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Abstract. An analytic proof 1s given for the author’s product formula for Jacobi polynomials and
a new integral representation is obtained for the product J (x)J ,(y) of two Bessel functions. Similarly, a
product formula for Jacobi polynomials due to Diyjksma and the author is derived in an analytic way.
The proofs are based on Bateman’s work on special solutions of the biaxially symmetric potential
equation. The paper concludes with new proofs for Gasper’s evaluation of the convolution kernel for
Jacobi series and for Watson’s evaluation of the integral
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[ntrod n. In recent papers [13], [14], [15] the author derived the
addition formula for Jacobi polynomials by group theoretic methods. It was
pointed out in [13] that the product formula and the Laplace type integral repre-
sentation for Jacobi polynomials immediately follow from the addition formula.
The way of obtaining these results illustrated the power of the group theoretic
approach to special functions. However, 1t was felt unsatisfying that no analytic
proois were available for the addition formula and 1ts corollaries.

Next, an elementary analytic proof of the Laplace type integral representation
was given by Askey [1]. Our main result in the present paper 1s an analytic deriva-
tion of the product formula. It 1s based on important but rather unknown results of
Bateman [3], [4] concerning special solutions of the biaxially symmetric potential
equation. The present paper 1s a continuation of Askey’s paper [1]. We would like

to thank Askey for communicating us the results contained in '_'_1: and Gasper for
calling our attention to [3].

Immediately after this work was done both Gasper and the author extended
the results to an analytic proof of theaddition formula. They used different methods
and will publish their proofs separately in subsequent papers.

Section 2 of this paper contains a review of Bateman’s work on the biaxially
symmetric potential equation [3], [4]. Admitting transformations of the variables,
Bateman obtained solutions of this equation by separating the variables 1n three
different ways. We prove that, in a certain sense, these three possibilities are the
only ones. Bateman’s special solutions involve Bessel functions, Jacobi polynomials
and nth powers. They can be expressed 1n terms of each other by means of a
number of identities, one of which 1s the bilinear sum obtained in [1].

By using these identities the product formula for Jacobr polynomials and a
new product formula for Bessel functions can be derived from the Laplace type
integral representation for Jacobi polynomials. This 1s done in § 3. Section 4 dis-
cusses the analogous results connected with an integral representation for Jacobi
polynomials due to Braaksma and Meulenbeld [5] and a new proof 1s given of a
product formula due to Dijksma and the author [7].

o 'Rgeived by the editors September 6, 1972.
+ Mathematisch Centrum, Amsterdam, the Netherlands.
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Gasper (101,117 settled the positivity of the convo olution structure for Jacobi
. His explic it mpmwm‘ﬁ for the convolution kernel 1s derived from our pro-
185 Some formulas trom Wdumw 71, which Gasper applied in his

Thus, a deeper understanding of Gasper’s

series, Hi

ion. The partial differential

ve integers and if (X, x,. X3, X,) = (1 COs @,

1nd ﬁ + 1 are mmmgmw integers and if

2.1 1s called the Mmmny x}mmumc potential equation. Special
Mﬁi@@é‘%_mﬁﬁf‘;fWB;;: m%” mm Mmﬂmm were studied by Bateman in [3]and in [4, pp. 389-394].
Ve will > some of Bateman’'s results in this section.
il operator n (2.1) has two singular lines u = 0 and v = 0.
'.mm% o6 mmdw solutions of (2.1) in the upper right quarter-plane. Equation
idmits s s by separation of variables. Regular solutions of this type are

Flu.v) = u™"J duje 21 (Av),

where Mw tunctions J, and I, are Bessel functions.
Eﬁm g %‘w d wmph conne md dmmmn in the (s. t)- pham and let &, = {(u, v)|u
L the mapping (s, t) — (u, v) 1s a conformal mapping of

M% H :zmd W t) satisty the Cauchy-Riemann equations

onto ! E t mex

(2.5 ug=1v, and u, = —vo

A
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After this transformation, equation (2.1) becomes

‘ Fluls,t),v(s,t)) = 0.

It 1s not ditficult to prove that for a fixed conformal mapping (s, t) — (u, v)
as introduced above the following three statements are equivalent.

(A) For all values of o and f3, equation (2.7) admits separation of variables.

(B) Both the functions u(s, t) and v(s, t) are the products of a function of s and
a function of .

(C) The mapping (s, t) — (u, v) 1s given by one of the three complex analytic
functions

U+ iv=s-+1it, u+iv=e"" or u-+iv=-cos(s+ it),

|

up to translations, dilatations and rotations over an angle k(rt/2) of the (s, t)-plane
and up to dilatations of the (u, v)-plane.

We did not succeed 1n proving or disproving the equivalence of (B) with the
following statement (A’).

(A’) There is a value of w and S (—3 # a« # f # —1) for which equation (2.7)
admits separation of variables.
However, the equivalence of the statements(A)and(C)suggests thatoneshould
especially consider the three forms of equation (2.1) connected by the transforma-
tions

(2.8) u+ iv = eV = cos (& + in).

The pictures 1in Fig. 1 show the domains which are thus mapped onto each
other.

_. f 3T
1 . /ﬂ
/ Y ye - éjy“
Vs j/ - / v
11 { X n | x”/'
F1G. |

The first identity 1in (2.8) 1s equivalent to
(2.9) u=e cosy, v =e sy

and equation (2.7) becomes

2 - “ 2 ~

| O C - | O
[,\ S+ 200+ B+ Das + 2 + (22 + 1)cotgy — 26 + ity }
X" (' X C'y- ¢y

(2.10) o
- F(e*cos y,e*smy) = 0
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with the special regular solutions

(2.11) F(e* cos v, e*sin y) = e*"™ P P(cos 2y)

(cf. Bateman [4, p. 389]). Here the function P*# denotes a Jacobi polynomial.

The mapping (¢, 1) — (u, v) in (2.8) can be written as

(2.12) u=-coséchn, v= —sinshn

and after this transformation equation (2.1) takes the form

& ‘ . _ ]
— + (2o + l)cotg{ — (2 + 1)tgc) =3
(¢ ¢
(* . | ¢
(2.13) + — + (R0 + L)cthy + (28 + 1) th )=
n- on
.F(cos Echn, —sinéshy) =0
with the special regular solutions
(2.14) F(cos & ch i, —sin & shn) = P*P(cos 2&)P*F(ch 2n)

(cf. Bateman [4, pp. 392-393]).
Bateman [3], [4] has derived some identities which relate the special solutions
(2.4), (2.11)and (2.14) of equation (2.1) to each other. We need two of these identities.
Solutions of type (2.4) and (2.11) are related to each other by
- Pr(w® — v*)/(u® + v%))

(2.15) u“"ﬁ.}ﬂ(u)v”‘ﬂa(u) == n;() an(uz 4 U?_)n P‘(:c,ﬁj"(l) .

where the coefficients a, are defined by

1 &
21() -~ R “ﬁ] | — E: ,, 2N
(2.10) >T(a + 1) o1 o

(formula (2.15) with v = 0). For a detailed proof, see Bateman [3, pp. 113, 114].

Formula (2.15) 1s a generating function for Jacobi polynomials, which 1s also
mentioned in Erdély: [8, vol. III, § 19.9(12)].
The substitution

(2.17) s =cos2t, t=ch2py

combined with the substitutions (2.9) and (2.12) gives

. . 1 + st
(2.18) e’ = s +t, cosy = T .
' S+ 1

In terms of the variables s and ¢, the solutions of type (2.11) and (2.14) can be re-
lated to each other by the identity

pehys) pehy) PEA((1 + st)/(s + 1))
219 n - n N kK % ;
( ) ng,ﬁ)(l) Pf,“’ﬂ)(l) RZO bk,n(s + t) ngt,ﬁ)(l) ?

1
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where b, , 1s defined by (2.19) when t = 1, 1.e.

. PB)(s) "

k=0

Formula (2.19) is proved in Bateman [4, pp. 392, 393] by using the fact that both
sides of (2.19) are solutions of the same partial differential equation (2.13) (after
the transformation (2.17)). The converse identity (formula (4.1) in Askey [1]) was
first obtained 1in [3, pp. 122, 123]. For another result of Bateman, which expresses
the solution (2.4) in terms of the solutions (2.14), the reader is referred to [3, p. 115]
or [17, p. 370].

The preceding results might be extended by considering other special solu-
tions of (2.1). For instance, one may take n complex in the solutions (2.11) and
(2.14). In this way Flensted-Jensen and the author [9] generalized (2.19) for
complex values of n. Another possibility 1s to replace one or both of the factors in
(2.4),(2.11), (2.14) by a second solution of the (ordinary) differential equation.

[t should be pointed out that Appell’s hypergeometric tunction

F.(y,0:1 +a, 1+ B; —0v° u),

defined in [8, vol. I, §5.7.1], 1s also a solution of (2.1). This can be verified by term-
wise differentiating the power series of the function F, . The methods of this section
may be applied in order to prove the generating function for Jacobi polynomaials
mentioned in [&, vol. III, § 19.10(26)] and the Poisson kernel for Jacobi polynomials
(see Bailey [2, p. 102, example 19]).

It would also be of interest to express the solutions (2.11) and (2.14) 1n terms
of the solutions (2.4) by means of definite integrals over A.

Finally, we mention the work of Henrici [12], who used equation (2.1) in
order to prove the addition formula for Gegenbauer functions.

Laplace type mtegra represematlon for Jacobi polynomlals 1S

R(cx ﬁ)(x J. J
r=0Q vopp=0

e s i/1 — x*rcos | dm, ,r,d).

3.1
-4 > B> —3,

where

(3.2) dm, 4(r, @) =

Following Gasper [10] we use the notation

. - PP(x)
(3.3) R*P(x) = pER(])

The measure (3.2) 1s normalized by

(3.4) f J dma,/}(r-, P)
0 +v0O
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Formula (3.1) was first proved by the author [13] from the addition formula. Next,
an elementary analytic proof of (3.1) was obtained by Askey [1, § 3]. The deriva-
tions given below were suggested by the way Askey proved the converse of (2.19)
(see [ 1,8 4]).

It follows from (3.1) that

(x + ¥R, f“(l T m)
X + V
3.5) f f 11+ (1 + ) + M= )0 =
l — x"h\fl — y2r cos ¢]" dm, B, @)
and
(36) { + V‘")"R(I yi) m 1’ J. f -l" 7!XW” COS gb " dmz ﬁ( (f))
x + V 0
Combination of formulas (2.19), (2.20) and (3.5) gives the product formula
REP(x)RGP(v)
(3.7) ---:f f R&PIH1I 4+ x)(1 + y) + (1 — x)(1 — y)r?
0 YO

+ 1= x2/1 = y*rcosd — 1ldm, 4r,¢),  a>p> —1.

In his original proof the author [13] derived (3.7) from the addition formula by

integration.
In a similar way, it follows from the formulas (2.15), (2.16) and (3.6) that

mljJﬂ( ) “:tI (1)

n=0 0 O
1l P~ ¢
_ 2 2 > n
wf J z a(x= — y°r° + 2ixyr cos ¢)' dm, y(r, ¢)
() O n=0
1 1 2 4 2ixyr Los(b Liz)

i

d}nz ﬁ( d))

2Tlo + 1) J, 2 1 Dixyr cos ) L2

The interchanging of summation and integration 1s allowed because the infinite
sum converges uniformly in r and ¢. By using that

y () = (iy) *JL )
and by analytic continuation 1t follows that

]
2’T(oc + 1)

J’ J‘ ((x* + 1 r¥ 4 2xyr cos ¢)''?)
o (X2 + y2r? + 2xyrcos @) 1/

X AT (x)y T y) =

(3.8) dm, g(r, @),

x> f> —3.
This formula seems to be new.
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It 1s surprising that the two product formulas (3.7) and (3.8), which seem to be
h deeper results than the integral representation (3.1), can be derived {from (3.1}
asily. Another surprising fact 1s that formula (3.1) implies (3.7) but 1s also a
enerate case of (3.7). In fact, one obtains (3.1) after dividing both sides of (3.7) by
“(v) and then taking the limit for y — .

Formula (3.8) follows from (3.7) by applying the confluence relations

) lim ——— = 27 (x 4+ 1)y *J (V)

. P ’(x::‘f(;.?_n‘?“) — 1) o S
0) Im e = 2PT(B + Dx AT ()
| (:z..ﬁ) L E /
— PPy — 1)

Erdelyi [8, vol. 11, § 10, 8(41)]).
If p T o then the measure dm, 4(r, ¢p) defined 1n (3.2) degenerates to the measure

F(f:x + 1")1“
/nr( .......)

(1 — r)(sin @)=’ dr do.

e o(t) represents Dirac’s delta function.

The degenerate forms of (3.1) and (3.7) for « = [)’ are Gegenbauer’s classical
nulas for ultraspherical polynomials (cf. {8, vol. 1, § 3, 15(22), (20)]). Formula
) degenerates to the product formula

- o ﬁjﬂ(.x')}ﬁ . “Jﬁ(.}‘) —_— i, __Km e B

1)

I, S 2 [ -- 1
(x* + 32 + 2xycos ¢) /¥ sin g, p -1

J‘ Jlj((\: + y= + 2xycos ¢)''-)
O

1S 1S an ﬁmegrated form of Gegenbauer’s addition formula for Bessel functions
Watson [17,§ 11.4(2)]). It should be pointed out that new proofs are obtained
these two clasaacdl product formulas of Gegenbauer 1f one applies Bateman's
ntities (2.15) and (2.19) to (3.1) 1n the case o« = p.

Askey [1] derived the Laplace type integral representation (3.1) from its
renerate case « = f§ by using a fractional integral for Jacobi polynomials. In a
1ilar way we can derive the product formula (3.8) from 1ts special case (3.11) by
blying Sonine’s first integral

]
b= 1 (g — f)

2)  yTL) = f (vr) PN = 2P

> > —1(see Watson (17,9 12.11(1}]). This method of reducing the case («, f3)
the case (S, p) fails for the product formula (3.7).
If | —3 then the measure dm, 4(r, @) degenerates to the measure

D + 1)
*’WF(O‘ + 3)

(1 = r2y 7 V2(3(¢) + O — @) drdo.




132 TOM KOORNWINDER

The degenerate forms of (3.1) and (3.7) which are thus obtained are related to the
degenerate forms for « = f by the quadratic transtormation

PEVD0x2 — 1) PEP(x)

3.13 D L see [8, vol. 1T, § 10.9(21)]).
(31- ) P::x,‘“ 1/2)( 1) P(:)xl,:x)(l) { [ 3 )J
Formula (3.8) degenerates for f = —3 to
1 + 1 ) )
(3.14)  cosx- y H()) = ———e—— f cos (x + yr)(l — r2y= Y2 gy
21\/7Ir(a + “5{") -1

(3.15) y i (y) =

cos (yr)(1 — r=y~ Y= dr

and, conversely, formula (3.14) immediately follows from (3.15). Thus, the double
integral (3.8) connects (3.11) with Poisson’s integral in a continuous way.
The remarks at the end of § 2 suggest that other integral formulas can be
derived by the methods of § 3. One case, for Jacobi functions, 1s worked out in [9].
The left-hand sides of formulas (3.1), (3.7) and (3.8) can each be considered as
the first term of an orthogonal expansion with respect to the measure dm, 4(r, ¢).
An orthogonal system of functions with respect to this measure is

feir, @) = PP Pm BET0Qp — 1t TP 2T ) cos @),

k=1=0.

The expansion corresponding to formula (3.7) is called the addition formula for

Jacobi1 polynomials (see Koornwinder [13]). The expansions corresponding to

(3.1)and(3.8)can be obtained as degenerate cases of thisaddition formula. Recently,
Gasper and the author independently gave analytic proofs of these expansions.

Gasper first derived the expansion corresponding to (3.1) in an elementary

way and next applied (2.19) and (2.20) in order to obtain the addition formula.
Similarly, one might prove the expansion corresponding to (3.8).

The author obtained the higher terms of the addition formula by doing inte-

gration by parts in (3.7). The same method might be applied to (3.1) and (3.8).
These two methods of proof will be published in the near future.

(3.16)

4. The integral representation of Braaksma and Meulenbeld. B y Interpreting
Jacobi polynomials as spherical harmonics Braaksma and Meulenbeld [5] ob-

tained an integral representation for Jacobi polynomials which is dlﬁerent from
(3.1). Their formula 1s

P(cxﬁ)() ( l)rﬁ+1 "I"l (ﬁ+1)
nl(a + 3B + 1) (5),n12"

(4.1) f f (iy/1 —xcos ¢ + /1 + x cos )?"
0 JO

-(sin @)**(sin Y)** dep dy, o> -3, B> -1
As pointed out in [5], the analytic proof of (4.1) is easy:.
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P x) P — x) i Fr e LBt I+ x|
. ;i S e ;zm - 5 — M. H v ) e 4 IR |
PYO(=1) P | / L
(4.2) f
mi(wn)(n+x+/f+a %
k=0 (b + 1)k! |
Hence,
PrP(x) Pry) T ﬁ + 1)

PWWMLMWMU) ﬂhw+ ﬁ+

(sin @) *(sin Y)** dp difs .

Let C%7F7 lm denote a Gegenbauer polynomial. By using

2n

1

e + o + f + 1),

k= JF(—n,n+ a2+ B+ 1:1:17)

(k!
I R § Bl S B & MR ()
= F (—1/2a+p+1, )(1)W C“ +B+ i(m
we conclude that
Pff‘*’“(x) PPy ) - T+ 1)r(ﬁ 4 1}WM
PEP(—1) PYP(1)  al(@ + OB + HCLHO)
(4.3) - r f “ Crrb+ 1 ENG "'""q'..x\/ffl — ycos ¢
| O Y0 -
7\/1 + X\f’ 1 + VQO\W}
(sin @) (siny)* P dopdy, o> -3, > -3

Formula (4.3) was first obtained by Dijksma and Koornwinder [7]. They used
similar group theoretic methods to those of Braaksma and Meulenbeld [5].
We can also derive from (2.15) and (4.1) that

1
22 BT (o + (B8 + a}

X T Ax)y ﬁJﬁ(}’) =

(4.4) cos (x cos ¢ + y cosy)(sin p)*X(sin ) dp dy.

x> =3 p> -3
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COS (N COS (D + VCOSY) = COS (X COS @) COos (y Cos )

— SIN (X COS ¢) sin (Vv Ccos ),

we can reduce (4.4) to the product of two Poisson integrals (3.15).

rmula. The right-hand sides of the formulas (3.1), (3.7)
and (? 8) all have the form

1 pn
J [ fla®r® + 2abrcos ¢ + b*)dm, ,(r, ¢),

0 < 0

where the function f is continuous on (0, x), the letters ¢ and b represent positive
real numbers and the measure dm, 4(r, ¢)is defined by (3.2). By a transformation ot
the integration variables this integral can be rewritten in the so-called kernel form.
We will prove that

1 T
’L fla’r® + 2abr cos ¢ + b*)dm, (r, ¢)
{5 1 ) o () o () |
= | fUHK, fa, b, e dr,
()
where for 2 > f§ > —3 the kernel K, ; is defined by
1 2I°( 1
K ;;{H h ) o MS . :— ) 1
Sl — BB + 4

T
cq ’ (= — b* — ¢ + 2bccos ). P Ysin ) dis .

In formula (5.2) the notation

) f x* ifx >0,
X)) =" 5
l0 ifx <0,

1s used.
Formula (5.1) can be proved by successively performing the following trans-
tormations of variables to the left-hand side of (5.1). First, we put

.= rCoS ¢, Yy =rsindao,

—

Nnext,

]

X'=ax + b, Vv = ay,
and finally,

=tcosy, V =tsSmny.



JACOBI POLYNOMIALS. II | 3

v

Thus we obtain the equalities

o () -

= fllax + b)Y + (ay)" ) (1 — x7 — 3P0 Wl dx dy
_ S+ (V)T = bt — (X)) — (V)T A+ 2hyy

"}

_ X T ,
2 — 2 2brcos P N dy

|

Formula (5.1) tollows by substitution of (3.2) and (5.2).
The kernel K, ;, defined by (5.2), is clearly nonnegative. Putting f(x) = | n
(5.1) we find

A I &

(5.3) K, fa. b,y dr = 1.

o’ ()

The analytic form of the kernel K was studied by Macdonald (see Watson
[17, p. 412]) and by Gasper [11]. It turns out that three different cases have to be
distinguished. Let

-- h* + ¢* — a”
(5.4) =
2bc

Then (5.2) takes the form

25T + 1)
K 2z, [ ( d, b . C) e s e e e S——h 2 ( b ¢ ;a —f— 1

ol — LB + 1)

~t

(s — B, P H1 — s~ V=2 ds.

Here 1 < B, and K’:x,tf(aa b* ¢) = 0.

Casel.a < |b — ¢|. ]
Case lI.|b — ¢| <a < b + ¢. Here —1 < B < 1, and

o | [+ 1) . . L
K;,;;(a., b, c) = /___,_(m - mw) (T zz(bcﬂ)“ b=l — B2y 12
_ o (o + %)
(5.6) | 1 — B
SF e+ Bia = Bia+ 3]
CjQSt’ﬁ' EEE b -+ ¢ < d. Here B <« — 1., and
o 2"‘"""[“0( + 1 (E — BV |
K,pla,0,¢) = = ( o S ey T e
(5.7) N — PI(B + 1) (—1 — BYf+12
. F)

CFla+ B+ L2t
S la+ L.0+ 326 + 1-I—B)

For these results, cf. [17, p. 412} and [11].
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Nevt. we will rewrite the formulas (3.1), (3.7) and (3.8) in kernel form using
1). It follows from (3.1) that

A Mehler tvpe integral for Jacobi functions (also for complex n) which follows from
13.%) leads 1o an explicit expression for the Radon transform for Jacobi function
cxpansions (to be published by the author). The analogous Mehler type integral
tor Jacobi mhmmmﬂa was independentl y obtained by Gasper (yet unpublished).
-;,%wd the 5_8 vol. I, § 2.4(3) and § 2.8(11)]. The kernel form of (3.7)
rbtamed sasper [10]. It 1s

/2
Plcos 20,) = f REM(cos 205)K, ,(sin 0, sin 0, ,
(

)
(5.9} costl, costl,,costl;)(cos;)*#*1sin 05 dO,,

O<()3<—g-., O<02<-—§, > > —3.

Here, the range of integration is restricted, because a = sin @, sin 0, ,
b = costl, cos fh dnd ¢ > 1 would imply the condition of Case 1.

JAx) J v ] “J Az
(3.10) (J b "(;) S f Tl )Kz p(x, v, z)z2F T gz
X'y 2T+ 1)), Z# "
It follows by the homogeneity of K, , that
L - , T AP K ( X. V.~
(3.11) J LXMW (Ay)A ™7 “m“f A i WAL 2 JA2)z dz
o o 2T(a 1) A

By duality it follows from (5.9) that

X
L BY D, By Y v Yy " |
Y hEPR®H cog 20,)RP(cos 26,)R*P)(cos 20,
n=Q

K ﬂ{sm 0, sin 0«; , Cos 0, cos 0,, cos 05)

7:+ﬁ+v(sm 9 )

m

y

o . + 1 .
(hoh) =1 j (REPAT — x(1 + x) dx

+ 0,)]. It follows from (3.11) that

513 J LGN ) )it == dj = 82 Kaglx, v, 2
o 2T(a + 1)

) by duality one has to use that the function
le on the intervals (0, | ), (la — b], a + b)




é%fﬁg“ ]
wwm series
‘ombination of (3.12) and (5.13) gives

KNOWN CONVETgence properties

X
ARy

NENIN o YE N 1 VRPN YT
Z hm Rw {LOb 259 1. _.i? \

no== (0

. = 2 F N + 1 i(sin ¢, sin t, sin” ¢,
(5.14)

i W
I

) cos th cos ), cos ) !

JAAsm 6, sin 6,)J (4 cos 8, cos t/,)

%—ﬁ
g
i
R
.
€
S,
g
e 2o
R
“a,
S
=
2,
T
T

For (5.13 ) and (5.14) see Watson [17, pp. 411. 413]. Gasper [10] obta
by combining these two fmmmas of (513

& tson. E’ w rmuls S5.13) was
CQ pson [6, p. 352] to the Riemann-Green fu nction for the hy
(2.1).
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