
6 

Probabilistic Analysis 

R.M. Karp 
University of California, Berkeley 

J.K. Lenstra 
Centre for Mathematics and Computer Science, Amsterdam 

CONTENTS 

1. SURVEYS 

2. BASIC Toots 
2.1. Moment methods 
2.2. Binomial properties 

C.J.H. McDiarmid 
Wolfson College, Oxford 

A.H.G. Rinnooy Kan 
Erasmus University, Rotterdam 

4.4. Network flow 
4.5. Asymmetric traveling salesman 
4.6. Quadratic assignment 
4.7. Miscellaneous 

2.3. Bounds on tails of distributions 
2.4. Conditioning 

5. EUCLIDEAN PROBLEMS 

5 .1. Closest points 

2.5. Stochastic convergence 
3. UNWEIGHTED GRAPHS 

3.1. Random graphs 
3.2. Connectivity 
3.3. Matching 
3.4. Graph isomorphism 
3.5. Stable sets and coloring 
3.6. Long paths 
3.7. Hamiltonian cycles 
3.8. Bandwidth 
4. WEIGHTED GRAPHS 

4. I. Shortest paths 
4.2. Spanning trees 
4.3. linear assignment 

5.2. Shortest paths 
5.3. Matching 
5.4. Location 
5.5. Routing 
6. LINEAR PROGRAMMING 

7. PACKING AND COVERING 

7. I. Satisfiability and tiling 
7.2. Bin packing 

(a) I-dimensional bin packing 
(b) d-dimensional bin packing 

7.3. Multiprocessor scheduling 
7.4. Knapsack and subset sum 
7.5. Set covering 
8. BRANCH-AND-BOUND AND LOCAL SEARCH 

The analysis of combinatorial algorithms is traditionally concerned with worst 
case time and space bounds. Such an analysis has to account for the isolated 
time consuming problem instance, and hence the results may be pessimistic 
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and give a misleading p~cture ?f the average case. This point is supported by 
an abundance of empmcal evidence. Thus the ultimate explanation of why 
algorithms behave as they do must be of a probabilistic nature. • 

A probabilistic analysis requires first of all the specification of a probability 
distribution over the set of all problem instances. For example, several models 
for generating random graphs have been extensively investigated, but for other 
combinatorial structures the choice of a reasonable probability model is less 
obvious. 

A probabilistic analysis of combinatorial problems and algorithms is usu­
ally far from trivial. The main reasons for this are the discrete structure of 
problem instances and solutions, as well as the interdependence between the 
various steps of an algorithm. What happens at a node of a search tree, for 
example, depends highly on what has happened at its predecessor. 

In recent years, progress has been made on various fronts. One of these is 
probabilistic running time analysis. An example of this approach is the collec­
tive effort to explain the success of the simplex method for linear program­
ming. One of the great challenges here is to give rigorous proofs of the polyno­
mial expected running time of various search algorithms, in order to confirm 
informal analyses or empirical evidence. Secondly, there is the area of proba­
bilistic error analysis, where the error refers to the (absolute or relative) differ­
ence between an approximate solution value and the optimum. The empirical 
behavior of heuristics suggests that the worst case error is seldom met in prac­
tice, but analytical verification may be quite difficult. Much research of this 
type is actually based on probabilistic value analysis, the third and perhaps 
most surprising area. Many hard combinatorial optimization problems, espe­
cially those with a Euclidean structure, allow a simple probabilistic description 
of their optimal solution value in terms of the problem parameters. 

This bibliography concentrates on these types of probabilistic analyses in 
combinatorial optimization. It excludes other approaches involving probability 
models, notably randomized algorithms (see Ch.7) and stochastic optimization 
problems in which the realization of the data is not known in advance (see, 
e.g., Ch.ll, §11.2 on stochastic scheduling). We have also excluded topics that 
are insufficiently related to the area of combinatorial optimization, such as 
probabilistic models for sorting and for VLSI circuit design. 

The organization of this bibliography is as follows. § l lists a number of sur­
veys on the probabilistic analysis of combinatorial algorithms. §2 presents the 
basic tools that are used in the area; the references selected here are intended 
only as a means of access to the literature on this subject. §3 and §4 review 
results on unweighted and weighted graphs, respectively. Most papers in _§3 d_eal 
with the problems of finding matchings, stable sets, colorings, and Hanul~o~an 
cycles in random graphs. The main subjects in §4 are the proble~s of fmdmg 
optimal assignments and shortest traveling salesman _tours. §5 _is concerned 
with problems defined in Euclidean space, with emphasis on location and_ rout­
ing problems. §6 surveys the recent literature on the average case behavmr of 
variants of the simplex method for linear programming. §7 collects results on 
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other non-graphical, non-Euclidean problems, such as bin packing, scheduling 
and knapsack problems. §8 finally discusses search techniques for solving hard 
problems. 

This research was partially supported by NSF grants MCS-8105217 and 
MCS-8311422. 

l. SURVEYS 

R.M. Karp (1976). The probabilistic analysis of some combinatorial search 
algorithms. J.F. Traub (ed.). Algorithms and Complexity: New Directions and 
Recent Results, Academic Press, New York, 1-19. 

A general framework for the probabilistic analysis of combinatorial algo­
rithms is introduced. Several algorithms are analyzed probabilistically, includ­
ing a cellular dissection algorithm for the Euclidean traveling salesman prob­
lem, sequential algorithms for constructing cliques and colorings, an 
extension-rotation algorithm for the Hamiltonian cycle problem and a tree 
search algorithm for the approximate solution of set covering problems. 

G. d'Atri, C. Puech (1978). Analyse probabilistique des problemes combina­
toires. Mathematiques Appliquees, Jer Coll. AFCET-SMF, Tome II, Palaiseau, 
261-273. 

A survey of probabilistic approaches to the analysis of combinatorial prob­
lems. The principal examples concern random graphs and random shortest 
path problems. 

G. d'Atri (1980). Outline of a probabilistic framework for combinatorial 
optimization. F. Archetti, M. Cugiani (eds.). Numerical Techniques for Stochas­
tic Systems, North-Holland, Amsterdam, 347-368. 

The basic concepts of the probabilistic analysis of algorithms and of the 
concept of a randomized algorithm are explained through examples: a search 
problem, the knapsack problem, and primality testing. 

L. Slominski (1982). Probabilistic analysis of combinatorial algorithms: a 
bibliography with selected annotations. Computing 28, 257-267. 

An excellent survey with especially good coverage of early Soviet work not 
available in English. 1bis survey is a useful complement to the present one, 
which covers the early Soviet literature rather sparsely. 

D.S. Johnson (1984). The NP-completeness column: an ongoing guide; 
eleventh edition. J. Algorithms 5, 284-299. 

This column first surveys results that show ~'8l-complete problems to be 
solvable in polynomial time on average. It then considers the concept of 'hard­
ness on average' and discusses an important result of L.A. Levin (see §7.1). 

R.M. Karp (to appear). The probabilistic analysis of combinatorial 
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optimization algorithms. Proc. Internat. Congress Math., Warsaw. 
Several problems are discussed from the viewpoint of probabilistic analysis. 

These include multiprocessor scheduling, matchings and Hamiltonian cycles, 
cliques and colorings, the assignment problem and the traveling salesman 
problem. 

2. BASIC TOOLS 

2.1. Moment methods 

P. Erdos, J. Spencer (1974). Probabilistic Methods in Combinatorics, Academic 
Press, New York. 
B. Bollobas (1979). Graph Theory, Graduate Texts in Mathematics 63, 
Springer, Berlin. 

Existence results concerning random graphs or networks are often proved 
by using a moment method. Let the random variable X take values 0,1,2, ... , 
and have mean E[X] = µ > 0 and variance E[(X-µ)2] = <J2• (Perhaps X 
counts the number of subgraphs of a random graph with a certain property.) 
Then we have 
(a) the Markov Inequality: Pr{X>O} .,;,;;;; µ; 
(b) from the Chebyshev Inequality: Pr{X = O} .;;;; a11µ2; 
(c) from the Cauchy-Schwarz Inequality: Pr {X>O} ;;;;;.: 1.t2! E[X1]. 

When we use (a) [(b) or (c)], then we say that we are using a first [second] 
moment method. 

2.2. Binomial properties 

W. Feller (1968). An Introduction to Probability Theory and Its Applications, 
Volume 1, Third Edition, Wiley, New York. 
D.S. Mitrinovic ( 1970). Analytic Inequalities, Springer, Berlin. 

Let 0 < p = I -q < I and let n be a positive integer. A key result in 
combinatorial probability is Stirling's Formula (as refined by H. Robbins): 

n' = nne-n~e°'(n) where l < a(n) < - 2
1 . 

· ' 12n +I I n 

The following simple bounds for binomial coefficients are often useful. If 
I.o:;;;k .o:;;;n then 

( : )k .;;;; (~) < ( "; l -

There exists a constant c >0 (independent of p) such that, if np is an integer, 
then 
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2.3. Bounds on tails of distributions 

H. Chernoff (1952). A measure of asymptotic efficiency for tests of a 
hypothesis based on a sum of observations. Ann. Math. Statist. 23, 493-507. 

Chernoff proves the following bounds on the tails of the distribution of the 
sum of independent observations: Let XI>···•Xn be independent identically dis­
tributed random variables with finite expectation µ and let m (a) 
= inf1 { e -ar E [e 1x']}. If a ,,;;;[;;;;.] µ, then Pr p:.t = 1Xk ,,,;;;; [;;;;,.] n a} ,,,;;;; (m (a)r. 
For the tails of a binomial distribution this implies that, if 0,,;;;{3~ l, then 

""' n k n -k ,,;;:: e-/fnpl2 £.dk<!;,(l-f3)np~)p q '°"' ' 

n k n -k ,;i. 13 
~k;;.(J+,B)np~)p q ,,;;;; e-pnp . 

These inequalities as well as the last inequality in §2.2 were used, for example, 
in [Angluin & Valiant 1979] (see §3.3, §3.7). 

W. Hoeffding (1963). Probability inequalities for sums of bounded random 
variables. J. Amer. Statist. Assoc. 58, 13-30. 
V. Chvatal (1979). The tail of the hypergeometric distribution. Discrete Math. 
25, 285-287. 

Related results and extensions. 

A.W. Marshall, I. Olkin (1979). Inequalities: Theory of Majorisation and Its 
Applications, Academic Press, New York. 

Chapter 17C gives extensions of the following intuitively obvious result that 
has on occasion been useful. Let X l>X 2,... be a sequence of 0, I-valued random 
variables such that fort = 1,2, ... , given any history concerning XJ. ... ,X,, the 
probability that x, +I = 1 is at most p. Then x I + ... + xn is stochastically less 
than a binomial random variable with parameters n and p . 

P.J. Boland, f. Proschan (1983). The reliability of k out of n systems. Ann. 
Probab. 11, 760-764. 

A related result of Hoeffding set in the context of majorization. 

2.4. Conditioning 

M.L. Eaton (1982). A review of selected topics in multivariate probability ine­
qualities. Ann. Statist. JO, 11-43. 
R.L. Graham (1983). Applications of the FKG inequality and its relatives. A. 
Bachem, M. Grotschel, B. Korte (eds.). Mathematica/ Programming: the State 
of the Art - Bonn 1982, Springer, Berlin, 115-131. 

Two recent reviews of the most useful results on 'benevolent' conditioning: 
Harris' Lemma and its extension, the FKG Inequality. 

Y.L. Tong (1980). Probability Inequalities in Multivariate Distributions, 
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Academic Press, New York. 
A useful concept of 'positive dependence' is that of association - see for 

example [Eaton 1982] above and this reference. 

K. Joag-Dev, F. Proschan (1983). Negative association of random variables, 
with applications. Ann. Statist. 11, 286-295. 

A recent paper on one of the various concepts of 'negative dependence' 
that have been proposed. 

C. McDiarmid ( 1981 ). General percolation and random graphs. Adv. in Appl. 
Probab. 13, 40-60. 
C. McDiarmid (1983). General first-passage percolation. Adv. in Appl. Probab. 
15, 149-161. 

Certain 'general percolation' results are useful for handling random 
directed graphs and networks. For example, the random directed graph Dn.p is 
more likely than the random graph Gn.p to have a Hamiltonian cycle. 

C. McDiarmid (to appear). On some conditioning results in the probabilistic 
analysis of algorithms. Discrete Appl. Math. 

A simple combinatorial approach for handling conditioning problems that 
arise in the probabilistic analysis of graph algorithms. Arguments from 
[Angluin & Valiant 1979] (see §3.3, §3.7) and [Karp & Tarjan 1980] (see § 3.2) 
are substantially simplified. 

2.5. Stochastic convergence 

R.J. Serfling (1980). Approximation Theorems of Mathematica/ Statistics, Wiley, 
New York. 

A sequence of random variables X "X 2,. •• is said to converge to a random 
variable X 
(a) in probability if limn._. 00Pr {I Xn - X I >t:} = 0 for every t:>O; 
(b) with probability 1 or almost surely ('a.s.') if Pr{limn__.00 Xn = X} = l; 
(c) completely if ~n00= 1 Pr {I Xn - X I >t:} < oo for every t:>O. 
According to the Bore/-Cantelli Lemma, (c) implies (b). Also, (b) implies (a), 
but the inverse implications do not hold. For comments on these concepts that 
are relevant in the present context, see [Karp & Steele 1985, §2.4] in §4.5. 

3. UNWEIGHTED GRAPHS 

3.1. Random graphs 

In this section we follow the loose but common practice of saying that an 
event concerning random graphs happens almost surely or for almost all graphs 
if the probability that it happens tends to 1 as n ~oo. 
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B. Bollobas (to appear). Lectures on Random Graphs. 
Let G,..P [D,,.p] denote the random graph [direct_ed graph] with v~rtex set 

{l ... ., n} in which the n(n -1)12 [n(n -1)] possible edges occur mdepen­
dently "With probability p. The random graph G,. .N [directed graph Dn ,N] has 

(' (n-1')12 . n(n-·I) . the same vertex set but now the N ) possible graphs [( N ) possible 
directed graphs] occur with the same probability. 

[Erdos & Spencer 1974] and [Bollobas 1979] (see §2. l) give an introduction 
to the theory of random graphs. The current reference gives a full treatment. 
For relations between the models Gn.p and Gn.N see, for example, [Angluin & 
Valiant 1979] (§3.3, §3.7). 

B. BoUobas (1981). Random graphs. H.N.V. Temperley (ed.). Combinatorics, 
London Mathematical Society Lecture Notes 52, 80-102. 
M. Karonski (1982). A review of random graphs. J. Graph Theory 6, 349-389. 
K. Weber (1982). Random graphs - a survey. Rostock. Math. Kolloq. 21, 83-98. 
G. Grimmett ( 1983). Random graphs. L. Beineke, R. Wilson (eds.). Selected 
Tupics in Graph Theory 2, Academic Press, London, 201-235. 

Four recent surveys on random graphs. For a discussion of random 
directed graphs see [McDiarmid 1981] (§2.4). 

3.2. Connectivi~y 

We consider here some problems related to the connectlVlty of a graph or 
directed graph for which there exist algorithms that are quite fast in the worst 
case. 

P.A. Bloniarz, M.J. Fischer, A.R. Meyer (1976). A note on the average time to 
compute transitive closures. S. Michaelson, R. Milner (eds.). Automata, 
Languages and Programming, Edinburgh University Press, Edinburgh, 425-434. 

An algorithm for the transitive closure of a directed graph has average time 
O(n 2 log n ). The analysis is for random directed graphs with probabilities 
depending only on the number of vertices and set of outdegrees (more general 
than Dn,N ). 

C.P. Schnorr (1978). An algorithm for transitive closure with linear expected 
time. SIAM J. Cornput. 7, 127-133. 

An algorithm for transitive closure is given with average time O(n +m*) 
where n is the number of vertices and m * is the expected number of edges in 
the transitive closure. The analysis is for random directed graphs Dn .N. 

R.M. Karp, R.E. Tarjan (1980). Linear expected time algorithms for connec­
tivity problems. J. Algorithms I, 374-393. 

Algorithms that run in linear expected time are given for finding connected 
components, strong components and biconnected components. The analysis is 
for random graphs Gn,N and random directed graphs Dn,N (uniformly over N). 
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3.3. Matching 

A matching in a graph is a set of edges with no endpoints in common. In a 
graph with n vertices, a maximum matching (a matching of maximum cardi­
nality) can be found in time 0 (n 2·5); it is perfect if it contains n /2 edges. A 
cover of vertices by edges is a set of edges such that each vertex is an endpoint 
of some edge in the set. A minimum cover consists of a maximum matching 
together with any minimal set of edges covering the remaining vertices. For 
some early papers on matchings and coverings see [Slominski 1982] (§1). 

D. Angluin, L.G. Valiant (1979). Fast probabilistic algorithms for Hamiltonian 
circuits and matchings. J. Comput. System Sci. 19, 155-193. 

An O(n log n) time heuristic a.s. finds a perfect matching in Gn.N when n 
is even and N ~ en log n, for a suitable constant c. Earlier related work is 
discussed. 

W.F. de la Vega (1980). Sur la cardinalite maximum des couplages 
d'hypergraphes aleatoires uniformes. Discrete Math. 40, 315-318. 

If N ln-oo as n -oo, then a greedy heuristic yields a matching Mn in 
Gn ,N with I Mn I In -1h in probability; whilst with fewer edges the proportion 
of isolated vertices does not tend to 0 in probability. 

R.M. Karp, M. Sipser (1981). Maximum matchings in sparse random graphs. 
Proc. 22nd Annual IEEE Symp. Foundations of Computer Science, 364-375. 

A linear time heuristic based on trimming away low-degree vertices is 
shown to give near maximum matchings in Gn.p when p = A.!(n -1). 

E. Shamir, E. Upfal (1981). On factors in random graphs. Israel J. Math. 39, 
296-302. 

An existence result concerning f -factors in Gn., is proved by showing that 
subfactors can almost surely be augmented by using alternating paths. 

E. Shamir, E. Upfal (1982). N -Processors graphs distributively achieve perfect 
matchings in O(log2N) beats. Proc. Annual ACM Symp. Principles of Distri­
buted Computing, 238-241. 

A parallel algorithm (one processor at each vertex, no shared memory) 
operates for O(log2n) beats and a.s. finds a perfect matching in Gn.p when 
np > c log n (for a suitable constant c ). 

G. Tinhofer (1984). A probabilistic analysis of the greedy heuristic for the 
matching problem. Ann. Oper. Res. I. 

Theoretical and simulation results are given concerning variants of a greedy 
heuristic for maximum matchings. 

A.M. Frieze ( l 984A). On Large Matchings and Cycles in Sparse Random 
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Graphs, Graduate School of Industrial Administration, Carnegie-Mellon 
University, Pittsburgh, PA. 

The random graph Gn,cln a.s. contains a matching of cardinality 
n(l-(l+e(c))e-c)/2, where e(c)~O as c~oo. 

A.M. Frieze (1984B). Maximum Matchings in a Class of Random Graphs, Gra­
duate School of Industrial Administration, Carnegie-Mellon University, Pitts­
burgh, PA. 

Let G::' denote the random graph with n vertices in which each vertex 
independently chooses m edges incident with it. Gn1 a.s. does not contain a 
perfect matching, and G::' (m ;;;.2, n even) a.s. does. 

3.4. Graph isomorphism 

It is not known if the problem of testing whether two graphs are isomorphic is 
9t'!P-complete, although if the graphs have bounded degree the problem is 
known to be in 'ii'. 

R.J. Lipton (1978). The Beacon Set Approach to Graph Isomorphism, Yale 
University. 
L. Babai, L. Kueera ( 1979). Canonical labelling of graphs in linear average 
time. Proc. 20th Annual IEEE Symp. Foundations of Computer Science, 39-46. 
R.M. Karp (1979). Probabilistic analysis of a canonical numbering algorithm 
for graphs. Proc. Symp. Pure Mathematics 34, AMS, Providence, RI, 365-378. 
L. Babai, P. Erdos, S.M. Selkow (1980). Random graph isomorphism. SIAM 
J. Comput. 9, 628-635. 

Each of these papers gives a fast canonical labeling algorithm that works for 
almost all graphs. Thus a.s. for Gn,'12 any graph can be tested for isomorphism 
to this graph by a naive fast algorithm. The paper listed last above discusses 
the papers listed earlier. See also [Johnson 1984] (§1). 

3.5. Stable sets and coloring 

A set of vertices in a graph G is stable if no two are adjacent. The stability 
number o:( G) is the maximum size of a stable set in G. A coloring of G is an 
assignment of colors to the vertices so that no two adjacent vertices receive the 
same color. The chromatic number x(G) is the least number of colors in a 
coloring of G . 

No polynomial time algorithms are known to approximate either o:(G) or 
x(G) to within any constant factor. If ~:;;69t<il' then no such algorithm colors 
within a ratio less than 2. 

In [Erdos & Spencer 1974] (see §2.l) bounds are stated for x(Gn.p) both in 
the constant density case (Ch. 11, Exercise 2) and in the constant average degree 
case (Ch. 16, Exercise 9). 
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C. McDiannid ( 1984). Colouring random graphs. Ann. Oper. Res. l. 
The greedy stable set algorithm considers the vertices in a given order and 

adds them to the current stable set if possible. The greedy or simple sequential 
coloring algorithm does this repeatedly to form the different color sets. 
McDiarmid's survey (with 57 references) focuses mainly on approaches of this 
type. It includes a treatment of the constant average degree case. 

G. Grimmett, C. McDiarmid (1975). On colouring random graphs. Math. 
Proc. Cambridge Philos. Soc. 77, 313-324. 

In the constant density random graph Gn.p simple greedy approaches a.s. 
yield a stable set of size at least (l/2 -€)a( Gn ,p) and a coloring using at most 
(2+f)X(Gn,v) colors. 

B. Bollobas, P. Erdos (1976). Cliques in random graphs. Math Proc. Cam­
bridge Philos. Soc. 80, 419-427. 
D.W. Matula (1976). The Largest Clique Size in a Random Graph, Technical 
report CS7608, Department of Computer Science, Southern Methodist Univer­
sity, Dallas, TX. 

Results from [Grimmett & McDiarmid 1975] (see above) are sharpened. 

V. Chvatal ( 1977). Determining the stability number of a graph. SIAM J. 
Comput. 6, 643-662. 

For almost all random graphs with (large) constant average degree all 
recursive proofs bounding the stability number are of exponential length, and 
hence any 'Tarjan-type' algorithm must be slow. 

L. Kucera ( 1977). Expected behaviour of graph coloring algorithms. M. Kar­
pinski (ed.) Fundamentals of Computation Theory, Lecture Notes in Computer 
Science 56, Springer, Berlin, 447-451. 

The expected behavior of the simple greedy coloring algorithm and of a 
variant (involving considering vertex degrees) are discussed when they act on 
random graphs Gn,,. and on random k -partite graphs. 

C. McDiarmid (1979). Determining the chromatic number of a graph. SIAM 
J. Comput. 8, 1-14. 

For constant density random graphs Gn,p a.s. all algorithms in a certain 
class of branch-and-bound algorithms for determining the chromatic number 
will take more than exponential time. 

C. McDiarrnid (1979). Colouring random graphs badly. R.J. Wilson (ed.). 
Graph Theory and Combinatorics, Pitman Research Notes in Mathematics 34, 
Pitman, London, 76-86. 

For constant density random graphs Gn,p the greedy or simple sequential 
coloring algorithm a.s. performs essentially as badly as possible. Results on the 
achromatic number are tightened up later in [McDiarmid 1982] (see below). 
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A.D. Korsunov (1980). The chromatic number of n-vertex graphs. Metody 
Diskret. Analiz. 35, 14-44, 104 (in Russian). 

The conjecture that x(Gn,'h.) (login )In -+'h in probability as n -+oo is given 
as a theorem. The proof uses the second moment method. 

C. McDiarmid (1982). Achromatic numbers of random graphs. Math. Proc. 
Cambridge Philos. Soc. 92, 21-28. 

The achromatic number if;(_ G) of a graph G is the largest number of colors 
in a coloring of G such that no two colors may be identified. For constant 
density random graphs Gnp• it is shown that a.s. n/(k+l)o;;;;; i/l(Gn 11 ) 

:,;;;;;; n l(k -1), where k = log n /log (l/(1-p )). The lower bound is obtained 
by an analysis of a silly variant of the greedy coloring algorithm. 

B. Pittel (1982). On the probable behaviour of some algorithms for finding the 
stability number of a graph. Math. Proc. Cambridge Philos. Soc. 92, 511-526. 

This paper uses martingale arguments to analyze the greedy stable set algo­
rithm, and investigates Chvatal's 'f -driven' algorithms for determining the sta­
bility number (without subtleties of the monotone rule). 

A. Johri, D.W. Matula (1982). Probabilistic Bounds and Heuristic Algorithms 
for Co/oring Large Random Graphs, Technical report 82-CSE-6, Southern 
Methodist University, Dallas, TX. 

Nonasymptotic theoretical work together with simulation results indicate 
that with high probability the random graph G 1000,'h has chromatic number in 
the range 85+12. 

T. Kawaguchi, H. Nakano, Y. Nakanishi (1982). Probabilistic Analysis of a 
Heuristic Graph Colouring Algorithm, Unpublished manuscript. 

Asymptotic results are given for the greedy coloring algorithm acting on 
Gn.p when np = cn8 for some constants c and Yi<45o;;;;; 1. Stronger results 
appear in [McDiarmid 1983], [De la Vega 1982A] and [Shamir & Upfal 1984] 
(see below). Some nonasymptotic results are also given. 

W.F. de la Vega (1982A). On the Chromatic Number of Sparse Random 
Graphs, Laboratoire de Recherche en Informatique, Universite de Paris-Sud. 
E. Shamir, E. Upfal (1984). Sequential and distributed graph coloring algo­
rithms with performance analyses in random graph spaces. J. Algorithms. 

Both these papers consider random graphs Gn 11 with decreasing density 
and increasing average degree, more specifically p-+0 and np-+oo as n -+oo. 
They show that a variant of the greedy coloring algorithm (involving a dif­
ferent end phase) is a.s. optimal to within a factor 2 + £, and thus settle a con­
jecture of Erdos and Spencer. 

W.F. de la Vega (1982B). Crowded Graphs Can Be Colored Within a Factor 
1 + £ in Polynomial Time, Laboratoire de Recherche en Informatique, 
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Universite de Paris-Sud. 
Consider very dense random graphs for which a( Gn ) is a.s. a constant 

r + 1. A greedy heuristic for picking disjoint stable sets ol'size r is a.s. optimal 
to within a factor I + £. 

C. McDiarmid (1983). On the chromatic forcing number of a random graph. 
Discrete Appl. Math. 5, 123-132. 

If we wish to compute lower bounds for the chromatic number x(G) of a 
graph G we may be interested in the chromatic forcing number f (G) which is 
defined to be the least number of vertices in a subgraph H of G with 
x(H) = x(G). For random graphs Gn.p with say (log n)- 1< p(n) 
< I -(log n )- 1 we have f x ;;;;;:: (1h-£)n a.s. 

D.W. Matula (1983). Improved Bounds on the Chromatic Number of a Graph, 
Abstract, Department of Computer Science, Southern Methodist University, 
Dallas, TX. 

A certain nonpolynornial time coloring algorithm is a.s. optimal to within a 
factor (312+£), thus beating the greedy coloring algorithm. 

H.S. Wilf (1984). Backtrack: an 0(1) expected time algorithm for the graph 
coloring problem. Inform. Process. Lett. 18, ll9-121. 
E.A. Bender, H.S. Wilf (1984). A theoretical analysis of backtracking in the 
graph coloring problem. J. Algorithms. 

A simple backtracking procedure will test if a graph can be colored with k 
colors. For fixed k, the average time taken for certain random graphs Gn.p is 
shown to be small. See also [Johnson 1984] (§1). 

We conclude this subsection with results for miscellaneous problems related to 
finding stable sets and colorings in graphs. 

G. Cornuejols, G.L. Nemhauser, L.A. Wolsey (1978). Worst-Case and Proba­
bilistic Analysis of Algorithms for a Location Problem, Technical report 375, 
School of Operations Research and Industrial Engineering, Cornell University, 
Ithaca, NY. 

The problem considered here is to choose a set S of k vertices in a given 
n -vertex graph to maximize the number of edges incident with S. For almost 
all graphs with n vertices and all positive integers k .;;; na where a < 1/6, the 
k vertices of largest degree generate an optimal solution. 

D. Hochbaum (1982). Easy Solutions for the k-Center Problem or the Dominat­
ing Set Problem on Random Graphs, School of Business Administration, 
University of California, Berkeley. . . 

A set of vertices in a graph is dominating if each vertex not m the set 1s 
adjacent to some vertex in the set. Thus maximal stable sets are do~ati~g. 
This paper considers the average behavior of a problem related to donunatmg 
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sets. 

J. Schmidt-Pruzan, E. Shamir, E. Upfal (1984). Random hypergraph coloring 
algorithms and the weak chromatic number. J. Combin. Theory Ser. B. 
J. Schmidt-Pruzan (1983). Probabilistic Analysis of Strong Hypergraph Co/oring 
Algorithms and the Strong Chromatic Number, Department of Applied 
Mathematics, W eizmann Institute of Science, Rehovot. 

Algorithms are proposed for various hypergraph coloring problems. For 
certain random hypergraphs they are a.s. optimal to within a small constant 
factor. 

R.M. MacGregor ( 1978). On Partitioning a Graph: a Theoretical and Empirical 
Study, Memorandum UCB/ERL M78/14, Electronics Research Laboratory, 
University of California, Berkeley. 
T. Bui, S. Chaudhuri, T. Leighton, M. Sipser (1984). Graph bisection algo­
rithms with good average case behavior. Proc. 25th Annual IEEE Symp. Foun­
dations of Computer Science. 

The graph k -partition problem involves the determination of a mimimum 
set of edges whose removal disconnects the graph into k equal-sized sub­
graphs. MacGregor investigates the performance of iterative improvement 
schemes and also provides probabilistic lower and upper bounds on the size of 
a minimum 2-partition. Bui et al. propose a polynomial-time algorithm and 
show that it finds a mini.mum 2-partition with high probability. They use a 
special sample space with the property that, with high probability, very few 
edges need to be deleted to partition the graph. 

J.H. Reif, P.G. Spirakis (1980). Random matroids. Proc. 12th Annual ACM 
Symp. Theory of Computing, 385-397. 

An analysis is made of the probability that a greedy algorithm will find a 
maximum independent set in a random independence system. 

3.6. Long paths 

It is easily seen that, given a constant c >0, the problem of determining if a 
graph with n vertices has a simple path of length at least en is 0L'8'-complete. 

W.F. de la Vega (1979). Long paths in random graphs. Studia Sci. Math. Hun­
gar. 14, 335-340. 

A simple heuristic a.s. yields a path of length at least ( 1 - 1.39 I c )n in 
Gn ,en, and a similar results holds for random directed graphs. 

M. Ajtai, J. Komlos, E. Szemeredi (1981). The longest path in a random graph. 
Combinatorica 1, 1-12. 
B. Bollobas (1982). Long paths in sparse random graphs. Combinatorica 2, 
223-228. 
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A.M. Frieze (1984B). On Large Matchings and Cycles in Sparse Random 
Graphs, Graduate School of Industrial Administration, Carnegie-Mellon 
University, Pittsburgh, PA. 

These papers concern the existence of long paths rather than the analysis of 
algorithms. Frieze proves that Gn ,c in a.s. contains a cycle of length 
n (1-(l +t:(c ))ce -c ), where t:(c )~O as c~oo. 

3.7. Hamiltonian cycles 

A Hamiltonian cycle in a graph or a directed graph is a closed path that passes 
through each vertex exactly once. It is a classical result that the problem of 
determining if a graph has a Hamiltonian cycle is 0L<:P-complete. 

V. Chvatal (1985). Hamiltonian cycles. E.L Lawler, J.K. Lenstra, A.H.G. Rin­
nooy Kan, D.B. Shmoys (eds.). The Traveling Salesman Problem, Wiley, Chi­
chester, Ch.11. 

Section 3 of this chapter is an excellent survey of the research on the 
existence of Hamiltonian cycles in random graphs. It includes Karp's version 
and analysis of the extension-rotation algorithm. Other surveys are included in 
[Angluin & Valiant 1979] below and [Slominski 1982] (§1). See also [Johnson 
1984] (§1). 

L. Posa (1976). Hamiltonian circuits in random graphs. Discrete Math. 14, 
359-364. 

There is a.s. a Hamiltonian cycle in the random graph Gn,N with a number 
of edges N ,;;;.: en log n for a suitable constant c. The proof is not based on 
an algorithm, but the extension-rotation idea can lead to good algorithms. 

A.O. Korsunov (1976). Solution of a problem of Erdos and Renyi on Hamil­
tonian cycles in non-oriented graphs. Soviet Math. Dok!. 17. 760-764. 

Consider the random graph Gn,N with N ;;;.: n (log n + log log n + w(n ))/2, 
where w(n )~ oo as n ~ oo. It is indicated that an algorithm a.s. finds a Hamil­
tonian cycle. 

D. Angluin, L.G. Valiant (1979). Fast probabilistic algorithms for Hamiltonian 
circuits and matchings. J. Comput. System Sci. 19, 155-193. 

Fast heuristics (O(n log2n) time) are shown to find Hamiltonian cycles a.s. 
in random graphs Gn,N or similar random directed graphs when N ~en log n 

for a suitable constant c. 

E. Shamir (1983). How many random edges make a graph Hamiltonian? Com­
binatorica 3, 123-131. 

For the random graph Gn ,p with p = p (n) = n - l(l?g n + c log_ log ~ ), 
c > 3, there is an extension-rotation procedure which a.s. fmds a Hanultoruan 
path within O(n 2) steps. 
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The following five papers are concerned more with existence than with algo­
rithms. They all use the extension-rotation idea. 

J. Kom.16s, E. Szemeredi (1983). Limit distribution for the existence of hamil­
tonian cycles in random graphs. Discrete Math. 43, 55-63. 

The random graph Gn.N with N about Yin log n + Yin log log n +en is 
Hamiltonian with probability tending to exp(exp(-2c)) as n~oo. 

T.I. Fenner, A.M. Frieze (1983). On the existence of Hamiltonian cycles in a 
class of random graphs. Discrete Math. 45, 301-305. 

The random graph G::' (see [Frieze 1984B], §3.3) is a.s. Hamiltonian for 
m~23. 

T.I. Fenner, A.M. Frieze (1982). Hamiltonian Cycles in Random Regular 
Graphs, Queen Mary College, University of London. 
B. Bollobas (1983). Almost all regular graphs are Hamiltonian. European J. 
Combin. 4, 97-106. 

In both these papers it is shown that for fixed k sufficiently large, the pro­
portion of k -regular graphs on n vertices which are Hamiltonian tends to 1 as 
n~oo. 

A.M. Frieze (1982). limit Distribution for the Existence of Hamiltonian Cycles 
in Random Bipartite Graphs, Department of Computer Science and Statistics, 
Queen Mary College, University of London. 

Let Pn be the probability that there is a Hamiltonian cycle in the random 
bipartite graph with 2n vertices in which the n2 possible edges occur indepen­
dently with probability n - 1(1og n + log log n +en). Then Pn ~o if en~ - oo, 
Pn~l if Cn~OO and Pn~exp(-2e-c) if Cn~C. 

R.W. Robinson, N.C. Wormald (to appear). Almost all bipartite cubic graphs 
are Hamiltonian. Proc. Silver Jubilee Conf. Combinatorics, Waterloo, Academic 
Press, New York. 

The proportion of bipartite labeled cubic graphs which are Hamiltonian 
tends to 1 as n ~oo. The proof uses the second moment method. 

3.8. Bandwidth 

The bandwidth of a graph is the minimum over all labelings of the vertices 
with distinct integers of the maximum difference of the labels of adjacent ver­
tices. The problem of determining the bandwidth is '!Yt<!J>-hard. 

P.Z. Chinn, J. Chvatalova, A.K. Dewdney, N.E. Gibbs (1982). The bandwidth 
problem for graphs and matrices - a survey. J. Graph Theory 6, 223-254. 

There is a brief mention of the average-case complexity of bandwidth algo­
rithms. 
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J. Turner (1983). Probabilistic analysis of bandwidth minimization algorithms. 
Proc. l 5th Annual ACM Symp. Theory of Computing, 467-476. 

This paper provides a probabilistic explanation of the effectiveness of level 
algorithms for bandwidth minimization on certain classes of graphs. 

4. WEIGHTED GRAPHS 

4.1. Shortest paths 

The shortest paths problem is the problem of finding minimum weight paths 
between specified source vertices and destination vertices in a graph or digraph 
with weighted edges. In probabilistic analyses the edge weights are often taken 
to be independent identically distributed random variables. 

P.M. Spira (1973). A new algorithm for finding all shortest paths in a graph of 

positive arcs in average time 0 (n 2 log2n ). SIAM J. Comput. 2, 28-32. 
A new algorithm is presented for the all pairs shortest path problem in a 

digraph with nonnegative edge weights. If the weights are drawn independently 
from a nonnegative continuous distribution, then the expected execution time 
is as stated in the title. This is one of the earliest papers to conduct a sound 
probabilistic analysis of an interesting combinatorial algorithm. 

Y. Perl ( 1977). Average Analysis of Simple Path Algorithms, Technical report 
UIUCDCS-R-77-905, Department of Computer Science, University of Illinois 
at Urbana-Champaign. 

In a random graph with n vertices and m edges, the expected number of 

edges inspected in searching for a path from a source vertex to a destination 
vertex using breadth-first or depth-first search is O(n ). In a random graph 
with edge weights drawn independently from a common nonnegative distribu­
tion, Prim's minimum spanning tree algorithm and Dijkstra's shortest path 
algorithm both run in expected time O(n log n log (m!n)) and Kruskal's 
minimum spanning tree algorithm runs in expected time O(n log n log m ). 

P.A. Bloniarz, R.M. Meyer, M.J. Fischer (1979). Some Observations on Spira's 

Shortest Path Algorithm, Technical report 79-6, Computer Science Department, 
State University of New York, Albany. 

Considers Spira's algorithm (see above) for the case that edges may have 

equal weights. 

P. Bloniarz (1983). A shortest-path algorithm with expected time 

O(n 2log n log'n). SIAM J. Comput. 12, 588-600. . . . . 
Spira's algorithm is refined and the expected execut10n time is improved. 

AM. Frieze, G.R. Grimmett (1983). The Shortest-Path Problem for Graphs 

with Random Arc Lengths, School of Mathematics, University of Bristol. 
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For 'endpoint-independent' distributions, a modification of Spira's algo­
rithm runs in O(n(m +n log n)) expected time, where m is the expected 
number of edges with finite weight. When edge weights are independent with 
certain distributions, a further modification runs in 0 ( n 2log n ) expected time. 

M. Luby, P. Ragde (1983). Bidirectional Search is 0 ( Vn) Faster Than 
Dijkstra's Shortest Path Algorithm, Computer Science Division, University of 
California, Berkeley. 

On a complete n-vertex digraph with independent exponentially distributed 
edge weights a variant of bidirectional search finds the shortest path from a 
given source to a given destination in expected time 0 (n l'llog n ). The algo­
rithm also has a preprocessing phase requiring O(n 2) expected time. 

4.2. Spanning trees 

We here consider the problem of finding a spanning tree of minimum weight 
in a graph with weighted edges. In probabilistic analyses the edge weights are 
usually independent identically distributed random variables. 

Y. Perl (1977). Average Analysis of Simple Path Algorithms, Technical report 
UIUCDCS-R-77-905, Department of Computer Science, University of Illinois 
at Urbana-Champaign. 

See §4.1. 

R.M. Karp, R.E. Tarjan (1980). Linear expected time algorithms for connec­
tivity problems. J. Algorithms 1, 374-393. 

See §3.2 for a review of the first part of this paper. For random graphs 
with m edges and edge weights drawn independently from a common distribu­
tion, an algorithm is given which finds a minimum spanning forest in expected 
time O(m). 

A.M. Frieze (1982). On the Value of a Random Minimum Spanning Tree Prob­
lem, Technical report, Department of Computer Science and Statistics, Queen 
Mary College, University of London. 

In a complete graph in which the weights of the edges are drawn indepen­
dently from the uniform distribution on [O, I], the expected cost of the 
minimum spanning tree is asymptotic to Lk"°: 11! k 3 = 1.202 .... 

4.3. Linear assignment 

An instance of the assignment problem is specified by an n X n real matrix 
(d,1 ). A~ assignment is a permutation o of {1,2, ... , n }. The cost of assign­
ment (J IS sr"' 1d1o(i)· An optimal assignment is one of minimum cost. 

. !he assi~ment problem can be viewed as the problem of finding a 
nummum weight perfect matching in a bipartite graph with n vertices in each 
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part. The assignment problem is often used as a relaxation of the traveling 
salesman problem, in which a is required to be a cyclic permutation. An 
optimal assignment can be found in O(n 3) time using network flow techniques. 

A.A. Borovkov ( 1962). Toward a probabilistic formulation of two problems 
from economy. Math. Dok/. Akad. Nauk SSSR 146, 983-986. 

The d;1 are assumed to be drawn independently from a common distribu­
tion satisfying certain technical conditions. A greedy algorithm of complexity 

2 -O(n) has the property that, for every €>0, Pr{GREEDY;;;>(1+€)0PT}-i>O as 
n ~oo. Here GREEDY is the cost of the solution produced by the greedy 
algorithm and OPT is the cost of an optimal assignment. This is one of the 
earliest publications concerned with the probabilistic analysis of approximation 
algorithms. 

W.E. Donath (1969). Algorithm and average-value bounds for assignment 
problems. IBM J. Res. Develop. I 3, 380-386. 

An argument is offered suggesting that, when the d;1 are drawn indepen­
dently from the uniform distribution over [O, I], the expected cost of an optimal 
assignment is less than 2.37. Certain conditioning effects are neglected. Com­
putational results are presented indicating that the expected cost of an optimal 
assignment is close to 1.6 when n is large. Other probability distributions of 
the d;1 are also considered. 

A.J. Lazarus (1979). The Assignment Problem with Uniform (0,1) Cost Matrix, 
B.A. thesis, Department of Mathematics, Princeton University, Princeton, NJ. 

Let the diJ be independent and uniformly distributed over [0,1]. Let Yn be 
the expected cost of an optimal assignment and Y = limn_,00 Yn. lt is shown 
that Y2 = 23130 and Y ;;;. I +(lie). Empirical evidence that Y <oo is given. 

D.W. Walkup (1979). On the expected value of a random assignment problem. 
SIAM J. Comput. 8, 440-442. 

If the d;. are drawn independently from the uniform distribution over [O, l] 
then, with fugh probability, the cost of the optimal assignment is less than 3. 

R.M. Karp ( J 980). An algorithm to solve the m X n assignment problem in 
expected time O(mn log n). Networks 10, 143-152. . . 

An algorithm for the construction of an optimal m X n . ass1~ment . is 
presented. If the elements of each row of (diJ) are independent 1dent1c~ly d1~­
tributed random variables then the expected execution time of the algonthm 1s 
O (mn log n ). The best guaranteed time bound known for an assignment algo-
rithm is O(m 2n ). 

R. Loulou ( 1982). Average Behavior of Heuristic and Optimal Solutions to the 
Maximization Assignment Problem, Faculty of Management, McGill University, 
Montreal. 
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Let the diJ be independent and exponentially distributed with rate A. Let Z 
be the expected cost of a maximum-cost assignment. Then l + lln -1/log n 
::s;;:; A.Z/(n logn) ~ l+lln+l/logn. 

R.M. Karp (1984). An Upper Bound on the Expected Cost of an Optimal 
Assignment, Computer Science Division, University of California, Berkeley. 

When the dij are drawn independently from the uniform distribution over 
[0,1], the expected cost of the optimal assignment is less than 2. 

J.B.G. Frenk, A.H.G. Rinnooy Kan (1984). Order Statistics and the Linear 
Assignment Problem, Econometric Institute, Erasmus University, Rotterdam. 

For a wide range of distribution functions F, the expected cost of the 
optimal assignment is asymptotic to nF- 1(1/n ). 

4.4. Network flow 

G.R. Grimmett, D.J.A. Welsh (1982). Flow in networks with random capaci­
ties. Stochastics 7, 205-229. 
G.R. Grimmett, H.-C.S. Suen (1982). The maximal flow through a directed 
graph with random capacities. Stochastics 8, 153-159. 
G.R. Grimmett, H. Kesten (1982). First Passage Percolation, Network Flows 
and Electrical Resistances, School of Mathematics, University of Bristol. 

These papers prove existential results concerning the maximum value of a 
flow through certain randomly capacitated networks. 

4.5. Asymmetric traveling salesman 

An instance of the asymmetric traveling salesman problem is specified by an 
n Xn matrix (diJ ). The object is to find a cyclic permutation a to minimize 
2.P,,1d;a(i)· If d;1 is interpreted as the distance from city i to city j then the 
problem amounts to finding a closed tour of minimum total distance which 
passes through each city exactly once. The problem is 'Vt'!P-hard, and it is 
known that a polynomial-time approximation algorithm with good worst case 
performance does not exist unless '!!' = '!YU!P. Probabilistic analyses of the prob­
lem usually assume that the diJ are drawn independently from a common dis­
tribution. Another variant, considered in §5.5, is the Euclidean traveling sales­
man problem, in which the cities are points in the plane and distance is 
Euclidean distance. 

M. Bellmore, J.C. Malone (1971). Pathology of traveling-salesman subtour­
elimination algorithms. Oper. Res. 19, 278-307, 1766. 

A branch-and-bound algorithm based on subtour elimination is claimed to 
solve random asymmetric traveling salesman problems in a polynomial­
bounded expected number of steps. The argument neglects certain conditioning 
effects. 



Probabilistic Analysis 71 

E.H. G~ady, V.A. Pereplitsa (1974). An asymptotical approach to solving 
the traveling salesman problem. Upravljaemye Sistemy, 35-45. 

The nearest neighbor algorithm is analyzed on the asssumption that the d 
are drawn independently from a uniform distribution. iJ 

J.K. Lenstra, A.H.G. Rinnooy Kan (1978). On the expected performance of 
branch-and-bound algorithms. Oper. Res. 26, 347-349. 

A flaw is pointed out in the alleged proof of [Bellmore & Malone 1971) 
that a branch-and-bound algorithm for the asymmetric traveling salesman 
problem runs in polynomial expected time. 

T. Leipala ( 1978). On the solutions of stochastic traveling salesman problems. 
European J. Oper. Res. 2, 291-297. 

Stochastic upper and lower bounds on the length of the optimal tour are 
derived under various probabilistic assumptions. The upper bounds come from 
an analysis of the nearest neighbor algorithm. 

R.S. Garfinkel, K.C. Gilbert ( 1978). The bottleneck traveling salesman prob­
lem: algorithms and probabilistic analysis. J. Assoc. Comput. Mach. 25, 435-
448. 

The bottleneck traveling salesman problem asks for a tour in which the 
weight of the heaviest arc is minimized. The distribution of the cost of such a 
tour is studied under the assumption that the edge weights are drawn indepen­
dently from a common distribution. The results are closely related to recent 
work on the existence of Hamiltonian cycles in random digraphs (see §3.7). 

R.M. Karp ( 1979). A patching algorithm for the nonsymmetric traveling­
salesman problem. SIAM J. Comput 8, 561-573. 

A patching algorithm is given which solves the asymmetric traveling sales­
man problem by solving the assignment problem and then patching the cycles 
of the optimal assignment together to form a tour. If the diJ are drawn 
independently from the uniform distribution over [O, l ], then the expected ratio 
between the cost of the tour produced and the cost of the optimal tour tends 
to 1. This result is refined in [Karp & Steele 1985] (see below). 

J.-C. Panayiotopoulos (1982). Probabilistic analysis of solving the assignment 
problem for the traveling salesman problem. European J: Oper. Res: 9, 77-82 .. 

The traveling salesman problem is solved by generatmg the assignments m 
order of increasing costs, until the first cyclic permutation is found. The 
analysis of this method ignores certain conditioning effects. 

R.M. Karp, J.M. Steele (1985). Probabilistic analysis of heuristics. E.L. Lawler, 
J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (eds.). The Travelmg Sales-

man Problem, Wiley, Chichester, Ch. 6. . . . 
This chapter surveys and extends the existing results on the probab1listtc 
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analysis of the Euclidean and the asymmetric traveling salesman problems. For 
the first problem, see §5.5. For the second, a variant of the patching algorithm 
from [Karp 1979] is analyzed. It is shown that, if the diJ are drawn indepen­
dently from the uniform distribution over [O, l ], then 
E[(PATCH-OPT)/OPT] = O(n -Yi). Here OPT is the cost of an optimal tour 
and PATCH is the cost of the tour produced by the patching algorithm. 

4.6. Quadratic assignment 

The quadratic assignment problem generalizes many 0L0'-hard combinatorial 
optimization problems, including the traveling salesman problem. An instance 
is specified by two n Xn matrices (aiJ) and (biJ ). In the standard quadratic 
assignment problem the objective is to find a permutation a that minimizes 
'Z;,1a;1ba(i)a(j)· In the bottleneck quadratic assignment problem the objective is 
to minimize over all a max;,1{aiJba(i)a(j)}· The problem is called planar if the 
au are distances between points in the plane. 

RE. Burkard, U. Fincke (1982A). On random quadratic bottleneck assignment 
problems. Math. Programming 23, 227-232. 
R.E. Burkard, U. Fincke (1982B). Probabilistic asymptotic properties of qua­
dratic assignment problems. Z. Oper. Res. 27, 73-81. 

The ratio between the maximum and the minimum cost of an assignment 
a.s. tends to 1 as n --700. This holds for the standard as well as the bottleneck 
problem, both when the a;1 are arbitrary and when they are planar distances 
(for any Lq-norm). 

J.B.G. Frenk, M. var. Houweninge, A.H.G. Rinnooy Kan (1982). Asymptotic 
Properties of Assignment Problems, Econometric Institute, Erasmus University, 
Rotterdam. 

The results from [Burkard & Fincke l 982B] are generalized. E.g., an expli­
cit expression for the asymptotic optimal solution value is obtained. 

4.7. Miscellaneous 

B.W. Weide (1980). Random graphs and graph optimization problems. SIAM 
J. Comput. 9, 552-557. 

A method is presented to relate results regarding the probability of 
existence of certain subgraphs in random graphs Gn.p to the probabilistic 
behavior of the optimal solution value to graph optimization problems, where 
the edge weights are independently chosen from an arbitrary distribution. The 
method is illustrated on the bottleneck and the standard traveling salesman 
problem. 

G.S. Lueker (1981). Optimization problems on graphs with independent ran­
dom edge weights. SIAM J. Comput. 10, 338-351. 
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Optimizatio~ problems are considered in which the input is a complete 
gr~ph on n vertices together with a numerical weight for each edge. The edge 
weights are assumed to be drawn independently from the normal distribution 
with mean 0 and variance 1. The expected value of the maximum cost of a 
t~aveling salesman tour and the expected value of the cost of a maximum span­
rung tree are both asymptotic to n y(2 log n ). If k is fixed then the expected 
maximum cost of a k-clique is asymptotic to k y((k - l)log n ). For the trav­
eling salesman problem, a simple greedy algorithm achieves the same expected 
asymptotic behavior as the optimal solution. A greedy algorithm for the max­
imum weight clique problem is also considered. 

R.E. Burkard, U. Fincke (1982). Probabilistic Asymptotic Properties of Some 
Combinatorial Optimization Problems, Bericht 82-3, Institut ftir Mathematik, 
Technische Universitat Graz. 

Continuing their work reviewed in §4.6, the authors consider problems of 
the form minser{~eEsc(e)} and minsEr{maxeEs{c(e)}}, where Tisa family 
of subsets of an m -element set and each element e in the universe has a cost 
c ( e ). The costs are assumed to be drawn independently from the uniform dis­
tribution over [0,1]. Conditions are given under which, for every (>0, the pro­
bability tends to 1 as m ~oo that the ratio between the cost of the worst solu­
tion and the cost of the best solution is less than l +(. This result applies to 
quadratic assignment problems as well as to certain network flow, linear pro­
gramming and matching problems. 

5. EUCLIDEAN PROBLEMS 

This section is concerned with combinatorial opturuzation problems whose 
specification includes a set of points in Euclidean space. Probabilistic analyses 
of optimal solution values and approximation algorithms for such problems 
often start from the assumption that the points are independent and uniformly 
distributed over a fixed 2-dimensional region, e.g. a circle or a square. Many 
results can be extended to other distributions and to higher dimensions. 

In addition to the Euclidean problems dealt with below, results have been 
obtained for Euclidean quadratic assignment problems. These have been 
reviewed in §4.6. 

5.1. Closest points 

J.L. Bentley, M.I. Shamos (1978). Divide and conquer for linear expected time. 
Inform. Process. Lett. 7, 87-91. . 

A divide-and-conquer scheme is proposed to fmd the conv~x hull of n 
points in the plane in O(n log n) worst case and O(n) expected time. 

J.L. Bentley, B.W. Weide, A.C. Yao (1980). Optimal expected-time algorithms 
for closest-point problems. ACM Trans. Math. Software 6, 563-580. 
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A basic approach to solve closest point pr~ble~s is the cell t~chnique, which 
partitions the region containing the n. points into c~lls ~th a constant 
expected number of points per cell. ~prral s~ch . of ~e1ghbonng cells s~lves 
the nearest neighbor problem for arbitrary dimension in 0 ( 1) expected t1roe. 
In the 2-dimensional case, the cell technique allows construction of the V oro­
noi diagram, and hence of the minimum spanning tree, in 0 (n) expected time. 
In higher dimensions, the minimum spanning tree problem requires 
O(n log log n) time, and it is an open question if O(n) expected time can be 

achieved. 

P. Lebert (1981). Clustering by connected components in O(n) expected time. 
RAIRO Inform. 15, 207-218. 

Connected components of a graph, defined by a threshold distance, are 
found through the cell technique in linear expected time, provided that the 
Li:c-metric is used. 

J.M. Steele ( 1982). Optimal triangulation of random samples in the plane. 
Ann. Probab. 10, 548-553. 

The length of a minimal triangulation of n points in the Euclidean plane is 
a.s. asymptotic to a.Vn for some constant a. This settles a conjecture of G. 
Turan. 

5.2. Shortest paths 

R. Sedgewick, J.S. Vitter (1984). Shortest paths in Euclidean graphs. Proc. 
25th Annual IEEE Symp. Foundations of Computer Science. 

For a variety of Euclidean random graph models with n vertices and m 
edges, the authors' algorithm finds the shortest path between a specified pair 
of vertices in O(n) expected time. Classical algorithms require O(n 2) time for 
dense graphs and O(n log2n) time for sparse gr::tphs on average. 

5.3. Matching 

C.H. Papadimitriou (1978). The probabilistic analysis of matching heuristics. 
Proc. l 5th Annual Allerton Conf Communication, Control and Computing, 368-
378. 

Steele's asymptotic result for subadditive Euclidean functionals (see [Steele 
1981B], ~5.5) implies that the optimal value of a Euclidean matching is a.s. 
asymptotic to {3Vn, for some constant {3. It is shown that 0.25~,8~0.40106 
and conjectured that {3-:::::0.35. 

5.4. Location 

Tw_o basic loca~on problems are the K -median and the K -center problem, in 
which K locations from among n given points are to be chosen so as to 
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minimize the sum and the maximum respectively of the distances of each point 
~o the nearest loc~tion. Asymptotic analyses for these problems necessarily 
mvolve an assumpt10n about the growth rate of K as a function of n. 

M.L. Fisher, D.S. Hochbaum (1980). Probabilistic analysis of the planar K -
median problem. Math. Oper. Res. 5, 27-34. 

A partitioning heuristic, much in the spirit of Karp's traveling salesman 
heuristic (see [Karp 1977], §5.5), splits the square into congruent subsquares 
and solves the weighted K -median problem on these subsquares, with the 
weight of each subsquare equal to the number of points that it contains. The 
heuristic is asymptotically optimal in probability, and the asymptotic optimal 
solution value lies a.s. in [y'n I v'K ;y"n I v'K ], for constants y';y". {Cf. Ch.9, 
§5.2.) 

C.H. Papadimitriou (1981). Worst-case and probabilistic analysis of a 
geometric location problem. SIAM J. Comput. JO, 542-557. 

For the case that K = o (n /log n ), a honeycomb heuristic for the K -
median problem, which divides the region into regular hexagons, is asymptoti­
cally optimal in probability, and the optimal solution value is a.s. asymptotic 
to yn I VK, with y = 2'" 13'1•. The proof is based on the observation that, as 
n -?OO, the discrete problem approaches the continuous problem in which 
demand is not concentrated at points but spread uniformly over the region. 
For the case that K = 8(n ), a partitioning heuristic is asymptotically optimal 
in probability, under the assumption that the points are generated by a Pois­
son process. (Cf. Ch.9, §5.2.) 

D.S. Hochbaum, J.M. Steele (1981). Steinhaus' geometric location problem for 
random samples in the plane. Adv. in Appl. Probab. 14, 56-67. 

For the case that K = 0(n ), Steele's asymptotic result for subadditive 
Euclidean functionals (see [Steele 198 lB], §5.5) is extended to the K -median 
problem, so that the optimal solution value is a.s. asymptotic to oVn, for 
some constant 8. We note that for K = 0(n) the K-center problem is still 
open and that for neither model an a.s. asymptotically optimal heuristic is 
known. 

E. Zemel ( 1984). Probabilistic analysis of geometric location problems. Ann. 
Oper. Res. 1. . . . 

For the case that K = o(n /log n ), the honeycomb heunst1c 1s a.s. asymp-
totically optimal for both the K -median and the K ~center. problem; the rela­
tion to the continuous version of these problems again provides the clue to the 
analysis. The optimal solution value for the K -center problem is a.s. asymp­
totic to d VK, with €-=::::.0.377. 

We conclude this subsection with a paper on a related problem. 
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C.H. Papadimitriou (1978). The complexity of the capacitated tree problem. 
Networks 8, 217-230. 

The capacitated tree problem is to link customers to a depot by means of a 
spanning tree such that deletion of the depot yields components of bounde~ 
cardinality. The proof that the proposed partitioning heuristic is a.s. asymptot~­
cally optimal neglects the dependence of the region over which the asymptotic 
analysis is carried out on the actual sample. 

5 .5. Routing 

The seminal work in the probabilistic analysis of Euclidean problems has been 
carried out in the context of routing problems and, more specifically, of the 
Euclidean traveling salesman problem. 

J. Beardwood, J.H. Halton, J.M. Hammersley (1959). The shortest path 
through many points. Proc. Cambridge Philos. Soc. 55, 299-327. 

The length of the optimal traveling salesman tour through n cities is a.s. 
asymptotic to ~Vn, where ~ depends on the size and shape of the region and 
on the probability distribution of the cities over it. 

R.M. Karp (1977). Probabilistic analysis of partitioning algorithms for the 
traveling-salesman problem in the plane. Math. Oper. Res. 2, 209-224. 

Karp's partitioning heuristic constructs a tour by dividing the region into 
subregions, each containing a small number of points, and then linking 
optimal tours through each subregion together. The absolute error of the 
heuristic grows more slowly than Vn. Hence, the above result from Beard­
wood et al. implies that the relative error tends to 0 a.s. Depending on 
whether or not the partitioning scheme takes the actual location of the cities 
into account, the running time of the method is in expectation or deterministi­
cally polynomial. 

J.M. Steele (1981A). Complete convergence of short paths and Karp's algo­
rithm for the TSP. Math. Oper. Res. 6, 374-378. 

Steele establishes complete convergence for the result of Beardwood c.s., 
something that Karp in his above paper had tacitly assumed. 

J.M. Steele (l981B). Subadditive Euclidean functionals and nonlinear growth 
in geometric probability. Ann. Probab. 9, 365-376. 

A generalization of the BHH result is established for a class of subadditive 
functions defined on random sets of independently distributed points. Exam­
ples of such functions are the lengths of an optimal traveling salesman tour, of 
a rectilinear Steiner tree, and of a minimum matching. 

J.H. Halton, R. Terada ( 1982). A fast algorithm for the Euclidean traveling 
salesman problem, optimal with probability one. SIAM J. Comput. 11, 28-46. 
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!" partitioning method, similar to Karp's approach, yields asymptotically 
opttmal tours a.s., whereas its running time is almost linear in probability. 

R.M. Karp, J.M. Steele (1985). Probabilistic analysis of heuristics. E.L. Lawler, 
J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys (eds.). The Traveling Sales­
man Problem, Wiley, Chichester, Ch. 6. 

This chapter reviews probabilistic analyses for traveling salesman problems. 
See also §4.5. 

J.M. Steele (to appear). Probabilistic algorithm for the directed traveling sales­
man problem. Math. Oper. Res. 

In a model for random Euclidean asymmetric traveling salesman problems, 
the expected optimal tour length is shown to be asymptotic to .,., Vn. A parti­
tioning heuristic is presented whose relative error tends to O in expectation. 

A. Marchetti-Spaccamela, A.H.G. Rinnooy Kan, L. Stougie (to appear). 
Hierarchical routing problems. Networks. 

The two-stage planning problem under consideration asks for the determi­
nation of a number of vehicles minimizing the sum of the acquisition costs and 
the length of the longest tour through the customers assigned to any vehicle. 
At the time of acquiring the vehicles, all that is known about the customers is 
that they are uniformly distributed over a circular region. The asymptotic 
optimal solution value and an asymptotically optimal heuristic are derived. See 
Ch.11, § 12.2 for related material. 

M. Haimovich, A.H.G. Rinnooy Kan (to appear). Bounds and heuristics for 
capacitated routing problems. Math. Oper. Res. 

A probabilistic value analysis for a capacitated Euclidean multisalesmen 
problem is presented, together with several heuristics whose relative error tends 
to 0 a.s. 

6. LINEAR PROGRAMMING 

The linear programming problem requires the minimization of a linear func­
tion subject to linear constraints. It can be written in the form 
minx {cT x: Ax ~b, x ~O}, where c ,x EIRd, A ERm Xd, and b EIRm. 

The outstanding practical experience obtained with the simplex method _for 
linear programming is in sharp contrast to its exponential "'.orst case ?eh_av1or. 
Only recently, a sequence of papers has appeared that provides a ~egmnmg of 
an analytical explanation of the method's efficiency, by ~emonstratmg that the 
expected number of pivots for certain simplex variants 1s bounded by a poly­
nomial function of d and m . 

K.H. Borgwardt (1982). Some distribution-independent res~lts about the 
asymptotic order of the average number of pivot steps of the simplex method. 
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Math. Oper. Res. 7, 441-462. 
K.H. Borgwardt ( 1982). The average number of pivot steps required by the 
simplex-method is polynomial. Z. Oper. Res. 26, 157-177. 

Borgwardt investigates linear programs of the form max{ er x: Ax ~e }, 
where c ,x EIRd and A EIRn Xd (n ~d). Let AT denote the i th row of A. The 
behavior of a parametric simplex variant (the shadow vertex algorithm) is 
analyzed in a probabilistic model in which the vectors c .A 1, •.• , An are 
independently drawn from the same spherically symmetric distribution. All 
problems generated in this way are feasible. In the second paper, the expected 
number of pivots is shown to be 0 (d4n ). 

These papers received the 1982 Lanchester prize of the Operations 
Research Society of America. 

S. Smale (1983). On the average speed of the simplex method of linear pro­
gramming. Math. Programming 27, 241-262. 
S. Smale (1983). The problem of the average speed of the simplex method. A. 
Bachem, M. Grotschel, B. Korte (eds.). Mathematical Programming: the State 
of the Art - Bonn 1982, Springer, Berlin, 530-539. 

Smale analyzes the behavior of Dantzig's self-dual simplex method, when 
viewed as a special case of Lemke's algorithm for the linear complementarity 
problem, in a probabilistic model in which the data are independently drawn 
from a spherically symmetric distribution. This model does not allow any kind 
of degeneracy. The expected number of pivots is shown to be 
0 (cd(Iog m )d(d + 1l), where cd depends superexponentially on d. 

C. Blair (1983). Random Linear Programs with Many Variables and Few Con­
straints, Working paper 946, College of Business Administration, University of 
Illinois, Urbana-Champaign. 

A much simplified proof for a slightly weaker version of Smale's results. 

M. Haimovich (1983). The Simplex Method is Very Good! - On the Expected 
Number of Pivot Steps and Related Properties of Random Linear Programs, 
Columbia University, New York. 
I. Adler (1983). The Expected Number of Pivo~s Needed to Solve Parametric 
Linear Programs and the Efficiency of the Self-Dua/ Simplex Method, Depart­
ment of Industrial Engineering and Operations Research, University of Cali­
fornia, Berkeley. 

Adler and Haimovich independently investigate the length of a path gen­
erated by some parametric simplex variants, in a probabilistic model that 
requires only almost sure nondegeneracy and 'sign invariance', i.e., invariance 
of the distribution under changing the sign of any subset of rows or columns. 
This model enables a simpler probabilistic analysis in terms of elegant com­
binatorial counting arguments. The expected length of a path from worst to 
best solution is shown to be min { m ,d} + 1; but the analysis presupposes that a 
feasible initial vertex is given. 
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I. Adler, R.~. Karp, R. S~amir (1983). A Family of Simplex Variants Solving 
an m X d Lmear Program rn Expected Number of Pivots Depending on d Only, 
Report UCB CSD 83/ 157, Computer Science Division, University of Califor-
nia, Berkeley. " 

Adler, Karp & Shamir analyze a family of algorithms that proceed accord­
ing to a constraint-by-constraint principle (and that include a whole familv of 
~o~n s~plex variants) in a general probabilistic model that does not require 
sign mvanance. The expected number of pivots is shown to be bounded by an 
exponential function of d, independent of m. 

I. Adler, R.M. Karp, R. Shamir (1983). A Simplex Variant Solving an m Xd 
Linear Program in 0 (min(m 2,d2)) Expected Number of Pivot Steps, Report 
UCB CSD 83/l 58, Computer Science Division, University of California, 
Berkeley. 
I. Adler, N. Megiddo (1983). A Simplex Algorithm Whose Average Number of 
Steps is Bounded Between Two Quadratic Functions of the Smaller Dimension. 
M.J. Todd (1983). Polynomial Expected Behavior of a Pivoting Algorithm for 
Linear Complementarity and Linear Programming Problems, Technical report 
595, School of Operations Research and Industrial Engineering, Cornell 
University, Ithaca, NY. 

Adler, Karp & Shamir analyze a parametric version of the constraint-~)'­
constraint method and Adler & Megiddo and Todd analyze the self-dual algo­
rithm in a probabilistic model that is closely related to that used by Adler and 
Haimovich. As Megiddo pointed out, the lexicographic versions that are sub­
jected to these independent analyses execute the same sequence of pivots. The 
expected number of pivots is shown to be O(min{m 2,d2}). Under stronger pro­
babilistic assumptions, Adler & Megiddo also obtain a quadratic lower bound. 

R. Shamir ( 1984). The Efficiency of the Simplex Method: a Surv~v, Department 
of Industrial Engineering and Operations Research, University of California, 
Berkeley. 

§6 of this survey presents a more detailed review and a useful assessment of 
the above material. 

7. PACKING AND COVERING 

7.1. Satisfiability and tiling 

The satisfiability problem is the problem of deciding w?ether there exists an 
assignment of truth values to variables that makes a g1ve.n Boolea~ fori:1~la 
true and was proved to be 0L~-complete by S.A. ~ook m 1971. f?e uling 
problem was proved to be C'.Jl9-complete by L.A. .Levm, t~e second d1scove~er 
of C'.JlB'-completeness theory, in 1973. For more mformat1on ?~ the mate:1~l 
reviewed in this subsection and, in particular, for an exposition of Levins 
results on the 'random tiling' problem reported in [Levin 1984], see [Johnson 
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1984] (§1). 

J.M. Plotkin, J.W. Rosenthal (1978). On the expected number of branches in 
analytic tableaux analysis in prol:'ositional calculus. Notices Amer. Math. Soc. 

25, A-437. 
Let En denote the expected number of branches generated when the 

method is applied to a random formula in which AND, OR and NOT are the 
only connectives, negation is applied only to atomic formulas and there are n 
occurrences of AND and OR. Then c(l.08)n ~En ~d(l.125r, where c and d are 

constants. 

A. Goldberg. P. Purdom, C. Brown (1982). Average time analysis of simplified 
Davis-Putnam procedures. Inform. Process. Lett. 15, 72-75. Corrigendum. 
Inform. Process. Lett. 16, 213. 

A random conjunctive normal form formula consists of n independently 
generated random clauses. In each clause, each of the m variables occurs posi­
tively with probability p, negatively with probability p, and is absent with pro­
bability 1-'2.p. The expected time for a backtracking algorithm due to Davis 
& Putnam to determine whether a random formula is satisfiable is polynomial 
in n and m (but exponential in II p ). 

J. Franco, M. Paull (1983). Probabilistic analysis of the Davis Putnam pro­
cedure for solving the satisfiability problem. Discrete Appl. Math. 5, 77-87. 

For random formulas with n clauses, m variables and constant clause 
lengths, the expected running time of the Davis-Putnam procedure is exponen­
tial. Note that the abo've result of Goldberg et al. applies to a model in which 
the expected clause length is proportional to m . 

L.A. Levin (1984). Problems, complete in 'average' instance. Proc. 16th Annual 
4.CM Symp. Theory of Computing, 465. 

Levin develops a theory of 91.<3>-completeness for the average rather than the 
worst case. He defines a class RANDOM 91.<3> of pairs (X ,µ), where X may be 
any problem in 91.'3! and p. is a probability measure whose distribution function 
is computable in polynomial time, and a new notion of polynomial transforma­
tion within this class, which transforms distributions as well as instances. He 
proves that RANDOM TILING, i.e., the tiling problem with a very natural distri­
bution of its instances, is complete in RANDOM 91.<3>. 

7.2. Bin packing 

~.G. Coff~, Jr., .M.R. Garey, D.S. Johnson (1983). Approximation Algo­
rithms for Bm-Packmg - An Updated Survev, Bell Laboratories Murray Hill 
NJ. '/· ' ' 

A thorough survey with excellent coverage of recent deterministic and pro­
babilistic results. 
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(a) I-dimensional bin packing 

This is the problem of packing n items into a minimum number of bins of 
capacity I. Associated with each item is a positive real number less than I 
called its size. The sum of the sizes of the items packed into a single bin may 
not exceed the bin capacity. Associated with any packing is the wasted space, 
defined as the number of bins used minus the sum of the sizes of all the items. 

In probabilistic analyses of this problem it is usually assumed that the item 
sizes are drawn independently from a common distribution. Often, the uniform 
distribution over [O,l], or, less commonly, over [a,b], is postulated. A probabil­
ity distribution is said to allow perfect packing if, with probability tending to l 
as n ~oo, the waste is bounded above by some function which is o(n ). The 
two algorithms most commonly studied are next fit, an on-line algorithm which 
packs the items in their given order and starts a new bin whenever the next 
item cannot fit in the present bin, and first fit decreasing, which considers the 
items in decreasing order of size and places each item in the first bin that can 
accept it. In addition to the probabilistic studies reported here there is a very 
extensive literature on the worst case performance of bin packing algorithms 
(see [Coffman, Garey & Johnson 1983] above). 

S.D. Shapiro (1977). Performance of heuristic bin packing algorithms with seg­
ments of random length. Inform. and Control 35, 146-158. 

An approximate analysis of the next fit algorithm is given, on the assump­
tion that the item sizes are drawn independently from an exponential distribu­
tion. 

E.G. Coffman, Jr., M. Hofri, K. So, A.C. Yao (1980). A stochastic model of 
bin packing. Inform. and Control 44, 105-115. 

On the assumption that the item sizes are uniformly distributed over [0,1], 
an upper bound is derived on the expected number of bins required by the 
next fit algorithm. 

G.N. Frederickson (1980). Probabilistic analysis for simple one- and two­
dimensional bin packing algorithms. Inform. Process. Lett. 11, 156-161. 

For a simple I-dimensional bin-packing algorithm it is shown that the 
expected waste is O(n;.;), on the assumption that the item sizes are uniformly 
distributed over [O, l]. Since the given algorithm always uses at least as many 
bins as the first fit decreasing or best fit heuristics, the expected waste for these 
heuristics is also O(n;.;). Several authors later improved this bound to O(n'h). 
Implications for 2-dimensional strip packing are also explored. 

W. Knooel (1981). A bin packing algorithm with complexity O(n log n) and 
performance 1 in the stochastic limit. J. Gruska, M. Chytil (eds.). Mathemati­
cal Foundations of Computer Science 1981, Lecture Notes in Computer Science 
118, Springer, Berlin, 369-378. 
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A simple packing algorithm has expected waste 0 (n 112) when the item sizes 
are drawn independently from a decreasing probability distribution over [O, 1]. 

R. Loulou (1982). Probabilistic Behavior of Optimal Bin Packing Solutions, 
Faculty of Management, McGill University, Montreal. 

Every convex distribution function on [0,1] with bounded second derivative 
on [0,1h] allows perfect packing. 

M. Hofri (1982). Bin-Packing: an Analysis of the Next-Fit Algorithm, Technical 
report 242, Department of Computer Science, Technion, Haifa. 

The next fit algorithm is analyzed on the assumption that the item sizes are 
uniformly distributed over [O,l]. Detailed information about the distribution of 
the number of bins is derived. 

N. Karmarkar (1982). Probabilistic analysis of some bin-packing algorithms. 
Proc. 23rd Annual IEEE Symp. Foundations of Computer Science, 107-111. 

On the assumption that the item sizes are drawn from the uniform distribu­
tion over [O,a ], a closed form expression is derived for the expected number of 
bins required by the next fit algorithm. It is also proved that the uniform dis­
tribution over [O,a] permits perfect packing. 

G.S. Lueker (1983). An Average-Case Analysis of Bin Packing with Uniformly 
Distributed Item Sizes, Report 181, Department of Information and Computer 
Science, University of California, Irvine. 

When the item sizes are uniformly distributed over [0,1], a simple algorithm 
which never places more than two items in a bin achieves expected waste 
O(n'h). 

G.S. Lueker (1983). Bin packing with items uniformly distributed over intervals 
[a ,b ]. Proc. 24th Annual IEEE Symp. Foundations of Computer Science, 289-
297. 

For a large class of choices of the interval [a ,b] it is determined whether 
the uniform distribution over [a ,b] allows perfect packing. The analysis makes 
interesting use of a linear programming technique. 

J.L. Bentley, D.S. Johnson, F.T. Leighton, C.C. McGeoch, L.A. McGeoch 
( 1984). Some unexpected expected behavior results for bin packing. Proc J 6th 
Annual Symp. Theory of Computing, 279-288. 

For the uniform distribution over [O,l], the first fit algorithm has expected 
waste 0 (n°·8). For the uniform distribution over [O,a ], a .;;;;; 1h, the first fit 
decreasing algorithm has expected waste 0(1). These results were entirely 
unexpected and are of extraordinary interest. 

P.W. Shor (1984). The average-case analysis of some on-line algorithms for bin 
packing. Proc. 25th Annual IEEE Symp. Foundations of Computer Science. 
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For the uniform distribution over [0,1], tighter upper and lower bounds on 
the performance of on-line algorithms are derived. The analysis is based on 
the relation between the bin packing problem and a 2-dimensional matching 
problem. 

(b) d-dimensional bin packing 

1his is the problem of packing d-dimensional items into d-dimensional bins. 
The variants of the problem include rectangle packing, strip packing and vec­
tor packing. In rectangle packing the items are d-dimensional rectangles with 
sides parallel to the coordinate axes and each bin is a unit hypercube. In 2-
dimensional strip packing the items are again rectangles with sides parallel to 
the coordinate axes but there is a single bin of fixed width and infinite height. 
The object is to minimize the vertical extent of the area used for packing. In 
vector packing, each bin satisfies the following constraint: for i = 1,2, ... , d, 
the sum of the i th coordinates of the items in the bin is less than or equal to 1. 

M. Hofri (1980). Two-dimensional packing: expected performance of simple 
level algorithms. Inform. and Control 45, 1-17. 

The problem of packing rectangles into a semi-infinite strip is discussed. 
The vertical and horizontal dimensions of the rectangles are assumed to be 
independent random variables drawn from the uniform distribution over [0,1]. 
The expected efficiencies of the next fit, rotatable next fit and next fit decreas­
ing algorithms are derived. 

R.M. Karp, M. Luby, A. Marchetti-Spaccamela (1984). A probabilistic analysis 
of multidimensional bin packing problems. Proc. 16th Annual ACM Symp. 
Theory of Computing, 289-298. 

A simple algorithm for rectangle packing is analyzed on the assumption 
that the dimensions of the items are independent and uniformly distributed 
over _[0,1]. In the case d = 2, the expected waste is O(y'(n log n)) and 
O(Vn log n). For d"?3, the expected waste is 0(n<d-l)Jd). Probabilistic ana­
lyses of algorithms for strip packing and vector packing are also given. 

7.3. Multiprocessor scheduling 

1his is the problem of scheduling n tasks with known execution times on m 
identical parallel processors to minimize the makespan, defined as the max­
imum, over all processors, of the sum of the execution times of the tasks 
assigned to that processor. Probabilistic analyses usually assume that the exe­
cution times are independent identically distributed random variables. 

The problem can be viewed as a variant of the I-dimensional bin packing 
problem in which the number of bins is fixed and the capacity of the largest 
bin is to be minimized. 

An important class of on-line multiprocessor scheduling algorithms is 
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formed by the list scheduling algorithms, in which the tasks are arranged in a 
linear list, and, whenever a processor completes a task, the first unscheduled 
task on the list is assigned to that processor. The LPT algorithm, in which the 
list is arranged in decreasing order of execution times, is especially popular. 
Another class of algorithms based on a differencing operation has recently been 
found to have excellent properties (see [Karmarkar & Karp] below). 

In addition to the probabilistic work surveyed here, there is an extensive 
literature on the worst case analysis of multiprocessor scheduling algorithms; 
see [Coffman, Garey & Johnson 1983] in §7.2 and Ch.11, §4.2. 

For the probabilistic analysis of a single-machine scheduling algorithm, see 
[Gazmuri 1981] in Ch.11, §11.1. For the probabilistic analysis of hierarchical 
scheduling systems, in which a processor acquisition phase precedes the actual 
scheduling phase, see Ch.11, § 12.2. 

J.L. Bruno, P.J. Downey (1982). Probabilistic Bounds on the Performance of 
List Scheduling, Technical report TR 82-19, Computer Science Department, 
University of Arizona, Tucson. 

If the execution times are drawn independently from a uniform distribution 
then, with probability ~ 1 - t:, the ratio of the makespan of an LPT schedule to 
the optimal makespan is less than 1 + f (m ,n ,t: ), where f (m ,n ,t:) ~ 
1 +(2(m -1)/n ). The analysis enables concrete numerical results on the distri­
bution of the relative error to be obtained for small values of n . 

E.G. Coffman, Jr., E.N. Gilbert (1983). On the Expected Relative Performance 
of List Scheduling, Technical memorandum, Bell Laboratories, Murray Hill, 
NJ. 

The analysis in the above paper is refined and extended to exponential dis­
tributions. 

J.B.G. Frenk, A.H.G. Rinnooy Kan (1983). The Asymptotic Optimality of the 
LPT Heuristic, Econometric Institute, Erasmus University, Rotterdam. 

Let OPT denote the cost of an optimal solution, and let LPT be the cost of 
the solution obtained by the longest processing time first heuristic. If the exe­
cution time distribution has a finite second moment and positive density at 
zero, then LPT-OPT converges a.s. and in expectation to 0 as n-HX). 

R. Loulou (1984). Tight bounds and probabilistic analysis of two heuristics for 
parallel processor scheduling. Math. Oper. Res. 9, 142-150. 

Let the execution times of the tasks be independent and identically distri­
buted with finite mean. Let RLP be the cost of the solution obtained by apply­
ing list scheduling to a randomly ordered list of the tasks. Let m be the 
number of processors. When m ~2 the random variable RLP-OPT is stochasti­
cally bounded by a finite random variable for any value of n . When m = 2, a 
certain upper bound on this random variable converges in distribution as 
n -Hi:). When m ~2. LPT-OPT is stochastically smaller than a fixed random 
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variable which does not depend on n. 

~- ~arrnarkar, R.M. Karp (to appear). The differencing method of set parti­
t10mng. Math. Oper. Res. 

A simple differencing algorithm is presented. If the item sizes are drawn 
indepe~~ently f~om a smooth ?istribution with bounded support then, .,.,ith 
probability tendmg to 1, the difference between the completion times of the 
last and first machines to complete is bounded above by a quantity of the 
form n-c logn. • 

N. Karmarkar, R.M. Karp, G.S. Lueker, A. Odlyzko (1984). The Probabilirv 
Distribution of the Optimal Value of a Partitioning Problem, Bell Laboratorie~. 
Murray Hill, NJ. 

The 2-processor scheduling problem is considered under the assumption 
that the execution times are drawn independently from the uniform distribu­
tion over [O, l ]. Let D denote the minimum, over all partitions of the tasks into 
two sets, of the absolute difference between the sums of the execution times of 
the tasks in the two sets. Then, with probability tending to I as n ..... oc, D is 
bounded between two quantities of the form en 12". If n is even and each set 
is required to contain exactly n 12 elements, then, with probability tending to 
1, the minimum absolute difference is bounded above by cn 212n. 

7.4. Knapsack and subset sum 

The knapsack problem is the zero-one integer programming problem with a 
single linear constraint. The problem can be described as follows. A set of n 
items is given. Each item has a specified weight and a specified value. The 
objective is to select a set of items of maximal total value, such that the sum of 
the weights of the selected items does not exceed a given bound called the 
capacity of the knapsack. The knapsack problem is 0L'.P-hard, but good worst 
case approximation algorithms whose execution time is quadratic in the length 
of the input are known. 

The subset sum problem is an (0L0'-complete) special case of the knapsack 
problem. The objective is to select a set of items whose total weight is equal to 
the capacity of the knapsack. 

V. Chvatal (1980). Hard knapsack problems. Oper. Res. 28, 1402-141 L . 
A general class of recursive algorithms for the knapsack problem 1s mtr~­

duced. These algorithms use the full power of branch-and-bound and dyn~nuc 
programming as well as rudimentary divisibility arguments. If an n-1tem 
instance is generated by drawing the weights independently from the umform 
distribution over {1,2, ... , 10n'2}, setting each value equal to the correspond­
ing weight and setting the knapsack capacity equal to. half th~ sum of .the 
weights, then, with probability tending to 1, every recursive algonthm reqmres 
at least 2n 12 steps to solve the instance. 
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G. d'Atri (1979). Analyse Probabilistique du Probleme du Sac-a-Dos, These, 
Universite de Paris VI. 

The coefficients of the n -variable knapsack problem are assumed to be 
drawn independently from the uniform distribution over { 1,2, ... , n} and the 
capacity of the knapsack is drawn from the uniform distribution over 
{1,2, ... , en}. A linear time algorithm consisting of a greedy phase followed 
by an adjustment phase obtains an optimal solution with probability tending 
to l. 

V. Lifschitz (1980). The efficiency of an algorithm of integer programming: a 
probabilistic analysis. Proc. Amer. Math. Soc. 79, 72-76. 

If the coefficients in an n -variable knapsack problem are drawn indepen­
dently from a common continuous distribution, then a simple enumerative 
method based on a dominance relation between solutions finds an optimal 
solution in expected time En, where lnEn !:::::::2 Vn. 

A.M. Frieze, M.R.B. Clarke (1981). Approximation Algorithms for the m­
Dimensional 0-1 Knapsack Problem: Worst-Case and Probabilistic Analyses, 
Queen Mary College, University of London. 

The integer programming problem max{~1 c1 x1 :~1 aijxJ~1, i = 1, ... , m; 
x1 E { 0, 1}, j = 1, ... , n } is considered, with m held fixed and n variable. The 
distribution of the optimal value OPT is considered, and it is shown that a 
simple rounding algorithm gives a solution of value ROUND, where OPT­
ROUND ~ £.OPT with probability tending to 1, for all t: of the form n -a, 
a~ll(m +l). 

G.S. Lueker (1982). On the average difference between the solutions to linear 
and integer knapsack problems. R.L. Disney, T.J. Ott (eds.). Applied Probabil­
ity - Computer Science: the Interface, Volume I, Birkhauser, Basel, 489-504. 

The expected difference between the values of the integer and linear ver­
sions of the 0-1 knapsack problem is 0 (log2n) and 0( 1/ n) when the coeffi­
cients are drawn independently from the uniform distribution over [0,1]. 

A.V. Goldberg, A. Marchetti-Spaccamela (1984). On finding the exact solution 
of a zero-one knapsack problem. Proc. l 6th Annual A CM Symp. Theory of 
Computing, 359-368. 

When the (weight, value) pairs are generated by a Poisson process with n 
as the expected number of items, then, for every t:>O, there is a polynomial 
time algorithm that solves the knapsack problem to optimality with probability 
at least 1-£. The algorithm depends on the parameters of the Poisson process, 
and its running time is exponential in 1 I£. 

J.C. Lagarias, A.M. Odlyzko (1983). Solving low-density subset sum problems. 
Proc. 24th Annual IEEE Symp. Foundations of Computer Science, 1-10. 

The weights are drawn independently from a uniform distribution over 



Probabilistic Analysis 87 

{ 1, ... , 2n / d } , and the capacity is the total weight of a randomly chosen sub­
set of items. A polynomial time algorithm is developed that, for 'almost all' 
problems with d <l!n, finds the subset of items whose total weight equals the 
capacity. The algorithm uses the lattice basis reduction algorithm due to A.K. 
Lenstra, H.W. Lenstra, Jr., and L. Lovasz [Math. Ann. 261 (1982), 515-534]. 

A.M. Frieze (1984). On the Lagarias-Odlyzko Algorithm for the Subset Sum 
Problem, Graduate School of Industrial Administration, Carnegie-Mellon 
University, Pittsburgh, PA. 

The above result of Lagarias & Odlyzko is proved in a simpler way and 
extended to d <2/n . 

7 .5. Set covering 

The set covering problem is of the form min{enx: Ax;ai:em; x1e{O,l}, 
j = 1, ... , n }, where A is an m Xn matrix of zeros and ones and eh denotes 
the vector of h ones. A random (m ,n ,p) problem is one in which the elements 
of A are independent and each is equal to 1 with probability p. 

J.F. Gimpel (1967). A stochastic approach to the solution of large set covering 
problems. Proc. 8th Annual IEEE Symp. Switching and Automata Theory, 76-
82. 

If m = Lan J and p is held constant as n -+OO then, with probability l, the 
ratio between the cost of the optimal solution and the cost of the solution pro­
duced by a simple greedy algorithm tends to l. This is one of the earliest 
results on the probabilistic analysis of combinatorial algorithms. The result is 
not true in general if p depends on n (see [Karp 1976] in § 1 ). 

C. Vercellis (1984). A probabilistic analysis of the set covering problem. Ann. 
Oper. Res. 1. 

Here, p is constant and m -+OO. If n grows faster than log m but remains 
polynomially bounded in M, then the set covering problem is a.s. feasible and 
the ratio between the optimal solution value and log m /log (l/(1-p )) tends to 
1 a.s. A probabilistic analysis of the asymptotic behavior of two simple heuris­
tics is performed. 

8. BRANCH-AND-BOUND AND LOCAL SEARCH 

R.M. Karp, J. Pearl (1983). Searching for an optimal path in a tree with ran­
dom costs. Artificial Intelligence 21, 99-116. 

Let F(T) be the minimum total weight of a root-leaf path in a tree T. In 
the case where T is a uniform binary tree of height n and the edge weights are 
independent Bernoulli random variables with mean p, the distribution of F(T) 
is studied and polynomial time search strategies are shown to give good near­
optimal paths with high probability. The model is proposed as an abstraction 
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of branch-and-bound search. 

H. Nakano, Y. Nakanishi (1983). An analysis of local neighborhood search 
method for combinatorial optimization problems. Proc. Internat. IEEE Symp. 
Circuits and Systems, 1055-1058. 

The neighborhood search method of finding locally optimal solutions of 
combinatorial optimization problems is modeled by a Markov chain. In the 
case of the >.-opt method for the traveling salesman problem, the predictions of 
the model are in good agreement with experiment. 

D.R. Smith (1984). Random trees and the analysis of branch and bound pro­
cedures. J. Assoc. Comput. Mach. 31, 163-188. 

A model of random branch-and-bound search trees is investigated. The 
expected time and space complexity of the best bound first and depth first 
strategies are presented and compared. The results are applied to the traveling 
salesman problem with random inputs. 

C.A. Tovey (1983). On the number of iterations of local improvement algo­
rithms. Oper. Res. Lett. 2, 231-238. 
C.A. Tovey (to appear). Low order polynomial bounds on the expected perfor­
mance of local improvement algorithms. Math. Programming Stud. 
C.A. Tovey (to appear). Hill climbing with multiple local optima. SIAM J. 
Algebraic Discrete Methods. 

Tovey's model of local improvement algorithms in combinatorial optimiza­
tion confirms empirical observations. The model predicts exponential worst 
case and low order polynomial average performance for problems with a single 
optimum, such as linear programming and linear complementarity problems. 
For hard problems with multiple local optima, average speed is linearly 
bounded but accuracy is poor. 


