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A VARIATIONAL APPROACH TO SINGULARLY PERTURBED
BOUNDARY VALUE PROBLEMS FOR ORDINARY AND PARTIAL
DIFFERENTIAL EQUATIONS WITH TURNING POINTS”

J. GRASMANT AnD B. J. MATKOWSKY

Abstract. In studying singularity perturbed boundary value problems for second order linear
differential equations with a simple turning point, R. C. Ackerberg and R. E. O’Malley [2] pointed out
a number of interesting anomalies, In particular they observed that standard application of the method
of matched asymptotic expansions did not suffice to uniquely determine the asymptotic expansion of
the solution. They further noted that the standard construction in that method led to boundary layers
at both ends of the interval, even for problems where in fact there is only one boundary layer located at
one or other of the endpoints. In this paper we employ a variational formulation of the problem to
resolve the question of the number and location of the boundary layers as well as to uniquely determine
the asymptotic expansion of the solution. The results are then extended to analogous problems for
partial differential equations, and new results are obtained for a class of singularly perturbed elliptic
boundary value problems with turning points.

1. Introduction. We consider singularly perturbed boundary value prob-
lems of the form

ey"+f(x;e)y' +g(x;e)y =0, —a<x<b,

y(—a;e)=ale), y(b; e)=p(e),

where a, b >0, 0<e « 1, and a and B are prescribed. Asin[2],[3], the functions f
and g are assumed to be analyticin x and ¢. In § 4, we discuss analogous problems
for partial differential equations.

When f has one sign throughout the interval [ —a, b ], the unique asymptotic
expansion of the solution can be constructed by the well-known method of
matched asymptotic expansions [ 1], which we now briefly describe.

In attempting to approximate the solution of (1) for small but nonzero ¢ by a
solution of the reduced equation

folx)w'+go(x)w =0

(1)

(2)
with folx)=f(x;0);  golx)=gl(x, 0),

we note that w(x), a solution of a first order differential equation, cannot In
general satisfy both of the prescribed boundary conditions. While the function
w(x) which satisfies (2) and one of the boundary conditions may provide a good
approximation to y elsewhere in the interval, it cannot, in general, provide a good
approximation in a neighborhood of the excluded boundary point. In this
neighborhood, referred to as a boundary layer, another approximation to y 1is
necessary. [t is well known that the boundary layer occurs at the left (right) end of
the interval depending on whether the function f is positive (negative).
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We define the outer expansion by

Q0

(3) wix;e)= 3 w'(x)e/,
j=0

where w®(x) satisfies the reduced equation and the boundary condition at x = b
(x = —a) if f(x;e) is positive (negative), and the functions w/(x) (j= 1) are
determined by inserting (3) into (1) and equating the coeflicient of each powerof e
separately to zero.

It 1s then possible to prove that w(x; ¢) is an asymptotic expansion of y(x; g)
in the region xg =x =b (—a =x =x,) when f(x; ) is positive (negative). Here x,
and x, are close to but bounded away from —a and b, respectively.,

We then construct one of the boundary layer expansions:

(42) Zi= 3 Zim)e
with 7, given by the stretching tran;formation
(4b) ~ m={x+a)/e
if f(x; ¢) is positive, or

(5a) Z,= 3. Zh(no)e'

with n, given by the stretching transformation

(5b) n.=(b—x)/¢

if f(x; £) is negative. Equations for Z/(Z%) are obtained by inserting (5) into (1)
and equating the coefficient of each power of £ separately to zero. In addition,
Z,(Z,) satisfies the boundary condition at x = —a(x = b) as well as a boundary
condition as 1, - 00 (7, > o) obtained by matching the boundary layer expansion
to the outer expansion. The matching procedure involves the assumption that
there exists a domain of overlap in which the outer and boundary layer expansions
are both valid. This overlap domain consists of points which are close to but

' bounded away from x = —a(x = b). As £ > 0 at such values of x, ;- o0 (1, > 00).

Thus, the matching condition involves a comparison of the boundary layer
expansion as 7, >0 (n,—>0c0) and the outer expansion as x > —a (x> b). The
boundary condition and matching condition, together with the differential equa-
tions mentioned above, serve to uniquely determine the functions 2} (Z%) in the
boundary layer expansion.

Finally, it 1s possible to construct a composite expansion and prove that it is
valid uniformly throughout —a = x = b, by adding together the outer and bound-
ary layer expansions and then subtracting certain terms which the two expansions
have in common so that they are not counted twice. These terms are precisely
those terms in the boundary layer expansion which do not vanish as 7, -
(12 = 0). For the problem (1), this construction yields

v {w”(x)+(cr-~w”(-a))e"f”(*”)(““)/ﬁ if f>0,
0

(6) w.(](x) + (B . w{)(b)) efﬂ(b)(b ~x)/€ lff < 01

as the Icading term of the asymptotic expansion.
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However, when f changes sign in the interval, the situation is not as clear.
Points where f changes sign, i.e., singular points of the lower order equation (2),
are often referred to as turning points. The case when f has a single simple zero at
x =0and f'(x; £) <0 throughout the interval, with f and g analyticin x and &, was
considered in {2]. In that paper the authors pointed out that the method of
matched asymptotic expansions led to certain paradoxical results. In particular,
for problems which exhibit what they termed the resonance phenomenon, they
observed that boundary layers of the form c¢,exp[—fo(—a)(x+a)/e] and
¢, exp [ fo(b)(b—x)/e] with ¢; , constant, are possible at the endpoints x = —a
and x = b respectively. In fact there is only one boundary layer, located at left
(right) end point if [ = f_,_a f(x, 0) dx is positive (negative). The term resonance was
applied to problems for which the outer expansion of the solution was nonzero. In
addition, they noted that for such problems, a unique asymptotic expansion of the
solution cannot be obtained by standard application of matched asymptotic
expansions, since one constant in the expansion remains undetermined after all
the conditions are applied. Thus the method yields a one parameter family of
possible expansions, with no condition for determining which member of the
family 1s 1n fact the asymptotic expansion of the solution.

In subsequent papers, various authors considered the question of determin-
ing which problems exhibit resonance, and also proposed alternatives to, or
modifications of, the method of matched asymptotic expansions, in order to
determine the unique expansion of the solution. A discussion of these approaches,
as well as references, is given in [3].

In this paper, we adopt a different approach. We consider problems which are
known to exhibit resonance, and which therefore exhibit the above mentioned
paradoxical results. We propose to employ the standard method of matched
asymptotic expansions rather than modifications or alternatives of that method,
and to augment the standard method in a natural way, by an additional condition
that will determine the number and location of the boundary layers as well as the
unique asymptotic expansion of the solution, One of the advantages of this
approach is that it can readily be generalized to more complicated problems
including boundary value problems for partial differential equations. In so doing
we obtain some new and interesting results for singularly perturbed boundary
value problems for partial differential equations with turning points.

2. Variational characterization. We augment the method of matched
asymptotic expansions as follows. We construct the functional

(7) J:%J: {g(yr)2+fyy’+(£ —|—j;—g)y2} exp (-i— fo(t; £) dt) dx,

whose Euler-Lagrange differential equation is the given equation (1). We employ
as the class of admissable functions the one parameter family determined by the
method of matched asymptotic expansions, and choose that member of the family
which makes the functional stattonary.

3. Application of the variational condition. We consider the problem (1)
with f(0;)=0, f(x;&)<0 throughout [—a, b]. We further assume that
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80(0)/fo(0)=—n (n=0,1, 2, ), which is the first of the conditions necessary
for resonance to occur. We also assume that all the other conditions are satisfied
and that resonance does occur. The leading term of the expansion of the solution is
constructed as

(8) Yo~ cok(x)+Aexp[—f(—a)x+a)/e]+B exp [f(b)(b—x)/e],

where

(9) k(x)=x"exp [— J:] (?2((:)) +§) ds]
1S a solution of the reduced equation (2), and

(10) A =q@y—coky,

(11) | B = By—cok,.

Here ay= a(0), 8,=B(0) and

(12) ki=k(—a),

(13) »=k(b).

Thus equation (8) represents a one parameter family of possible asymptotic
expansions, where the constant ¢, as yet undetermined, labels the members of the
family. We observe that the expression (8) seems to exhibit boundary layers at
both endpoints. To determine ¢,, as well as the number and location of the
boundary layers, we employ the family (8) as the class of admissable functions in
(7). Then, retaining only the highest order terms, we obtain

ca, ,Acy, Bey, A* B?

(14) / 48J1 2€ /2 2E JS+28J4 2£J5

where
b

(15) J,= J;a (fo(x)k (x))* exp {;1:' _[}x folt) df} dx,
b

Sy = j (fo(x)z —folx)fo(—a))k(x) cXp { _i(fu(““ a)(x+a)

—

(16) x
- pot0 ar) |
J3 = J;b (f{%(x) ~fo(x)fo(b))k(x) EXp {é(fo(b)(b —X)
(17) i x
+J fo(t) dr)} dx,
Sy = Jib (f(;;("” a)‘“fu(x)fn(“a)'*i;éﬂ) CXp { '”:g_“(zfn(“a)(x +a)
(18) ’ '

— Lt fo(t) dr)} dx
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and

fﬁ;w) {(~f(} b)(b—x)

+ £ ; £ol) dz)} dx.

The integrals J; (i = 1, -+ -, 5) are now evaluated asymptotically in the following
manner. J; 18 integrated by parts to give

b
Js= L (f(?;([’) ~ fo(x)fo(b)+

i

(19)

(20) Ji~e[fo(b)k> exp (I/ &)~ fol — a)ki exp (I,/¢g)],
where
(21) IIZJ folx) dx
0
and
b
(22) [, = J folx) dx.
0
‘The major contributions to J, and J; come from the endpoints x = —qg and x = b
respectively. We introduce the transformationsx = —a+¢'*nandx =b—¢g'/?
in J, and J; respectively to obtain
(23) Ja~—efol—a)k,exp(l,/¢e)
and
(24) J3~efo(b)k, exp (Ix/¢e).
The major contributions to J; and Js also come from the endpoints x = ~a and
x = b respectively. Here we introduce the transformations x= —a+en and |
x =b—en In J, and J5 respectively to obtain
efol—a)
25) 1o~ exp (1, /e)
and
—&fo(b
(26) J s~ 20( ) exp (I,/¢e).

Therefore to leading order

, 2
J~ [ C”kz A£0k1+%]fu(~a)ew(1;/£)
(27)

[Cokz %kz Bh]fu(b) exp ([2/¢e).

The constant ¢, 15 then determined by the condition that dJ/dcy,= 0. We dis-
tinguish three cases according as I, Z 1, (1 £0).

L\
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Case 1. I,>1I, (I >0). In this case the second term in J is transcendentally
smaller in & than the first and is therefore asymptotically negligible. Then the
condition dJ/dc, = () implies that

(28) Co= Q’t.}/kl
or
(29) A=

so that there is a boundary layer at x = b only.
Case 2. I,<I, (I<0). In this case the first term in J is transcendentally
smaller in £ than the second so that it is negligible. Then ¢, is determined as

(30) Co = Bo/k>

or

(31) B=0

so that there is 2 boundary layer at x = —a only.

Case 3. I,=1I,(I =0). In this case each term contributes equally and Cj is
determined as

apk fol —a) “ﬁ{)k?fg(b)
fol—a)ki—fo(b)k>

(32) Co =

and there are boundary layers at both endpoints.

Our expressions for Cy are in agreement with the result obtained in [3]for the
problems considered there. They also agree with the results of Kreiss and Parter
[4] and Zauderer [5], and appear to be in simpler form than those results,

_ 4. Partial differential equations. Our method can be extended to sin gularly
perturbed elliptic boundary value problems. As an illustration we consider a
number of problems of the form'

gAu —xu, — yu, +nu = (), (x, y)e D,

(33)

u=f, (x, y)eoD.
Here A is the Laplace operator, D is a bounded domain in the x, y plane, and n is
an integer. The problems considered differ only in the specification of the domain
D and the values of n. Problem (33) may be written in polar coordinates as

(azu 1ou 1 d°u
E\ 5 t——-t

—ru, + nu = (), r<<r(8),
s ror rzaélz) (6)

(34)
u(r(8), 6)=f£(6) 0= 6=2m

T Y A bkl e an

' The problems considered can casily be generalized though we do nat do so here.
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The variational condition that we employ is to make stationary the functional

1[2‘"’ “’“”{ ‘ou\2 e fou\? (& A
K =1 (2 52 (£ )
226 Jg ar r-\of r ar

3 ()
1l S anhubien .
(2:9: N exp\5)! drdﬁﬁ

Problem 1. Let D be the unit circle and n = 0. We compute the leading term
of the expansion of u as

(36) to~ o+ (O) oy exp { =2

£

|,

(35)

with the constant ¢, to be determined by the variational condition. Thus inserting
(36) into (35) and retaining only the highest order terms we obtain

2 #~2ar Y 29T
K~ KICU dé +1<2CD J (f(G)*'C{}) dé
28 ‘0 0
(37) K r 2
+=21  (f(8)—cq)* db,
g Jy
where
1
(38) K1=J exp (—r’/(2e))r* dr,
{}
l 2
1 1 r
(39) K2=J r‘(r—~1)&:xp{——(1-—-r+-—~)}dr
0 £ 2
and
[ (1-rel) e {-2(2a-n+5
[ r(1-r+D) exp | -2(20-n+2)} ar
(40) K; ; rey 1 r+2 exp ? (1—r) > dr

The integrals K; (i=1,2,3) are evaluated asymptotically as in the previous
section. K is integrated by parts and the transformation r = 1 — &7 is employed in
K, and K, to yield |

2ar 2

1[°7 &
f(6e)de +Z .[ f°(6) dﬂ] exp (—1/(2¢)).

0

(41) K-v['rrcf,*cnj
§]

Then the condition that dK/dc,= 0 implies that
1

T2m

(42) Co J f(8) do.
(0
This result was obtained by De Groen [6] who expanded the exact solution of the
problem which was expressed as an infinite sum of confluent hypergeometric
functions and exponentials.

Problem 11. Let D be the unit circle and let » = 1. Then

| —(l -7
(43) Un"“‘Cu(ﬁ)"‘*'(f(@)""Cﬂ(f))) BXP{ (E_ r)},
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where
(44) col#) = a cos @+ sin 6.

Proceeding as above, we find that the constants ¢ and B are determined by the
variational condition as

2ar
(45) a:iJ. f(8)cos 0do
o
and
1 (7
(46) Bm—f f(8) sin 6 do.
T -

Problem 1I1. Let n =0 and let the boundary r = 7(8) of D have a unique
point P nearest the origin. With no loss of generality we take P to be the point
(r, 8)=(1, 0). We assume that near P, 7(8) ~ 1 + a#* with o > 0 (1.c., that 7(8) has
first order contact with the unit circle at P). The leading term of the expansion of u
1s constructed as

—r(@)(F(0)—r
@7 4~ o+ (f(0) o) exp | =T OO D]
After asymptotically evaluating the integrals that result from the variational
condition, we find that ¢, is given by

(48) co = f(0).

This result agrees with that in [10)].

Problem 1V. Let n =0 and let the boundary r = F(8) of DD have two distinct
points, P; and P,, nearest the origin, say at (r, ) =(1, 0) and at (1, 7). Further,
near P let 7(8)~1+a6™ with @ >0, and near P, let 7(8)~ 1 +B(6 — 7)%? with
B > 0. The leading term of the expansion of u is again given by (47) with the
constant ¢, determined by the variational condition. Its value depends on the
relative values of p and ¢ and of « and B. Specifically,

{f(O), if p>gq,
Co™

(49)
flm), ifp<gq

If p = q, then ¢, is a weighted average of £(0) and f(), where the weights depend
on « and . In particularif p=¢g =1.

(50) . _YBf(O) +Ya f()
0 \/E—F\/C_]f '

Using these results, we can derive additional results for other Interesting
domains without much additional calculation. For example, if there are N nearest
points, then ¢, equals the boundary value at the point of highest order contact. If
there are R points of highest contact (R = N), then ¢ is an appropriate weighted
average of the R boundary values. As an example, let the domain be the square
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—1<x, y<1.We observe that there are four points nearest the origin, and each
has the same contact with the unit circle. Thus ¢ is given by

51 o= 10 +1(3) +1em+1(3T) |

5. Remarks. In treating the problems of § 4, it was necessary to consider the
order of contact of the boundary with a circle, at the points of the boundary
nearest the origin. This is due to the fact that circles are that family of curves,
orthogonal to the characteristics of the lower order operator in (33) ((33) with
¢ = 0) which enter the origin (the unique singular point of the operator). In general
it is necessary to consider the contact of the boundary with the family of curves
(not necessarily circles), orthogonal to the characteristics curves,

The fact that the study of singularly perturbed second order elliptic equations
is intimately-connected with the characteristics of the lower order operator was
pointed out by Levinson [7]. When the characteristics cross the domain, results
were already given by Levinson. However, the methods and results of [7] did not
by themselves suffice to determine the asymptotic expansion, e.g., when the
characteristics were closed orbits inside DD or when all the characteristics entered
D and met at the singular point. By introducing averages around the orbits,
Khasminskii [8] showed how to obtain the expansion when the characteristics
were closed. By introducing the variational characterization, we have shown how
to obtain the asymptotic representation of the solution when the characteristics
enter the domain. General results for problems of this type will be given in [9],
[11].

Finally, we remark that the problem considered here has implications for the
problem of random perturbations of dynamical systems. Specifically, the effect of
even very small random perturbations may be considerable after sufficiently long
times, so that even if the deterministic dynamical system has an asymptotically
stable equilibrium point the trajectories of the system will leave any compact
domain with probability one. It is of interest to compute the probability distribu-
tion of the points on the boundary where trajectories exit, at the first time of their
exit from the domain. It can be shown that the distribution can be computed 1n
terms of the solution of the problem considered here. Results of this problem will
be reported elsewhere [9], [11].
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