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Abstract. A van der Pol equation with sinusoidal forcing term is analyzed with
singular perturbation methods for large values of the parameter. Asymptotic approxima-
tions of (sub)harmonic solutions with period T = 2n(2n — 1), n = 1, 2, ... are constructed
under certain restricting conditions for the amplitude of the forcing term. These condi-
tions are such that always two solutions with period T = 2n(2n + 1) coexist.

1. Introduction. In this paper we consider a van der Pol equation for large pa-
rameter values with a periodic forcing term of a same order of magnitude:
d* d
—(E-J;- + v(x* ~ 1)—5— + x == b(v)cos t, v > 1, (1.1)
with b(v) = O(v). This equation was investigated with analytical-topological methods by
Littlewood [8], who proved the existence of (sub)harmonic solutions of period

T =2n(2n — 1), n=1,2,.... (1.2)

Littlewood stated that for b = av, « > 2/3 only globally asymptotically stable solutions of
the period 27 are found (see also [9]). The proof of this statement has been given by
Lloyd [10]. For decreasing o there also occur solutions of period 6n. As o decreases
further the 2z-periodic solution disappears, and « passes alternately intervals where one
subharmonic solution of period T = 2n(2n — 1) exists and intervals where two subhar-
monic solutions of period T = 27(2n + 1) coexist (n =1, 2, ...). There are also intervals
of more complicated behavior,

In Fig. 1 we give the overlapping domains Q, in the (b/v, v)-plane where a solution of
period (1.2) with n < 4 is found. The figure is based on numerical results obtained by
Flaherty and Hoppensteadt [2] for 1/v > .01. We see that for v — co these domains tend
to a common boundary point (b/v, v) = (2/3, c0). In this paper we will analyze the local
structure of the domains Q, near (b/v, v) = (2/3, o). For that purpose we write

b=oav+ f. (1.3)
Using singular perturbation techniques, we will construct asymptotic approximations of

~ * Received March 13, 1979; revised version received May 2, 1979. The author is grateful to E. J. M. Veling
for reading the manuscript and for some valuable remarks.
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F1G. 1. The domains Q, with a periodic solution T = 2n(2n — 1).

(sub)harmonic solutions of (1.1), (1.3) with « = 2/3. The periods of these solutions satisfy
(1.2) with n independent of v. In the process of construction of the approximation we will
have to impose conditions upon f of the type

B, < B <P, (1.4)
to approximate symmetric solutions of period T = 2n(2n — 1). It turns out that
gn'(Bu-I-l =§n—1 <Bn# (15)

so that near (b/v, v) = (2/3, o) the domains Q, overlap as sketched in Fig. 2.

This overlapping of intervals differs slightly from analytical results [5, 6, 8], as we only
find intervals with two subharmonic solutions of period T = 2r(2n + 1). In [3, 4] the case
a =0 was also analyzed with asymptotic techniques. There the subharmonics had a
period T = 2nn with n= O(v). The choice a= 0 or « = 2/3 leads to solutions with
completely different asymptotic behavior, and this makes it necessary to consider them as
separate problems. In [3] we met an unusual structure of two-variable expansions
matched with boundary layer solutions. We will see here that the case q = 2/3 also
exhibits an exceptional structure. The global behavior of the solution depends strongly
on local conditions: each time the solutions pass a neighborhood of the lines x = + 1
some quantity is increased by a given value. When this quantity, being an integration
constant in the local asymptotic solution, reaches a threshold value the solution enters a
phase of rapid change characteristic of a relaxation oscillation. This part of the solution
is approximated by a boundary layer type of solution. For the regions sketched in F ig. 3
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F1G. 2. Local structure of the domains Q, near (b/v, v) = (2/3, o0) derived from the formal asymptotic analysis.
Exact values are given in Fig. 1 (dotted lines) for n < 4.

separate local approximations have been constructed from the differential equation. Inte-

gration constants in these local asymptotic solutions are determined by matching pairs of
local solutions of adjacent regions.

Thus, in this paper we investigate the equation

d* d
dtf Fy(x? — 1);5—- + x = (§v + B)cos t. (1.6)
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F1G. 3. Characteristic regions for a periodic solution of (1.6).
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It is expected that the study of this problem with a critical forcing term may bring us into
a position to deal successfully with the more complicated problem of 0 < o < 2/3. It is
anticipated that periodic solutions of this problem have a behavior in which elements of
both the case « = 0 and « = 2/3 are present. [t is remarked that the limit cases oo = 0 and

a = 2/3 are not covered by the recent analytical studies ([5, 6, 10]), where, respectively,
0 <a<2/3 and o > 2/3.

2. Asymptotic solutions for the regions A4,,. It is supposed that in the regions A4,
where 1 < x < 2 the solution can be expanded as

.)C(t; F) = xmﬂ(t) + v 1':“::ml(t) + . (21)

Substituting (2.1) into Eq. (1.6) and equating the terms of order O(v) and O(1), we obtain

(x2o — 1) dz;"" — % cos t, (22)
d d dx?
(5o = 1)t + Do Xy 10 = = S8 —x o + fcos ¢ (2.3)
Integration of Eq. (2.2) gives
ix2 0 — Xpmo = % sin t + CBV, (2.4)

Since in the regions A,, the value of the left-hand side of this equation varies from —2/3
to 2/3, we have to take C§" = 0. For this value of C§" the solutions of (2.4) read

Xmolt) = 2 cos{z(arccos(sin t) + 2#j)}, j=0,1, 2. (2.5)

As x,o has to be within the interval (1, 2), we select the branch with j = 0. Integrating
(2.3), while making use of (2.2), we obtain

(2o = Dot = — 3 é;:s_t e J;_Ixmu(-c) dt + B sin t + C™, (2.6)
tm = 2nm — 1/2. (2.7)
When t approaches t,, from below, x,,, and x,,,; behave as
Xmo = L= (t = t,)/A/3,  Xmi = K, /(t — t,), (2.8a,b)
where
Kp= -3 +8/3(=CP+1),  I=| xpolt)dt=6y3  (29ab)

I|hfm—l,

Thus, for ¢ T ¢, the asymptotic solution (2.1) loses its validity.

3. Asymptotic solution for the regions B,,. We analyze the local behavior of the

solution near (x, t)= (1, t,), m=1, 2, ... by introducing a stretching transformation in
both the dependent and independent variable:

x=14V,(EW7?, t=t,+ &% (3.1a,b)

E';-
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Substitution into the differential equation yields

v, v,
mo —~2yta il Vg P - ¥
gz TV 2V + v Vi) T + 1+ Vv

-3+ 2o

V

éSv“3a
PO S
We see that for o = y = 1/2 the second derivative becomes of the same order of magni-
tude in v as the leading terms constituting Eq. (2.2). Multiplying the equation by v~ 1/
and letting v tend to infinity, we obtain the limit equation

&2V . V..
m 2V m
gz T om0 gz

= 3¢ (33)

The function V(&) expresses the local limit behavior of the solution for v — co. In order
to match the solution of region A,, it must satisfy

g Ko
o> | 3.4
for & — oo (see (2.8)). Such a function indeed exists and has the form
Vmo(f) = g F!K'"(_aé) . = %/ /3, (35)
Dy, (—a¢)

where D,(z) is the so-called parabolic cylinder function of order u (see Whittaker and
Watson [11, p. 347]). For z — co we have that

D, (z) = exp(— 41 ~ e =) .

while for z - — o0

D, (z) = exp(-——-%zz)z“{l up — 1) ; }

H 222
Vzn 1,2 -wm-*-ljr (‘u+1)(‘u+2) : }
F(= 1) exp(3z”)z 1+ > 2 1 .
Assuming that K,, < 0, the function ¥,,,(¢) will be regular for finite &, while for ¢ — oo
s K,+1
| 48 =~ - . 3.6

On the other hand, at region A,,, { the solution is approximated by

. 1 1 (m+1)
x(t)-l | (t\/;m) + I+I\(/t3_fi:‘) 18)

as t | t,,. Consequently, (3.6) matches the local solution for region 4,,, , if
Kp=—%+3/3(8—C{""")

+ O((t - tm)_s)
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or, using (2.9a),
C({n+ 1}y — C{lm) — ] (3'7)

with I = 6,/3 (see (2.9b)). Obviously, we will arrive in the situation that for some m, say
m= n,

Kn—l £0<KH-—<-%\/3I (38)

(if n = 1, inequality (3.8) reads K, > 0). The parabolic cylinder function D (z) with u > 0
vanishes for certain value(s) of the argument z. Let z, be the largest zero. For & 1 &, with
zg = aCy wWe have

Vuol€) = (€ = £o)™" + 30* (3085 — K, — $)(& ~ &), (3:9)

50 V0 — —oo and the local solution at region B, becomes singular at & = &,.

4. Asymptotic solution for region C. At this point the solution enters the boundary
layer region C with local coordinate

n=(t—t,— Ev . (4.1)
We assume that the solution can be expanded as
x = Wo(n) + v Wi(n) + v RPWy(n) + . (4.2)

Substituting (4.1) and (4.2) into (1.6) and equating the terms of order O(v?) and O(v) we
obtain, respectively,

d*Wyldn?* + (W — 1) dWy/dn = 0, (4.3)
d*W,jdn* + (W3 — 1) dW,/dn + 2W, W, (dW,/dn) = 0. (4.4)
The solution of the first equation matches the local solution for region B, if

Woln) ~ 1+ 1/ (4.5)

as 17— — oo (see (3.9)). This condition is satisfied by the class of solutions

1 1, Wy +2
- = log ——— = .
=, T3 8 T, — N+ Ho. (4.6)

where the integration constant H, is found from matching with higher-order terms of the
asymptotic solution for region B, . It turns out that

Hy,=¢log v+ % log 3. (4.7)
From (3.9) we also deduce that W, should behave as
Wiln) = 3a*(3a*C5 — K, — 3y (4.8)
for # — — o0, so that the integrated equation (4.4) will have the form
D W - )W, = a2 — K, — B (49)

dn

-
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On the other hand, for n » 1/6 log v we have
Wo(n)= —2 + O(v'/2e™ 1), (4.10a)
Wi(n) = 3a*(Ga*ss — K, ~ 3) + O(e™™"). (4.10b)
The boundary-layer solution matches the solution for region A4, if
Xioltn + Eov™12) + v7 1 (t, + EovT1?)
= 24 da2(arE — K, — i o(),  (411)

where X,,(t) are the coefficients of an expansion for region A4, of the form (2.1).

5. Periodicity conditions. Let us assume that the periodic solutions we are looking
for are symmetric in the sense that x(t) = —x(¢t — $T). Then we have completed the local

approximations. Transposing (4.11) to the complementary phase t = t, —  + £, v~ 12, in
region A; we have

Xiolt; =+ Ev Y3+ v x (b, — 4+ EQvT12)
-2 4~ Ky~ A+ oY) (5)

or

K,= —7+2/3(8+CY’—3I) (5.2)
Using (2.9a), (3.7) and (5.2), we find

2K, + 1) — (n — HI. (5.3)

\/3

From (3.8) we know that K, ranges from 0 to 9, so f8 has to satisfy
33 -n<B<3/3(E-n, n=23 .. (5.4)
Solutions of period 2r are found for > —7/6.,/3.

- 6. Some remarks. Our asymptotic results hold for values of f§ that are independent
of v and satisfy the inequality (5.4). Because of this the domains Q,_, and Q,,, are
separated near (b/v, v) = (2/3, c0) by a sectorial domain T, of thickness o(1) as v — co0. A
qualitative analysis of (1.1), (1.3) with 0 < a < 2/3 by Levi [6] reveals the existence of
infinitely many different periodic solutions for uncountably many values of § near 8, and
B,. It is expected that at a = 2/3 a similar phenomenon occurs for values of b and v that
are restricted to the domains I',. ;. Furthermore, for 0 < a < 2/3 there are intervals
B..1 < pB < B,-, where only one solution with period T = 2n(2n — 1) is found. Clearly,
for oo — 2/3 these intervals disappear and become part of the small transition intervals
described above.

For the case o = 0 nonsymmetric solutions with period T = 4nn have been con-
structed in [4], and it is also indicated there how the method can be extended to solutions
with a rational rotation number. Trying to derive similar results for « = 2/3, we find that
the symmetry condition of Sec. 5 is necessary. Thus, nonsymmetric solutions are only
expected at the boundaries of the f-intervals. An asymptotic analysis of this problem
requires elaborate calculations of higher-order approximations.
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Finally, it 1s remarked that the asymptotic solution of the case 0 < a < 2/3 should
match the present results for « — 2/3 and the outcome of earlier work [3] for « — 0. This
problem has not been solved yet. It is expected that it will give rise to some serious
difficulties in the construction of the local asymptotic solution of a region of length O(v),
where the solution has a two time-scale behavior and satisfies asymptotically an equation
of the type (2.4) with a slowly varying integration constant.
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