Einige analytische Ergebnisse über die Wasserbewegung in einem untiefen Moore

D. van Dantzig

1958
The Mathematical Centre at Amsterdam, founded the 11th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications, and is sponsored by the Netherlands Government through the Netherlands Organization for Pure Research (Z.W.O.) and the Central National Council for Applied Scientific Research in the Netherlands (T.N.O.), by the Municipality of Amsterdam and by several industries.
Einige analytische Ergebnisse über die Wasserbewegung in einem untiefen Meere

D. van Dantzig

Die freundliche Einladung des örtlichen Tagungsleiters dieser Versammlung, einen Hauptvortrag zu halten über einige in den letzten Jahren in den Niederlanden durchgeführten Forschungen auf dem Gebiete der angewandten Mathematik bietet mir die Gelegenheit Ihnen einen, sei es sehr unvollständigen, Überblick zu geben über einige Arbeiten, die unter meiner Leitung seit 1953 in der Abteilung für angewandte Mathematik des Mathematischen Zentrums in Amsterdam vollbracht wurden. Sie wurden veranlasst durch die Sturmsflut, die unser Land am 1. Februar 1953 getroffen hat, beruhen auf einem Auftrag des Rijksstudiedienst van de Waterstaat, und bezwecken, einiges Verständnis zu gewinnen für die Weise in der einer über ein Meer, insbesondere die Nordsee, bewegender Sturm die Höhe des Meeresniveaus beeinflusst. Obwohl die endgültige Lösung des Problems noch in unersehbarer Ferne liegt, möchten unsere nicht ganz erfolglos geblieben Bemühungen, die sich gezwungenermassen nur noch auf wesentlich einfacheren Probleme beziehen, vielleicht doch einiges Interesse erwecken können.

Bis auf einige wenige durch die Umstände erzwungene Ausnahmen sind die Ergebnisse nicht mir selbst, sondern meinen Mitarbeitern zu verdanken. Dies waren anfangs Herr T.C. Braakman und Herr G.W. Veltkamp, später Herr Dr H.A. Lauwerier, und jetzt auch Herr Dr D.J. Hofsommer. Wenn auch gelegentlich Anregungen, Ansätze und weitere Suggestionen meinerseits in den Berichten verarbeitet wurden, so haben doch meine Mitarbeiter zum größten Teil ihre Ergebnisse selbständig erhalten.

In seinem Einladungsbrief schrieb Herr Kollege Dörr, dass bei den unter meiner Leitung durchgeführten Arbeiten "die numerischen Rechnungen erst nach Ausschöpfung aller analytischen Hilfsmittel in Angriff genommen werden".

Obwohl diese Formulierung geradezu dazu auffordert, die Vorteile der numerischen und diejenigen der analytischen Methoden gegen einander abzuwägen, möchte ich jetzt auf diese Frage nicht näher eingehen, und mich nur auf eine Bemerkung beschränken. Einerseits wäre es natürlich töricht, bei der Lösung eines Problems der angewandten Mathematik die vorhandenen maschinellen Hilfsmittel nicht vollständig auszunützen, auch wenn dabei einen Kurzschluss über die klassischen mathematischen Ergebnisse hinweg vorgenommen werden muss. Andererseits aber hat man als Mathematiker das Gefühl, dass die Entwicklungen einer Lösung in Reihen oder Integrale von einfachen Funktionen, zu denen eine analytische Behandlungsweise führt, gewisse Einsichten in die Struktur des Lösungssystems gestatten, die die rein numerische Behandlungsweise, wenigstens heutzutage, uns noch nicht gewährt. Es lässt sich aber gar nicht leicht entscheiden, ob dieses Gefühl zurecht oder zu unrecht besteht, und ob der Widerwillen des Mathematikers, seine Daseinsberechtigung darin zu sehen, dass er die Maschine mit Programmen füttern darf, einen rationellen Hintergrund besitzt. Vielleicht kommt dieses Gefühl darauf hinaus, dass bei der rein maschinellen Behandlung gewisse Erkenntnisse, die wir als wichtig betrachten, vielleicht wohl im Gedächtnis der Maschine verborgen sind, aber jedenfalls nicht in unser eigenes Gehirn aufgenommen werden.
1. Formulierung und erste Reduktion des Problems.

Die meisten Arbeiten, die seit etwa 5 Jahren in der Abteilung für angewandte Mathematik des Mathematischen Zen-
trums in Amsterdam unter meiner Aufsicht ausgeführt wurden,
beziehen sich auf die Bewegung des Wassers in einem rotie-
renden Becken unter Einfluss von gegebenen, von einem Wind-
felder verursachten, Kräfte an der Oberfläche, sowie von Bodenreibung.

Einer der Nachteile der analytischen Behandlungsweise
besteht darin, dass man erhebliche und im Grunde nicht
gerechtfertigte Vereinfachungen anzubringen gemütigt
ist. Als Modell für die Wasserbewegung in einem Meer unter
Einfluss von Gravitation, Wind und Reibung, betrachten wir
diejenige in einem mit konstanter Winkelgeschwindigkeit ro-
tierenden Bassin von konstanter Tiefe. Die nichtlinearen
Bewegungsgleichungen werden durch die entsprechenden lineari-
sierten ersetzt, d.h. wir betrachten in erster Näherung
kleine Abweichungen vom Gleichgewichtszustand. In der linea-
ren Annäherung (nicht in Wirklichkeit) kann deshalb die
Gezeitenbewegung ausser Betracht gelassen werden, weil die
berechnete Bewegung auf sie superponiert wird. Der Einfluss
des Windes wird als eine gegebene Schubspannung 1) an der
Oberfläche betrachtet; die Reibung (insbesondere die Boden-
reibung) wird durch eine der lokalen Geschwindigkeit propor-
tionale Massenkraft ersetzt. Entlang einer jeden Vertikalen
wird eine quasistatische Druckverteilung angenommen, und die
Geschwindigkeitskomponenten werden durch ihre Integrale über
eine solche Vertikale ersetzt. Schliesslich werden als Rand-
bedingungen nur undurchdringbare Küsten oder Begrenzungen
durch Ozeane in Betracht gezogen, welche letztere als unend-
lich tief angesehen werden.

Wir stellen das Bassin durch das ebene Gebiet D, seinen
Rand durch C, $D+C$ durch \tilde{D}, die über die Vertikale integrier-
ten Geschwindigkeitskomponenten im Punkte (x,y) durch
$\tilde{u}=(u_1,u_2)$ vor, die Erhebung des Wasserspiegels über das

1) Das barometrische Feld kann als ein Gradientfeld in der
üsseren Kraft aufgenommen werden, und wird deswegen nicht
ausdrücklich erwähnt.
Gleichgewichtsniveau durch \(w \), die Komponenten der durch den Wind verursachten Kraft durch \(\ddot{\chi} = (X_1, X_2) \), den Reibungskoeffizienten durch \(\lambda \), den Coriolis-Parameter \((=2\omega \sin \beta)\) durch \(\Omega \), die Tiefe durch \(h \), die Gravitationsbeschleunigung durch \(g \), die stationäre Wellengeschwindigkeit \(\sqrt{gh} \) durch \(c \), und die Dichte durch \(\rho \).

Die linearisierten Bewegungsgleichungen und die Kontinuitätsgleichung lauten dann bekanntlich \(^2\)

\[
\begin{align*}
\frac{\partial u_1}{\partial t} + \lambda u_1 - \Omega u_2 + c^2 \frac{\partial w}{\partial x} &= X_1 \\
\Omega u_1 + \frac{\partial u_2}{\partial t} + \lambda u_2 + c^2 \frac{\partial w}{\partial y} &= X_2 \\
\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} + \frac{\partial w}{\partial t} &= 0
\end{align*}
\]

oder in Vektorform

\[
\begin{align*}
\frac{\partial \ddot{u}}{\partial t} + \lambda \ddot{u} - \Omega \dot{x} \ddot{u} + c^2 \ \text{grad} \ w &= \ddot{\chi} \\
\text{div} \ \ddot{\mathbf{u}} + \frac{\partial w}{\partial t} &= 0
\end{align*}
\]

wo \(\ddot{\mathbf{u}} \) ein senkrecht nach oben gerichteter Vektor der Länge \(\Omega \) bezeichnet. Entlang einer Küste \(C_k \) verschwindet die normale Geschwindigkeitskomponente \(u_n \), entlang eines Ozeanrandes \(C_o \) die Erhebung \(w \).

Wir nehmen eine Laplace Transformation vor, oder, was auf dasselbe hinauskommt, wenn wir die alten Bezeichnungen für die Laplace Transformierten beibehalten, wir ersetzen den Differentialoperator \(\frac{\partial}{\partial t} \) durch einen Faktor \(p \). Selbstverständlich wird dadurch eine der wesentlichen Schwierigkeiten bis zum Schluss hinweggeschoben, nämlich die Umkehrung der Laplace Transformation. (Vgl. §3).

Die Determinante der Koeffizient-Operatoren der linken Glieder von (1.1) ist, mit \(p = \frac{\partial}{\partial t} \):

1.2 \[\begin{vmatrix} p + \lambda & -\Omega & c^2 \frac{\partial}{\partial x} \\ \Omega & p + \lambda & c^2 \frac{\partial}{\partial y} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & p \end{vmatrix} = c^2 (p + \lambda) / \Delta - p^2 (p + \lambda)^2 + \Omega^2. \]

wo \(\Delta \stackrel{\text{def}}{=} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \).

Elimination von \(u_1 \) und \(u_2 \) ergibt also für \(w \) eine Gleichung

1.3 \[\Delta w - x^2 w = c^2 F. \]

wo

1.4 \[x^2 \stackrel{\text{def}}{=} c^{-2} p (p + \lambda)^{-1} \{(p + \lambda)^2 + \Omega^2\}. \]

1.5 \[F \stackrel{\text{def}}{=} \frac{\partial}{\partial x} x_1 + \frac{\partial}{\partial y} x_2 + \frac{\Omega}{p + \lambda} (\frac{\partial}{\partial x} x_2 - \frac{\partial}{\partial y} x_1) \]

\[= \text{div} \hat{x} + \text{tg} \gamma \text{ rot } \hat{x} \]

mit

1.6 \[\text{tg} \gamma \stackrel{\text{def}}{=} \frac{\Omega}{p + \lambda}. \]

Die Randbedingungen lauten dann:

1.7 \[\begin{cases} \frac{\partial w}{\partial n} + \text{tg} \gamma \frac{\partial w}{\partial s} = f/c^2 & \text{entlang einer Küste} \\ w = 0 & \text{entlang eines Ozeans} \end{cases} \]

mit

1.8 \[f = x_n + \text{tg} \gamma \ x_s \]

wo \(x_n \), \(x_s \) die normale und die tangentielle Komponente des Vektors \(\hat{x} \) darstellen, erstere beim durchlaufen des äußeren Randes von \(D \) im positiven Sinne nach aussen gerichtet.

Die Geschwindigkeitskomponenten \(u_1, u_2 \), welche Gleichungen derselben Form (1.3) (mit derselben \(x^2 \), aber mit anderen rechten Gliedern) genügen, ergeben sich sofort aus \(w \):

1.9 \[u_1 = \{(p + \lambda)^2 + \Omega^2 \}^{-1} \{(p + \lambda)(x_1 - c^2 \frac{\partial w}{\partial x}) + \Omega(x_2 - c^2 \frac{\partial w}{\partial y})\} \]

\[u_2 = \{(p + \lambda)^2 + \Omega^2 \}^{-1} \{-\Omega x_1 - c^2 \frac{\partial w}{\partial x} + (p + \lambda)(x_2 - c^2 \frac{\partial w}{\partial y})\} \]

oder in Vektorform

\[\hat{u} = \{(p + \lambda)^2 + \Omega^2 \}^{-1} (p + \lambda + \lambda \cdot x)(\hat{x} - c^2 \text{ grad } w). \]

3) Das Symbol \(\text{def} \) bezeichnet eine Gleichheit, die das linke Glied durch das rechte definiert.
Wir bemerken noch, dass, bei konstantem \((p+\lambda)^2 + \Omega^2\),
\[u_2 = \frac{\partial u_1}{\partial \theta}, \quad u_1 = -\frac{\partial u_2}{\partial \theta} \]
ist.

Die grössten Schwierigkeiten werden von der "schiefen" Randbedingung (1.7), also von der Corioliskraft verursacht, die weiteren von der komplizierten Form (1.4) von \(x^2\), das für \(\Omega = \lambda = 0\) einfach \(p^2/c^2\) wäre. Man möchte deswegen ersuchen, eine Störungsrechnung hinsichtlich \(\Omega\) vorzunehmen. Dies aber geht nur für viel kleinere Gebiete als die Nordsee.

Im allgemeinen kann man sagen, dass anfänglich wenn ein Sturm einsetzt, nur die äusseren Kräfte \(\mathbf{x}\) von Bedeutung sind; nach einiger Zeit beginnt sich der Einfluss von \(\Omega\) zu zeigen, und noch später macht sich die Reibungsdämpfung bemerkbar. Auf dem Höhenpunkt eines Orkans lässt sich keine dieser Faktoren vernachlässigen. Bei einem einigermassen lange anhaltendem Sturm wäre vielmehr \(p\) im Vergleich zu \(\Omega\) (nicht aber zu \(\lambda\)) als \(\Omega\) gegenüber \(p\) vernachlässigbar. Auch macht es die Corioliskraft unmöglich, die Wasserbewegung zu ein-dimensionalisieren, sogar wenn man die Nordsee als ein unendlich langes Kanal betrachtet; die Querbewegung ist dafür von zu grossem Einfluss.
§ 2. Zurückführung auf Fundamentalslösungen.

Zur Diskussion der Lösungsmethoden der Differentialgleichung (1.3) mit den Randbedingungen (1.7) benutzen wir den Greenschen Satz. Einfachheitshalber setzen wir das Gebiet D als einfach zusammenhängend voraus, und sein Rand C seistückweise glatt und bestehe aus zwei Teilen C_0 (Ozeanrand), C_k (Küste) die je aus endlich vielen Bögen bestehen. Weder die Konstanz von x^2 aus (1.4), noch die Stückweise Konstanz von $\tau(s) = \tan \gamma$ aus (1.7) auf C_k ist für das nächstfolgende nötig. Punkte $(x, y), (x_0, y_0), \text{ u.s.w.}$ seien kurz mit P, P_0, u.s.w. angedeutet. Die Entfernung

$$\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2}$$

zweier Punkte P_1, P_2 sei mit $\rho(P_1, P_2)$ bezeichnet. Es sei $C_2(D)$ die Menge aller Funktionen in D, die dort zweimal stetig differenzierbar und am Rande stückweise glatt sind, und $S(D, M)$ die Menge aller Funktionen wo dies für das Komplement bzgl. D einer endlichen Menge $M \subset D$ gilt, und die in jedem $c \in M$ wie $-(2\pi)^{-1} \ln \rho(P, c)$ unendlich werden.

Für je zwei Funktionen $\varphi \in S(D, M_1), \psi \in S(D, M_2)$, wo $M_1 \cap M_2 = 0$ sei, gilt dann für die "Dirichletsche Entfernung" 4)

$$E\{\varphi, \psi\} \overset{\text{def}}{=} \iint_D \left(\frac{\partial \varphi}{\partial x} + \frac{\partial \psi}{\partial y} + x^2 \varphi \psi \right) \, dx \, dy = 2.1$$

$$= -\iint_D \varphi(\Delta \psi - x^2 \psi) \, dx \, dy - \int_C \varphi \frac{\partial \psi}{\partial n} \, ds + \sum_{a \in M_2} \varphi(a)$$

Weil $E\{\varphi, \psi\}$ offenbar symmetrisch ist, erhalten wir für den Fall, wo M_1 nur aus einem Punkte P_0 besteht:

$$\psi(P_0) = \iint_D \psi(\Delta \psi - x^2 \psi) \, dx \, dy - \iint_D \psi(\Delta \psi - x^2 \psi) \, dx \, dy + 2.2$$

$$+ \int_{C_0} \psi \frac{\partial \psi}{\partial n} \, ds - \int_{C_0} \varphi \frac{\partial \psi}{\partial n} \, ds + \int_{C_k} \psi \left(\frac{\partial \psi}{\partial s} - \frac{\partial \varphi}{\partial s} \tau(s) \psi \right) ds$$

$$- \int_{C_k} \varphi \frac{\partial \psi}{\partial s} \tau(s) \psi \, ds + \int_{C_k} \frac{\partial \varphi}{\partial s} \psi \, ds + \sum_{a \in M_2} \varphi(a)$$

Es sei jetzt $\psi(P) = w(P)$ eine Lösung $\in C_2(D)$ von (1.3), (1.7), und $\varphi(P) = g(P_0, P)$ eine beliebige Funktion $\in S(D, z_0)$. Dann

wird (2.2), unter Voraussetzung dass \(\varphi \) auf \(C \) stetig und stückweise glatt ist:\(^5\)

\[
2.3 \quad w(P_0) = -\iint_D GF \, dx \, dy + \int_{C_k} GF \, ds + \\
+ \iint_D w(\Delta G - \kappa^2 G) \, dx \, dy - \int_{C_\epsilon} G \frac{\partial w}{\partial n} \, ds + \\
+ \int_{C_k} w(\frac{\partial G}{\partial n} - \frac{\partial}{\partial s} \tau(s)G) \, ds.
\]

Folglich, falls A. eine verallgemeinerte Greensche Funktion \(G \) gefunden worden ist, d.h. dass \(G = 0 \) für die homogene Differentialgleichung

\[
2.4a \quad \Delta G - \kappa^2 G = 0 \quad \text{in } D
\]

b) der Ozeanbedingung

\[
2.4b \quad G = 0 \quad \text{auf } C_\epsilon
\]

c) der homogenen adjungierten Küstenbedingung

\[
2.4c \quad \frac{\partial G}{\partial n} - \frac{\partial}{\partial s} \tau(s)G = 0 \quad \text{auf } C_k
\]

genügt, dann ergibt (2.3) eine explizite Darstellung von \(w(P_0) \) mittels Quadraturen. Falls aber B. eine Funktion \(G \) bekannt ist, die wohl der Differentialgleichung (2.4a) und der Ozeanbedingung (2.4b), aber nicht der Küstenbedingung (2.4c) genügt, so stellt (2.3) eine für \(F \in C_k \) singuläre Integralgleichung für \(w(P) \) entlang der Küste \(C_k \) vor. Falls \(G \) überdies der Küstenbedingung auf einem Teile von \(C_k \) genügt, so bleibt eine ebensolche Gleichung für den Rest von \(C_k \) übrig. Diese singuläre Integralgleichungen können mittels bekannter Methoden, die zum Beispiel im Buche Muskelkhishvili's über singuläre Integralgleichungen dargestellt worden sind, durch Aus-Übung des adjungierten Integraloperators in reguläre verwandelt, und sodann nach klassischen Methoden aufgelöst werden.

Man kann aber auch sofort eine reguläre Integralgleichung erhalten, sei es eine zweidimensionale, falls man C. eine Funktion \(G = G_0 \) bestimmen kann, die den sämtlichen Randbedingungen (1.13b,c), aber nicht der Differentialgleichung (1.13a) genügt, aber B. anstatt dessen harmonisch ist \((\Delta G_0 = 0) \). Für den Fall wo \(C_\epsilon \) (also auch \(C_k \)) ein zusammenhängender Bogen ist,

\(^5\) Also, wenn \(\varphi \) und \(\psi \) stetig sind auf \(C \), muss in jeder etwaigen Unstetigkeitsstelle von \(\tau(s) \) entweder \(\varphi \) oder \(\psi \) verschwinden.
hat H.A. Lauwerier (TW31, 1955) eine solche Funktion G_0 konstruiert mittels einer konformen Abbildung von D auf eine Halbebene, bei der C_0 auf die negative reelle Achse abgebildet wird.

Man kann G_0 durch eine Summe von vier Gliedern von der Form $\frac{1}{2\pi i} \ln \frac{M(x+iy)}{M(x+iy_o)}$ vorstellen, wo $H(w)$ eine unvollständige Beta-Funktion ist. Für den Spezialfall eines Rechtecks von der Breite $2a$ und der Länge $2b$, wo C_0 eine Rechteckseite ist, und das ein Modell der Nordsee darstellt, ist $M(z) = \Phi(z-2a-2ib) - \Phi(2ib)$.

Es ergibt sich dann für w unter Vertauschung von P und P_0 aus (1.12)

$$w(P) = -\pi^2 \int_D w(P_0)G_0(P,P_0)dx_0dy_0 + \int_{C_k} G_0(P,P_0)f(z_0)ds_0 -$$

$$-\int_D G_0(P,P_0)F(z_0)dx_0dy_0$$

aus welcher sich w mittels der Neumannschen Reihe als eine Potenzreihe nach Potenzen von π^2 ergibt.

Weil dabei der Koeffizient von π^{2n} u.A. noch ein 2n-faches Integral enthält, worin der Integrand a) vom Aufpunkte P, b) von den Randbedingungen, c) von der Form des Gebietes, d) von dem gegebenen Innern Feld abhängt, ist es von Bedeutung, die Fälle zu betrachten, in denen sich die Greensche Funktion explizit bestimmen, und zwar mittels einer beschränkten Anzahl von Integrationen herstellen lässt. Dies ist gelungen für diejenigen Gebiete, die nur von höchstens zwei Geraden begrenzt werden.

Die zu bestimmende Greensche Funktion sei, unter Vertauschung der Punkte P und P_0, mit $G(P,P_0)$ bezeichnet. Sie genügt dann sowohl hinsichtlich P als P_0 der Differenzialgleichung (2.4a) als der Ozeanbedingung (2.4b). Der Küstenbedingung (2.4c) genügt sie nur hinsichtlich P_0, während mit Bezug auf P die homogenisierte Bedingung (1.7), d.h. allgemeiner

$$\frac{\partial \Phi}{\partial n} + \tau(s) \frac{\partial \Phi}{\partial s} = 0 \quad \text{auf } C_k$$

gilt. Die Funktion $G(P,P_0)$ ist also nicht symmetrisch. In
unsrem Fall, wo \(\tau(s) = \text{tg} \gamma \) auf der Küste konstant ist, geht sie in sich über, falls die beiden Argumentpunkte vertauscht werden, und gleichzeitig das Vorzeichen von \(\text{tg} \gamma \), d.h. von \(\Omega \) umgekehrt wird.
§3. Bestimmung von Fundamentalsolutions für von höchstens zwei Geraden begrenzten Meeren.

Ein wesentlicher Beitrag zur Bestimmung der Fundamentalsolutions der Differentialgleichung

\[\Delta G - \kappa^2 G = 0 \]

mit homogenen schießen Randbedingungen (vgl. 1.7) wurde von G.W. Veltkamp (1955) in einer kurzen internen Note für das Mathematische Zentrum gegeben, über deren Grundgedanken ich jetzt kurz berichten werde.

Die Fundamentalsolution \(G(P, P_0) \), die in der ganzen Ebene der Gleichung (3.1) genügt, im gegebenen Punkte \(P_0 = (x_0, y_0) \) eine Singularität \(G = \frac{1}{2\pi} \ln r(P, P_0) + O(1) \) für \(P \to P_0 \) und ins unendliche verschwindet ist gegeben durch die Besselsche Funktion

\[\frac{1}{2\pi} K_0(\kappa r) = \frac{1}{4\pi} \int_{-\infty}^{+\infty} e^{-\kappa \xi} \text{ch} \xi \, d\xi . \]

Wir werden sie, ähnlich wie in der Theorie der harmonischen Funktionen, kurz einen \textit{Pol} (in \(P_0 \)) nennen. Durch Differentiation nach dem "Aufpunkte" \(P_0 \) in eine vorgegebene Richtung, ergibt sie einen \textit{Dipol}, durch zweifache Differentiation in zwei Richtungen einen \textit{Quadrupol}, durch k-fache Differentiation einen \(2^k \)-Pol. Wir betrachten den Richtungsdifferentialoperator

\[D_\alpha \overset{\text{def}}{=} \cos \alpha \frac{\partial}{\partial x} + \sin \alpha \frac{\partial}{\partial y} . \]

Die Operatoren \(D_\alpha \) kommutieren für alle Werte von \(\alpha \), und sie erfüllen, wie man leicht einsieht, bei Beschränkung ihres Anwendungsbereiches auf Lösungen der Gleichung

\[\Delta u - \kappa^2 u = 0, \]

die Identität

\[D_\alpha \gamma \quad D_\beta - D_\beta \gamma \quad D_\alpha = \kappa^2 \sin(\alpha - \beta) \sin \gamma , \]

oder auch

\[D_{\alpha+\beta} \quad D_{\alpha-\beta} = D_\alpha^2 - \kappa^2 \sin^2 \beta . \]
Für \(x=0 \) ist \(D_\alpha \ldots D_\alpha = D^{k} \), mit \(\alpha = k^{-1} \sum_{1}^{k} \alpha_i \), sodass es für jedes \(k \) bis auf Bewegungen nur eine Art von harmonischen \(2^k \)-Polen gibt; für \(x \neq 0 \) aber ist das nicht der Fall. Zufolge (3.4) ist die schiefe Randbedingung \(D_\beta f=0 \) entlang der \(x \)-Achse erfüllt, falls \(f=D_\beta g \) und \(g \) als Funktion von \(y \) ungerade ist. Es ist dann nämlich \(g=0 \) für \(y=0 \), folglich auch \(D_\alpha^{2}g = \frac{\partial^{2}g}{\partial y^{2}} = 0 \) entlang der \(x \)-Achse, also nach (3.4) ebendort \(D_\beta g=0 \).

Um eine Fundamentallösung von (3.1) in der Halbebene \(y>0 \) mit Pol in \(z_0=(x_0, y_0) \) zu erhalten, die der Randbedingung
\[
3.6 \quad D_\alpha g = 0 \quad \text{für} \ y=0
\]
genügt, setzen wir \(\rho^* = \left\{ (x-x_0)^2+(y+y_0)^2 \right\}^{1/2} \) und \(2\pi g = K_0(\rho) - K_0(\rho^*) \). Dann ist \(g \) ungerade in \(y \); folglich genügt
\[
3.7 \quad u = \frac{1}{2\pi} D_\alpha (K_0(\rho) - K_0(\rho^*))
\]
sowohl (3.1) als (3.6). Diese Lösung besteht aus zwei entgegengesetzten parallelen Dipolen in den Spiegelpunkten \(z_0 \) und \(\overline{z_0}=(x_0, y_0) \), deren Richtung spiegelbildlich zu \(\alpha \) ist (vgl. Fig.1).

\[\text{Diagramm}\]

\(z_0 \)

\(y=0 \)

\(\overline{z_0} \)

Weil diese Lösung für jeden Aufpunkt \(z_0 \) der Bedingung (3.6) genügt, bleibt dasselbe der Fall, wenn man \(z_0 \) durch \((x_0-t \cos \alpha, y_0+t \sin \alpha) \) für alle \(t>0 \) ersetzt und über \(t \) integriert. Dabei geht der Dipol in \(z_0 \) in einen einfachen Pol über, während der Dipol in \(\overline{z_0} \) in eine mit gleichen und parallelen Dipolen gleichmässig besetzte Halbgerade in der Richtung \(\alpha \) übergeht. Zerlegt man diese Dipole in ebensolche senkrecht und parallel dieser Halbgerade, so erhalten erstgenannte die Grösse \(\sin 2\alpha \), werden letztere sich zu einem einzigen Pol in \(\overline{z_0} \) der Stärke \(-\cos 2\alpha \) zusammensetzen (Fig.2, Fig.3).
Analytisch wird die Lösung durch

\[G = \frac{1}{2\pi} K_0(\kappa \rho) - \frac{1}{4\pi} \int_{-\infty}^{\infty} \frac{\text{sh}(t+i\alpha)}{\text{sh}(t-i\alpha)} e^{-x(y+y_0)ch-tx-x_0)sh} dt, \]

\[\frac{1}{2\pi} K_0(\kappa \rho) = \frac{1}{4\pi} \int_{-\infty}^{\infty} e^{-x|y-y_0|ch-tx-x_0)sh} dt \]

geggeben.

Dieses Ergebnis, das Velkamp auch für beliebige Richtung der begrenzenden Gerade herleitete, wurde auf etwas anderem Wege auch von H.A. Lauwerier bewiesen und zur Lösung des Randwertproblems für einen (beiderseits unendlichen) Parallelstreifen ausgenutzt (TWJ1). Für den Streifen \(|x| < a\) (unendlich langer Kanal) mit

\[\frac{\partial G}{\partial x} \cos \gamma + \frac{\partial G}{\partial y} \sin \gamma = 0 \quad \text{für} \quad x = \pm a \]

wird

\[G = \frac{1}{2\pi} K_0(\kappa \rho) + \frac{1}{8\pi} \int_{-\infty}^{\infty} \left\{ e^{-x(2a+x_0-x)ch \gamma} - e^{-(2a-x_0+x)ch \gamma} \right\} \]

\[- \frac{\text{ch}(\gamma-i\gamma)}{\text{ch}(\gamma+i\gamma)} e^{x(x+x_0)ch \gamma} - \frac{\text{sh}(\gamma+i\gamma)}{\text{sh}(\gamma-i\gamma)} e^{-x(x+x_0)ch \gamma} \}

\[e^{-ix(y-y_0)sh \gamma} \frac{e^{-a2x a ch \gamma}}{\text{sh}(2x a ch \gamma)} d\gamma, \]

wofür auch

\[G = \frac{1}{4\pi} \int_{-\infty}^{\infty} e^{-ix(y-y_0)sh \gamma} \left\{ \sum_{n=0}^{\infty} e^{-|x-x_0-4na| ch \gamma} - \right\}

\[\frac{\text{ch}(\gamma-i\gamma)}{\text{ch}(\gamma+i\gamma)} e^{-((4n+2)a-x-x_0)ch \gamma} \]

\[- \frac{\text{ch}(\gamma+i\gamma)}{\text{ch}(\gamma-i\gamma)} e^{((4n+2)a+x+x_0)ch \gamma} \}

\]
geschrieben werden kann. (Vgl. Fig. 4). Der für ungerades n auftretende Faktor \(\frac{\sin(t-ix)}{\sin(t+ix)} \) ändert einen Pol in einen "Dipolschwanz". Für den Streifen \(0 < y < b \) mit

\[
D_\alpha G = 0 \quad \text{für} \quad y=0, \quad G=0 \quad \text{für} \quad y=b
\]
sodass \(y=0 \) eine Küste \((\alpha = \frac{1}{2} \pi + \gamma)\) und \(y=b \) eine Ozeanbegrenzung darstellt, erhält Lauwerier die Lösung

\[
3.11 \quad G = \frac{1}{2\pi} K_0(x \rho) - \frac{1}{2\pi} K_0(x \rho) + \\
+ 2 \int_{-\infty}^{+\infty} d\gamma \frac{\sin(x(y-a)\sin \gamma)}{\sin(x(a-y)\sin \gamma)} \cdot e^{-i\gamma(x-x_0)\sin \gamma} \\
\cdot \left[1 + \frac{\sin(\gamma-i\gamma)}{\sin(\gamma+i\gamma)} \right] e^{2\chi \alpha \sin \gamma}
\]

deren Schema in Fig. 5 skizziert worden ist.

Wesentlich schwieriger gestaltet sich das Problem schon im einfachsten Falle wo der Rand eine Ecke vorzeigt, nämlich im Falle wo \(D \) ein Winkel ist, z.B. in Polarkoordinaten: \(r > 0, \varphi_1 < \varphi < \varphi_2 \). Wir werden da die Lösungen, insbesondere die Fundamentallösung der Gleichung (3.1) mit den Randbedingungen

\[
3.12 \quad \frac{\partial G}{\partial r} - \cot \varphi \frac{\partial G}{\partial \varphi} = 0 \quad \text{für} \quad \varphi = \varphi_1 \\
3.12 \quad \frac{\partial G}{\partial r} - \cot \varphi \frac{\partial G}{\partial \varphi} = 0 \quad \text{für} \quad \varphi = \varphi_2
\]
betrachten, obwohl wir eigentlich nur die beiden Fälle

\(\gamma_1 = \gamma_2 \) (zwei Küsten) und \(\cot \gamma_1 = 0 \) oder \(\cot \gamma_2 = 0 \) (eine Küste und ein Ozeanrand) (im letzteren Falle mi. der Zusatzbedingung dass dort \(w=0 \) sei) bedürfen. Schon in 1956 hat G.W. Veltkamp (TW40) das Verhalten einer für \(r \to 0 \) endlich bleibenden Funktion \(w \) in der Umgebung der Ecke studiert, die in \(D \) definiert ist, und entweder für der Potentialgleichung \(\Delta w = 0 \) genügt (oder allgemeiner \(\Delta w = O(r^{-2}) \) für \(r \to 0 \)) und den Randbedingungen (3.12) (mit \(w \) anstatt \(G \); im Falle \(\gamma_1 = \gamma_2 \) ist \(r^{-2} \) durch \(r^{-2+\varepsilon} \), \(\varepsilon > 0 \) zu ersetzen), oder für \(x^2 \neq 0 \) den speziellen Randbedingungen (3.12) mit \(\gamma_1 = \gamma_2 \) oder \(\cot \gamma_1 \cos \gamma_2 = 0 \) genügt. Die Notwendigkeit mehrere verschiedene Fälle zu unterscheiden liess wenig Hoffnung, auf diesem Wege durch heranziehen höherer Näherungen weiterzukommen.

1. Ist \(G \) in \(D \) def \(\{ (r, \varphi) | r > 0, \varphi_1 < \varphi < \varphi_2 \} \) mit Ausnahme höchstens einer endlichen Menge von logarithmisch singulären Stellen eine Lösung der Gleichung \((3.1)\) die für \(r \to \infty \) genügend schnell gegen Null geht, so ist

\[
U(\varphi, \varphi) = \frac{1}{2\pi} \int_{\infty}^{-\infty} e^{-i\lambda r \sin \varphi} G(r, \varphi) dr
\]

eine harmonische Funktion, also in der Form

\[
U(\varphi, \varphi) = U_1(\varphi + i\varphi) + U_2(-\varphi + i\varphi)
\]

zu schreiben. Dabei sind \(U_1 \) und \(U_2 \) stückweise holomorph für \(\varphi_1 < \varphi < \varphi_2 \); auf den Geraden \(\varphi = \text{konst.} \), die den Singularitäten von \(G \) entsprechen, können \(U_1 \) und \(U_2 \) sich unstetig ändern. Sind anderseits \(U_1 \) und \(U_2 \) stückweise holomorph und für \(\varphi \to \pm \infty \) \((\sin \varphi)^{\lambda} U \to 0\) für einen gewissen Konstant \(c \), so genügt, der Lösung von \((3.13), (3.14)\) entsprechend,

\[
G(r, \varphi) = \frac{1}{2\pi} \int_{\infty}^{-\infty} e^{-i\lambda r \sin \varphi} \{U_1(\varphi + i\varphi) + U_2(-\varphi + i\varphi)\} d\varphi
\]

in \(D \) der Gleichung \((3.13)\). Die Transformation \((3.13)\) stimmt im wesentlichen mit einem schon von A.S. Peters \(^7\) für das "sloping beach" Problem benutzten überein.

6) H.A. Lauwerier, A uniform windfield on a rotating sea in presence of a semi-infinite barrier.

2. Den Randbedingungen (3.12) entsprechen zwei Funktionalgleichungen für U_1 und U_2, die eine spezielle Lösung

$$U_1(\xi) = U_2(\xi) = \Phi(\xi)$$

besitzen, wo $\Phi(\xi)$ eine in der ganzen Ebene meromorphe Funktion ist. Und zwar ist

$$\Phi(\xi) = e(\xi - i\varphi_1, \chi_2) / e(\xi - i\varphi_2, \chi_1)$$

wo $e(\xi, \gamma)$ für $|\text{Im} \xi| < \theta + \frac{\pi}{2} - |\gamma|$ durch

$$e(\xi, \gamma) \overset{\text{def}}{=} \exp \left(\frac{1}{2} \int_{-\infty}^{+\infty} \frac{dt}{\text{sh}^2 \pi t} \frac{\text{sh} \chi t (1 - \cos \xi t)}{\text{sh} \theta t} \right)$$

definiert, aber in der ganzen Ebene meromorph ist.

Gemäß (3.15) entspricht Φ eine überall in \mathbb{S}, außer vielleicht in $r=0$ reguläre Lösung von (3.1), (3.12). Für $-\frac{\pi}{2} < \chi_2 < \chi_1 < \frac{\pi}{2}$ ist sie auch für $r=0$ regulär.

Für $\chi_1 < \chi_2$ dagegen gibt es keine überall, einschließlich $r=0$ reguläre nicht-triviale Lösung.

3. Um die Fundamentalslösung zu finden, müssen wir die Funktion $K(\xi, \gamma; (P, P_0))$ in der Form (3.15) darstellen:

$$K(\xi, \gamma; (P, P_0)) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\text{irsh} \gamma} \text{rsh} \gamma \text{rsh}(\gamma + 1) d\gamma.$$

Je nachdem $\varphi > \varphi_0$ oder $\varphi < \varphi_0$ ist, entspricht also U_2 oder U_1 der Null, und U_1 oder U_2 der Funktion $-(2\pi)^{-1} e^{i\chi \text{rsh} \gamma}$.

Fördern wir jetzt, dass $G-(2\pi)^{-1} K_0$ überall regulär ist. Es entstehen U_1 und U_2 aus Φ durch Multiplikation zweier im Streifen $\chi_1 \leq \text{Im} \xi \leq \chi_2$ stückweise holomorphe Funktionen, die periodisch mit der Periode 2π sind, und an den Geraden $\varphi = \varphi_0 \pm 2m\theta$ bzw. $\varphi = \varphi_1 \pm 2m\theta$ (m gerade) einen Sprung $(2\pi)^{-1} e^{i\chi \text{rsh} \gamma}$ bzw. $-(4\pi)^{-1} e^{i\chi \text{rsh} \gamma}$ vorzeigen. Mittels einer Plemelj Formel lassen sich diese Funktionen dazu bestimmen.

Das Endergebnis ist

8) Ich verdanke diese Bemerkung Herrn Lauwerier.
3.21 \(G(r, \varphi) = \frac{1}{2\pi n} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos(xr \sin \gamma) \sin(xr_0 \sin \gamma) \frac{\phi(r)}{\phi(s)} \frac{\text{sh} \frac{\pi s}{g}}{\text{ch} \frac{\pi s}{g} - \text{ch} \frac{\pi f}{g}} \text{ds} \text{df} \)

für \(-\frac{\pi}{2} \leq \gamma_1 \leq \gamma_2 \leq \frac{\pi}{2}\), und

3.22 \(G(r, \varphi) = \frac{1}{2\pi n} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin(xr \sin \gamma) \cos(xr_0 \sin \gamma) \frac{\phi(r)}{\phi(s)} \frac{\text{sh} \frac{\pi s}{g} f}{\text{ch} \frac{\pi s}{g} - \text{ch} \frac{\pi f}{g}} \text{ds} \text{df} \)

für \(-\frac{\pi}{2} \leq \gamma_2 < \gamma_1 \leq \frac{\pi}{2}\),

wo \(f = \gamma + 1 \varphi \), \(s = t + 1 \varphi_0 \) und \(\varphi_1 = 0 \), \(\varphi_2 = 0 \) gewählt ist.

Gemäß Lauwerier's Bemerkung ist die Lösung für \(\gamma_1 \leq \gamma_2 \) die einzige, die für \(r = 0 \) endlich bleibt; für \(\gamma_1 > \gamma_2 \) kann man noch eine Überall in \(D \) reguläre Lösung hinzufügen. Dadurch kann man erreichen, dass sie für \(r = 0 \) Null wird. Die Lösung 3.22 ist dieser Forderung schon angepasst worden.

Weitere Untersuchungen dieser Lösung sind augenblicklich noch im Gange. Leider ist nicht zu erwarten, dass eine entsprechend einfache explizite Lösung für beliebige Form des Gebietes \(D \) anzugeben ist.

Zunächst (TW35) betrachten wir den Fall, wo D die ganze unendliche Ebene ist, wo also weder Küsten noch Ozeane vorhanden sind. Ersetzen wir in

\[K_0(x,r) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}x^2} \cdot r \cdot \operatorname{ch} \eta \, d\eta \]

\(\eta \) durch \(\eta + \ln \frac{x}{p} \), und setzen wir für \(x^2 \) den Ausdruck (1.4) ein, so ergibt sich

\[K_0(x,r) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}r \eta} - \frac{1}{2} r (p + \lambda) e^{-\frac{1}{2}r \frac{\Omega^2}{p + \lambda} e^\eta} \, d\eta . \]

Zur Lösung kann man \(p \) mit dem Operator \(\frac{\partial}{\partial t} \) identifizieren, und sodann (4.2) auf eine gegebene Funktion der Zeit \(x(t) \) (die auch von den räumlichen Koordinaten abhängen kann) wirken lassen. Im einfachsten Falle, wo weder Reibung noch Drehung vorhanden ist \(\lambda = \Omega = 0 \) ist \(x = p \), und (4.1) ergibt

\[K_0(x,r) X(t) = \frac{1}{2} \int_{-\infty}^{+\infty} X(t - r \cdot \operatorname{ch} \eta) \, d\eta = \int_{-\infty}^{+\infty} X(t - \tau) \frac{d\tau}{\sqrt{\tau^2 - r^2}} . \]

Falls wohl die Reibung, aber noch nicht die Erddrehung in Betracht gezogen wird, erhalten wir

\[K_0(x,r) X(t) = \int_{\tau}^{+\infty} e^{-\frac{1}{2} \lambda \tau} \cdot \operatorname{ch} \frac{\lambda}{2} \sqrt{\tau^2 - r^2} X(t - \tau) \frac{d\tau}{\sqrt{\tau^2 - r^2}} . \]

und endlich im allgemeinen Fall

\[K_0(x,r) X(t) = \int_{\tau}^{+\infty} e^{-\frac{1}{2} \lambda \tau} \cdot \operatorname{ch} \frac{1}{2} \lambda \sqrt{\tau^2 - r^2} X(t - \tau) \frac{d\tau}{\sqrt{\tau^2 - r^2}} - \frac{1}{4} \Omega \int_{\tau}^{+\infty} e^{-\lambda \tau} \cdot \operatorname{ch} \frac{1}{2} \lambda \sqrt{\tau^2 - r^2} X(t - \tau) \frac{d\tau}{\sqrt{\tau^2 - r^2}} . \]

\[\cdot \exp \frac{1}{2} \lambda r^2 \frac{d\varphi}{\tau + \sin \varphi \sqrt{\tau^2 - r^2}} . \]
ein Ausdruck der noch verschiedentlich umgeformt werden kann. Lauwerier betrachtet speziell den Fall wo, bis auf eine zeitlich konstante Funktion, \(X(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases} \) ist, d.h. wo ein Windfeld plötzlich einsetzt und dann konstant bleibt. Insbesondere hat er die folgenden Spezialfälle untersucht:

a. Kein Wind; rotationssymmetrisch verteilte Depression. Es handelt sich dann lediglich um ein Barometerfall, d.h. der Vektor \(\dot{\mathbf{x}} \) in §1 ist ein Gradient.

b. Rotationssymmetrisches wirbelfreies Feld. (Auch hier ist \(\dot{\mathbf{x}} \) ein reiner Gradient.)

c. Rotationssymmetrisches Wirbelfeld.

d. Punktquellenfeld konstanter Richtung.

e. Beliebiges Windfeld konstanter Richtung, das bis auf einen beliebigen zeitabhängigen Faktor, eine zeitlich konstante rotationssymmetrische, aber sonst beliebige Verteilung hat.

Schon vorher (TW32) hatte Lauwerier für den Fall einer Halbebene ein räumlich konstantes Windfeld untersucht, das von der Zeit mittels eines Faktors \(X(t) = \exp \left(-mt \right) \) abhängt, also anschwillt, ein Maximum erreicht und wieder abflaut. Die Erhebung \(w \) lässt sich mittels elementarer Methoden nur an der Küste berechnen, und wird dargestellt durch die Konvolution der beiden Funktionen

\[
4.6 \quad \varphi(t) = \sin \alpha \ X(t) - \Omega \cos \alpha \int_0^\infty e^{-\lambda \tau} X(t-\tau) d\tau
\]

und

\[
4.7 \quad \psi(t) = e^{-\frac{3}{2} \lambda t} I_0(\frac{\lambda}{2} t) - \Omega e^{-\frac{1}{2} \lambda t} \int_0^t e^{-\frac{3}{2} \lambda \tau} J_1(\Omega \tau) I_0(\frac{\lambda}{2} (t-\tau)) d\tau.
\]

Die numerischen Rechnungen hierzu wurden von der Rechenabteilung des Mathematischen Instituts ausgeführt und gestatten eine gute Übersicht über die Weise, in der die Erhebung \(w \) vom Winkel \(\alpha \) zwischen Windfeld und Küste abhängt.

Es ergibt sich, dass die maximale Erhebung für etwa \(\alpha = 170^\circ \) maximal ist, so dass die Erhebung an der Küste viel stärker von einem zur Küste parallelen als von einem senkrecht einfallenden Wind beeinflusst wird, eine qualitativ von
vornherein einleuchtende Tatsache. Nachdem \(w(t) \) sein Maximum erreicht hat, dämpft es allmählich in leicht oszillierender Weise ab; die Oszillationen haben eine Periode von etwa \(\frac{2\pi}{\Omega} \) und korrespondieren analytisch mit den Singularitäten der Laplace Transformierten bei \(p = -\lambda \pm i\Omega \). Das Erhebungsmaximum kommt viel später als das Windmaximum. Das Erhebungsmaximum hängt der Größe nach kaum von \(\Omega \) ab, in seiner Abhängigkeit von \(\alpha \) aber (offensichtlich) sehr stark. Auf die wichtigen Untersuchungen Lauwersers bezüglich eines streifenförmigen Meeres ("unendlich breite Nordsee") einzugehen, sowie auf verschiedene spätere Ergebnisse, verbietet mir leider die Zeit.

Ich möchte noch einige Bemerkungen über die Inversion der Laplace Transformation im Falle des Streifens, also der Lösung (3.10) hinzufügen. Der exponentielle Faktor unter dem Integralzeichen lässt sich ganz ähnlich wie oben bei \(K_0(\lambda r) \) durch Ersetzung von \(\eta \) durch \(\eta + \ln \frac{\lambda}{\rho} \) behandeln. Weiter ist

\[
4.8 \quad \frac{\operatorname{ch}(\eta + i\xi)}{\operatorname{ch}(\eta - i\xi)} = \left(1 + \frac{2i\Omega \operatorname{th} \eta}{p + \lambda - i\Omega \operatorname{th} \eta} \right).
\]

Hierin aber muss noch die oben genannte Verschiebung von \(\eta \) durchgeführt werden, wodurch \(\operatorname{th} \eta \) in \(\operatorname{th}(\eta + \ln \frac{\lambda}{\rho}) \) übergeht. Nun ist

\[
4.9 \quad \frac{\operatorname{ch}(\eta + i\xi)}{\operatorname{ch}(\eta - i\xi)} = \frac{p + \lambda - i\Omega}{p + \lambda + i\Omega} \cdot \frac{e^{2\eta(p + \lambda + i\Omega)^2 + p(p + \lambda)}}{e^{2\eta(p + \lambda - i\Omega)^2 + p(p + \lambda)}}.
\]

Zerlegung in Partialbrüchen ergibt eine ziemlich unangenehme Abhängigkeit von \(\eta \), da \(e^{2\eta} \) unter dem Wurzelzeichen vorkommt.

Man muss aber bedenken, dass bei den wirklich Anwendungen \(\lambda \) nur sehr ungenau bekannt ist. Die Berechnung der Reibung beruht nämlich auf Turbulenztheorien, die nicht alle das selbe Resultat geben (Schönfeld 1954).

Überdies ist die Reibung proportional zum Strom und unabhängig vom Winde angesetzt, was in Wirklichkeit nicht der Fall ist. Schliesslich ist \(\lambda \) abhängig von, und zwar näherungsweise umgekehrt proportional mit, der Tiefe. Im Falle der Nordsee nun ist die Tiefe keineswegs konstant. Sie nimmt gen
Norden allmählich zu, und ist in der Mitte durch die Dode-
gersbank stark beeinträchtigt. Es ist also der Wert von \(\lambda \)
icht nur nicht genau bekannt, sondern nicht mal genau defi-
niert, ja, eben nicht genau definierbar. 7)

Nun hat es in der angewandten Mathematik nicht den min-
desten Sinn, im rein mathematischen Teil vollkommene Exakt-
heit zu verlangen, wenn man bei der Anwendung auf sehr un-
exakt bestimmten Größen stößt. Man wird also im letzten
Glied der Formel (4.9) (die ich lediglich als Beispiel ge-
wählt habe) bedenken, dass Vermehrung des Zählers sowie des
Nenners mit \(\frac{1}{4} \lambda^2 \) lediglich auf eine kleine Änderung des
Wertes von \(\lambda \) hinauskommt, also infolge der geringen Bestimm-
heit von \(\lambda \) dasselbe Resultat ergibt. Nur für sehr lange an-
haltende Stürme ist diese Änderung nicht genügend motiviert.
Damit geht (4.9) über in

4.10 \[\frac{c h(\pi+i y)}{c h(\pi-iy)} = \left(1 - \frac{2i \Omega}{p+\lambda+i \Omega} \right) \cdot \left\{ 1 + \frac{C_1}{e^{\Omega(p+\lambda-i \Omega)+i(p+\lambda)}} + \frac{C_2}{e^{\Omega(p+\lambda-i \Omega)-i(p+\lambda)}} \right\} \]

wo \(C_1 \) und \(C_2 \) nicht von \(p \) abhängen.

Welche Möglichkeiten unsere Lösung des Problems vom
Winkel bieten wird, lässt sich jetzt noch nicht sagen. Einige
Bemerkungen aber kann man schon machen.

Die Nordsee hat bekanntlich in grober Annäherung die
Form eines Rechtecks. Für die holländische Küste aber werden
bei den häufigst vorkommenden Stürmen weder die Ostseite
(Deutsche Bucht, Danmark, Kattegat, Norwegen), noch die
Nordseite (Ozean, „rand“) grossen Einfluss haben. Ein rechtes
Winkel ist deswegen als Modell nicht gar so schlecht, umso
mehr als über den Einfluss des als Senke auftretenden Kanals,
der genügend kleine Dimensionen hat um dort die Corioliskraft
vernachlässigbar zu machen, schon eine ausführliche Unter-
suchung von Lauwerier vorliegt (TW36).

7) Übrigens gilt Entsprechendes auch, sei es in geringerem
Masse, für die Fortpflanzungsgeschwindigkeit \(c = \sqrt{gh} \) der
ungestörten Wellen, die wir sogar als Einheit der Ge-
Schwindigkeit gewählt haben.
Eine über die Nordsee sich bewegende Depression wird durch eine Verteilung von Polen wiedergegeben, die sich hauptsächlich bei der Bahn des Zentrums der Depression anhäufen. Daneben haben wir die durch Reflexion an den Küsten entstehenden Pole samt ihrer Multipol "schwänze", die hier in Form der Funktionen \(\varphi_0 \) auftreten, in Betracht zu ziehen. Die größten, und heute noch nicht überschätzten Schwierigkeiten wird wohl die Laplace Inversion der Faktoren \(\varphi_0 \) bereiten. Wegen der Dämpfung werden wiederholte Reflexionen wohl kaum einen merklichen Beitrag ergeben, es sei denn das Zentrum der Depression ziehe ganz nahe an den singulären Ecken vorbei, ein Tatbestand der sich nur selten (aber doch gelegentlich mal) vortut. Die Reflexionen an der schottisch-englischen Küste werden sicher wohl nicht vernachlässiger sein, insbesondere wenn die Depression sich ziemlich nahe und parallel zu dieser Küste südwärts bewegt, oder wenn sich nahe dieser Küste ein starker barometrischer Gradient befindet. Beide Erscheinungen traten beim Februarsturm 1953 stark hervor. Die Reflexionen an unserer Küste schliesslich sind --für uns! -- die wichtigsten, insbesondere wenn sie nicht zustande kommen, denn eben das bedeutet den Deichbruch.

Obwohl also die analytische Behandlung von Problemen wie das hier besprochene ganz erheblichen Einschränkungen unterliegt, und keinesfalls eine maschinell numerische vollständig ersetzen kann, so hoffe ich doch in diesem Vortrag gezeigt zu haben, dass die klassischen Methoden der angewandten Mathematik noch keineswegs als überholt zu betrachten sind, und in enger Verbindung mit den numerischen einen nicht unerheblichen Beitrag zu unserem Verständnis bieten können, und dazu noch methodisch ganz interessante und für die Weiterentwicklung der reinen Mathematik nicht unbedeutende Ergebnisse vorzuzeigen vermag.
Literatur:

TW35, 1956, The influence of a disturbance upon an infinitely large shallow sea of constant depth.

TW36, 1956, The wind effect in the Southern part of the North Sea due to a single storm and the influence of the Channel.

TW42, 1957, Exponential wind fields.

C.W. Velthuysen, TW40, 1956, The behaviour of a solution of Helmholtz equations near a confluence of boundary conditions, involving directional derivatives.

Internal note, 1955, Singuliere oplossingen van de Helmholtz vergelijking in twee dimensies.