
Scripting a Refactoring with Rascal and Eclipse

Mark Hills Paul Klint Jurgen J. Vinju
Centrum Wiskunde & Informatica, Amsterdam, The Netherlands INRIA Lille Nord Europe, Lille, France

{Mark.Hills,Paul.Klint,Jurgen.Vinju}@cwi.nl

Abstract
To facilitate experimentation with creating new, complex
refactorings, we want to reuse existing transformation and
analysis code as orchestrated parts of a larger refactoring:
i.e., to script refactorings. The language we use to perform
this scripting must be able to deal with the diversity of
languages, tools, analyses, and transformations that arise in
practice. To illustrate one solution to this problem, in this
paper we describe, in detail, a specific refactoring script for
switching from the Visitor design pattern to the Interpreter
design pattern. This script, written in the meta-programming
language Rascal, and targeting an interpreter written in Java,
extracts facts from the interpreter code using the Eclipse JDT,
performs the needed analysis in Rascal, and then transforms
the interpreter code using a combination of Rascal code and
existing JDT refactorings. Using this script we illustrate how
a new, real and complex refactoring can be scripted in a
few hundred lines of code and within a short timeframe. We
believe the key to successfully building such refactorings is
the ability to pair existing tools, focused on specific languages,
with general-purpose meta-programming languages.

Categories and Subject Descriptors D.2.7 [Distribution,
Maintenance, and Enhancement]: Restructuring, reverse en-
gineering, and re-engineering

General Terms refactoring tools; meta-programming

Keywords refactoring scripts; design patterns; program
transformation

1. Introduction
Refactorings [11, 21, 22] are semantics-preserving program
transformations, applied by hand or with the help of refac-
toring tools. Most IDEs now include such tools to automate
common refactorings, such as rename method [11, pp. 273–
274] or encapsulate field [11, pp. 206–207]. Unfortunately,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee.
WRT ’12 June 01 2012, Rapperswil, Switzerland
Copyright c© 2012 ACM 978-1-4503-1500-5/12/06. . . $10.00

creating new refactorings is still quite challenging, requiring
in-depth knowledge of the language being refactored, tight in-
tegration with IDE features (wizards, undo capabilities, etc),
and knowledge of many analysis and transformation algo-
rithms and supporting data structures. One approach is to use
language support provided by APIs targeted at a specific IDE,
such as the Eclipse LTK [12]. However, this still requires
writing the refactoring in a general-purpose language (in the
case of the LTK, Java) not targeted at the domain. Another
approach is to use a meta-programming language, such as
Rascal [18, 19], which gives the benefits of using a domain-
specific language, but requires rewriting a significant amount
of analysis code to gain access to information needed in the
refactoring code (e.g., which definitions a name refers to).

In an attempt to have the best of both worlds, in this paper
we focus on providing tight integration of an IDE with exist-
ing analysis and refactoring capabilities — the Eclipse Java
Development Tools, or JDT1, which provides IDE support
for developing Java programs and includes a number of tools
(e.g., for refactoring Java code) and analyses (e.g., bindings
of types to names, links between name uses and declarations)
— with a meta-programming language for the analysis and
transformation of source code — Rascal. Specifically, we
focus on using Rascal as a prototyping environment for the
creation, evaluation, and improvement of new refactorings
and refactoring scripts2. As used here, a refactoring script is
a high level meta-program that orchestrates and implements
the mechanics of a refactoring by:

• calling existing parsing, name resolution and type resolu-
tion functionality,

• building an abstract model of the system under investiga-
tion,

• analyzing this abstract model to check preconditions and
compute parameters for the transformation,

• performing source-to-source transformations, given pre-
viously computed parameters, potentially using existing
refactorings.

1 http://www.eclipse.org/jdt
2 Note that this differs from a refactoring script in Eclipse, which allows
manually applied refactorings to be replayed.

http://www.eclipse.org/jdt

In this paper we report on our experience in applying
Rascal and the Eclipse JDT in constructing a script-support
refactoring3 called Visitor-to-Interpreter (V2I for short). V2I
takes source code organized according to the Visitor design
pattern [14, page 331] and transforms it to source code or-
ganized according to the Interpreter design pattern [14, page
243]. V2I appeared in our earlier paper [15], where we stud-
ied the effect of this refactoring on the maintainability of
source code. Here we focus instead on the mechanics of the
refactoring, providing an overview of the entire refactoring
and highlighting the interaction between Rascal and Eclipse.
In fact, we have used V2I to refactor the Rascal interpreter,
written in Java, which has been running the converted code
since December 2010. This conversion has opened up ad-
ditional opportunities for optimizing the interpreter, such
as through caching information related to both optimizing
lookups and to pattern matching.

In summary, we believe that the V2I case supports our
claims that Rascal is a good language for scripting unforeseen
refactorings and that the Rascal/Eclipse JDT integration
provides an effective way to access facts about the syntax and
static semantics of Java.

Roadmap Section 2 provides a short introduction to Rascal
and to the JDT library, which provides access to the Eclipse
JDT from within Rascal code. Section 3 then discusses the
V2I transformation in detail, including the needed analyses,
the Eclipse and Rascal portions of the transformation, and any
manual steps that need to be taken. Following this, Section 4
discusses refactoring scripts in the context of refactoring tools
and presents related work, including a comparison of different
meta-programming tools that might be used instead of Rascal.
Finally, Section 5 concludes.

2. Overview
Rascal [18, 19] is a DSL for source code analysis and
manipulation. Below we provide an overview of the language
by listing its main design ingredients. More details can be
found at http://www.rascal-mpl.org.

Procedural control-flow Functions, procedures and struc-
tured control-flow primitives provide a well known and easy-
to-understand framework for computation. This is extended
with more advanced control flow mechanisms, such as lexi-
cally scoped backtracking, general traversal, and closures, to
provide the power needed for meta-programming.

Immutable data Algebraic data types, a static type system
with local inference, as well as built-in types such as lists,
sets, relations and maps provide a reuse-friendly environ-
ment without the problems associated with references and
destructive updates.

3 The refactoring is not fully scripted, since it requires some human interven-
tion at specific points in its execution.

data Entity = entity(list[Id] id);
data Id = package(str name)
| class(str name)
| class(str name, list[Entity] params)
| interface(str name)
| interface(str name, list[Entity] params)
| method(str name, list[Entity] params,

Entity returnType)
| field(str name)
;
public Entity Object =
entity([package("java"), package("lang"),
class("Object")]);

Figure 1: Rascal JDT Entities.

Integrated syntax definition Rascal provides support for
generalized scannerless context-free parsing and fully general
disambiguation filters. This allows for parsing a wide range
of legacy and embedded languages. Rascal also provides
ambiguity detection to detect potential ambiguities in defined
grammars [3].

Domain specific expression operators Rascal expressions
target operations commonly needed in meta-programming,
including relational operators and comprehensions, pattern
matching combinators (regular expressions, algebraic sig-
natures, set/lists, paths, etc.), string templates with an auto-
indent feature, and concrete syntax fragments.

Java/JVM based Rascal is built with Java, which allows
us to deploy it anywhere, and is usable inside Eclipse as a
plugin. Java methods can also be invoked as Rascal functions,
a feature used extensively in this paper to reuse existing
Eclipse JDT functionality (Section 2.1).

Eclipse Interaction Rascal includes an interactive console
available outside of Eclipse or as part of the Eclipse Rascal
plugin. This is convenient for prototyping Rascal programs,
including the refactoring steps shown in this paper. Rascal
can also directly instantiate language specific Eclipse edi-
tors [8] for any language implemented in Rascal, enabling the
addition of new annotators, code outliners, and menu items.

2.1 The Rascal JDT Library
When we decided to refactor the Rascal interpreter, we could
have created our own fact extraction framework for Java.
However, we believe that it makes sense to try and reuse the
existing features provided by the Eclipse JDT for analysis
and code manipulation. We previously created a small bridge
between the JDT and Rascal, referred to as the JDT library4.

The JDT library implements the omnipresent Extract-
Analyze-SYnthesize (EASY) design pattern in software anal-
ysis. Given an Eclipse Java project, the JDT library extracts
facts about the code and stores these facts in a number of
typed sets and relations. These sets and relations generally

4 Acknowledgment: Bas Basten wrote this library.

http://www.rascal-mpl.org

Extracted Fact Description Decls Uses
types classes, interfaces, enums x x
methods methods x x
methodDecls methods x
fields fields x x
fieldDecls fields x
variables variables, method parameters x x
classes classes x

Figure 2: Rascal JDT Interface: Extracted Entities.

Extracted Fact Description
modifiers modifiers on definitions (e.g., public, final)
implements interface × implementer
extends class or interface × extender
declaredMethods class or interface × method declaration

Figure 3: Rascal JDT Interface: Extracted Relationships.

contain either information on entities (packages, classes,
methods, etc) or relationships between entities. Entities are
represented as a Rascal datatype made up of a list of identi-
fiers representing different Java constructs. Figure 1 provides
an example of some of the different identifiers, including
those used to represent classes (with or without type param-
eters), interfaces, methods, and fields, and also shows an
example entity for class Object.

Figure 2 lists the extracted entity information (mapping
entities to locations where those entities are declared and/or
used) that is used in the V2I transformation discussed in
Section 3. The first column in this table shows the name
of the extracted fact, as used in the Rascal code for the
transformation, with the second column providing a brief
description. Some of the facts include both declarations and
uses of the entities, while others include just declarations.
This is indicated by an x in the column for either Decls, Uses,
or both. For instance, methodsmaps both uses (invocations)
and declarations of methods to the location in the source code
where the use or declaration appears, while methodDecls
is a subset of this that contains just the declarations5.

Similarly, Figure 3 shows the extracted relationship infor-
mation used in V2I. Again, the first column shows the fact’s
name, while the second provides a description. For instance,
implements maps interfaces to the classes that implement
these interfaces, while extends maps interfaces and classes
to the interfaces and classes (respectively) that extend them.

2.2 Rascal Code Examples
Figure 4 provides several example snippets of Rascal code
from the V2I refactoring, occasionally with slight modifica-
tions to remove dependencies that are not shown.

Example 1 shows a function that, given a set of interfaces,
returns all interfaces that directly or indirectly extend one of
the interfaces in the set, as well as all classes that directly

5 This distinction is mainly for backwards compatibility, since
methodDecls was added later, but we did not want to remove
declarations from methods and potentially break existing code.

or indirectly implement one of these interfaces. The solve
statement grows this set one level at a time until no new
interfaces or classes are added.

Example 2 gets all methods named visit* in a specified
class. First, all class × method pairs are enumerated where
the class matches that passed to getVisitorsInClass;
then, matching is used to extract the method name from the
entity representing the method. Regular expression matching
ensures this name starts with visit. Finally, the inverse of
the methodDecls relation is used to get back the locations
(there should be just one, but the result of subscripting a
binary relation is a set). This information is then returned as
name × location × class entity × method entity pairs.

Example 3 shows how the set of non-public fields in a visit
method (described more in Section 3) is calculated. Relation
frel contains all uses of fields in one of the source files
with locations stored in classPaths, filtered to include
only fields declared in the Rascal interpreter code (based
on package name). Relation frel2 then filters this by the
location of the fields in the source files (the comparison of
offset o with information from overlapsAux, which has
locations of the visit methods), leaving only those fields
used inside visit methods. Relation frel3 further filters
this, leaving only those fields not declared public. Finally,
npFields is defined as just the set of field entities, with
one entry for each field used in a visit method and declared
as non-public.

The last example, Example 4, shows an example of gen-
erating a string using Rascal’s string comprehension and
indenting capabilities. methodCode is the code for one
of the new methods being generated by the V2I refactor-
ing. String comprehensions are used to insert the values of
various expressions into the correct positions in the string:
paramsForSig for type parameters, readable(mr) for
the method type (readable pretty-prints the entity repre-
senting the type), readable(instance) for the parame-
ter type, and methodBody for the generated method code.
The ’ maintains alignment on the left in the generated code.

3. The V2I Transformation
Figure 5 provides an overview of the V2I transformation. At
a high level, the transformation needs to identify the visitor
methods to convert into interpreter methods; perform this
conversion by applying a number of simple transformations
to the code; ensure that fields and methods used in this
transformed code will be visible to the interpreter code (e.g.,
that the fields have public getters and setters); write these
converted methods into new interpreter classes; and clean
up by removing the visitor methods. This requires support
both from the Eclipse JDT, which provides information
on the Java source being transformed, and which provides
several refactorings used in the script; and from Rascal, which
performs the source transformation, generates the new classes,

// Example 1: Find all interfaces and classes that implement one of the
// interfaces in the set of interfaces given as a parameter.
public set[Entity] findImplementers(Resource r, set[Entity] interfaces) {
implementers = { *getInterfaceImplementers(r, i) | i <- interfaces };
solve (implementers) {
implementers += { *getClassExtenders(r, i) | i <- implementers };

}
return implementers;

}

// Example 2: Given a class, get all methods in this class named visit*
// along with their source code locations.
public rel[str mname, loc mloc, Entity owner, Entity method] getVisitorsInClass(Resource r, Entity class) {
im = invert(r@methodDecls);
return { <mns,l,cn,mn> | tm:<class,mn> <- r@declaredMethods, entity([_*,method(mns,_,_),_*]) := mn,

/visit.*/ := mns, l <- im[mn] };
}

// Example 3: This builds the set of non-public fields to refactor over several steps. frel1 is all
// fields used in the same source file as the methods being refactored; frel2 then limits this to
// just those within the methods being refactored, based on where the field is used in the file; frel3
// then restricts this further to only those that are not public. npFields is then just these fields.
frel = { < l.path, l.offset, e > | <loc l,e> <- rascal@fields, l.path in classPaths,

entity([package("org"),package("rascalmpl"),_*]) := e };
frel2 = { <e,fp,o,i,dm,l> | fi:<fp,o,e> <- frel,

<fp,bn,en,l,i,dm> <- overlapsAux, bn <= o, o <= en };
frel3 = { fri | fri <- frel2, \public() notin (rascal@modifiers)[fri[0]] };
npFields = frel3<0>;

// Example 4: Generate the evaluate method code as a string.
methodCode = "@Override

’public<paramsForSig> <readable(mr)> __evaluate(<readable(instance)> __eval) {
’ <methodBody>
’}";

Figure 4: Rascal Code Examples from V2I.

Extract Analyze Synthesize

Extract Facts
Preparatory

Transformations

Transform
Methods

Generate
Interpreter
Classes

Clean New
Code

Remove Old
Methods

Source Code of Rascal
Interpreter (Java)

V2I Analysis

Visitor Code Entities

Visitor
Classes

Visitor
Methods

Fields Used
in Visitors

Methods Used
in Visitors

Transformed Rascal
Interpreter Code

Transformed
Rascal Visitor Code

Legend

Data

Transformation Process

Analysis Process

Analysis Info Flow

Source Code Flow

Visitor
Interfaces

Figure 5: V2I Transformation Overview.

tracks various analysis facts in sets and relations, and, in
general, drives the entire process, coded as a Rascal program.

The first step shown in Figure 5 for V2I is to extract
information about the source program, in this case the Rascal
interpreter itself (written in Java). This information is fed into
an analyzer, which determines which code implements the
Visitor pattern (interfaces, classes, and visit methods) as well
as which dependencies of this code (specifically, fields and
methods) may need to be modified. Extraction and analysis
are both covered in Section 3.1.

Once the extraction and analysis are complete, a number
of discrete transformation steps are applied. The preparatory
transformations make small semantics preserving changes

to the code, allowing it to be relocated into other classes
(Section 3.2). The visit methods are then transformed into
interpret methods, which are placed into newly generated
interpreter classes. (Section 3.3). Finally, using Rascal code
and a few manual steps, the code is cleaned up and the
old visit methods are removed. The end result is a Rascal
interpreter, equivalent to the original, but now structured
according to the Interpreter pattern (Section 3.4).

Figures 6 and 7 show, at a high level, how the code looks
before, and should look after, the transformation. In the ini-
tial system of Figure 6, multiple classes are defined that
implement visit methods to perform different types of eval-
uation. The first method, defined in Evaluator, takes an

class Evaluator implements IASTVisitor {
public A visitN(T x) {
visitBody1;

}
}
class PatternEvaluator implements IASTVisitor {

public B visitN(T x) {
visitBody2;

}
}

Figure 6: Before Transformation.

class T extends ast.T {
public A interpret(Evaluator e) {
transformedBody1;

}
public B interpret(PatternEvaluator pe) {
transformedBody2;

}
}

Figure 7: After Transformation.

AST node of type T, performs some computation, and re-
turns a result of type A. The second method, defined in
PatternEvaluator, is an implementation of the same
visit method, with the same name and parameter, but in-
stead returns a result of type B. After the transformation,
the code should be structured as shown in Figure 7. The
visitN method from Evaluator is now an interpret
method accepting a parameter of type Evaluator, with
a transformed method body and the same return type A,
while the visitN method from PatternEvaluator is
now an interpret method accepting a parameter of type
PatternEvaluator, with a transformed method body
and the same return type B. Both methods are in the same
subclass of AST node class T.

Table 1 provides the lines of code for (in order) the Rascal
portion of the V2I code; the Java portion of the V2I code; the
overall size of the Rascal interpreter, before the refactoring;
the size of the seven implementation classes whose methods
were transformed; and the size of the generated interpreter
classes. Overall development time for the refactoring was
approximately 2 person-weeks.

3.1 Fact Extraction and Fact Analysis
The V2I analysis is used to identify the locations of the code
that must be transformed to convert from the Visitor to the
Interpreter pattern. To find this information, the analysis uses
extract functions provided by the JDT library. These func-
tions are designed to extract facts, including those shown
above in Figures 2 and 3, from either specific Java classes or
entire Eclipse projects. This information is built by traversing
the internal DOM representation of Java source files pro-
vided by the JDT, with specific DOM nodes yielding facts
such as the locations of method invocations, the interfaces
implemented by a class, and the declarations of fields.

Two facts of immediate interest are the extends and
implements facts, which model the underlying relations
of the same name in Java. To find the visit methods, the
analysis first identifies all the visit classes. This is done in

Item Lines of Code
V2I: Rascal Code 489
V2I: Java Code 500
Rascal Interpreter 102997
Source Visitor Code 5892
Generated Interpreter Code 9926

Table 1: Lines of Code for Rascal and V2I.

two steps. First, all interfaces which extend a base visitor
interface6 (for Rascal, this is IASTVisitor) are identified
using a fixpoint computation7 over the extends relation.
Second, using these interfaces as a seed, all classes which
implement one of these interfaces, or which extend a class
that does, are identified using a second fixpoint computation.
For Rascal, this finds 14 classes; this is manually pared down
to 7 classes, with the other 7 being small, focused classes that
only visit a small number of node types in the AST.

In the 7 visitor classes, the analysis next must identify
the methods to transform. The analysis uses a heuristic to
identifying the visitor methods in IASTVisitor: visitor
methods are those that have names starting with visit, a
heuristic that works in this case because IASTVisitor is
generated from the Rascal grammar. If a non-uniform naming
scheme were used instead, some information about the Visitor
pattern could be used to identify candidate methods (e.g.,
visit methods should accept one parameter, which should be
an AST node), but human intervention would ultimately be
required. Using this heuristic, along with the methodDecls
fact, 536 methods in IASTVisitor are identified as visit
methods. These are identified by using pattern matching over
the entity representation of the method names: a matching
method entity begins with the entity for IASTVisitor
and ends with a method entity id whose name (checked
with regular expression matching) begins with “visit”. The
implementations of these methods are then identified in each
of the 7 classes, again using pattern matching over the entities
representing methods in these classes, leading to a total of 910
methods to refactor. Of these, 536 methods are in a class that
provides a default behavior for each visit method (returning
null), while the rest are spread through the other 6 classes.

With these methods identified, the analysis next finds any
dependencies the methods have on local fields and methods
which are non-public. This is needed because the code in the
visit methods is being moved to new classes which do not
inherit from the current visitors and are not in the same pack-
ages. More restrictive access levels would thus prevent access
to these fields and methods from within the transformed code.
At the time V2I was created the Rascal JDT library did not
provide direct access to the ASTs of Java methods (the library
now provides these, based on the underlying AST representa-

6 The analysis assumes that all visitors of interest extend, directly or
indirectly, a specific interface
7 In Rascal, fixpoint computation is provided as a control flow construct, the
solve statement.

public Result<IValue> visitStatementAssert(Assert x) {
Result<IValue> r = x.getExpression().accept(this);
if (!r.getType().equals(tf.boolType()))
throw new UnexpectedTypeError(tf.boolType(), r.getType(), x);

if (r.getValue().isEqual(vf.bool(false)))
throw RuntimeExceptionFactory.assertionFailed(x, getStackTrace());

return r;
}

Figure 8: An Example Visit Method, Before Refactorings are Applied.

public org.rascalmpl.interpreter.result. Result< org.eclipse.imp.pdb.facts. IValue>

visitStatementAssert(org.rascalmpl.ast.Statement. Assert x) {

org.rascalmpl.interpreter.result. Result< org.eclipse.imp.pdb.facts. IValue> r =

x.getExpression().accept(this);

if (!r.getType().equals(org.rascalmpl.interpreter. Evaluator. getTf() .boolType()))

throw new

org.rascalmpl.interpreter.staticErrors. UnexpectedTypeError(

org.rascalmpl.interpreter. Evaluator. getTf() .boolType(), r.getType(), x);

if(r.getValue().isEqual(this. getVf() .bool(false)))

throw org.rascalmpl.interpreter.utils. RuntimeExceptionFactory.assertionFailed(x,

this. getStackTrace());

return r;
}

Figure 9: The Method from Figure 8, After Type and Field Name Qualification.

tion provided by the JDT). Because of this, the analysis uses
an alternative means of identifying these fields and methods:
source locations. First, the range of each of the 910 visit meth-
ods identified in the prior step is computed using information
in the methodDecls fact (which includes locations). Next,
field and method uses which occur at a location inside these
ranges are identified using the location information in the
fields and methods facts, with the location check en-
coded as a condition on the match. Using the declarations
of the used fields and methods, available in fieldDecls
and methodDecls, respectively, the fields and methods are
then filtered to remove any that are declared to be public,
available in the modifiers fact. For Rascal, this yields 38
fields and (by coincidence) 38 methods.

3.2 Preparatory Eclipse-Based Refactorings
After the analysis is complete, a number of refactorings are
applied by the refactoring script to prepare the code for the
main transformation. These refactorings are available using
functions in the Rascal JDTRefactoring library.

First, the code cleanup engine is applied to each of the
selected visitor classes, qualifying field and method accesses
with this (for non-static member accesses) or the name of
the declaring class (for static member accesses). This allows
the transformer to syntactically distinguish local variables, in-
stance variables, and statics. Second, the Eclipse Encapsulate
Field refactoring is applied to each of the non-public fields
identified in the analysis. This adds getters and, for updatable

fields, setters for each field, ensuring they are still accessible
once the visit code is moved into the new interpreter classes.
Third, for similar reasons the Eclipse Change Method Signa-
ture refactoring is applied to each of the non-public methods
identified in the analysis to make these methods public.

Finally, a custom refactoring is applied to each of the
selected visitor classes (technically, to the files containing the
classes) to fully qualify all type names. This transformation
makes it possible to move the code without also moving the
imports, which prevents possible import “collisions”. For
instance, given two visit methods m1 and m2 in different files
which will be copied into the same interpreter class, if m1
uses imported class c from package p1 and m2 uses imported
class c from p2 (with p1 and p2 different), we would need to
fully qualify at least some of the uses of c. To avoid making
this decision on a case by case basis, V2I just qualifies all the
names, using a later refactoring (after the code is moved) to
remove as many of the qualifiers as possible.

Figure 8 shows an example of a visit method before any
of these four transformations is applied. Figure 9 shows the
same code after these four transformation steps. The fourth
transformation step shows the most obvious changes, since
all the type names are now fully qualified; these added type
qualifications are shown in this color . Changes from the
first step can be seen in the additions of this to the call to
getVf and the class name to the call to getTf (which is

declared as static), and are shown in this color . Changes
from the second step, field encapsulation, can be seen in the

use of these same get methods, neither of which existed
before the transformation, but were added to ensure that non-
public fields vf and tf remain available to the code after
it is moved, and are shown in this color . Changes from the
third step are not visible here, since they do not change the
code inside the visit methods, only the actual declarations of
any non-public methods used in the visit code.

3.3 Generating and Moving Code using Rascal
Once the preparatory refactorings are complete, V2I applies a
number of transformation steps, written in Rascal, to convert
the visitor methods into interpreter methods and create the
new interpreter classes. This includes the steps Transform
Methods and Generate Interpreter Classes from Figure 5.
These steps make heavy use of both regular expression
matching and string operations.

In Transform Methods, V2I first reads in the source of
each visit method; each of these is then transformed, using a
number of purely textual transformations, into an equivalent
interpret method. For ease of discussion, below V refers to
the class containing the visit method, T refers to the class
of the AST node visited by the visit method, and I refers to
the new class (a child of T) containing the created interpret
method. First, uses of this, representing an instance of
V , are replaced with eval, a formal parameter of type V
in the new method. Second, calls to accept are replaced
by calls to evaluate, the default name for all interpret
methods. Third, uses of the formal parameter of type T are
replaced by this, valid since the new methods are created
in a subclass of T . Fourth, calls to super are replaced by
calls to evaluate, with uses of eval in these calls
cast to the type of the parent of V to ensure the correct
method is called via overloading. The transformed method
body is then inserted into a new public interpret method
named evaluate, returning the same type as the visit
method and taking one formal parameter of type V named
eval. Type parameters declared on V are added directly to

the new interpret method (not to class I). Because these are
just textual transformations, all comments are maintained in
the method source.

After Transform Methods, new interpret classes are gen-
erated to mirror the existing AST class hierarchy, built ac-
cording to the Composite pattern. Each syntactic category
is represented by an abstract class, e.g., Statement or
Expression, with each production then represented as
a nested concrete class, e.g. Statement.IfThenElse or
Expression.Addition. Each of the new classes inher-
its from the existing AST class of the same name, allowing
substitution, and each of the non-abstract classes includes a
constructor with the same signature as the parent class, mak-
ing a super call to execute any of the logic already defined

therein8. The interpreter methods built above are then each
inserted into the appropriate interpreter class. For instance,
an interpret method based on a visit method which took a pa-
rameter of type Expression.Addition is placed in the
new Expression.Addition class. A destination pack-
age is defined for all interpreter classes; this is used when
generating the interpreter source file and to identify where
the newly-created classes are saved in the project.

Other Approaches: There are other potential approaches
to the transformations discussed above. One potential would
be to use a combination of the Move Method and Push Down
Method refactorings, first to move each visit method out of
the visitor class into the AST class, and then to push it down
into the correct interpreter class. Unfortunately this does not
take care of all the transformations of the method bodies that
are needed – we would still need to transform accept calls
to evaluate calls which, given the number of methods
being transformed, needs to be scripted to be feasible. More
seriously, this technique does not always work. First, there
are several scenarios where this will create broken code,
including cases where two methods with the same signature
are generated and cases where (if type names are not fully
qualified) type names will be captured in the move. Second,
sometimes move cannot actually move a method, for instance,
if the method uses non-local type parameters, or if the method
uses the super keyword. Third, in some cases we want to
only copy the code (e.g., with a default visitor extended by
the real visitor classes), not move it.

3.4 Manual Changes, Cleanup, and Noise Reduction
As part of the Clean New Code step (Figure 5) several
changes need to be made by hand, since only the code
inside the visitors has been directly modified. First, a custom
ASTFactory is created which returns instances of the
new interpreter classes, with the ASTFactoryFactory
modified to return an instance of this new factory. Next, calls
to accept outside of the original visit methods which
take instances of the transformed visitors are changed to
evaluate calls. The base evaluate methods are also

added to AbstractAST, the parent of all the AST nodes.
Several other minor changes are also made, such as making
several enumerators public. In theory, all these changes could
have been made programmatically using Rascal. However,
given the time it takes to make them by hand – around half
an hour, using features of Eclipse and queries in Rascal –
V2I instead focused on automating the more complex, time-
consuming part of the transformation.

Several additional steps are then performed as part of
the V2I script. First, another custom refactoring is invoked
which, for each of the implementers and for each of the
new interpreter classes, moves the qualifiers on the type

8 The doubled AST hierarchy implements the “Generation Gap” design
pattern http://www.research.ibm.com/designpatterns/
pubs/gg.html.

http://www.research.ibm.com/designpatterns/pubs/gg.html
http://www.research.ibm.com/designpatterns/pubs/gg.html

public Result<IValue> interpret(Evaluator __eval) {
Result<IValue> r = this.getExpression().interpret(__eval);
if (!r.getType().equals(__eval.__getTf().boolType()))
throw new UnexpectedTypeError(__eval.__getTf().boolType(), r.getType(), this);

if (r.getValue().isEqual(__eval.__getVf().bool(false))) {
throw RuntimeExceptionFactory.assertionFailed(this, __eval.getStackTrace());

return r;
}

Figure 10: The Refactored Version of Figure 8.

names into imports. This step uses several rules to ensure that
collisions do not occur. For instance, given two classes with
the same unqualified name, only the longest qualified name
is imported, with uses changed to just the unqualified name;
also, in cases where the name would clash with a local name,
it is left as is. This essentially backs out the changes made
when the types were fully qualified (at least where possible).
Second, source formatting is invoked over all modified or
newly created code to ensure it has consistent formatting.
These steps both ensure the code is much more readable,
and thus easier to maintain going forward. An example of a
fully transformed method, after all steps have been applied,
is shown in Figure 10. This is the Interpreter version of the
Visitor method shown in Figures 8 and 9.

Finally, to ensure the old visit methods are no longer
invoked, the Remove Old Methods step (Figure 5) removes
all the methods which have now been translated from visitor
to interpreter variants (except those in NullASTVisitor,
which are still used by some of the visitors that have not
been converted). This step also helps ensure the correctness
of the transformation – any code still trying to invoke these
old methods will fail, including the suite of JUnit tests used
for regression testing.

4. Discussion
In this section we raise four issues. First, how does Rascal
compare with other meta-programming systems that seem
equally applicable? Second, how do refactoring scripts relate
to generic refactoring frameworks? Third, what is the trade-
off between reusing an existing front-end (with the integration
this entails) versus making one from scratch that is integrated
from the start? Fourth, is the V2I refactoring a representative
example of a refactoring script?

Meta-programming systems. Rascal is an integrated, lan-
guage–independent analysis and transformation framework9,
providing concrete syntax trees, abstract syntax trees and
relations as general analytical representations 9. There
are many meta-programming systems which can fill a
role similar to that shown for Rascal above, including
TXL [9], ASF+SDF [29], CodeSurfer [1], CrocoPat [6],

9 Terms from WRT CfP http://refactoring.info/WRT12/.

DMS [5], Grok [16], Stratego [7], TOM [2], JastAdd [10]
and Kiama [26]10.

The V2I refactoring makes intensive use of relations
and computations over relations. Relations are commonly
used in meta-programming systems designed for analysis in
the domains of reverse engineering and re-engineering, like
Grok and CrocoPat. Similarly, these systems are applied to
extract abstract models of source code and perform queries on
these abstract models. Tree-only meta-programming systems,
such as Stratego and TXL, are able to encode relations,
but do not support them natively. By comparison, Kiama
and JastAdd support reference attributes, allowing these
systems to construct graph-like structures “superimposed”
over abstract syntax trees. Rascal, like Grok, has native
(immutable) relations.

Some work on refactoring using the JastAdd Extensible
Java Compiler has focused on specifying correct versions
of a number of popular refactorings [23–25]. The important
distinctions between JastAdd and Rascal are: (a) as men-
tioned above, relations are first class data in Rascal, while
they are represented by reference attributes in JastAdd; and
(b) Rascal control flow is specified operationally with control
flow constructs and functions, rather than declaratively using
attributes in JastAdd. We designed Rascal to make what a
program does and when it does it transparent, as opposed to
using high level declarations executed by an engine. Which
is preferable depends on the audience, but note that the same
level of conciseness is attained.

Overall, we believe that a number of the cited meta-
programming systems, including JastAdd, Kiama, and DMS,
could be used in a way similar to Rascal for developing such
refactorings. We believe that support for relations and for ma-
nipulating programs, either as strings or as syntax trees, are
both critical features. As shown in V2I, the ability to integrate
with a host IDE (here, Eclipse), gaining access to facts al-
ready computed about source programs, provides significant
opportunities for reuse. There is a trade-off between reuse
of existing tools and libraries versus native implementations,
however, which is discussed further below.

Refactoring frameworks Of course, several IDEs provide
built-in refactoring tools. For Java, this includes Eclipse [4,

10 There exist many more such systems that are left unmentioned here.

http://refactoring.info/WRT12/

13], Netbeans11, and JetBrains’ IntelliJ IDEA12. The Eclipse
LTK, mentioned above, provides language-independent sup-
port for creating new refactorings, encapsulating reusable
scheduling and user interaction (IDE integration) function-
ality, but not the needed semantics support [28]. To enable
scripting of refactorings on the level supported by Rascal
these frameworks should be completed with high level li-
braries for AST querying and database/graph querying.

Specialized refactoring frameworks or DSLs, such as Refa-
cola [27], JunGL [30], and Wrangler [20], also exist. As
opposed to Rascal, these systems focus explicitly on refac-
toring, with features aimed directly at this domain. For ex-
ample, Refacola provides the basic notions of constraints
and constraint variables to support all kinds of constraint-
based refactorings. The JunGL language, aimed specifically
at scripting refactorings, has many similarities to Rascal: both
languages support higher-order functions, references, and pat-
tern matching; make use of predicates and comprehensions;
and support relational algebra natively in the language. Addi-
tionally, JunGL supports features not found in Rascal, such
as the lazy addition of edges in graph representations of pro-
grams and the use of streams. Wrangler, a code inspection
and refactoring framework for Erlang, provides support for
creating refactorings and for generating commands that can
(in an eager or lazy fashion) apply refactorings at multiple
positions in an Erlang AST. Wrangler also provides a DSL
for scripting refactorings, which allows larger refactorings to
be built by composing a number of finer-grained refactorings.

Reuse versus Reimplementation of front-ends. One com-
mon feature of meta-programming systems is an integral
parser generator, allowing parse trees to be integrated with
other language features. Rascal includes a parser generator
for general context-free grammars; similarly, JastAdd, Kiama,
Stratego, DMS, and TXL all provide parser generators for
efficiently processing input source code. However, there are
two main reasons why one may not want to create a grammar
from scratch. First, the engineering of a context-free gram-
mar represents a significant intellectual effort [17]. Secondly,
the hardest part of front-ends for languages like Java is in
the name resolution and the type resolution, with all of the
quirks and exceptions. Regardless of the formalism used to
specify or implement these features, the heavy-lifting is in
understanding all these fine details and adequately imple-
menting them. For example, both the JastAdd-based Java
compiler [10] and Java-front for Stratego re-implement this
functionality. While both provide good integration with the
underlying platform, they both represent man-years of work.

Our view was that most of this “heavy lifting” in V2I was
already provided by the designers of the Eclipse JDT and their
user-base, and we believe we have reached a similar level of
integration. The actual integration of a meta-programming

11 http://www.netbeans.org
12 http://www.jetbrains.com

system with an existing front-end is not a completely trivial
undertaking. The JDT library for Rascal is in that sense a
small contribution in itself.

Since the creation of V2I, ASTs for Java have been added
to the JDT library, but full access to the underlying parse
trees is still missing. V2I instead employs strings and string
templates. A high-fidelity parse tree representation [31, 32]
can provide the ability to easily rewrite source while retaining
much of the original source code comments and indentation.
For scripting refactorings, we can assume that such high
fidelity is an important, but nevertheless secondary concern.

Threats to validity. We must note that the V2I refactoring
may not be representative of all refactoring scripts. In par-
ticular, since it manipulates entire method bodies there is
no necessity for fine-grained analysis of where source code
comments should go after the transformation. Where we do
manipulate the internals of method bodies, we have reused
Eclipse’s refactoring tools that do maintain source code com-
ments. We do know that type-based refactorings, such as
“Infer Generic Type Arguments”, can concisely be prototyped
in Rascal [18] as well.

A second concern is that the V2I refactoring, as presented,
is quite Java-specific: Rascal is implemented in Java, uses
facts extracted from a Java-based development environment,
and refactors Java code. However, we believe that Java is not
an essential element of the techniques presented here. Rascal
can be used to build refactorings for any other language
given the proper tools, which could be written directly in
Rascal (e.g., a grammar for parsing programs, analyses to
determine needed analysis facts such as types and name
bindings) or based on interaction with a programmable
development environment, as was done here with the JDT.
As mentioned above, it should also be possible to develop
V2I-like refactorings in other meta-programming languages
or in languages focused on refactoring, but adopting these
techniques to general purpose languages such as Java would
be quite cumbersome.

A third concern is that we have not compared the time
taken to build the refactoring script with the time it would
take to perform the refactoring by hand using Eclipse. Given
the number of methods to transform, with the opportunities
for error that this could introduce, plus the limitations of the
existing Eclipse Java refactorings pointed out in Section 3.3,
we believe that the script saved time. Admittedly, though, we
have not attempted to quantify this.

5. Conclusions
This paper detailed a single refactoring, “Visitor to Inter-
preter”, implemented as a script-supported refactoring in
Rascal. We emphasized the points of integration with Eclipse,
including the use of JDT facts and existing JDT refactorings,
while also detailing analysis and transformation steps that
occur completely in Rascal. The resulting script is less than
1KLOC. We discussed meta-programming and refactoring

http://www.netbeans.org
http://www.jetbrains.com

frameworks, giving our idea of the key success factors for
scripting refactorings. These are: (a) having strings, trees,
and relations as first-class citizens with high-level operations
and (b) tight integration with a reusable front-end.

Acknowledgments: We would like to thank the anonymous
reviewers, whose helpful feedback has assisted us in improv-
ing the quality of this paper.

References
[1] P. Anderson and M. Zarins. The CodeSurfer Software Under-

standing Platform. In Proceedings of IWPC’05, pages 147–148.
IEEE, 2005. ISBN 0-7695-2254-8.

[2] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles.
Tom: Piggybacking Rewriting on Java. In Proceedings of
RTA’07, volume 4533 of LNCS, pages 36–47. Springer, 2007.

[3] B. Basten and T. van der Storm. AMBIDEXTER: Practical
Ambiguity Detection. In Proceedings of SCAM’10, pages
101–102. IEEE, 2010.

[4] D. Bäumer, E. Gamma, and A. Kiezun. Integrating Refactor-
ing Support into a Java Development Tool. In OOPSLA’01
Companion. ACM Press, October 2001.

[5] I. Baxter, P. Pidgeon, and M. Mehlich. DMS R©: Program
Transformations for Practical Scalable Software Evolution. In
Proceedings of ICSE’04, pages 625–634. IEEE, 2004.

[6] D. Beyer. Relational programming with CrocoPat. In Proceed-
ings of ICSE’06, pages 807–810. ACM Press, 2006.

[7] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser.
Stratego/XT 0.17. A Language and Toolset for Program Trans-
formation. Science of Computer Programming, 72(1-2):52–70,
June 2008.

[8] P. Charles, R. M. Fuhrer, S. M. Sutton Jr., E. Duesterwald, and
J. J. Vinju. Accelerating the Creation of Customized, Language-
Specific IDEs in Eclipse. In Proceedings of OOPSLA’09, pages
191–206. ACM Press, 2009.

[9] J. R. Cordy. The TXL Source Transformation Language.
Science of Computer Programming, 61(3):190–210, 2006.

[10] T. Ekman and G. Hedin. The JastAdd Extensible Java Compiler.
In Proceedings of OOPSLA’07, pages 1–18. ACM Press, 2007.

[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 2000.

[12] L. Frenzel. The Language Toolkit: An API for Automated
Refactorings in Eclipse-based IDEs. www.eclipse.org/
articles/Article-LTK/ltk.html.

[13] R. M. Fuhrer, M. Keller, and A. Kiezun. Advanced Refactoring
in the Eclipse JDT: Past, Present, and Future. In Proceedings
of WRT, pages 30–31, 2007.

[14] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design
Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[15] M. Hills, P. Klint, T. van der Storm, and J. J. Vinju. A Case of
Visitor versus Interpreter Pattern. In Proceedings of TOOLS
2011, volume 6705 of LNCS, pages 228–243. Springer, 2011.

[16] R. C. Holt. Grokking Software Architecture. In Proceedings
of WCRE’08, pages 5–14. IEEE, 2008.

[17] P. Klint, R. Lämmel, and C. Verhoef. Toward an engineering
discipline for Grammarware. ACM TOSEM, 14(3):331–380,
2005.

[18] P. Klint, T. van der Storm, and J. J. Vinju. RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation.
In Proceedings of SCAM’09, pages 168–177. IEEE, 2009.

[19] P. Klint, T. van der Storm, and J. Vinju. EASY Meta-
programming with Rascal. In Post-Proceedings of GTTSE’09,
volume 6491 of LNCS, pages 222–289. Springer, 2011.

[20] H. Li and S. J. Thompson. A Domain-Specific Language for
Scripting Refactorings in Erlang. In Proceedings of FASE’12,
volume 7212 of LNCS, pages 501–515. Springer, 2012.

[21] W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[22] W. F. Opdyke and R. E. Johnson. Refactoring: An aid in
designing application frameworks and evolving object-oriented
systems. In Proceedings of Symposium on Object-Oriented
Programming Emphasizing Practical Applications, 1990.

[23] M. Schäfer and O. de Moor. Specifying and Implementing
Refactorings. In Proceedings of OOPSLA’10, pages 286–301.
ACM Press, 2010.

[24] M. Schäfer, T. Ekman, and O. de Moor. Sound and Extensible
Renaming for Java. In Proceedings of OOPSLA’08. ACM
Press, 2008.

[25] M. Schäfer, M. Verbaere, T. Ekman, and O. de Moor. Stepping
Stones over the Refactoring Rubicon. In Proceedings of
ECOOP’09, volume 5653 of LNCS. Springer, 2009.

[26] A. M. Sloane. Lightweight Language Processing in Kiama. In
Post-Proceedings of GTTSE’09, volume 6491 of LNCS, pages
408–425. Springer, 2011.

[27] F. Steimann, C. Kollee, and J. von Pilgrim. A Refactoring
Constraint Language and Its Application to Eiffel. In Proceed-
ings of ECOOP’11, volume 6813 of LNCS, pages 255–280.
Springer, 2011.

[28] J. van den Bos. Refactoring (in) Eclipse. Master’s thesis,
Universiteit van Amsterdam, Aug. 2008.

[29] M. van den Brand, A. van Deursen, J. Heering, H. A. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Olivier,
J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The ASF+SDF
Meta-environment: A Component-Based Language Develop-
ment Environment. In Proceedings of CC’01, volume 2027 of
LNCS, pages 365–370. Springer, 2001.

[30] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: A Scripting
Language for Refactoring. In Proceedings of ICSE’06, pages
172–181. ACM, 2006.

[31] J. Vinju. Analysis and Transformation of Source Code by
Parsing and Rewriting. PhD thesis, nov 2005.

[32] D. Waddington and B. Yao. High-fidelity C/C++ code trans-
formation. Science of Computer Programming, 68(2):64 – 78,
2007.

www.eclipse.org/articles/Article-LTK/ltk.html
www.eclipse.org/articles/Article-LTK/ltk.html

	Introduction
	Overview
	The Rascal JDT Library
	Rascal Code Examples

	The V2I Transformation
	Fact Extraction and Fact Analysis
	Preparatory Eclipse-Based Refactorings
	Generating and Moving Code using Rascal
	Manual Changes, Cleanup, and Noise Reduction

	Discussion
	Conclusions

