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1. Introduction. The fact that every distributive lattice can be em-
bedded into a Boolean algebra is a trivial consequence of the well-known
theorem which states that every distributive lattice is isomorphic to a
ring of sets. This method of proving the embeddability is not algebraic
and makes use of the axiom of choice. One should like to have a more
direct algebraic construction of the embedding. An attempt in this
direction has been made by Mac Nemw.LE [3]. He first constructs a Boolean
ring R containing the given distributive lattice D as a subset. In order
to make the ring operations of R compatible with the lattice operations
of D he takes an ideal I in R and forms the residue class ring R/I. It
remains to prove that two different elements of D are incongruent
modulo I; this fact has not been proved correctly in the paper of Mac
NEmLE. I have not been able to fill out this gap in his proof without
assuming the embeddability. If one assumes that D can be embedded
into a Boolean ring B, it is easy to construct a homomorphic mapping
of R into B, which leaves the elements of D invariant and turns all
elements of I into zero. From the induced mapping of R/I into B it follows
that different elements of D are incongruent modulo I.

In section 2 of this paper I give a new proof for the embeddability,
which does not make use of the concept of a Boolean ring. Some heuristic
remarks will perhaps facilitate the understanding of this proof. Let us
agsume for a moment, that we have a Boolean algebra B, which contains
D as a sublattice. Without loss of generality we may assume that B
is generated by D. We denote the greatest and least elements of B by
1 and 0. It is well-known, that every element of B may be put into the

H
form |J (a;, N b}), in which ¢, and b, are elements of D or 0 or 1. To
k=1
start the construetion we extend D to a distributive lattice D’ by adjoining
a new least element 0 and a new greatest element 1 to D (this is done
even if D has already a greatest or least clement: we return to this
question in section 4). We form the set W of all finite non-empty sets
of pairs (a, b) with a, b € D'. It will be necessary to introduce indentifi-
cations in W. The operation U is defined as set-theoretic union and gives
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no difficulties. To see how N has to be defined, we remember that the
pair (a,b) stands for a Nb’; therefore we define (a, b) N (c,d) to be
(@Nc,buUd); for sets of pairs this construction is applied to all combi-
nations of pairs of the first and the second set. In order to prove the axioms
of a distributive lattive we must be able to cancel those pairs from a
set of pairs, which are redundant because they represent an element of
B < another element of B, which also is represented in the set. That
this is possible follows from lemma 1.1, which gives a necessary and
sufficient condition for the inequality a N bd'>c¢ N d’, formulated in
terms of the lattice generated by «, b, ¢, d.

Lemma 1.1. In a Boolean algebra a N b’ zc¢ Nd’ holds if and only
if eccaudand dxbne.

Proof. Assume a N b m>c¢cnd. Then « Ud> (e nbd)uds>
>(cnd)ud=cUdwe. d>bnc is proved similarly. Now sgssume
c<aud and dxbne Then cnd<lavdiNnd Nne=and Ne<
<an’ue)nc=anbd Nnecand.

The identifications i. and ii. of section 2 are defined according to
lemma 1.1. With this identification all axioms of a distributive lattice
can be proved. To get complements we remember that the complement

of C) (@ M b)) i8 ("] (ax U by); this element may be put again in the
k) k=1 .

form (J(e;Ndy). Identifications v. and vi. guarantee that the corresponding
=1

sets of pairs are really complementary. So we get a Boolean algebra.
Finally we have to construct an isomorphic mapping of D into this
Boolean algebra. We map a € D onto the pair (a, 0). Identifications iii.
and iv. guarantee that this mapping preserves U (for N no identifications
are needed). It remains to prove that the mapping is one-to-one, i.e.
that if (a, 0) and (b, 0) are identified, then a=b&. The proof of this state-
ment is inspired by the following considerations. If (a, 0) and (b, 0) are
identified, there is a chain of primitive identifications of the types described
above, beginning with (a, 0) and ending with (b, 0). At an intermediate
stage we have a set of pairs, which represents the element a. So every
pair of this set has to be <a. Now it is possible to prove formally that
if a pair (;a, f)is > all pairs of & set of pairs in the sense of lemma 1.1.,
this property also holds after a primitive identification, applied to this
set of pairs. From this a=05 is easily deduced.

The Boolean algebra obtained in this way is a free extension of D in
this sense, that it can be mapped homomorphically into every other
Boolean extension of D. This follows easily from the fact, that all identi-
fications made correspond to equalities in every Boolean extension of D.
In section 4 we discuss the question whether this homomorphism is an
isomorphism. In general this is not true, but exceptions are only caused
by the greatest and least elements. If D has a greatest element g, our
extension B has a greatest element 1, which is different from ¢. but there
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exists also a Boolean extension of D with g as its greatest element. If
we eliminate this exception and the corresponding exception for the
least element, isomorphism can be proved.

In section 3 we discuss the relation between our result and a result
of DmLworTH [1].

In section 5 we show that it is possible to decide in a finite number
of steps, whether two sets of pairs must be identified or not. This proves
that our method is really constructive.

2. Let D be a distributive lattice. We take two new elements 0 and 1,
and take the set D'={D, 0, 1}. By putting 0<z and z<1 for all z € I,
D’ is made into a distributive lattice. Let V be the set of all pairs (a,b) with
a,b €D and let W be the set of all non-empty finite subsets of V. The
elements of W are called sets of pairs. We give a list of elementary trans-
formations, which are applicable to elements of W. '

i Letxe W, (a,b)ex, (c.d)ea, (a,b)#(c,d), ccaud and d>bNe.
We form x, € W by cancelling (¢, d) in «.

il. Let xeW, (a,b)enx, (c.,d)eV, (c,d) ¢x, c<aud and d>bnNe.
We form x;, € W by adding (¢, d) to «.

ili. LetxeW, (a,¢)ex, (b,c) ex. We form «; € W by first cancelling a
(possibly empty) subset of the set consisting of (a, ¢) and (b, ¢) from
« and then adding (if necessary) (@ U b, ¢) to the obtained set of pairs.

v. LetaeW, (aUb,c) ex. We form o; € W by first cancelling or not
cancelling (a U b, ¢) from « and then (if necessary) adding (@, ¢) and
(b, ¢) to the obtained set of pairs.

v. Let xeW, a,...,a, b,...,b, ¢c,deD'n>1), (gN¢,bud)ex

for k=1, ...,n, (¢, U Ud)ex, (N b Nec, d)ex, and, if n>1, for
k=1 k=1
every j with 1<j<n—1 and every set i, ..., %;, ky, ..., k,_;, which is

a permutation of 1,...n, ((7\ b, Nec, U1 @, Y d) € x. We form
r=1 -1
&, € W by first cancelling a (possibly eI;pty) subset of the pairs
mentioned in this point from « and then (if necessary) adding (c, d)
to the obtained set of pairs.
vi. Let xeW, ay,..,a, by, .. b, ¢, deD(n>1),(c,d)ex. Form
o, € W by first cancelling or not cancelling (c, d) from « and then

adding (if necessary) (a. Ne, by U d) for k=1, ..., n, (c, O o Y d),
: k=1

(M b N, d), and, if n>1, for every j with 1<j<n—1 and every

k=1

set 4y, ...,%, Ky, ...,k,_; which is a permutation of 1,...,n,
i n—j

Nb, Ne Jag, v d) to the obtained set of pairs.

r=1 u=1

Obviously i. and ii., iii. and iv., v. and vi. are mutually inverse trans-
formations. We define an equivalence relation on W by putting « ~ «,;
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if and only if a finite (possibly empty) sequence of clementary trans-
formations exists, which, applied successively on «, yield «,.

We define a binary operation U on W by taking for x U # the set-
theoretic union of a and B. The following lemma is trivial.

Lemma 2.1. Ifeo, 0,8, 86 W,x ~a;, f ~ B, thena U f ~a; U By

We define a binary operation N on W in the following way: & N g is
the set consisting of the pairs (@ N ¢, b U d), where (a,b) runs through
o and (c,d) runs through B. Obviously this operation is commutative.

Lemma 2.2, Ifx, o, 8,8e W, x ~x, p~pf,thenanpg~a, N4p.

Proof. We may restrict ourselves to the case that §;==p and that «,
can be obtained from « by an elementary transformation.

i. Obviously sy M B Canp. The only pairs, which possibly are
elements of « N # and not of x; N B are pairs of the form (c Ne, d U f)
with (e, f) € f. They may be cancelled according to i., as (@ N e, b U f) e
exnBand cNne<laneyudufand dUuf=bUf)ncne.

il. « is obtained from «; by application of i.

iii. According to (a Ub)Ne=(a N e)U (b Ne), by iii. we may cancel
those elements (@ Ne, ¢ U f) and (hNe, ¢ U ), which are not in a; N B
and add, if necessary. ((a U b) Ne,c U f) for every (e, f) € §.

iv. « is obtained from «; by application of iii.

v. It is obvious that, for every (¢, f) €8, v. may be applied with
(c, d) replaced by (ENne,d N ).

vi. o is obtained from «, by application of v.

Let B be the set of the equivalence classes of W with respect to ~.
According to lemm@s 2.1 and 2.2 the operations U and N may be
definedYon B with fepresentants.

Lemma 2.3. B is a Boolean algebra.

Proof. Obviously U is idempotent, associative and commutative.
That N is idempotent, follows from the fact, that if (az,b) € V and
(c,d) e V, and if (a,d) and (@ N ¢, b U d) are elements of a set of pairs,
we may cancel (@ ¢, b U d) by i. if this pair is different from (a, b).
Associativity and commutativity of N are obvious. The absorption laws
(wUv)Nv=v and (¥ Nv) U v -v are proved in the same way as the
idempotency of N. The distributive. law (u U v) Nw=(u N w) U (v N w)
is obvious. The element ¢ of B, which contains the set of pairs consisting
of the pair (1,0), is the greatest element of B. This follows from the fact,
that, for every (a,b) eV, a<1Ub and b0 N a; therefore g U u=g
for every u € B. The element I of B, which contains the set of pairs
consisting of the pair (0, 0), is the least element of B. This follows from
the fact, that, for every (a,b) eV, 0<a U 0 and 05N 0; therefore
lUu=wu for every w € B. The complement of an element of B may be
obtained in the following way. Take an « € W from this element; let
(ay, by), ..., (ay, b,) be the elements of x. Form «' € W consisting of the

pairs (1, O @), ((n\ b,10) and, if n>1, for every j§ with 1<j<n-—1 and
k=1 k=1
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every set il, . ,z',, ky, ..., k,_;, which is a permutation of 1, ..., n, of the

pair ﬂ by, U O, )- The element of B conta,mmg «' is the complement

y=1

of the glven eleme nt. To prove this we first consider « U «'. This may
be transformed by v. into the set consisting of (1,0). Now & N &’ consists
of pairs which all have the form (a, b) with a <b. It is easy to prove that
such a set may be transformed by i. and ii. into the set consisting of
(0, 0). This completes the proof.

To prove that B contains a sublattice isomorphic to D, we need the
following lemma.

Lemma 2.4. If (e,/) eV, if aeW,if o e W, if a ~x, and if

ga <eUb , '
=fNa

holds for all (a, b) € &, (2.1) also holds for all (a, b) € o,.

Proof. It is sufficient to prove the lemma for the case that «, is
obtained from x by an elementary transformation. Now all cases are
trivial except case v. In that case we are given the following inequalities:

(2.1)

G Ne=leUbUud bhud=fna.nc

n n
cxeVUJagqud .  Uagud=fne
k=1 . k=1

. ;
NhnNnec<eud
k=1 k=1

i ne-f 7
Nb,0e< eUUak ud, Uarqc vdz=fnb, nNe.

] p=1 p=1 wel

We have to prove c<eUd and d>fN¢. By mathematical induction
n—j

with respect to § we prove c<e U ) &, Y d for every j with 0<j<n—1
pe=1

and for every set of different indices ky,...,k,; with 1<k,<n

(u=1,...,n—7). For j=0 this inequality is given. Now take j>1 and

an index ! with 1<l<n and I#k, for all u. By induction we have

n-J

c<eV U, UnUd, c< quak Ugmne)ud <
u=1 po=1

/eUUak U b uUd.

H#=1

If 4, ..., is a set of complementary indices of k,, ..., k,_;, we get
n—j
eUUak u(ﬂb Jud,
p=1 p=1

eUUak u(ﬂbi’nc)ud{\quak ud.

=1 =1

Thia nroves the ineauality. Tf we take i=n—1, we get c<eUaq U d



for all I=1,...,n

ceVU(gnNecyud<eubud,c< eu(m byuv d,
cgeu(ﬂbknc)udSeud.
k=1

The other inequality d>f N ¢ is proved dually.

We now define a mapping 4 of D’ into B by taking for #(a) the element
of B containing the set of pairs consisting of (a, 0). That & is one-to-one
follows from

Lemma 2.5. If « € W consists of the pair (a, 0) and &, € W of the
pair (b, 0) and if & ~ «;, then a=5.

Proof. a<avu0,0>0nNa, 50 we may apply lemma 2.4 with e=a
f=0. This yields b<a U 0=a. Similarly we find a<b, so a=b.

That 3 preserves U and N is trivial (for U we need iii.). So # is an
isomorphic mapping. We naw have proved our main theorem.

Theorem 2.1. If D is a distributive lattice, a Boolean algebra
exists, containing D as a sublattice.

We shall denote by B(D) the Boolean algebra, which is obtained from
D by the construction described in this section. For the sake of simplicity
we identify 1)’ with its isomorphic image #(D’). Then 1 and 0 are the
greatest and least elements of B(D).

B(D) is a free extension of D in the following sense.

Theorem 2.2.. If B, is a Boolean algebra containing D as a sub-
lattice, a homomorphic mapping of B(D) into B, exists, whose restriction
to D is the identical mapping.

Proof. We first map W into B;. If x € W and if (al, )5 cees (@ns Dy)

are the elements oi ax, we map x onto the element U (2 O b)) of B
k=
(here for 1 and O bhx greatest and least elements of B, have to be taken).

It is easy to show $hat equivalent elements of W have the same image
in B, (for i. and ii.;lemma, 1.1 is used). So we get an induced mapping
of B(D) into B,, which satisfies all properties required.

3. In this section we discuss a result of R. P. DinworTr [1], which
is closely related to ours. He has proved that every lattice P can be
embedded into a la.ttlee N, in which every element has a unique comple-
ment. One could guess that our result is a special case of this theorem.
This is not the case, except if P has only one element.

Theorem 3.1. If P is a distributive lattice with at least two
elements, the lattice N obtained from P by the construction of Dilworth,
is not distributive.

Proof. For terminology and notation we refer to [1]. In this proof ¥
references to lemma’s and theorems are to [1]. If a € P, then ae N
(lemma 3.1). We prove a* € N. Sub-polynominals of a* are a and a"i
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Now a ~ (X*)* is impossible by theorem 2.10. If a* ~ (X*)*. then
@~ X* by theorem 2.5, and this again is impossible by theorem 2.10.
So a* € N and therefore a’=a* foralla e P. If a, b € P and a’ D &', then
a* D b* and, by theorem 2.5, a ~b. Theorems 2.3 and 1.3 now yield
a=b. So we have found that, if as£b, a’ and b’ are incomparable. Now
by assumption P has at least two elements; then P has also two elements
a and b with a>b. If N would be distributive (and therefore a Boolean
algebra), this would imply 4’ >a’. So we have got a contradiction: N is
not distributive.

If P has only one element, N is the four-element Boolean algebra.

4. We now discuss the question whether the homomorphism of theorem
2.2 is an isomorphism. We may put this question also in the following
form: is the least Boolean extension of D determined uniquely up to
isomorphism ? In general this is not true. Assume e.g. that D has a greatest
element g. This element is different from the greatest element 1 of B(D).
We consider the sublattice B, of B consisting of those elements z of B
satisfying x <g. Then B, is a Boolean algebra containing D as a sublattice,
but it is clear that no isomorphic mapping of B onto B, exists, which
leaves invariant all elements of D. With an eventual least element ! of
D we may proceed similarly. So if D has a greatest and a least element,
we have found four essentially different least extensions; if D has a
greatest and no least, or a least and no greatest element, we have found
two essentially different least extensions and if D has no greatest and no
least elements, we have found only one least extension. We prove that
these are the only possibilities.

If D contains a greatest element g, we form D"={D, 0} and put 0<z
for all x € D”. We construct a Boolean algebra By(D) as in section 2
with D’ replaced by 7)". Then By(D) has g as its greatest and 0 as its
least element. Similarly we construct (if possible) By(D) with greatest
element 1 and least element I and By(D) with greatest element g and
least element 1.

Theorem 4.1. Let D be a distributive lattice and B* a Boolean
algebra containing D as a sublattice and generated by D. Let 1* and 0*
be the greatest and least elements of B*. There exists an isomorphic
mapping of B*, which leaves invariant all elements of D, onto

B(D), if 1* ¢ D and 0* ¢ D,
By(D), if 1* € D and 0* ¢ D,
By(D), if 1* ¢ D and 0* € D,
By(D), if 1* € D and 0* € D.

Proof. We introduce the symbol By to denote B(D), By(D), By(D)
or By(D) corresponding to the four cases of the theorem. In the same
way as was done in the proof of theorem 2.2 we can construct a homo-
morphic mapping ¢ of By into B* leaving invariant all elements of D.
As B* is generated bv 7). this is a mapping onto B*. So the only thing
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we have to prove is, that the mapping is one-to-one. We take two
inequivalent sets of pairs « and # and have to prove that their images
are different. Let (ay, by), ..., (a,, b,) be the elements of & and (c,, dy), ...,
(¢m> @) the elements of 8. We now take the finite set U consisting of the
elements a;, b, ¢, d,(k=1,...,n; I=1,...,m), and moreover in the
first case of the theorem of 1 and 0, in the second case of g and 0, in the
third case of 1 and [, and in the fourth case of g and I. The sublattice
D, of By generated by U and the Boolean subalgebra By of B, generated
by D, are also finite. We also form the set U* consisting of the elements
1*, 0% ay, by, ¢, 4y (k=1, ..., n; =1, ..., m) and the sublattice D}, of B*
gencrated by U* and the Boolean subalgebra B’* of B* generated by
Df. Obviously ¢ induces an isomorphic mapping of D; onto D! and a
homomorphic mapping of B; onto B'*. Moreover the elements of B;
which contain x and g are also elements of B{. It is sufficient to prove
that the mapping of B; onto B’* is isomorphic. This is implied by the
following lemma, in which we have reduced the problem to finite lattices.

Lemma 4.1. Let D be a finite distributive lattice with greatest
element 1 and least element 0 and let B, and B, be Boolcan algebras
containing /) as a sublattice and generated by D. Let 1 and 0 be also
the greatest and least elements of B, and B, There exists a (uniquely
determined) isomorphic mapping of B; onto B,, which leaves invariant
all elements of D.

This lemma follows from some well-known theorems about finite
distributive lattices. We call an isomorphic mapping ¢ of a finite distri-
butive lattice 4 onto a ring of sets with carrier § reduced, if ¢(0)=4¢,
@(1)=8 and if p € ¢p(x) < q = p(x) for all x € 4 implies p=q. The well-
known representation of 4 as a ring of sets with join-irreducible elements
5= 0 is reduced in this sense. Two reduced mappings of 4 are essentially
equal: there exists a one-to-one mapping between the carriers which
maps sets corresponding to the same element of 4 onto each other. If 4
is a Boolean algebra a reduced representation of 4 maps 4 onto a field
of sets.

To prove our lemma we take reduced representations of B; and B,
as fields of sets F, and F, with carriers S, and S, (e.g. with join-irreducible
elements). These representations induce representations of D as rings of
sets R, and R, with carriers S; and S,. It is easy to show that these
representations are also reduced. So there exists a one-to-one mapping
v of 8; onto S, which maps elements of R, onto corresponding elements
of R,. It is edsy to infer from this, that ¢ induces an isomorphic mapping
of F, onto F, and therefore also of B; onto B,; the latter induces the
identical mapping on /). This completes the proof.

From the results of this section we see why in section 2 D was extended
with elements 0 and 1 even if it had already least or greatest elements
itself. To get the free extension this is necessary in any case.
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5. We now discuss the following question. Is it possible to decide in
a finite number of steps, whether two given sets of pairs are equivalent
or not? We assume that D is completely known. We use the notation of
section 4. We take two sets of pairs x and g and form U and D, as in the
proof of theorem 4.1.'first case. As D, is a sublattice of D’, it is known.
The least Boolean extension B, of D, is uniquely determined up to iso-
morphism, and may be constructed in a finite number of steps. Further-
more B, is isomorphic to a subalgebra of B(D) containing the elements,
which contain « and §. Now x and B are equivalent if and only if the
n m

elements (J (@, N &) and {J {4, nd) of B, are equal. This may be
k=1 teml

decided in a finite number of steps.

This eonstruction gives a method to determine equivalence of sets of
pairs, which could serve as a definition. Perhaps this definition could
lead to a new proof of embeddability. .

Finally we remark, that it is possible, using metamathematical or
topological methods, to prove the embeddability of every distributive
lattice, if the embeddability of every finite distributive lattice is known
(ef. [2] and [4]). These proofs, however, make use of the axiom of choice
((i6del’s completeness theorem or Tychonoff’s theorem).

Mathemaiisch Centrum, Amsterdam
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