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WITH AN EXPONENTIALLY INCREASING DEPTH 1)

BY
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1. Introduction

In this paper, which is a generalization and a continuation of the
preceding paper, we shall study the influence of a stationary linear
windfield upon a rectangular bay which has a wvariable depth. It will
be assumed in particular that the depth is given by the exponential
law (2.1). In that respect this model is a much better representation of
the North Sea than the model considered in the preceding paper. This
is demonstrated in figure 2.1 in which the depth profile of a longitudinal
cross section of the North Sea is given.

The treatment follows closely that of the preceding paper. In order
to facilitate the references the same notations will be used. Also in the
numerical application the same values will be taken. In the present
model the depth varies from 33 m at the “Dutch’ coast to about 158 m
at the ocean boundary. The mean harmonic depth 4, is then 65 m which
equals the uniform depth of the model of the preceding paper.

The elevation at the “Dutech’ coast due to the linear windfield (2.7)
is given by table 6.4 and is graphically illustrated in figure 6.1. In order
to estimate the influence of the rotation of the Karth the elevation has
also been calculated for 2= 0. The elevation at the middle of the *“Dutch”™
coast is given below for the wvarious cases.

Exponential depth, £27#0

( wa~Lghml(da, 0)=1.67 Ug+0.71 Uy +1.43 Us +
(1.1) ( — 6.28 V0M2.72 V1m4.04- Vg;

Uniform depth Ay, £2#0
S na-1ghml(3a, 0)=1.31 Ug+0.64 U+ 0.19 Uz +

(1.2) ( —6.28 Vog—0.74 V1—3.14 Vo;
Exponential depth, £2=0

S na~lghml(3a, 0)= 0.51 Ui+
(1.3) 2 —6.28 Vo —4.04 Vo
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Uniform depth A,, 2=0

g .?T(I»""'lg}'&mi(%(l,, 0) e 0-26 Ul +

(1.4) ) —6.28 Ve —3.14 Vs.

The left-hand side indicates how these results must be interpreted if
for @ and h,, arbitrary values are chosen. In our case with =400 km

and A, =65 m we have
(1.5) na~1gh,=>5.0 1073 m/sec?.

The relation between the absolute value of the frictional force of the
wind and the velocity of the wind at sealevel is given by

(1.6) VU2 + V2= 3.0X10"6 v

By means of (1.5) and 1.6) the elevation can be found in meters (cf. also
section II 6).

The general conclusion can be drawn that by the combined effect of
the bottom slope («) and the Coriolis force ({£2) the influence of the
rotation terms of the windfield is greatly enhanced. The preliminary
conclusions of the previous paper can now be given the more definite form
1. For a uniform N-S wind the elevation at the ‘“Dutch’ coast does

not depend on the bottom profile nor on the rotation of the earth.
2. For a uniform W-E wind the elevation at the “Dutch’ coast is largely

influenced by « and Q.
3. For the given model the most unfavourable direction for a uniform

wind as regards the elevation at the ““Dutch’ coast is about 15° NNW.
4. The influence of x and £ upon the contributions of the divergence
terms UU; and Vs to the elevation at the ‘“Duteh’’ coast is rather small.
The influence of &« and £ upon the contributions of the rotation terms
Uz and V) to the elevation at the south coast is very large.

i

o

The mathematical problem
It the depth of the bay is given by the exponential law
(2.1) h = hoe**
the stationary state of the bay is determined by the equations

Au — Qv+ c; e**V %X _p

(2.2) AV 4 Qu + ¢ e2ev 26 _

with the boundary conditions
u=0 at x=0
(2.3) v=0 at y=0
=0 at y=5b
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The meaning of ¢p is as follows
(2.4) co2 &= gho.
The harmonic mean A, of the depth is given by
(2.5) m = 20b(1 — e~28%)-1 p,
We shall also write
(2.6) cm2 = ghom,

so that ¢, represents the mean velocity of the free waves.
We shall take the same numerical case as in the previous paper viz.

a=400 km 2=0.44 h-1
b=800 km A=0.09 h—1

Then according to (2.1) the depth increases from 33 m at the south coast
to about 158 m at the ocean (see figure 2.1).
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Fig. 2.1

depth along a longitudinal section of the North Sea

— — — — e¢xponential approximation
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y are measured in units of a/zx the dimensionless values of

h and » are respect ivel AR S & B = 2o, x o % '
i paper we shall restriet ourselves to the discussion

ar windfield of the following type

1€
1 5? o 5 j {) “%‘"’“’ { ? ﬁ( E ‘‘‘‘ " :Euﬁm /fﬂ } ‘%‘” { f *ﬁ( E — ?j j h)

\
? E}r - E*ﬂ % E’? ﬁ { E mmmmmmm ﬂﬁ@ j’ :.g} % -5;_?2 ( E o 3 ! i/ b ) .

in the stationary state the stream is absent. In this case the quantities
i, 2 and A may even be arbitrary functions of y. The solution of the
equations (2.2) 1s

f
(3.2) =0 =10, gl(x, y) = — [ h~Y(n) V(n) dn.
]

Hence the stationary state appears to be independent of 4 and .
If V(y) is a constant, say V =1, the result (3.2) reduces to

(3.3) GhmC(x, 0)= -0V

at the “Dutch™ coast y=0. We note that for a sea of variable depth thc
same result is obtained as for a sea with the uniform harmonic mean
depth A= /hy. For that reason the models considered in this and in the
previous paper may be successfully compared to each other.

If the windfield (3.1) is linear,

(3.4) U=0, V=Vo+ Va(l —y/b),
the result (3.2) gives for y=0
(3.5) Ghm{(x, 0)= —bVo—b(1 —ym/b) Vo,

where

b
.ﬁ _hm [ vy
(3.6) ym =2 | £ dy.
0

In the numerical case considered here we find

(3.7) Cm2 Z:(.Ct.?, 0) = — 207 V() —4.04 Vg.

4. Method of solution

The treatment of the problem of the second section is very similar
to that of the similar problem of section II 2 of the previous paper.
Again a streamfunction ¢(z, y) is introduced by means of

|

4.1 0 — — %2 ) . 08
(4.1) A 5y AV .
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From the equations (2.2) it follows by elimination of ¢ that

(4.2) }L(%% mgmg)—f— 200 AU — 2820 = R—l—?.;oc*U,
where R represents the rotation of the windfield (cf. II 3.1)
(4.3) ol o

. e bm _6"'5 .

Substitution of (4.1) in (4.2) gives a partial differential equation for the
streamfunction

(4.4) Ad— 24 gm.?a%;—ﬁ’mff—{— 20U,
where
(4.5) A =50/,

The boundary conditions are

a the coast condition,

(4.6) =0 at =0, x=m y=0;
b the ocean condition,
0¢ O¢p
with
def 1 2
(4.8) = - arctg 7 -

The problem of finding the streamfunction will be solved in the same
way as in Il 3. First a simple solution é¢(z, y) satisfying the differential
equation (4.4) and the boundary conditions at =0 and x=x will be
derived.

This function can be constructed as follows, We introduce the following
two auxiliary functions which have the property of vanishing at =0
and x=umn

(4.9) po(z) = Ya(n— 1),

def

If these functions are substituted in the left-hand side of (4.4) we find
the following results

(4.11) po(x) —>— (1 + An) + 2Ax,
(4.12) @1(x) — 1.
Further we have
27 1 .
(4.13) % 91(%) > (g — ) + 32+ 24 (),

(4.14) yp1(x) =y — 2up1(x).
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Hence for &o(x, y) the following expression can easily be derived
200 Uy

S‘?SO (@, ¥) (R+’an)<p1m (qf>o+(}?1)+
(4.15) +2f;lb]2 {(A(b —Y) — &) gvl+ — (@o+ 1) +
& 247
( T (eﬁfiﬂml_l—%ﬁAn)?l}‘
We put (ct. II 3.8)
(4.16) ?S(w: Y) -—*—':(;So(.’,l’:, Y)+ (}l)l(x: Y)
so that ¢; satisfics the homogeneous equation
bqfq ) bqﬁl
(4.17) Ad;— 24 — 2w = 0,
and the boundary conditions
(4.18) $1=0 at x=0 and x=m.
The elementary solutions of (4.17) and (4.18) are of the form (cf. IT 3.11)
(4.19) e4% sin nx eV
for n=1, 2, 3, ..., where
(4.20) tn = (n2+ A2+ 2)}.

Hence we may put (cf. II 3.12)

d1(x, y) = eAdr z Cp SIN NX € " V#n—% |
n=1

(4.21)

OO
R eA.’Z? E dn Sin NI e“(b‘"ﬂ)(#n‘f'ﬁ).
N=1

The coast condition ¢ =0 at y=0 gives by using (4.16) and (4.18)

(4.22) z Cn Sin Ny — — e"ASU ‘;60(517, 0) + O(GMb),

n==1

where the order term contains the contributions of the terms with the
coefficients d, (cf. II 3.18).

The coefficients ¢, can be obtained by means of (4.22) and (4.15).
T'he explicit expression of ¢, will not be written down in view of its
intricacy. We shall mention only its asymptotic behaviour, viz.

Cn = a—i—g {B+20(Uo+ Ur+ Us)} +
(=111 222 A Ry 26 U — Uy + Uz)} + O(n-5),

TIN3

The ocean condition (4.7) gives a result that can be put in the following
form (cf. II 3.20)

S > non @ {e*‘iw(mcos Nx —-‘-‘-—"-’ftgyn sSin nw)} =

ne—1 HUn — X d.’B

(4.24)
8 = U(z, b) + ( + tg 7 5 )gbo(x b) + O(e?).
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In some respects the integrated form of (4.24) has theoretical advantages.

(4 25) z Dn(Sin nr — On COS nl:) — f(.lf) '{'" O(Q‘mb):
Nn =]
where
5 def ﬂnCln
(4.26) =T
(4.27) On = 5'; cotg um,
and £
S edrf(x) = C + cotg ux [ U(&, b) d&4-do(x, b) +
(4.28) | & D
2 + cotg uz [ o= bol(£, b) d,
0

where C 1s a constant of integration.
Since 1t follows from (4.27) and (4.20) that for n — oo

(4.29) 0& — COtg ﬂ?[{l T O(nmz)}

the properties of the expansion (4.25) can be easily deduced trom those
of the simpler expansion

0
(4.30) > Dy cos (ne + un) = F(x), 0<x<m,

N = 1
where F(x) may be considercd a given function. The latter expansion
has becn considered in section II 4 of the previous paper. A more detailed
treatment is given in LAUWERIER (2). The main result is the asymptotic
behaviour of D,

(4.31) - p, =D

n2—2u
where D' 1s a constant.

This result can be used to facilitate the numerical computation of
the coefficients d,. For the latter coefficients we find by means of (4.26)

(4.32) Ay = (— D=t D -+ O(n—3+2#),

n2—2u

We shall consider in particular the elevation of the sea at the coast
y=0. In a similar way as in the previous paper the following formulae
can be derived (cf. II 3.23 and I1I 3.25).

For the relative elevation at y=0 we have

(4.33)  c?{l(x, 0)— (0, 0)}= [ U, 0)d¢ + [ 5= $(&, 0)dé.
| 0 0
Substitution of (4.15), (4.16) and (4.21) gives

co? {£(=, 0)=£(0, )} = f U(¢, 0)as — 35-‘- sz p1(£)dé +
(4.34) . 0 ) o
o Z (Mﬂ "‘"’""“)Cn J. e4s sin n& d& + O(e“b)_
0

n=]
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For the absolute elevation we have (cf. II 3.26)

g £(0, 0) ----f —# V(0,7 d77+f e=27 = ho(0, 1) dy +
(4.35)

A S

‘ n =1 ‘u"‘_l_a n=1 Hn &

5. The problem without rotation of the Harth

In order to get an impression of the influence of the rotation of the
Earth the problem will also be solved with the assumption £2=0. The
streamfunction is now determined by

06
_ 9
(5.1) A¢ — 2052 = B+ 2aU,
and the boundary conditions
(5.2) d=0 at x=0,x=m, y=0,
and
‘ 06 _
(5.3) Sy U at y=05b.

We may put by specialisation of (4.16) and (4.21)

o0
C}S(CU, y) — ¢0(x: y) -+ z Cn SIN NI o~ Vi, — &) -
(5.4) n =1
o0
— D dp sin nx e~ C-V )
ne=l

where now

(5-5) Un = (77:2—!—062)%,
and
Sqﬁo(t,y {R+‘)OCU0+§0¢(1M?£§)U1 2 (lmw)Uz—}-
(5.6) .
| + 55 (go(®) +422) | go(2)
The coast condition at y=0 gives by specialisation of (4.22)
(5.7) Z Cn SIN NX = — do(x, 0) + O(e~d).
N == 1

In order to find an explicit expression for ¢, we need the following
auxiliary integrals

(5.8) fﬂgvo(a:) sin nx dx = {1 —(—1)7} n-3,
(5.9) f(l-—-—-?x/n) @o() sin nx dx = 3{1 + (—1)»} n-3,

(5.10) f{(poz(a}) +%7‘62(po(x)} SIn nx dx = 6{1 ----( — 1)"’} 79,
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Then with neglect of the order term it follows easily that

S
cn = — U for even =,
JT

(5.11)

nd 71213 nd  bnnd

Cn = 2 Up— —— Y, + (20 + ..51..) 2 16“2} Us for odd n.
The ocean condition (5.3) gives

(5.12) 3 (un-+)dn sin na = Uo+ Us (1—22) + 22U, () + O(e-?),
n=1

JT

from which, with neglect of the order term,

S (n +ox)dp = 3-;% U for even n,
(5.13) | X 8
e (Mn"l‘tx)dn == :";)_’b U0+bnn3 Uz for odd n.

The elevation at the ‘““Dutch’ coast is determined by (4.34) with
A=0 and by (4.35). We shall give here only the explicit expression for
the elevation at ‘““Den Helder”’, the middle of the ‘“‘Dutch’ coast.

m ’ -r
gcoz C(37, 0) = {%—}—% "’-f-’—‘;z-z-& COS %—frm} Uq-+

ne==1

(5.14)
e — }—?—i- {2 Vo + 4.04 Va} + O(e™?).

We note that the contributions of the components Uy, Us and V; vanish
at this point.

6. Numerical application

The calculation of the elevation at the ‘“Dutch’ coast due to the linear
windfield (2.7) may be carried out with the help of (4.34) and (4.35).

In the first place we need the coefficients ¢,. They are linear expressions
in Ug, Uy, Us and V; the factors of which are given in the following
table for a few wvalues of n.

TABLE 6.1
Us U, Us Vi
c1 0.094 0.017 0.154 —0.239
co 0.014 0.016 0.022 —0.036
C3 0.006 0.004 0.010 —0.016
Ca 0.002 0.003 0.003 —0.005
cs 0.001 0.001 |  0.002 —0.004

The calculation of the relative elevation by means of (4.34) gives the
following result



TABLE 6.2
8.’:6‘/:7‘5 Co Cy Ca Dy Dy Ds
0 0 0 0 0 0 0
1 0.37 | 0.33 0.36 0 0.05 0
2 0.70 = 0.54 0.66 0 0.21 0
3 1.02 = 0.66 0.93 0 0.40 0
4 .33 069 | 1.2l 0 0.62 0
5 1.63 | 064 | 146 0 0.86 0
6 1.93 052 | 173 0 1.06 0
7 2.2¢ | 029 | 1.99 0 1.31 0
8 2.59  —0.04 |  2.83 0 1.40 0
where
(6.1) COQ{C(Q’J, 0) — C'(O, 0)}mOoUo +-C1 U1 +CoUs+DoVo+D1Vi+DsVs.

For the absolute elevation, which 1s given by (4.35), we write

2883

(6.2) co2¢(0, 0) =1+ 11+ 111,
where
b b b
(6.3) I =- fe“"-‘?*“’? V(0, n)dn + f e~ = ¢o(0, n)dn,
0 0
- 7
(64:) II mngl ”n+cx Cn,
(6.5) T = —e-2% Y — ",

n=1 Hn &

The calculation of the expressions I and II is simple and straight-
forward. The calculation of III, however, requires the calculation of the
coefficients d, which is a rather difficult problem. We shall not give a
detailed description of the numerical process, but we restrict ourselves
to the remark that much profit has been obtained from the asymptotic
expressions (4.31) and (4.32). The results of the calculation are given
below, however without the contribution of the components Vy and Vo.

We note that the contribution from III is very small. From this table

TABLE 6.3
U, | U, Us | v
T —0.58 —0.34 —0.67 —1.68
11 0.10 0.04 0.17 —0.26
111 —0.01 —0.01 0.01 —0.05

and from (3.7) it follows that

(6.6) 3

S —¢0%2((0, 0)=0.49 Up+0.31 U1+0.49 Us -+

+3.17 Vo+1.99 V1+2.04 Vo.
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Fig. 6.1

Elevation at the “Dutch’ coast due to a linear windfield



290

The results of table 6.2 and formula (6.6) may be combined 1n order to
oive the absolute elevation c¢,2{(x, 0).

8x/n

W -1 O W — O

!

|

Co

—0.97
—0.24
0.42
1.05
1.67
2.206
2.86
3.47

4.16 |-

where now

0.04
0.46
0.69
0.71
0.65
0.42
—0.04
—0.69

TABLE 6.4

Co

—0.97
—0.26
0.34
0.88
1.43
1.92
2.46
2.97
3.65

—0.28
—6.28
—0.28

. —6.28

—6.28

—6.28 -

—06.28
—06.28
—06.28

—3.95
—3.85
—3.H3
—3.15
—2.72
—2.24
—1.84
—1.35
—1.17

—4.04
—4.04
—4.04
—4.04
—4.04
—4.04
—4.04
—4.04
—4.04

(6.7) cm2C(x, 0)=CoUo+C1U+CoUg+ DoVo+ D1 Vi DaVo.

A graphical illustration of this table is given in figure 6.1.

The calculation of the elevation with absence of the rotation of the
Earth can be carried out by means of (4.34) and (5.14). With the notation
of (6.7) the following table can be constructed

TABLE 6.5
832/9‘5 Oo 01 02 Do | Dl .Dz
0 —2.54 —0.89 —2.26 —6.28 —1.49 —4.04
1 —1.82 —0.26 —1.57 —6.28 —1.31 —4.04
P —1.19 0.18 —1.01 —6.28 —0.95 —4.04
3 —0.59 0.44 —0.52 —6.28 —0.50 —4.04
4 0 0.52 0 —6.28 0 —4.04
5 0.59 0.44 0.52 —6.28 0.50 —4.04
B 1.19 0.18 1.01 —6.28 0.95 —4.04
7 1.82 —0.26 1.57 —06.28 1.31 —4.04
8 2.54 —0.89 2.96 —6.28 1.49 —4.04
LITERATURE

See the biibl'iography at the end of the previous péper.




