Hx) Ix€ X}, then ~(X) is compact. 

c. IfX.::_M, YE_N, Xand Ycompact, thenXxYis aompact in the product topology forMxN, 

d. If <Xi_>i is a CS of compact sets in M, and X = limi Xi' then X is compact. 

Proof. a,b,c. Standard. 

d. For each i there is a CS of finite sets <Y .. >. such that X. = lim. Y ..• Then 
l.,J J l. J l.,J 

X is the limit of the diagonal sequence <Y .. >.,hence, X is compact. D 
l. 'l. l. 
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The next property of compact sets may be somewhat less well-known. It is due 

to Michael ([19]). Let, for (M,d) a complete metric space, (P (M),d) be the 
comp 

space of compact subsets of M, equipped with the Hausdorff metric. (By theorem l.7c 

we know that (Pcomp (M),d) is complete.) We have 

THEOREM 1.8. Let X. ,i E I, be compact subsets of M, and let {X. Ii E I} be compact in 
~ l. df l. 

(P comp (M) ,d) • Then X -=' U {Xi I i € I} is compact in (M,d), 

Proof. See [19], D 

We now specialize our considerations to spaces of sequences and sets of sequences. 

Let A be a, possibZy infinite, alphabet with elements a,b,c, •••• Let A* be the set 

of all finite sequences over A, let Aw be the set of all infinite sequences over A, 

and let A00 d~. A* u Aw. Let x,y, ••• denote elements of A00
• The prefix of x E A00 of 

length n will be denoted by x[n] (with the convention that, e.g., abc[S] = abc; abc[O] 

is the empty word). The distance d(x,y) for x,y E A00 is defined by 

d(x,y) = 2~max{n I x[n] = y[n]} 

(with the convention that 2-00 = O). 

Let P (A00
) denote the class of all closed subsets of A00

• The distanced on A00 can be 
c 

extended to the Hausdorff distanced on P (A00
) in the manner described above. Alter­

c 
natively, we might define 

d(X,Y) = 2-max{n I X[n] Y[n]} 

where X[n] = {x[n] I x E X}. We omit the straightforward proof that the two definitions 

of d are equivalent. 

It is known (e.g. Nivat [21]) that, in case A is finite, A00 and (hence) all its 

closed subsets are compact. This is no longer the case for an infinite alphabet A. 

Only in certain situations - of which we treat the case that we are concerned with 

subsets of A00 which are meanings of statements in some suitable language - can we 

again establish compactness. The next two sections are devoted to an exposition of 

this, and a similar, result. 

2. LINEAR TIME SEMANTICS 

We study the semantics of a simple language L, which features some standard 

sequential concepts (sequential composition, recursion) together with nondeterministic 

choice and merge (arbit~ary interleaving). In the present section we present the LT 

semantics for L, in which we do not distinguish between, e.g., the meanings of 

~;.£_ u ~;.=_and _!;(.£_u.=_). In section 3 we shall deal with its BT semantics. Let.!:•.£.•··· 

be elements of a, possibly infinite, set A of elementary actions. We assume that for 
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each (syntactic) !!. we have a corresponding (semantic) a in the alphabet A. Let ~,z, ... 
be elements of a set of statement variab1-es stmv. The variables ~·Z will be used in 

the formation of recursive or µ-statements. The syntax for L is given, in a self­

explanatory BNF notation, in 

DEFINITION 2. I. 

Here x is required to occur only guarded (see remark below) in S. 

Remarks. 
1. Syntactic ambiguities should be remedied by using parentheses or conventions for 

the priorities of the operations. 

2. (For the reader who is not familiar with the µ-notation) A term such as 

µ!_[ (!!_;~) u b] has the same intended meaning as a aali of the procedure declared 

(in an ALGOL-like language) by P • (!!_;P) u £_, or, alternatively, generates the 

same language of finite a:nd infinite words as the grammar X + 2:_X\:!:_. 

3. In a term µ_!.[S], occurrences of.!. in S may be "guarded", i.e. of the form 

••• 2:_; ( •• ·.!.· •• ) •.• , for some !!. E: A. We shall consider only terms µ!_[S] in which all 

occurrences of .!. are guarded. In [7] we have dealt, in a cpo setting, with 

the consequences of dropping this restriction. In language theory, the equivalent 

notion is the "Greibach condition", see e.g. [21 ]. 

We proceed with the deve~opment of the LT semantics for L. In this, we use a 

metric (rather than the cpo framework of [7]). Let, for brevity, C stand for 

P (A~). We shall assign meaning to statements SE: Las elements of C. Due to the comp 
presence of recursion, we employ anem•ironment component in.the defining equations, 

which serves to assign meaning to the free statement variables in S. Let r d~. Stmv~c, 
and let y range over r. 

We first discuss the definitions of the basic operations on X,Y :::..A®. We use 
m 

the obvious fact that, for each x E A , x = limi x[i]. We assume known the definitions 

of x.y and xlly for x,y E: A* (see, e.g., [18]). We give 

DEFINITION 2.2. Let x,y € Am, X,Y £Am. 

a. x.y limi (x[i].y[i]) 

xUy limi (x[i]Uy[i]) 

b. X.Y {x.y Ix € X, y E: X} 

X u Y is the set-theoretic union of X and Y 

xH Y u {xl y I x E: x, y E: Y}. 
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Remar>k. Direct definitions - which avoid the use of CS and limits - for x.y and 

xRy with x,y € Aw are also possible. We omit the proof that definition 2.2a yields 

equivalent results. 

We have the following lemma: 

LEMMA 2.3. 

a. The sequences <x[i].y[i]>i and <x[i]Ry[i]>i are CS of finite sets. 

b. x.y and xlly are compact. 

"Proof. a. Left to the reader (who might consult Appendix B of [9] for very similar 

results). 

b. For "." this is trivial; for xUy it follows from part a and theorem I. 7d. D 

The three operations .,u,D are continuous: 

LEMMA 2.4. The operations .,u,11 are continuous mappings: A00 x A 00 + P (A 00
) • comp 

"Proof. Omitted (cf. for techniques of [9],A:ppendixB). D 

We can now prove the central theorem of this section: 

THEOREM 2.5. For X,Y compact subsets of A00
, X.Y, XuY and XDY are compact subsets of 

A"'. 

"Proof. For "u" this is trivial. The proof for "." is simpler than that for "ll 11 , which 

we now give. Let X,Y be compact subsets of A"'. By theorem 1.7c, X x Y is compact in 

A"' x A"'. By the continuity of "U" as mapping: A"' x A00 + P (A"') (lemma 2.4) and 
_ df comp 

theorem 1.7b, we have that II (X,Y) =' {xlly Ix€ X, y € X} is a compact subset of 

P (A00
). Thus, 11 (X,Y) is a compact subset of P (A00

) consisting of "points" comp comp 
which are compact subsets of A00

• We can therefore apply Michael's theorem and obtain 

that ll (X,Y) = U {xlly Ix € X, y I! Y} is a compact subset of A"'. D 

We are now sufficiently prepared for the main definition of this section: 

DEFINITION 2.6. LT semantics for L. 
The mapping [ ] L: L + (r + C) is defined by 

[~L (y) = {a}, [~](y) = y(x), 

[Sl;S2]L(y) = [Sl]L(y).[S2]L(y) 

[SI u S2]L(y) = [Sl]L(y) u [S2]L(y) 

[SlllS2]L(y) [Sl]L(y) II [S2]L(y) 

[µ~[SJ] 1 (y) = limi Xi, where x0 is arbitrary, and Xi+I = [S] 1 (y{Xi/~}) 

(In the last formula, y{Xi/~} denotes an environment which is like y, but for its 

value in x which is set to Xi.) 
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We verify that this definition assigns a compact set as meaning to each S € L: 

THEOREM 2.7. For each S € L [S]L(y) €C. 

Proof. Induction on the structure of S. If S = a or S = !.• the result is clear. If 

S = s1;s2 , S = s1 u s2 or S = s 1Rs2 , we use theorem 2.5. If S = µ~[s 1 J we use the 

fact - the easy proof of which we leave to the reader - that, for~ guarded in s 1 , 

AX.[S 1 ] 1 (y{X/~}) is a contracting mapping: C->- C, From this we obtain that <Xi>i 

is a CS; an appeal to theorem 1. 7d then yields the described result. D 

Thus, we have shown compactness of [S]L (y) independent of the finiteness of 

A. We also observe that, by Banach's theorem, for guarded µ~[S] we have that its 

meaning equals the (unique) fixed point of AX.[S](y{X/~}), in accordance with the 

intended meaning of the recursive construct µ~[S]. 

3. BRANCHING TIME SEMANTICS 

We follow [7,8,9] in the design of a branching time semantic framework for the 

language L as introduced in section 2, with the replacement of "closed" by "compact" 

at certain crucial points as major difference. 

Let A be any (finite or infinite) alphabet. Let Po denote the so-called nil­

process - the role of which will become clear as we go along. The first definition 

introduces sets of finite proaesses over A, and associated metrics on these sets: 

DEFINITION 3.1. For n = O,J, .•. we define sets Pn and metrics dn on Pn 

a. Po = {po}, Pn+l = {po} u pfinite (Ax Pn) 
b. d0 (p,q) = O; dn+l is defined as follows: let p,q € Pn+l' 

Either 

(i) p q = p0. Then dn+l(p,q) = O 

(ii) p p0 , q 1 p0 or vice versa. Then dn+l(p,q) =I. 

(iii) p X £A x Pn, q = Y £A x Pn. Then dn+l (p,q) = dn+I (X,Y), where dn+l is the 

Hausdorff metric (definition 1.3) induced by the distance dn+l between 

"points" <a' ,p'>, <a",q'> defined by 

d (<a' p'> <a" q'>) 
n+l ' ' ' 

I, if a' f a" 

!dn(p',q'), if a' a". 

We now consider the set P d£. u. P of all finite processes, together with the metric w n n 
d = Un dn (with 

be completed to 

THEOREM 3.2. 

the natural definition of U 
n 

a complete metric space, say 

P {p0 } u P (Ax P). comp 

dn). (Pw,d) is a metric space which can 

(P,d). We can show that 
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Proof. This is as in [9), but for the modification that 

(i) We use compact sets instead of closed sets throughout 

(ii) We use the theorem that a CS of compact sets has a compact limit (rather than 

Hahn's theorem that a CS of closed sets has a closed limit, which was fundamental 

in [9J). D 

Next, we define the three fundamental operations o, u, I for processes. Apart 

from a cosmetic change in the definition of "o", these definitions are as in [7,8,9]. 

Throughout, we distinguish the finite case (p,q e P0) and infinite case (p e P\Pw or 

q e P\P00). Moreover, we (implicitly) use induction on the degree of the processes 

concerned, where, for p e: P00 , degree (p) is given by: degree (p0 ) = O, and, for p + p0 , 

degree (p) = n iff p e: Pn\Pn-l" 

DEFINITION 3.3. Let X,Y range over sets of finite processes. 

a. p0op = p, Xop = {xop Ix 6 X}. <a,q>Op = <a,q~p>, (limi qi)op = limi (qiOp) 

b. p u Po = Po u p = p, and, for p,q + p0 , p u q is the-set theoretic union of p and q. 

c. p01p = plp0 = p, and, for p,q + p0 , we put 

XIY = {xlY Ix e X} u {Xly I ye: Y}, 

<a.q>IY - <a.qlY>, Xl<a,p> = <a,Xlp> 

'lim. p.)l(lim. q.) = liml.. (pl..lqi). 
l. l. J J 

Using a combination of the techniques of Appendix B of [9] and the compactness 

properties of section 1 (but note that we do not need Michael's theorem here), we 

can justify the above definitions, and prove that the three operations o,u,1 are 

continuous. It is now straightforward to define the branching time semantics for L. 
Let P be as in theorem 3.2., and let r = s:tmv-+- P. 

DEFINITION 3.4. The valuation [.]B: L-+- (r-+- P) is given by 

[~]B(y) = {<a,po>}, [~)B(y) = y(x) 

(S 1;s2J(y) = [S1](y) e (s2JB(y), and similarly for u,1 

[µ~[S]B]B(y) = limi pi' where p1 is arbitrary, and Pi+! = [S]B(y{pi/~}). 

The proof that, for each S e L, [ SJ B ( y) e: P can now be given exactly as that of 

theorem 2.7. 

Finally, consider the mapping traee studied in [7]. We define traae: P-+- C by 

DEFINITION 3 • 5 • 

traae (p0 ) = {e}, traae (X) = u {traae (x) Ix E X}~ 

traae (<a,p>) =a. traae {p), 

traae (limi pi) = limi (traae (pi)). 

In [7] it was shown that, for each S e: L without free statement variables and each y, 

(*): traoe ((S]B(y)) = [S]L{y), provided the underlying alphabet is finite (and using 

the observation that [S]B(y) + ~ for each such S). Inspection of the proof of (*) 
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shows that it can be taken over, but with an appeal to the finiteness of A (used in 

[7] to establish that traae (p) is a closed set) replaced by suitable use of the above 

compactness results. Details are omitted. 

4. FAIR MERGE 

This section is devoted to a study of fair merge of processes. A similar analysis 

can be made for the fair merge of trace sets; we leave this to the interested reader. 

As remarked above, a direat definition of fair merge in terms of closed (let alone 

compact) sets seems not possible. Therefore, we use an indirect approach in which we 

model fair merge in terms of a scheduling mechanism waich employs a sequence of 

random choices determining successively the (finite) number of times the left- and 

right operand of the fair merge operation should be chosen. (See also [10] for further 

explanation of this idea.) The indirect definition uses an extended domain of pro­

cesses, viz. P solving the equation 

P = {po} u 1' closed ((Au :N) x P) 

where :N is the set of natural numbers. Note that we have Pclosed (.) rather than 

P (.) in this equation. We shall use B d~. A u E, .and b to range over B. compact 
Our first definition introduces some terminology: 

DEFINITION 4. 1 • 

a. Ek Pk d£. {<k,pk> I k ._ Ji!} 

A process Ek pk is called a "sum process". 

b. A basia process is one of the form {<ai,pi>}ieI 

c. A path for a process p is a (finite or infinite) sequence(*): <b 1,p 1>, <b 2 ,p2>, .•• , 

such that <bl'pl> € p, and <bi+l'Pi+l> <.pi' i = 1,2, •.•• Wesaythat path(*) 

passes throu.gh pi, i = 1,2, •••• 

d. An "action" b is called "enabled" in a path (*) whenever, for some i and q, 

<b,q> <.pi. b oaau:r's is (*)whenever, for some i, b =bi. 

c. A path (*) is called fair whenever, for all a EA, if a is infinitely often enabled 

in (*), it infinitely often occurs in (*). A process is called fair whenever all its paths 

are fair. (Only actions in A are taken into account in the definition of fairness.) 

f. Process q is a node of p - also called a subprocess of p - if there is a path from 

p which passes through q. 

g. We call a process p n.ormaZ if each node of p is either a basic node, or a sum node, 

or Po· 

h. p is called pure (or hereditarily basic) if each node of p is a basic node or p0 • 

i. p is called hereditarily compact if each basic node of p is compact (as a subset 

of P), 
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Remarks. 

I. Note that, in clause i, we impose the compactness requirement only for basic nodes. 

2. The theory below will be developed for hereditarily compact, normal processes 

(HCN processes, for short). 

3. The set HCN is closed in P. 

4. If A is finite then each pure process is heriditarily compact, and hence in HCN. 

Fair merge will be defined for all normal processes, and it takes normal processes to 

normal processes. But to show that fairness is preserved by fair merge, we must also 

assume hereditary compactness. That is, as we will show, fair merge takes fair HCN 

processes to fair HCN processes. 

DEFINITION 4.2 (fair merge). For p,q finite we define, by induction on degree (p) + 

degree (q), their fair merge pi\ fq, using a number of auxiliary operations pi\ xq' for 

x = f;L;R;L,k;R,k. 

a. pllx Po = Po"x P = P· 

Otherwise, assume p,q 1 p0 . 

b. pl\f q = {<2k, pllL,kq>}kE:tl U {<2k+l, pl\R,k q>}ke:ti• 

c. pllL,k+l q = {<b, p'llL,k q> I <b,p'> E p}. 

d. pl\L,0 q = {<b, p'l\R q> I <b,p'> € p}. 

e. pllR q = Ik (pl\R,k q), 

and the symmetric cases for c,d and e. 

Remark. In order to extend the definitions to infinite processes, we must show that 

these operations are continuous. 

Proof. Clear. D 

LEMMA 4.4. For finite p,p',q, 

d(pllx q, p'l\x q) s d(p,p'). 

Proof. This is proved simultaneously for all x, by induction on n d~. max(degree (p), 

degree (p')) +degree (q). For fixed n, prove for x in the following order: L, O; L,k+ I ; L; R,0; 

R,k+l; R; f, and use the results of [9], Appendix B. D 

LEMMA 4.5. For finite p,p',q,q' 

d(pllxq, p'llxq') S max(d(p,p'),d(q,q')). 

Proof. This follows from lemma 4.4 together with the synunetric result, and the strong 

triangle inequality (since 1 is in fact an ultrametric). D 

Now we are justified in defining: 
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DEFINITION 4.6. For p,q infinite, p = limipi' q 

pi q=lim.(p.11 q.). x l. l. x l. 

lim.q., p. and q. fini~e, we put 
J J l. J 

The proofs of the following lemma's are now direct (and omitted): 

LEMMA 4.7. The statement of lemma 4.5 also holds for infinite processes. Hence, the 

operations "ll x" are jointly continuous in both arguments. 

LEMMA 4.8. The fair merge takes normal processes to normal processes. 

LEMMA 4.9. Clauses a,b and e in the definition of fair merge (definition 4.2) hold 

also for infinite processes, but clauses c,d are changed (for infinite processes) to 

c'.pDL,k+lq =CL{ ••• } 

d'.plL 0q =CL{ .•• } 
' 

i.e. the closures of the sets on the right-hand side above. 

LEMMA 4.10. If p,q are in HCN then 

a. all the clauses in the definition of fair merge hold for p and q 

b. plfq is in HCN. 

Proof. a. Consider clause c or d of definition 4.2. Let X be the set on the right­

hand side of the definition. If p is a sum node, then it is clear that X is closed, 

since any two points in it are a distance I apart. If p is a basic node then it is 

compact, hence X, being a continuous image of p, is compact and hence closed. 

b. Clear. 0 

The reader should observe the essential role played by the compactness requirement 

in the proof of part a. 

We can now prove the main theorem of this section: 

THEOREM 4.11. Let p,q be fair HCN processes. Then pDfq is fair. 

Proof. Let path0 be any infinite path in pllfq. By lemma 4.10 it can be seen that path0 
can be (uniquely) represented as the "fair shuffle" of two paths path 1 in p and path2 
in q. Fairness for path0 now follows by a simple argument: For suppose that a basic 

action a is enabled infinitely often in path0 : Then clearly a is enabled infinitely 

often in path1 or path2• Suppose without lack of generality a is enabled infinitely 

often in path1• Because p is fair, a occurs infinitely often in path 1, and hence in 

path0. O 

Rema:rks. 

I. Note the role of the closedness property in the first claim of this proof: Without the 

closedness of the X on the right-hand size of clauses c,d (see proof of lemma 4.10) 

we would have to take into account the possibility that nodes added by the closure 
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operation are involved in the formation of path0 rather than path0 being the (direct) 

fair shuffle of paths in p and q. 

2. The reader may wonder whether the above argument would also work with the ordinary 

merge as defined in section 3, in which case we would not have to concern ourselves 

with sum nodes at all. In fact, it would not work. The reason is, roughly, as follows. 

Let p and q be two heriditarily compact pure processes, and let path0 be a path in 

pUq. Again, by lemma 4.10, path0 can be uniquely represented as a shuffle of two 

paths, path1 in p and path2 in q. Suppose that a is infinitely often enabled in path0 
and suppose, for definiteness, that a occurs only in nodes of p (not of q). It does 

not follow that a is enabled infinitely often in path 1• This is because path0 may be 

an"unfair"shuffle of path 1 and path2 and, from a certain point onwards, may involve 

path2 only, in which case a, although infinitely often enabled in path0 , never gets 

a chance to be enabled in path 1 again past this point. 

3. Certain HCN processes are clearly "degenerate" from our point of view, namely those 

containing infinite paths which, from some point on, contain only sum nodes. We 

could exclude such processes explicitly from consideration, since we are only really 

concerned with processes which arise from finitely many applications of the fair merge 

operation to pure heriditarily compact processes. However the set of these processes 

is not closed in P. (Whether this is an important consideration is not so clear.) 

4. A topic for further research is the combination of the techniques of this section 

with those of section 3, allowing the definition of the semantics of L extended with 

the fair merge operation. 
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