Seminar notes on compactification and dimension in metric spaces

Collected by J. de Groot

We are investigating the following two related questions. (1)
What are internal necessary and sufficient conditions on the separablec
metric space M such that M can be compactified by adjoining an n.-
dimensional set? (2) Can one obtain a fruitful generalization of
dimension by replacing the empty set by some other class of spaces
in the definition? Here we give a summary of results to date. In
most cases, details have been omitted. The intention is to outline
what has been done, and to point the way to further problems in this
area.

ALL SPACES CONSIDERED ARE SEPARABLE AND METRIZABLE

I. DEFINITIONS. Much of our work is based on the notion of
"n-compactness", which we define here.

1.1. Definition., A compact space is called -J1-compact. M is said:.to
be < n-compact (notation: cmp Ms<n) if every point
in M has arbitrarily small neighbourhoods whose
boundaries are < n-1-compact.

1.2. Definition. Let p be a point in the space M. Then the compactness
of M at p (notation: cmp, M) is the smallest non-
negative integer n such that p has arbitrarily small

neighbourhoods whose boundaries are < n-1-comvact,

IT. MAIN CONJECTURE, Much of our work has been concerned with the
attemt to prove or disprove the following conjecture, or some modi-
fication of it (see VII),

2.1, Conjecture. If cmp M = n, then M can be compactified by an n-
dimensional set. (The converse is true - see 3.2.)
IIT. PROPERTIES OF n-COMPACTNESS, WITH EXAMPLES.
3.1, Proposition. For every M, cmp Ms dim M. (Hence, e.g.,
cmp(MX N)< dim M+ dim N)
3.2. Theorem. Let M be compact, and let ACc M, with dim A s n. Then
cmp(MN\A) <n.
3.3. Proposition. A closed subspace of an{n-compact space is s n-com-
pact,
An open subspace of an n-compact space (n2z0) is sn-
.compact,
3.4, Proposition. If cmp M=n, then M has a.countable base consisting
of open sets whose boundaries are < n-1-compact.
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3.5. Theorem. If M'c M, and cmpp M's n, then p has arbitrarily
small neighbourhoods Ue M such that
cmp [(bdryﬂ(@n M'}] < n-1.

3.6. Theorem, If cmp M=n, then for ecach -1$ks<n, therec is a closed
subset Fk of M such that cmp Fk = k.

3.7. Example. Let Mn pe 17 with an open face removed. We have

shown that cmp M, =1, cmp M,=2. It is conjectured that

/]
cmp Mn=n. See 5.3,

We proceed in 3.8 -~ 3.13 to establish the existence of n-compact

spaces for all n.

3.8. Definition., A space M is said to be totally imperfect if M con-
tains no uncountable compact subset.

3.9. Theorem., Let 3" ={x 1in ph- x| = 1} . Then 5" can be de-

composed into two disjoint totally imperfect sets,
which may be constructed so that each is the reflection
in the origin of the other.

3.10. Theorem. If the compact, n-dimensional space M is a union of

two disjoint totally imperfect sets, Mq, M2, then
cmp M, is n or n-1.
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3.11., Theorem. For each k such that —1<"< n-1, E” contains a set F.
such that cmp Wk = k. I" contains no sets of higher
cmp.

5.12. Theorem. [f M is estremely disconnected (i.e., if every cuasi-
component of M is a point) and dim M z1, then
dim M = cmp M. (See 5.1(c))

3.713. Remark, Since there are extremely disconnected spaces of each
dimension, 3.12 tells us that for each n, there is a
space M such that dim M = cmp M = n,.

3.14, Problem. If "point" in 1.1 is replaced by "compact set", the
class of O-compact spaces remeins the same. Is this
true for n>0? (See also VII)

3.15. Remark, If the answer to 3.14 is "no", then Conjecture 2.1 is
false., 74 OZW/Z:{M,,/'W”m olf 7 1 tanpe riold S, Gomjibct wt
Zularf“"/»?

IVZ O-COMPACT SPACES. We gather together here some results con-
cerning spaces M for which cmp M=0. This is the first (and best ex-
plored) special case of our theory.

4.1, Definition. A O-compact space is often called rim-compact (or

semicompact).
4,2, Example. Every locally compact space 1is rim-compact, but the



converse 1s false, as the following example shows.
Remove the sequence {1/n} from the closed unit inter-
val. The resulting space 1s clearly not locally com-
pact, but it is rim-compact (cf 3.2),.
4,3, Proposition, Every O-dimensional space is rim-compact.
4.4, Theorem. If M is rim-compact, then M can be compactified by a
O-dimensional set. (See 2.1.)
L .,5, Theorem. If cmp M = O, then any two disjoint closed subsets in
M can be separated by a closed locally compact set,
(See also VII)
4.6, Theorem. Let M = L)i M;, where, for each i, M, is closed in M,
cmp My £ 0, and M;N Mj (i # j) is locally compact.
Suppose further that the collection {Mi} is locally
finite. Then cmp Mg O. (See also VI,)

V. STATUS OF CONJECTURE 2.1.

5.1, ConjJecture 2.1 has been proved correct in the following cases.

(a) n =0 (4.4)

(b) dim M = cmp M

(c) dim Ms1 (4.4 and (b)) L) S eon orboia.v & E onl omp S 200
(d) M 1s a subset of the plane.

5.2, Example, The open ball, with an equator of rational points
added, has cmp 1, and it can be compactificd by a
1--dimensional set. Such a compactification is not
easy to find, however,

~.3. Remark, Fach space Mn (3.7) c¢an clearly be compactified by
a set of dimension n. Henze cmp Mns n, As a matter of
fact, Mn cannot be ccompactified by a sct of dimensilon
less than n. Thus if cmp M £ n, conjecturs -.1 is
falsc,

VI. 5UM AND DECOMPOSITION THEOREMS.

Here the analogy with dimension theory is poor. The conclusion we

might draw from the results of this section is that almost any

reasonable conjecture in this area is false.

6.1. Example. Adding a single point can raise or lower the cmp of
a space by 1. (Consider 3.7, and locally compact, non-
compact spaces)

6.2. Proposition. Adding a point cannot raise the cmp of a space by
more than one. The only case adding a point can lower
cmp 1s that which occurs when a locally compact space
is compactified by adding a point.
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6.3. Example., Adding a compact set can increase the cmp of a space
by any amount. (3.7.)

6,4, Example. A, B closed in M = AUB, cmp A = cmp B = 0, while
cmp M = 1,
6.5. Example. A, B closed in M = AuB, cmp A =cmp B=1, cmp AnB =0,

and still cmp M = 2,

6.6. Theorem. If A and B are closed in M = AuB, then cmp Ms cmp A +
+ cmp B + 1,

6.7. Corollary. If A = LJ:=1 A,, where for each i, A, is closed in A,
and cmp A; = O, then cmp As<n. (See also 4.6,)

6.8. Example. It is not true that every space of cmp n can be de-
composed into n+1 closed subsets having cmp O.

6.9. Example. Not every space of cmp n can be written as a union of
a space of cmp=<0 and a space of dimsn, even if these
latter spaces are not required to be closed in their
union.

VII., SEPARATION AND Cmp.
It appears to be difficult to prove separation properties for cmp,
even 1in separable metric spaces. However, it seems likely that such
properﬁies willl be closely bound up with the problem of compactifying
a8 space by a set of small dimension.

We shall proceed as follows. We define a "separation cmp", called Cmp,

and investigate its properties independently., Whether or not

cmp M = Cmp M for all M, we can conjecture that 2.1 is true if cmp is

replaced by Cmp.

7.1. Definition, We define, by induction, the expression @mp Ms n.
Cmp M = O if and only if cmp M = O, For n 21, Cmp Mg n
1f and only if every closed set has arbitrarily small
neighbourhoods whose boundaries have Cmp s n-1,

7.2. Proposition, If M can be compactified by a k-dimensional set,
then Cmp M< k.

7.3. Problem, Is it true that for each M, Cmp M = cmp M? (Note that
this equality is a consequence of 2.1.)

7.4, Proposition., If M 1s a subset of the plane, then Cmp M = cmp M,
(5.1(a).)

7.5. Remark. It seems to be worthwile to look for a subspace M of
E> such that Cmp M =2, while cmp M = 1.

7.6. Remark. Theorem 4.6 explains our starting point in defining Cmp.

T.7. Exercise, We must investigate the extent to which our known pro-

perties of cmp (for example, those in III) carry over to Cmp. In most

cases, this appears to be only a routine check.
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The numbering of these results follows the organization of the

previously issued notes.

5.4, Proposition. If C,],C2 are two countable, dense in themselves
sets on the surface of the open sphere 0, then

M1 = OuC1 and M2 = OUC2 are homeomorphic.

5.5. Example. Let O be the spen ball, D an open "disc" on 1its
surface, and B a countable dense set on the
boundary of D.
Let M = OuDuB. Then M has cmp 1, and M can be
compactified by a one-dimensional set.

5.6. Example. Essentially due to M. E. Rudin.) Let O be the
open ball, I an arc on the surface of O, and C a
countable, dense in itself set on O which "spirals
down" to I. Then M = OUuIouC has cmp 1, though
OulI has cmp 2. Using 5.4 a one-dimensional com-
pactification of M can be constructed.

There is some hope that an answer to the main conjecture may be
found by "dualizing" certain dimension theoretic results. For example,
the decomposition theorem of dimension theory can be replaced by the
following structure problem.

6.10. Structure Problem., A space has cmpsn (n21) if it is the inter-
section of at most n + 1 spaces of cmp O, whose

union is compact.

Ubserve that the decomposition theorem, together with a positive
answer to the main conjecture gives a positive solution to this

structure problem.

6.11. Definition. Suppose AcBcC. B is said to be closed in C modulo
A 1f BNA 1is closed in C\A,

The counterpart of the sum theorem of dimension might be expressed
in the following interesting problem.

6.12. Problem: Ir 19 M= N M 2%) U M, = ¥ (compact),
i i
3°) each M, is closed in M modulo M, and 4°) for
each i, cmp Miﬁfh Then cmp Mg n.

So far, problem 6.12. is known to have an affirmative solution
only in the special case of two sets M1r1M2 = M where cmp M1 = cmp M2=(l
Thus we have here an unsolved conjecture concerning cmp O.
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4.7. Example. If dim M = n and cmp M = O, there does not always
exist a compactification M of M such that dim M = n
and dim (M\ M) = O.

Remark. Objection has been raised concerning the appropriate-
ness of the terms n - compact, and cmp. It would per-
haps be more accurate to use a term such as "defi-
ciency" or "defect" of compactness, and write dcf M in

place of cmp M.



