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Summary. This paper discusses the analogy between phenomena in populations
of coupled biological oscillators and the behaviour of systems of synchronized
mathematical oscillators. Frequency entrainment in a set of coupled relaxation
oscillators is investigated with perturbation methods. This analysis leads to
quantitative results for entrainment and explains phenomena such as travelling
waves in systems of spatially distributed oscillators.
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1. Introduction

Spontaneous periodicity and the phenomenon of synchronization play a role in
the temporal organization of life.

Most organisms have some mechanism that synchronizes and adapts internal
activities to cyclic changes outside, such as the rhythm of the day or the year. This
type of synchronization is called external synchronization (see [1], [4] and [30]).

Many types of cells likewise exhibit spontaneous periodic behaviour. In groups of
such cells mutual synchronization may occur [40]. We mention the following
examples: The cells of cardiac pacemakers fire simultaneously [27]. It has been
conjectured that the alpha-rhythm of the human brain is caused by interacting
oscillators [39]. Under certain circumstances the cells of the heart, the gastro-
intestinal tract, and the ureter exhibit spontaneous periodicity and synchronization
such that waves of activity occur ([3], [22] and [23]). For developing systems
models have been proposed in which cells receive positional information from two
waves propagating at different velocities [5], [12]. In biochemistry there 1s a growing

interest in periodic reactions, which are often accompanied by wave phenomena
([41], [28], [10], [2] and [8, Ch. VI}).

In this paper we intend to investigate mathematically the phenomenon of syn-
chronization for a particular type of biological oscillations. We shall mainly
investigate the mutual synchronization of more or less identical oscillators. We
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shall assume that the oscillations and their coupling can be described deterministic-
ally with a first order vector differential equation. Attempts to formulate such a
model will in general lead to great difficulties. It is often unknown which quantities
play a role in the oscillatory process. Morcover it is seldomly possible to follow
the quantities that might be of interest for sufficiently long, uninterrupted periods
[30]. One thing however, seems to be clear: in most instances an adequate model
will consist of a large number of nonlinear differential equations [7]. A general
mathematical theory providing a detailed description of the behaviour of the
solutions, does not exist for such equations. Consequently, there are biological
as well as mathematical reasons to look for simplifications.

A simplification which is implicitly or explicitly present in many studies on periodic
processes in biology is the assumption that the state of an oscillator may be
approximately characterized by one real variable, which 1s called, depending on
the context, the phase, circadian time or subjective time. The state of the oscillator
is periodic with respect to its phase. This means that the state of an oscillator may
be represented by a point on a circle. Consequently the state of a system of n
oscillators can be represented by a point on an n-dimensional rorus (the cartesian
product of »n circles). A second simplification which is often encountered in the
literature i1s the assumption that the oscillators are weakly coupled. The above
assumptions have been made by Winfree [40] in a study on hypothetical oscillators.

It 1s our purpose to analyse synchronization phenomena for a rather specific class
of coupled differential equations. We shall derive the differential equations for
the phases, which formed the starting point of Winfree’s study. For the description
of the isolated oscillators we shall select the simplest possible equations that possess
highly stable periodic solutions (the stability is necessary in connection with the

first simplifying assumption). Our choice will permit a detailed analysis of inter-
acting systems of such oscillators.

This policy is frequently adopted in applied mathematics. By studying a simple
prototype problem or model problem one hopes to get an impression of the qualita-
tive behaviour of the solutions of a larger class of problems. From the analysis of a
prototype problem new concepts may arise that can be helpful in the interpretation
of experimental results. One gets an indication about the kind of phenomena that
might be explained by certain simple assumptions. Moreover, one may hope that

the analytic tools, used to solve a prototype problem, can be adapted to attack
more general problems.

For the description of one oscillator only non-linear equations should be taken in
consideration, since only these equations can have stable periodic solutions [7].
Moreover, an equation can only possess periodic solutions if there are at least

two state variables. Our particular choice will be an oscillator that is described by a
differential equation of the form

X = (.y H F(JC))/B,
y = —Xx,

(1.1)

in which * = d/dt; x and y real; £ small, positive. When F(x) = x%/3 — x this
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system represents the Van der Pol equation [6]. Under certain conditions for the
function F the above equation has a periodic solution, called a relaxation oscillation.
One important property of such oscillators is their high orbital stability. When
there 1s weak interaction between two or more of these oscillators, they preserve
their orbit almost completely, but they may be accelerated or slowed down on the
orbit. Equation (1.1) is a stiff equation: x may change very rapidly (fast variable),
whereas y can only change slowly (slow variable). The Van der Pol cquation was
introduced in 1926 as a simple representative of a large class of nonlinear oscillators
[32]. Later Fitzhugh [9] proposed an equation of the type (1.1), the Bonhoetter—
Van der Pol equation, as a simplification of the (local) Hodgkin-Huxley equation.
More recently Mayeri [24] used a particular form of (1.1) to describe a certain
neural oscillator.

We shall mainly investigate systems of oscillators arranged in geometrical struc-
tures with nearest neighbour coupling (see Fig. 1.1). Such an interaction gives rise to
wave phenomena. Moreover we also consider oscillators coupled with a delay.

Nearest neighbour interaction for nonlinear oscillators has not often been investi-
gated analytically in the biomathematical literature. Only the work of Linkens [22]
on linear and circular arrays of regular Van der Pol oscillators is known to us (we
investigate singular Van der Pol oscillators). Winfree [40] and Pavlidis [29], for
instance, investigate sets of oscillators which are so coupled that all oscillators have
equal influence on each other. That 1s: the oscillators are coupled via a common
medium (see Fig. 1.1). Othmer [28] and Torre [38] only investigate spatial in-
homogeneous states for systems of two oscillators. In contrast many studies deal
with digital and electronic simulation of coupled arrays of non-linear oscillators.
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Fig. 1.1. Different types of coupling: external (a) and mutual (others). Coupling via a (passive)
common medium is indicated in (b). In (c), (d) and (e) coupling on a line, circle resp. torus is
indicated. Not all elements on the torus have been drawn. The circle and the torus are easier to
analyse than the (finite) line which lacks symmetry
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The geometrical arrangements of the oscillators will be very simple and symmetri-
cal: line, circle and two-dimensional torus (see Fig. 1.1). A line may be considered
as an idealized model of the gastro-intestinal tract or the ureter, see [22]. The circle
may be used to model periodic chemical reactions on a ring [2]. One might also
devise experiments with ring-shaped, spontaneously active tissue. The torus, how-
ever, should only be considered as a prototype for two-dimensional structures:

it 1s hoped that in more complicated structures the waves will show the same
local behaviour.

In many instances from biology the autonomous frequency of an oscillator
depends on the place in the structure. We mention a simple model for impulse
conduction in the human heart by Van der Pol and Van der Mark [33]. This model
consists of three oscillators, coupled with delay, representing the sinus, and atria
and the ventricles. The autonomous frequency of these parts decreases in the given
order. The result is that a contraction of the ventricles 1s preceded by a contraction
of the atria. In order to study effects of this type we shall also consider a line with

place-dependent autonomous frequency. Brown et al. [3] studied an electronic
model of this situation.

In Section 2 the solutions of the isolated oscillator (1.1) are investigated. When e
tends to zero the solution tends to a piecewise continuous function, called the
singular solution or discontinuous solution. The behaviour of the singular solution
is very simple: on the continuous parts it is governed by one first order differential
equation. The Van der Pol oscillator and the piecewise-linear oscillator are treated
as examples. By a slight modification of (1.1) the period of the solutions can be

altered. At a later stage this will enable us to investigate the synchronization of
oscillators with different autonomous frequencies.

In Section 3 the mathematical theory of finite systems of weakly coupled oscillators
is considered. The order of magnitude of the coupling is given by a small parameter
6. We treat the asymptotic behaviour of such systems for £ and § tending to zero.
In the singular approximation (¢ — 0) the state of one oscillator depends on one
real variable called the phase; the state of an oscillator as a function of the phase
1s periodic with period T,. A differential equation for the phases will be derived.
Synchronized solutions are found with the aid of the Poincaré mapping of the
singular approximation. The asymptotics of the Poincaré mapping are studied
for ¢ tending to zero. When the asymptotic solutions are synchronized there also
exist synchronized solutions for ¢ and 8 sufficiently small. The results of this
section are based on the theory of relaxation oscillators by Mishchenko and
Pontryagin [25], [26], [34]. Two lemma’s of Section 3 having rather long and
technical proofs are published elsewhere. At the end of the section we formulate
some plausible extensions of the main result. 1t is conjectured that the theory can
also be applied to oscillators coupled with delay.

In Section 4 the method of the previous section is applied to two oscillators with
different autonomous frequencies, coupled with delay. The coupling in both
directions 1s the same. Synchronization can be investigated by means of a real
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valued function z(p), called the phase shift function. This is a continuous, T-
periodic function of the phase difference, u, of the oscillators. The derivative of z
Is plecewise continuous with jump discontinuities at k T,/2 (k integer). The form of
the function z depends in a simple way on the type of coupling and on the singular
solution of (1.1). We summarize some results: When z/(4+0) + z(—0) < 0 two
oscillators with equal free periods will have a stable synchronized solution with
equal phases. This synchronized solution will have a period greater (resp. less) than
the free period when z(0) is negative (resp. positive). Experimental results of this
kind were obtained by De Haan and Hikarow [14]. When the oscillators are
coupled with a delay p the stable synchronized state p = 0 splits up in two stable
states u = +pu,, with p, -0 as p->0. When the oscillators have unequal free
periods, synchronization can only occur if the difference of these periods is within
certain bounds. In the synchronized state the quicker oscillator will be ahead in
phase.

In Section 5 we investigate a large system of oscillators with different autonomous
frequencies, coupled via a common medium. This situation is treated numerically
by iteration of the Poincaré mapping (of Section 3) which depends on the phase
shift function (of Section 4). With iteration of the Poincaré mapping stable syn-
chronized solutions can be found. Moreover such iterations can be used to follow
the system in the course of time. In a numerical experiment it is assumed that the
free periods are drawn independently from a Gaussian distribution with a width of
the same order of magnitude as the coupling. The initial phases are drawn inde-
pendently from a homogeneous distribution. In the course of time the mean
observed period increases, whereas the width decreases. It may happen that
oscillators with relatively long or short free periods do not participate in the
common rhythm. This phenomenon is called partial synchronization. The syn-
chronized period increases with the number of oscillators involved. Such a pheno-
menon has been observed in embryonic heart cell cultures by Sachs and De Haan
[35]. Similar studies, with similar results, were made by Wiener [39], Winfree [40]
and Kuramoto [20], in connection with the alpha-rhythm of the human brain.
However these authors do not use the efficient method of iteration of the Poincaré

mapping.

In Section 6 we consider nearest-neighbour coupling on a line, a circle and a
torus (see Fig. 1.1). The line is used to investigate the effect of place dependent auto-
nomous frequency. It is assumed that the autonomous frequency decreases along
the line. This situation is investigated numerically (as in Section 5). The initial
phases are assigned randomly. After a certain time a pattern develops with waves
running from the quicker oscillators to the slower ones. The average period is
increased by the coupling. The fast oscillators are almost completely synchronized,
whereas the others are partially synchronized. These results agree with electronic
simulations by Brown et al. [3].

Because of the symmetry the synchronized states of identical oscillators on a circle
can be investigated analytically. These synchronized states take the form of phase
waves; stability is found for several wavelengths. The state in which all oscillators
had equal phases was stable but it was destabilized by the introduction of a delay
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in the coupling. The qualitative results show some analogy with investigations of
Auchmuty and Nicolis [2], on a continuum of chemical oscillators in a ring. In
that case the oscillators are coupled by diffusion.

In the last part of Section 6 we investigate a set of identical oscillators arranged on
a two-dimensional torus. The synchronization and stability conditions are similar
to those for a circle. A numerical experiment was done with random initial phases.
After 50 iterations of the Poincaré map the system had not reached a stable
waveform. Small waves ran over the torus, breaking down when meeting each
other. Wave centres appeared and disappeared spontaneously. The chaotic wave
pattern resembles fibrillation of the heart’s ventricles, a state in which the co-
ordination of the fibres of the heart muscle decreases very rapidly with increasing
distance. Experiments of this type might possibly add to a better understanding of
this phenomenon.

The number of stable synchronized wave solutions on the circle and the torus was
greater than we had expected. In some physiological systems this might be un-
desirable. The number of stable wave solutions might be reduced by: shape,
boundary condition, unidirectional coupling, place dependence of autonomous
frequency (see above), a delay in the transfer of information (see above) and by the
shape of the function z. The effects of place dependent frequency and unidirectional
coupling are well known in physiology. The other factors deserve further experi-
mental and mathematical investigation.

2. Isolated Relaxation QOscillator

In this section we shall briefly discuss the behaviour of one isolated relaxation
oscillator. This will serve as an introduction to Section 3, where the behaviour of
coupled oscillators 1s discussed.

One oscillator shall be described by a real system of two first order equations:

X = (y — F(x))/e,

, @.1)
Yy = =X,
where ¢ is a small positive parameter and where ' = d/df. With respect to F and
its derivative / we assume that
F(x) = —F(—x) (xeR),
f(x) is continuous (x € R), (2.2a)
F(x) =+ (x = + o).
Moreover, a positive number m should exist such that
f(x) < 0, x € (0, m), (2.2b)

f(x) > 0, x € (m, o0).

Under these conditions (2.1) has a unique periodic solution, which is asymptotically
stable [15]. For weaker conditions on the function F see Lasalle [21].
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In order to approximate the solutions of (2.1) we introduce the reduced system:
y = F(x), (2.3a)
y = —x, (2.3b)

which is obtained from (2.1) by substituting ¢ = 0. Note that it follows from
(2.3a) and (2.3b) that

fx)x +x=0 (f(x)# 0). (2.3¢)
We also introduce the fast equation
x = (y — F(x))/e (yconstant), (2.4)

in which the constant y can be considered as parameter. With the aid of (2.3) and
(2.4) we can define the singular or discontinuous solution of (2.1), which approxi-
mates the solution of (2.1) in a sense that will be made precise later. Let the
singular solution start at time zero in the point (&, §). If § # F(X) the singular
solution makes an instantaneous jump, along the trajectory of the fast equation
until a stable equilibrium (x,, y), with F(x,) = y and f(x,) > O, is reached. Such a
point will be called a landing point. From then on the singular solution satisfies
the reduced equation (2.3). This part of the singular solution is called regular.
Along the regular part the absolute value of x decreases until x attains a local
extremum of F(x) (x = +m, f(x) = 0). At that moment y = F(x) ceases to be a
stable equilibrium of (2.4). The point where this happens is called a leaving point.
It follows from the conditions (2.2) that Equation (2.4) has only one trajectory
departing from a leaving point. The singular solution makes an instantaneous
jump along this trajectory until a new landing point is reached, after which the
reduced equation is satisfied again. Thus the singular solution is described alter-
nately by instantaneous jumps along trajectories of the fast equation and by
regular parts satisfying the reduced equation.

The singular solution approximates the exact solution in the following sense: Let
(x(2), ¥(r)) be a solution of (2.1) on a bounded time interval, and let (£(¢), n(¢)) be a
singular solution of (2.1) starting in the same point. It has been shown that the
trajectory of (x(¢), y(¢)) will tend to that of (&(¢), n(z)) if ¢ tends to zero. The
approximation near the regular parts and the jump parts has been studied by
Tikhonov [37] and Hoppensteadt [18]. The approximation near the leaving points
has been studied by Mishchenko and Pontryagin [25], [34]. In biochemistry a state
approximated by the reduced equation is called a pseudo-steady state [16], [11].

From the conditions (2.2) it follows that Equation (2.1) has a unique periodic
singular solution, which we shall indicate by (x°(¢), y°(¢)). The closed trajectory or
path X, of this solution proceeds along ABCD as sketched in Figure 2.1. This
picture illustrates that after some disturbance the singular solution will instantane-
ously return to Xj,; this means that X, 1s a highly stable limit cycle. The arcs AB
and CD represent the regular parts; BC and DA represent the jumps.

Let the periodic singular solution (x°(z), »°(¢)) start at # = 0 in the point A (Fig.
2.1). In order to calculate the period T, of this solution we remark that on the
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regular part AB, where x decreases from, say, M to m, the time ¢ i1s given according
to (2.3c) by

_ _[Tf©
;= jM 2 de. (2.5)

This means that the solution runs through 4B in the time

fu&)_ dx.

m >~

Because of the symmetry of F(x) the part CD takes the same time, whereas BC and
DA represent instantaneous jumps. Consequently the period of the singular
solution 1s given by

Ty = 2 j Mf%‘-? dx. (2.6)
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Fig. 2.1. Trajectories of singular solution

In Figure 2.1a the state space of the singular solutions of (2.1) is drawn. The
arrows indicate the change of state; horizontal arrows indicate instantaneous
changes. The closed trajectory X, = ABCD represents the periodic singular
solution. On this trajectory the state of the singular solution can be represented by
one real variable, called the phase, which coincides for isolated oscillators with
time. The period of the singular solution is denoted by T, In Figure 2.1b the closed
trajectory X, is drawn. At the points 4, B, C and D the phases and the values of x
are indicated. In the pictures F(x) = x%/3 — x (Van der Pol equation).

The following theorem establishes a relation between the periodic solution of (2.1)
for some ¢ > 0, and the singular solution (x°(¢), y°(¢)). For the proof the reader is
referred to Mishchenko and Pontryagin [25], [26], [34].

Theorem 2.1. Let F satisfy (2.2). Then the period T, of the asymptotically stable
periodic solution of (2.1) satisfies: T, = Ty + 0(e*®) (e — 0). The limit cycle X, of
(2.1) satisfies: Xy — X, (e — 0).

s e et o e,
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Example 2.1. The Van der Pol oscillator is described by (2.1) with
f6) = x* — 1

F(x) = x8/3 — x. @7)
Denote the abcis of A by M, that of B by m (see Fig. 2.1); then

m =1,

M = 2. (28)

The trajectory of the singular solution (x°(2), y°(¢)) is drawn in Figure 2.1. The
period T, is given by (2.6):

Mx2 — 1
T0=2f . dx =3 — 21n 2, (2.9)

On the interval (0, T,/2) the function x°(¢) is given by the implicit formula (2.5).

x0 o 0\2
t=-—~f x : =2 —In2 () + In x°. (2.10)
u X 2

The value of x%(¢) on (7,/2, T,) is obtained by symmetry; x°(¢) 1s drawn n Figure
2.2. The function y°(¢) follows from y° = F(x°).

t
0
X

I N

()

| .
270 0

Fig. 2.2. Periodic singular solution of the Van ™
der Pol oscillator. The function x°(¢) is given

implicitly by formula (2.10) "

Example 2.2. The piecewise linear oscillator is described by (2.1) with

1 x| > 1

; 2.11
—1 x| €1 (2.112)

769 = {

(2 + x x < —1
F(x) =< —x -1 <x<1 (2.11b)
h-—-—2+x x > 1

The values of m and M are
m =1

2,12
M = 3. (2.12)
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The period T, of the singular solution is given by

M
Tﬂ=2f -‘izxf=2ln3. (2.13)

Using (2.5) one easily obtains an explicit formula for the singular solution x°:

3¢t 0 <t < T,/2
x0(t) = of (2.14)
~3e~ -T2 T2 < t < Ty
In this case f is not continuous, so that Theorem 2.1 does not apply. However
(2.1) can easily be solved on the intervals where F is linear. Piecing these parts
together, one arrives at the same conclusions as in theorem (2.1), with a sharper

estimate for the period: T, = T, + 0(z In &) (¢ — 0) (see Stoker [36]).

In the sequel we investigate synchronization of oscillators with slightly different
autonomous periods. Therefore we state:

Corollary 2.1. The differential equation

i = (0 — F)e,

2.15

with F satisfying (2.2), with e and 8 sufficiently small, and with q an arbitrary constant,
has an asymptotically stable periodic solution with period T, , and trajectory X, ,
satisfying: T, o = Ty + 6qT, + 0(e*®) 4+ 0(8%), and X, , — X, (e — 0).

Proof. Introduction of a new time scale f = (1 — d¢) and a small parameter

£ = e(l — 6q)transforms (2.15) in an equation of the type (2.1), to which Theorem
2.1 applies. ]

3. Theory of Synchronized Relaxation Oscillators

In this section we shall investigate a finite system of coupled relaxation oscillators,
described by the following differential equations:

w = (v, — Fluy)/e - (3.1a)
b = —(1 = Sqdu + Sh(wy) © o™ (3.1b)

where n denotes the number of oscillators and where u = (uy, Uy, ..., u,), v =
(vy, Vg, ..., Uy). The parameters ¢ and 6 are assumed to be small and positive. The
functions A; represent the coupling between the oscillators. The constants g, are
arbitrary ; they represent the difference of the autonomous periods of the oscillators
(see Corollary 2.1). It is assumed that F satisfies the conditions (2.2). We shall
moreover assume that the functions F and 2, (i = 1, 2, ..., n) have continuous
derivatives of any order. The main results of this section can also be proved when
the Jatter condition is weakened, but this is not necessary for our purposes. Note

that the coupling and the differences between the periods have the same order of
magnitude, 0(3).
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We shall investigate the behaviour of the solutions of (3.1) for & tending to zero.
Just as in the previous section we introduce the reduced system

0 = Flu) L (3.22)
—(1 = Squs + S, ). O B (3.2b)

Dy
Combination of these equations yields a reduced equation for u:

Suy = —(1 — gu; + 8h(u, F((v)), (3.2¢c)

where F(u) = (F(uy), F(uy), ..., F(u,)) and where f = F’. We also introduce the
fast system

I'?i == (Ui — F(H{))/E (Uf COHStant), (3.3)
in which the constants », can be considered as parameters.

The singular solution of (3.1) i1s defined as follows: When (u, v) is not a stable
equilibrium point of the fast system an instantaneous jump is made along a trajec-
tory of the fast equation until a stable equilibrium of this equation is reached (a
landing point). Afterwards the singular solution satisfies the reduced system until
one or more of the variables u,, u,, ..., u, reaches a local extremum of F (i.e. a
zero, +m, of f). At that point (a leaving point) the reduced equation cannot be
satisfied any more. Then the singular solution makes an instantaneous jump along
the unique trajectory of the fast equation departing from the leaving point, until a
new landing point is reached. After the jump the singular solution is described
again by the reduced system.

The singular solution approximates the exact solution in the sense indicated in
Section 2, that 1s: the trajectories of the solutions of (3.1) will tend to the trajectories
of the singular solution of (3.1) if ¢ tends to zero (for references see Section 2).
Moreover system (3.1) has a periodic solution if it has a periodic singular solution
satisfying certain conditions. We have to introduce some concepts before formulat-
ing a theorem of this kind.

Let the regular parts 4B and CD of the closed trajectory X, of the periodic singular
solution of (2.1) be indicated by ;. Then we may define the following n-dimen-
sional surface in the space R*".

r={u,veR*" | (u,v)ey fori=12,...,n. (3.4)

This means that (u, v) € 2§ when each oscillator (i, v;) lies on the regular trajectory
Q, of the singular solution of one isolated oscillator. We shall show that for &
sufficiently small a singular solution (u(¢), v(¢)) will remain in the set QF, once it
has arrived there:

Lemma 3.1. When ¢ is sufficiently small but finite, the set Q% is invariant with respect
to singular solutions of (3.1).

Proof. Let (u, v) € Q. We first consider the case when f(u,) #0(i = 1,2, ...,n).
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This means that f(») > 0 and that || > m (Fig. 2.1). Moreover (¥, v) is bounded.
It follows from (3.2) that for 3 sufficiently small

v = F(u;)
sign (4,) = —sign ()
From (2.3) we obtain for the 1solated oscillator

y = F(x)
sign (x) = —sign (x).

(i=1,2,...,n). (3.5a)

(3.5b)

This implies that the coupled oscillators run through the regular parts 4B and CD
in the same direction as the uncoupled oscillator. In the leaving points, where at
least one of the functions f(1;) is zero, the system makes an instantaneous jump to a

new stable equilibrium of (3.3). This is the same for coupled and uncoupled
oscillators. Consequently, Q% is invariant. [

For a concise formulation of a theorem on periodic solutions of (3.1) we will need
two definitions:

Definition 3.1. Let n = 2 and let W be a smooth » — 1 dimensional surface lying
in the n-dimensional surface Qf. Moreover, let W be nowhere tangent to the
trajectories of the singular solutions of (3.1). Let w be a point of W and let a
singular solution start in w. Then it may happen that this singular solution will
return in W. If so, denote the point of first return by Z(w). In this way a mapping,
Z, 1s defined from a part of Winto W. This mapping is called the Poincaré map of
W produced by the singular solution.

The Poincaré map is commonly used to investigate the stability of solutions which
are known to be periodic (see for instance Hirsh and Smale [17]). We shall use this
mapping also to detect periodic solutions. It is clear that there exists a periodic
singular solution if & has a fixed point, i.e. a point w € W such that Z(w) = w. The

closed trajectory of such a periodic solution will be indicated by Z, = R2", the
period by P,.

Definition 3.2. A periodic singular solution of (3.1) will be called C-stable if a
surface W exists as described in Definition 3.1, such that the corresponding
Poincaré map, £, i1s contracting at the intersection of W and Z,.

The following theorem, proved by Mishchenko [26], permits us to fix our attention
to C-stable periodic singular solutions of Equation (3.1):

Theorem 3.1, Let 6 be such that Equation (3.1) has a C-stable periodic singular
solution with trajectory Z, and period P,. Let only one of its components u(t)
(i =1,2,...,n) bediscontinuous at a time. Then a positive function &(8) exists such
that, for 0 < e < &8), Equation (3.1) has a periodic solution with period P, and
trajectory Z, < R?" satisfying: (i) Z, — Zy (e — 0) and (ii) P, = Py + 0(e*?).

We now introduce the phase-map
®: R* — QF (3.6a)
defined by

P: (b1, bas - -5 Ba) = (X0(B1), - . o5 X°(Pn), Y1), - - -5 YO(0))- (3.6b)
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The point ¢; will be called the phase of the ith oscillator (note that the phase is
not uniquely defined). It is easy to see that each point of Q% has an original in R",
that is: ® 1s surjective. The map @ is Ty-periodic in each of its arguments and it is
locally invertible. Moreover it follows from (2.3c) and (2.5) that ® is locally
diffeomorphic except at the jump planes ¢, = j, T,/2 (j, integer).

Lemma 3.2. 4 singular solution (u(t), v(t)) of Equation (3.1), with initial value in QF,
may be represented by
ut) = x%(i(1))
(1) = y(pi(2))

where the functions ¢,(¢) satisfy the phase equation

G=1,2,...,n), (3.72)

by = 1 — 3q; — Ski(x°())/x°(dy), (3.7b)
in which
ki(x%($)) = h(x(f1), - .., X%(n), F(X(S1)), - .., F(x°(n)). (3.7¢)

Proof. Representation (3.7a) follows from the invariance of Qf and from the
surjectivity of ®. Differential Equation (3.7b) is obtained by substituting (3.7a)
into (3.2c) and using (2.3¢). [

When the oscillators are uncoupled (k; = 0) and identical (g, = 0) Equation (3.7b)
has the form &, = 1; i.e. phase and time are equal up to an additive constant.
This 1s the reason why the phase of an oscillator is sometimes called, depending on
the context, subjective time or circadian time.

We shall now approximate the solution of (3.7b) in order to investigate the mapping
Z. Since & i1s a small parameter it is natural to try to solve (3.7b) by iteration. Let
$(0) = «. Then the first and second iterates are

HO(t) = o + ¢ (3.82)

Lk (x%(ey + 7), ...y X%c, F 7))
() — _ N i 1 ) , n
BIE) = o + t — St — 8 L s dr (3.8b)

The integral on the right-hand side of (3.8b) exists since x° is bounded away from
Zero.

We shall frequently need a special condition on the initial value ¢(0) = «. Therefore
we state:

Definition 3.3. A point ¢ € R* will be called regular if the functions x°(e; + 1)
(i =1,2,...,n) are continuous in ¢t = 0 and if they become discontinuous one
at a time.

Since x° is discontinuous at j T,/2 (j integer) the regularity condition implies that
o; # j Tp/2 and that no two of the phases «; are equal or complementary.

Lemma 3.3. Let o« be regular. Then Equation (3.7b) with $(0) = o has a unique
solution ¢(t). Moreover

b(t) = () + 0(5%2) (¢ bounded). (3.9)
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Proof. See Jansen [19].

With the aid of approximation (3.9) the Poincaré map # of Definition 3.1 can be
investigated. Let V' be an » — 1 dimensional plane in R" perpendicular to the
vector £ = (1, 1, ..., 1) € R". Let ¢ be a regular point in ¥ and let U be a neigh-
bourhood of & in V. Denote by ¥ and U the translations of ¥ and U along the
vector ToZ. And denote by W the image ®(U) of U and U. It is easy to see that W
satisfies the conditions of Definition 3.1. It follows from Lemma 3.2. that the
Poincaré map corresponding to W is given by

P = OP*D-1, (3.10)

where 2% is the mapping from U into U produced by following the trajectories of
(3.7b) (see Fig. 3.1).

A
)
\P* (a)
- N\
a Fig. 3.1. The map £Z* for two oscillators, pro-
v . duced by the trajectories of (3.7b). The Poincaré
0 T, 2T, ¢ map is given by & = Q@Z*Pp-1

Lemma 3.4. Z has a fixed point O(&) if there exists a regular point & such that P*(&) =
& + Tof. Moreover @ is contracting in ©(&) if the eigenvalues of the derivative of P#*
in & have absolute values less than one.

Proof. The first part of the lemma follows immediately from representation (3.10)
and from the fact that ® is 7, periodic. The second part is proved by defining a
distance in W < Q} as the corresponding euclidean distance in U < R"®, produced
by the mapping @~ [

Substituting ¢t = T, + s in (3.8b) and using the Ty-periodicity of x° we obtain
for s = 0(9):

$(To + 8) = o+ Tof + s£ + 8G(e) + 0(8°2), (3.11a)
where
Gile) = —q,T, — o e, (x%(ay — oy 'r),o. vy X, — a; + 7)) g (3.11b)
0 x°(7)
The function G(«) gives the phase shift caused by the coupling. Note that
Gle + ) = G(o). (3.11c)

We shall fix s(¢) so that ¢(T + s(e)) € V. This yields

3(2) = —> 5 Gi(e) + 0(3%2). (3.12)

SN TSI T T L
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It follows that « € V is mapped by Z* on

¢(To + 5s(2)) = a + Tof + 3Q(e) + 0(8%?), (3.13a)

where
1

0(0) = 6@ — (3 3 Gl@))e. (3.13b)
Note that

Qo) |7, (3.13¢c)
which implies that

o+ Tof + 3Q(x) e V. (3.13d)

We may summarize the above calculations by stating:

Lemma 3.5. The mapping P* is approximated with an accuracy 0(8%%) by the
restriction to the plane U of the mapping

[T() = & + Tof + 3Q(e). (3.14)

Using this lemma one may prove:

Lemma 3.6. Suppose that

(1) & is regular (regularity condition),
(11) all eigenvalues, except one, of the derivative of Q(«) in & have negative real
parts (stability condition).
(1) Q(&) = O (synchronization condition).

Then a point B = & + 0(8) exists such that P*(B) = B + Tof and such that the
eigenvalues of the derivative of #* in B have absolute values less than one.

Proof. See Jansen [19].

At this stage our knowledge of the behaviour of the singular solution is sufficient
to return to the original equation (3.1). Putting together the results of this section
we obtain:

Theorem 3.2, Suppose that & satisfies the three conditions of Lemma 3.6. Then a
positive § and a positive function &(8), defined on (0, 8) exist such that for0 < & < §
and 0 < ¢ < &(38) Equation (3.1) has a periodic solution. This periodic solution has the
following properties: (i) Its trajectory Z, s tends to the trajectory of

(x%(&, + 1), ..., x%&, + 1), ¥°(& + 1), ..., Y&, + 1)
when ¢ and 6 tend to zero. (ii) Its period P, ; satisfies Py s = Ty — (8/n) > Gy(&) +
0(8372) + 0(£2/3).

Remarks and Extensions. The condition that & is regular can be deleted from
Theorem 3.2. It should be noted however, that the Poincaré map £* and the
function Q need not be continuously differentiable in irregular points. For stability
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one has to require that Q satisfies stability condition (ii) of Lemma 3.2 separately
in each of the sectors where ¢ 1s regular.

It seems plausible that the theory of this section can without any changes be applied
to systems of the more general form

i, = (v, — F(u))/e + ogi(u, v)
0y = —(1 — 8q)u; + Shi(u, v)
where F, g, and A, have continuous derivatives of all orders. The reduced system of

(3.15) is given by (3.2). However the theory of Mishchenko and Pontryagin [25],
[26], [34] is not sufficiently general to comprise this situation.

(i=1,2,...,n), (3.15)

The formalism of this section can be extended to differential equations with a
delay p = 0O:

= (v; — F(u))]e,

& " A i —_ ]., 2j oA a0l n 3.16&)
vy = —(1 ~ 8g)u, + oh(d, D) ( ) (
where

7 t — t —

i(t) = u(t — p) (3.16b)

B(t) = v(t — p)
For such a system the function G,(¢) (3.11b) has to be replaced by

S To 0 — g — T,...,Dt}:nmam T
Gie) = ~qT, — felox (e P+ )xg(T) x =P+ 7) dr,
0
(3.17)
and Q(e) (3.13b) has to be replaced by
Q@=Q@—Gzé@y (3.18)

For a proof of Theorem 3.2 with Q replaced by 0, an extension of Theorem 3.1
to systems with delay would be needed.

4. Coupling of Two Oscillators

In this section the theory of the preceding section 1s applied to the coupling of
two oscillators. This subject is interesting in its own right but also for its use in the
analysis of larger systems.

Consider a system of two coupled oscillators satisfying the equations
uy = (v — F(u))/e,
0; = —(1 — 8q)uy + SH(ux(t — p), v2(t — p)),
Uy = (V2 — F(uo))le,
Dg = —uy + SH(us(t — p), v4(t — p)),

with p > 0, g arbitrary, and with F and H satisfying the conditions mentioned in
Sections 2 and 3. The coupling, represented by H, i1s symmetric. The constant p

(4.1a)

(4.1b)

|

i
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represents the delay in the coupling. The first oscillator has autonomous period

Ty + 89T, + 0(3%) + 0(*®), whereas the autonomous period of the second
oscillator is T, + 0(£2/9).

In order to find synchronized solutions we introduce the phase shift function

zZ(v) = — fo S (xi({,"é;)“ ") 4. (4.22)
where
K(x%) = H(x°, y°) = H(x°, F(x%). (4.2b)

It follows from (2.3c) that the derivative of z has the form

To K'(x°(r — v))x°(r — V) -
o X f(x(r — v)

K(M) - K(—m) — K(— M) + K(m)
0) ) (4.2¢)

2'() = —

where f = F' and where M = x°(+0) m = —x°—0). Because of the discontinuity
of x°, z’ is discontinuous in kT,/2 (k integer). In most instances z(») will have to be
calculated numerically with x°(¢) calculated by means of (2.5).

With the aid of the phase shift function we can write for G

él(g) = —qTy + z(n + p),

Gao(®) = 2(—p + p), &
where o denotes the phase difference between the two oscillators:
po= 03 — Oy, (4.4
For Q we obtain
Ql = ‘%Gl - ‘%éﬁ
A (4.5)

Qz = _Ql = ‘%éz — ‘}él

The synchronization condition of Theorem 3.2 for the point & is (&) = 0. With the
aid of the function S, defined by B

S(p; p) = [z + p) — 2(—p + p)]/T,, (4.6)
the synchronization condition gets the form

S(a; p) = g, (4.7a)
where ot = @ — @&s.

For the stability we consider the derivative of Q, which has the form

(7))
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where S’ = [dS(u; p)/du]. The eigenvalues of this matrix are 0 and 2. According
to Theorem 3.2 the stability condition of the synchronized state is given by

S(p;p)=2z(@+ p)+ 2(—p + p) <0O. (4.7b)
The period of the synchronized solution is given by
P, s =T, + 8qTo — 8z(a + p) + 0(8%%) + 0(*7). (4.7¢c)

Example 4.1. Let F be given by formula (2.11) (piecewise linear oscillator) let q be

arbitrary and let H(u, v) = u. According to (4.2a) and (2.14) the phase shift
function is

()_{ev(“—'To‘{"g“l") 0<V{T[}/2
W TN czv + To2) —To/2 < v < 0.

In Figure 4.1a z(») is drawn, in Figure 4.1b S(ux; 0) and in Figure 4.1c S(u; p) for
p = T,/10. It is seen that for g = 0 (periods equal) Equation (4.7a) has 2 solutions
i =0 and g = T,/2. According to (4.7b) the solution g = 0 (equal phases) is
stable since S’(0,0) = z'(+0) + z'(—~0) is negative. The period of this stable
synchronized solution is greater than the period of the autonomous oscillators
since z(0) is negative (4.7¢). The solution with complementary phases is unstable.
Note that the solution with equal phases is not stable for all types of coupling:

if we take H(x, y) = —x all drawings in Figure 3 have to be mirrored with respect
to the p-axis,.

When |g| < max S(u; 0), that is, when the autonomous periods are not too far

apart, Equation (4.7a) has one stable solution in which the faster of the two
oscillators is running ahead (Fig. 4.1b).

+
8(u;0)
T —_— e N e s . e ——
0 q |
7 To
t I ]
z{v) -—ETO
LY I
- | (b)
-lT ,..I..T .1..
2 0 2 0
S(u;p)
L
2 %o /\
AV L
7 T

(a) (e)

Fig. 4.1. Phase shift function z(») and the functions S'(x; 0) and S(u; p), illustrating Example 4.1
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When g = 0, p > 0 the stable state @ = 0 has been split up in two stable states I

and II; the state g = 0 has become unstable and the state @ = T;,/2 has become
stable.

In Grasman and Jansen [13] system (4.1) has been integrated numerically for the
case of two Van der Pol oscillators (Example 2.1) with equal periods (g = 0) and

with coupling given by H(x, y) = x. The results, for several values of the delay p,
agree with asymptotic results derived in this section.

5. Coupling Via a Common Medium

In this section we investigate a system of oscillators governed by the equations
= (v — F(u))/e
n

b= —(1 = Sqdus + 8 > Hig, ) (T H2 o -1
j=1
One might describe this type of coupling by saying that the oscillators are coupled
via a common medium. The contribution of the ith oscillator to this medium is
given by dH (u;, v;) (see Fig. 1.1). The literature about this type of coupling and its
applications have been discussed in the introduction (Section 1).

For an initial phase-vector ¢ the phase shift is given by (3.10b):
Ge) = —q,T, + z z(e; — «), (5.2)
=1

where z is the phase shift function defined by (4.2). According to (3.10) and (3.14)
the Poincaré map & is approximated with inaccuracy §%2 by ®R® - where

R@) = ¢ + 8G() — (5 5 6(). (5.3a)

Consequently, synchronized solutions can be found by iteration of the mapping R
with the scheme

o = g

(5.3b)
e®+D = Re™) (k=0,1,...)

Moreover this iteration scheme can be used to follow the system in the course of
time. In that case however the errors can accumulate on long time intervals.

Numerical experiment. Using (5.3) we followed the behaviour of 25 piecewise linear
oscillators (see Example 2.2) coupled weakly via a common medium, with 8 = 0.02
and H(u, v) = u. The autonomous period of the ith oscillator is (1 + 8¢)T%,, where
the values of g; are drawn independently from a Gaussian distribution with mean
zero and standard deviation o = 2.5. The initial phases were drawn independently
from a homogeneous distribution over the interval [0, T,). The actual period of the
ith oscillator at the kth iteration is given up to 0(8%*?2) by

T = (1 + 8p{)T, (5.4a)
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where

Py = —G(e™)/T,. (5.4b)

In Figure 5.1 it i1s shown how the histogram of the actual periods develops in the
course of time. It is also shown how the phases «{ behave as function of g;. Some
remarks have to be added to the text under this figure. It depends on the size of
z(0) whether the synchronized period is increased or decreased (see previous
section). In this example it increases. Moreover the synchronized period increases
with increasing number of oscillators. It may even happen that the synchronized
period is outside the range of the free periods. When the range of the free periods is
too large a fully synchronized state (in which all actual periods are equal) is un-
attainable. This happened in our experiment. Nevertheless the system arrived in a
well organized state of partial synchronization, in which only a few outsiders did
not participate in the common rhythm.

6. Nearest Neighbour Coupling

In this section we investigate nearest neighbour coupling of a finite set of oscillators,
arranged on a line, a circle and a torus. The results have been summarized in the

introduction (Section 1). Analogous phenomena in biology have also been dis-
cussed there.

6.1. Oscillators on a Line

Let the position of an oscillator on a line be given by its index i. Then a system of
such oscillators, with symmetrical coupling may be described by the equations

0 = (0, — F@u)/e

b= —(1 = g + Shw ) P (6-12)
where
(H (13, v3) (i =1)
h(u, v) =< H@y-1,0-1) + Hyer,041) (G=2,...,n—1) (6.1b)
(H (ty — 15 Uy 1) (i =n)

Numerical Experiment. We investigated 51 piecewise linear oscillators (Example
2.2y on a line with Hu,v) =u, ¢, = —1.25 4+ (i — 1)/20, 8 = 0.1, and with
initial phases «; = 0. According to Corollary 2.1 the autonomous periods of the

Fig. 5.1. Development of synchronization for 25 piecewise linear oscillators coupled via a
common medium (see ‘numerical experiment’). (a) describes the situation for the uncoupled
oscillators, in (b) and (¢) the situation is drawn after 10 resp. 50 iterations of the Poincaré map.
On the left the histograms are drawn of the actual periods (formula (5.4)). On the right points
(qi, ) are plotted. It can be seen that the mean of the actual periods is increased by the
coupling. Moreover the variance of the actual periods decreases. Meanwhile a correlation
develops between the free periods and the phases «f”: the oscillators with the smallest free
periods are running ahead in phase
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singular approximations increase with increasing i: Ty, = (1 + 8¢)T, + 0(8%). We
followed this system in the course of time by iterating the approximate Poincaré
map (cf. (5.3)). After 200 iterations the system had arrived in a stable, well-organized
state, in which, however, the oscillators were not completely synchronized (partial
synchronization). The actual periods of the singular solutions are given by
(1 + Spf2°MNT, + 0(8°%2) (see (5.4)). It can be seen in Figure 6.1a that the oscillators
at the extremities are almost completely synchronized (p{?°% almost constant). In
the middle of the line the actual periods change more or less continuously. The

average period 1s increased by the interaction as in the previous example with
coupling of the type H(u, v) = wu.

Examination of Figure 6.1b and 6.1c shows that a wave pattern has developed
although the synchronization is only partial. In a point / where «; # «;,; a local
wave speed may be defined by 1/(e¢; — ;1) (positions per unit of time). Waves are
running from the faster oscillators (left) to the slower ones (right). At the right
extreme a rudimentary wave is running in the opposite direction.

5 | (200 _ (200
1+1 1

51

(b)

_ 51

ANV NVY NN N Y

(e)

Fig. 6.1. Piecewise linear oscillators on a line (continuous representation)

TS AL AT
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6.2. Oscillators on a Circle

We consider a system of N identical oscillators on a circle coupled with delay p:
= (v; — Fuy)le
0; = —u; + ohy(d, D)

where the coupling is given by

=12, ...,N), (6.2a)

hi@d, D) = H (-1 O -11) + H@y 411 4125 (6.2b)
with
i(t) = ut — p), 0t) = vt — p),
‘N (j=0)
[/] =/j(modulo N) =<j (=12,...,N). (6.2¢)
1l (=N+1)

The 1st and Nth oscillators are neighbours. In this way the boundaries, present in
the linear arrangement, are removed, which enables us to perform a complete
analysis with the methods of Section 3.

Stable synchronized solutions are found by applying Theorem 3.2 to the mapping
O(z) given by (3.17):

0@ = 6@ - (5 3, 6@)¢ (6.30)
where G is derived from (6.2), (3.16) and (3.7):
GJ(G) = z(ey — ay_1y + p) + 2(oy ~ 41y + p)s (6.3b)

with z the phase shift function defined by (4.2).

We shall investigate wave-solutions & for which the phase-difference between
neighbouring oscillators is constant:

&J' '_ &U'—ll Y (j = 1: 2: K N) (643)
Since the wave must fit on the circle, the constant u must satisfy the condition
p=nToy/N (n=0,1,...,N — ). (6.4b)

It follows from (6.3) that for such a wave the function G,&) is independent of J,
which implies that the synchronization condition of Theorem 3.2 is satisfied:
Q(@) = 0. The stability condition of Theorem 3.2 says that all except one of the
eigenvalues of the derivative of O with respect to ¢ must have negative real parts.
The matrix of the derivative is obtained from (6.3):

a ] ~— ! !

'éj%(ﬁ) = (Os,k — Oy-11,02 (0 + p) + Brx — Oy+1,L)Z(—p + p), (6.5)
where 8, ;. is Kronecker’s symbol. One easily verifies that (6.5) has N eigenvectors.
¢™(n=0,1, ..., N — 1), with components

C;E.“) = exp (fk‘)f(“)) (,y(n) — 27TH/N), (6_63_)
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(Z 1s the imaginary unit) and with eigenvalues

AM = [2(p + p) + 2'(—p + p)I(1 — cos y™)

+ i[z'(u + p) — 2'(—p + p)] sin p™. (6.6b)
Sincel — cosy™ >0(n=12,..., N — 1), a sufficient condition for stability 1s
Z{u+ p)+ 2 (—p + p) <O (6.7)

Comparison with the stability condition for two oscillators (4.7b) shows that local
stability implies global stability. The period of the synchronized solution is given by

P.s =Ty — d[z(n + p) + z(—p -+ p)] + 0(3%2) + 0(*?). (6.8)

Example. Consider 25 piecewise linear oscillators (Example 2.2) with coupling
given by H(u,v) = u and p = 0. The phase shift function z, corresponding to
this case is given by (4.8) (see also Fig. 4.1a). Stable waves with u = n7,/N are
found for n = 1,2, ...,6. For n = 24, 23, ..., 19 stable waves traveling in the
opposite direction are obtained. In the case n == 0, 1n which all oscillators have
equal phases (bulk oscillation), stability condition (6.7) does not apply since z(v)
1s discontinuous in » = 0 (see remarks at the end of Section 3). This case has been
investigated numerically by iteration of the approximate Poincaré mapping
I + 8Q. Experiments showed that the bulk oscillation is stable: in calculations
with random initial values the system tended to one of the above stable waves or to
the bulk oscillation. It follows from (6.7) that introduction of a delay destabilizes
the bulk oscillation (see Fig. 4.1a). This phenomenon was already observed in the
case of two oscillators (same stability condition).

6.3. Oscillators on a Torus

Let the position of an oscillator on a torus be given by a double index i, j. Then a
system of identical oscillators on a torus with delayed coupling between direct
neighbours may be described by

Uy i = (vi.k "' F(ui,k))/e (J = 1, 2: - -y N)

_ o (6.9a)
Uy = —Uyp + oMy (@, 0) (k=1,2,..., M),
where
hj.k@! Q) = H(ﬂﬁ—l,kls ﬁ[f—l,k]) + H(ﬁ[f-l*l,k]: ﬁ[3'+1,k])
+ H(,-1 Oyp-11) + H @y, 5410 O, 41205 (6.9b)
where “™ * denotes the delay p and where
[/, k] = j(modulo N), k(modulo M), (6.9¢)

(see (6.2¢)).

The torus is a simple two dimensional structure without boundary elements. The
synchronization properties can be completely analyzed. The analysis and the

results are completely analogous to those for the circle. We restrict ourselves to a
statement of the results.
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Fig. 6.2. Piecewise linear oscillators on a torus, —
illustrating numerical experiment. The right and left > -
boundaries are connected, as well as the upper and 0
lower boundaries. The phase ¢ of each oscillator is 7
indicated by the rounded off value of 6¢/T,. Wave 3y
5
3

fronts and their direction are indicated by lines and
arrows. At the start of the experiment phases were
assigned randomly. The figure represents the state
after 50 iterations of the Poincaré map 3 03 3 4

A synchronized wave solution & satisfies
CFEU_*,]_’R] — Eé[j,k] —_ VYV = nT[}/N (?‘I — 0, 1, e ey N - 1)

. . (6.10)
a[f,k-i'l] a— a[j,k} - H- - ng/N (m ——— 0, 1, o v o4y M — 1).
A sufficient condition for stability 1s
Z'(p + 4+ Z(—u -+ < 0
(n + p) (—u + p) 6.11)

Zv + p)+ Z(—v + p) < 0.

This means that the stability condition on a torus can be decomposed in two
stability conditions on a circle (6.7). Note that (6.7) is the same as (4.7b) for two
oscillators. The period of the wave solution satisfies

P,s =Ty — 8[z(n + p) + z(—p + p) + z(v + p) + z(—v + p)]
+ 0(5%/%) + 0(e23). (6.12)

Numerical Experiment. We considered 144 piecewise linear oscillators with M =
N = 12 and p = 0.02 7,. The initial phases were drawn independently from a
homogeneous distribution on [0, T,). After 50 iterations of I + 80 the system had
reached a state as sketched in Figure 6.2, instead of one of the stable waveforms
described by (6.10) and (6.11). Chaotic waves were running over the torus with
wave centres that appeared and disappeared spontaneously. It 1s not known
whether the system would ultimately reach one of the stable waveforms derived
above. We only observed that the system persisted in its chaotic state for an

extended period of time.
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