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IN AN ANGLE *). 1I
BY

H. A. LAUWERIER

(Communicated by Prof. J. F. KogsmMa at the meeting of April 30, 1960)

1. Introduction

This paper 1s the second of the set of papers dealing with the problem
mentioned in the introduction of the previous paper !). References to that
paper will be indicated by 1, followed by the section number or formula
number. We shall use here the same notation. Here the G-problem is
solved 1n two different ways. In section 2 the problem is solved by
representing the Green’s function by a Fourier integral, the integrand
of which satisfies a certain functional relation. The latter functional
equation has been considered in connection with the F-problem treated
in the preceding paper (cf. I 4). This method 1s a streamlined version of
Vaxn Dantzia’s method 2). In section 3 a few elementary cases are
considered for which the method of the previous section can be success-
fully applied. In section 4 the G-problem is solved by a different method.
The Green’s function is now represented essentially as a l.aplace trans-
form, the integrand of which is a sectionally holomorphic function. The
boundary conditions lead eventually to a certain generalized Wiener—Hop{
problemy. The latter problemy may be formulated as follows. Let gi(w)
be holomorphic in the strip g1 —dn=Im w=g¢1 + 4n and symmetric with
respect to i1g1, let ga(w) be holomorphic in the strip e —dm=Im w= s + §=x
and symmetric with respect to 1¢q2. It will be assumed that 0 <@ —p1 ==
so that the two strips overlap or at least have a line 1n common. 1f in
the common region R(p:—in=Im w=g¢; -+ 4x) hi(w), he(w) and k(w) are
given functions, then the problem is to determine gi(w) and gz(w) from
the following functional equation in Rk (cf. (4.14) with a slightly different
notation).

(1.1) hao(w) ge(w) -+ h1(w) g1(w) = k(w).

If @2 —p1=m then R is a line and the problem is equivalent to a Hilbert
problem in the z-plane, where z=sh w. The solution of (1.1) involves a
factorisation problem of the quotient Aj(w)/he(w) which appears to be
equivalent to the abovementioned functional equation of I 4. The final

*)  Report TW 66 of the Mathematical Centre, Amsterdam, Netherlands.
1y Cf. H. A. LAuwgRIER (19590).
2)  Cf. D. vax Daxrzic (1958).
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from a finite or intintte source, 1 h(‘i% W eHwkn own pr ubhmfa of the,@ slupmg
heach has been treated in a similar way by the present author 3).

2. The G-problem, first method

Let G(r. ¢. ro, go) be a function of Green satistying (L 1.1) and (I 1.2)
which is continuous at r =0 and which vanishes sufficiently rapidly for
r o> 00, e.g. as exp-cr where ¢ is a pozitive constant. Then we take its
complex Fourier transform

.

(2.1) Wi, )~ a-tchw | exp (irshw)G(r, ¢. ro, go) dr.
0

By partial integration it can easily be proved that

v - agﬂ . , _ . \ b @ bg )
h} '&) TP S R ‘Ii’ TN o ““1 E f J‘ K : ’ i-‘ i, B a ¥ g .
(2.2) (a - Wﬁ) W = a-lchw f exp (¢rshw) {(?‘ 2}?_) +s— SG‘d?f‘
¢

Then it follows from (1 1.1) that

BW | RW

(2.3) = - - lrgchw exp (1roshw) (¢ — @o).

Hence in the (w, ¢)-plane. where w is real, the function W(w, ¢) 1s a
harmonic function with a line-source at ¢ =:¢g. Inversion of (2.1) gives
the integral representation

(2.4) G(r, @. o, o) = % f exp ( —irshw) W(w, @) dw.

The variable w in (2.1) may be complex with 0<Im w=x. In this region
the function W 1s regular. We note that the right-hand side of (2.4)
vanishes for r<0.

It w 1s a real variable it will often be replaced by . Then we may

ropicgtl e M G T S el T LTI A

) Cf. H. A, LaAuwgRriEr (1959a).
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define functions U(u, ¢) and V(u, @) by means of

(2.5) U, ) = 3 {W(u, @) + W(—u, ¢)}
and
(2.6) V(u, @) 5 (W (u, ) — W(—u, )}

T'hey represent respectively the cosine transform and the sine transform
of G.

It follows from (2.4) that

(2.7) G(r, @, ro, o)= [ cos (rshu) U(u, @) du
and o
(2.8) G(r, @, ro, o) = [ sin (rshu) V(u, @) du.

Since W is harmonic in w and ¢ we may put

(2.9) W(w, ¢)=g1(w-+1p) + g2( —w + 1),

where g1 and g2 are analytic functions of their arguments. Then it follows
from (2.5) and (2.6) that we may put

(2.10) 2U (u, p) =g(u+19) +g(—u + 1)
and
(2.11) 2V(u, p)=g(u-+ip)—g(—u+ 1),

where in both cases g(w) is an analytic function of the complex argument w.
In view of the line-source at ¢ = @o the function is sectionally holomorphic
mn g1<Imw<gy and po<Im w<ps with a jump line at Im w=g¢q. It
follows from (2.3) that W(w, @) is continuous but that its partial derivative
with respect to ¢ makes the following jump

QW
o0

P10

(2.12) = — 7~ lrochw exp (vroshw).

Po— 0

In view of (2.5) and (2.6) we have similarly for U(u, ¢) and V(u, @)

(2.13) 32 — —a-lrgehu cos (irgshu).
P lge—0

and

(2.14) %—Z o — - rochwu sin (2roshu).
P lpo—0

Then it follows from (2.10) and (2.13) that

(2.15) g(u + 1) %—l—z = — (712)~1 sin (roshu).

Po—

Similarly it follows from (2.11) and (2.14) that

Po+0

(2.16) g(u+19) = (mr2)~1 cos (roshu).

Po—0
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After these preliminaries we shall introduce the boundary conditions
(I 1.2). Since the representation (2.4) implies (2.7) as well as (2.8) we
consider (2.4) only. Then by using (2.9) we find for 9=1 and j=2

(2.17) [ exp (—wrshw) {ch(w —uy;) gr(w -+ 1Q;)

——ch(w+ 1y5) go( —w + 15) } dw =0,
These conditions are satisfied it
(2.18) ch(w —y;) gr(w +1@;) =ch(w { 2y;) go2( —w - 1¢p5).

In the remaining part of this section we shall treat the cases Re y1= Re y»,
and Re v; > Re y2 separately.

. Re 11 = Re V9.

In this case the cosine representation (2.7) has certain advantages.
In view of (2.9) and (2.10) we may put
(2.19) gu(w) = ga(w) = g(w).

We shall next introduce a new unknown sectionally holomorphic function
P(w) by means of

(2.20) g(w) = P(w) ¢(w)
where the auxiliary function ¢(w) 18 given by (ct. (1 5.10))

) ) — 6(w -—---'z,'(pl’ y?')
(== p0) e(w — 12, Y1)

Then substitution of (2.20) in (2.18) gives for w=wu with real u the
symmetry relations

From (2.13) it follows that P(u +1¢) makes the following jump at @ =g

(2.23) P(u + 1) |72 +0 _ —sin (roshu)

1Py — O TTY qb(u ! ‘Z(po) .

In order to construct a solution of (2.22) and (2.23) we consider the
following function

OO
2.5 def ¥ f __ Shv(uo+o@o)
(2.24) F(w) = 274 /(%o) chv{wuo + 1@o) — chyw do.

where f(uo) 1s absolutely integrable in (—oo, co). This function is clearly
holomorphic in the strips g1 =Im w <@ and go<Im w =y, satisfies the
symmetry relations (2.22) and makes the jump f(u) at the line w=u + 1¢y.
Hence a solution of (2.22) and (2.23) is obtained by an appropriate

choice of f(u) viz.

o v §_in (roshuo) shy(uo 4+ 2@o)
(2.-“)) P(w) 23-52 | ¢(u0 -+- 7:¢>0) Gh’])(’l,{,c} —-l-— 'Z:(po) - Ch‘]!w

e Ok .

d%().
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Substitution of this result in (2.20), (2.10) and (2.7) gives finally 4)

O o
4 1 L
(2.26) G(r, @, ro, o) = ——f f cos (rsha) sin (roshaug) 2T

Fs 2 ) 201 ( ) ( 0 0) b (110 + 2 00)

— OQ — OQ
shy (“u() -t '?:QD())
T du duy.
chwv(o + 2o) -~ chr(u -+ i)

b. Rey1 = Re ys.

In this case the homogeneous Helmholtz equation has a solution which
1s continuous at r=0 (ef. (I 5.13)). Therefore the solution of the problem
of Green is not unique. However, a unique Green’s function may he
determined by requiring that |

(2.27) G(O’ q)’ 'T'O? (po) e ()_

Now the sine representation (2.8) is appropriate. In view of (2.9) and
(2.11) we put

(2.28) g1(w) = —ga(w) = 1y(w)

3

and next as in (2.20)
(2.29) g(w) = P(w) d(w),

where again ¢(w) 13 given by (2.21). For P(w) clearly the symmetry
relations (2.22) are obtained but the jump condition at ¢ =gy is here

Po+0 cos (7oshug)

Wil
e ielerggry

) s Dlar 1 a g —_—e
(2.30) Plu i) go— 0 T (2 1¢o)

By a simuilar argument as in the previous case we find the solution

OQ
N o Y cos (roshu shyvw
(2.31) P(w) = — 50 [ oSl SWW_____ gy,
ey £ & (2o + 2¢o) chv(wo -+ 2¢0) — chyw
— 00

Substitution of this result in (2.29), (2.11) and (2.8) finally gives 9)

oo A

o 1 . (u +2p)
Q) - Q’) ‘-" A —— "y k _ *‘*’ i :1 k.. » .
(2.32) (7, @. 70, @o) T f f sin (rshu) cos (reshuyp) (220 —+ 20)

— 00 = OQ

shw (1 -+ 1)

. . — du duy.
chy(u + 2@p) — chv(wo 4 2go) !

The results (2.26) and (2.32) can be obtained from each other by
replacing y; and y2 by —y1 and —ye, 1.e.

(2.33) ' G(r, @, 70, Po. Y1, y2) =0 (70, ®o, 7, . —Y1. —72).

. . . | . | N, I | v ,
The latter relation may also be derived from Green’s theorem.

e

4)  Cf. I>. van Danrziag (1958), formula (5.10)
5) Cf. ID. van Dantzie (1958), formula (5.11)
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3. FExamples.

a. 'The following Green’s function

(3.1) Qolr, @, 70, Po) = (27)~1K (V7% + 1702 — 2rrg cOs (¢ — o))

satisfies the Helmholtz equation (I 1.1) in the full r, p-plane, i.e. for
0<r<oco, 0=@=2n. We note that Gy has also a meaning for negative
values of » but that the reflection r — —7» may be considered as equivalent
to the translation ¢ — @+=x. According to (2.1) the complex Fourier
transform Wy(w, @) will be taken with only positive values of r. In order
to carry out the transformation we need a few auxiliary formulae. We
have the following integral representation of the modified Bessel function Ky

QO

(3.2) Ko(Va2+42)=% [ exp — {ych(u+ ic) + ixsh(u +1c)} du,

where ¢ is an arbitrary real constant. This expression converges in the
halfplane x sin ¢ <y cos ¢. By changing ¢ this halfplane may swing round
the origin so that the full z, y-plane 1s covered. Substitution of polar

coordinates x = — 7g COS Qg -+ T COS @, iy = — Tp SIN @y + r sin @ gives with either
=@ or ¢= @+ the result

(33)  Kol/7TTrob—2rrg cos (7 —0)) =

= 4 [ exp — {srshu —vrosh(u +i|p —@o|)} du.

Using this we find for Wo(w, ¢) without difficulty

‘ h .. .
(3.4) Wo(w, @) = f ;‘H;:}:h““% exp {trosh(t+1|@—po|) } dt.

This function is clearly holomorphic in the strip 0 < Im w =< and satisfies
there the symmetry relation

(3.5) Wo(w, @)+ Wolmi —w, @)=0.

Further we note that Wy(w, @) 1s continuous at ¢ =¢¢. However, 2Wo/dg
makes a jump at ¢=¢o the amount of which can be determined in the

following way

o0
oWy |#ot0 70 chwcht :
@ lp-o 2n% | o= et exP (irosht) dt =
—_—0
o0
o rochw eXP 2702 1 - .
= — o v dz = — - lrochw exp (vroshw),
— OO

which confirms (2.12).
Any function of Green satistying (I 1.1) and some boundary conditions

can be considered as the sum of Gy, the singular part, and a function
with continuous derivatives, the regular part. Since the complex Fourier
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transtorm of the regular part is regular at ¢ =¢q the preceding argument
may be considered as an independent proof of the jump condition (2.12).

In order to obtain from (3.4) an illustration of the property (2.9) we
need the identity

(3.6) __ochw o et

sht —shw et —ew et J-e—w’

Then 1t can be easily derived that (2.9) holds with

E ew .
(3.7) g5(w) = = j ST —ow ©XP (&17oshi) dt.
— 00

where e= + for j=1 and e=— for j=2.

Evidently gi(w) and go(w) are sectionally holomorphic with the boundary
hne at Im w=g@. Writing w=wu+1ip with real v we have at @=qyp

(3.8) g;i(u+19) = ¢(2n)~1 exp (erroshu).

090—0

b. If the complex Fourier transform W;(w, ¢) is taken with positive
and negative values of r we obtain

(3 Q) S Wl(uv’a (P) =~ lchw f exp (’i?ﬂgh?j)) GQ Ir —
. 2 ? == (Qyt)-"l exp {i?‘osh('w . 7"!‘;17 . @OI)}.

This function is holomorphic in the strip —z<Im w=x but the relation
(3.5) no longer holds. In this case we have (2.9) with

’ { 0 for @< g
(3.10) g1 (w) = (27)-1 exp {irosh(w—ip)} for > oo,
and

(27)~1 exp — {irosh(w—1ip)}  for p<qo
0 for @ > Q.

From this the jump condition (2.12) follows without difficulty.

4. The G-problem, second method

In this section the G-problem for the angle ¢ <gp<¢@z will be solved
by a different method. We shall start the discussion by assuming that

(cf. (I 5.17))
(4.1) in<b<m, Reyi<b—3nm, Reys>im—0.

In that case we know from (I5.19) and (I 5.20) that the “‘regular’
solution of the F-problem can be written in the form

o0 -1¢

(4.2) F(r,p)= [ exp {—rch(w—ip)} H(w)dw,
— 00 +1¢

where

(4.3) ¢1+Re y1<c<<pg+Re Y.
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The function H(w) is holomorphic in the strip given by (4.3) so that the
representation (4.2) gives a regular solution in the larger angle (cf. (1 5.18))

(4.4) p1—im 1t Re vy < -2ge--dm - Re ya.

A CGreen’s function may be considered as the sum of a singular part
for which the function (7p of (3.1) can be taken and a regular part which
is a solution of the homogeneous Helmholtz equation (I 3.1). 1t will be
tried to represent a function of Green satisfying (L 1.1) and (1 1.2) by

OO -} 1
(4.5)  G(r, @, ro, o) = Go(r, @, 1o, o) + Zl}}};" f expi{ —rech(w—1¢)} g(w) dw,
— 00 -|-1¢
where ¢(w) is holomorphic in the strip (4.3) and of the order O(exp — g|Re w))
as Re w — -+ oo,

In order to introduce the boundary conditions (1 1.2) i (4.5) we note

that from (3.1) and (3.3) it follows that for j=1, 2 at ¢=¢;

| : b
g (OOS Vi— < — Sl Yj -—b-?-:) G() =

» b(p
(4.6) o
8 = % f e~ #mhech (w -+ 1y;) exp {eeg roshw + 1o — 1)} dw,

\ — 00
where ;= 1 1 for =1 and &= —1 for j=2.
Then the boundary condition at p=g¢; gives

(48) f @ — i&rshw gj(w)dShw _ 0’
where |
(4 g) ,gj(?ﬂ)chw cet ch(w — ?:yj) q(w ~}- ’a:(pj- -+ «Sj‘%in) .

—ch(w-+1y;) exp {igrosh(w + o — 177) ).

The conditions (4.8) should be fulfilled for > 0 only so that it is sufficient
to assume that gi(w) is holomorphic in the lower strip 0<Im 1w <z and
g2(w) holomorphic in the upper strip —z<Im w<< 0, that g;(w) 1s symmetric
with respect to —ide;m, and that ¢;(w) vanishes at Re w -> 4 oo.

The relation (4.9) gives either '

(4.10) g(w) = h1(w) g1(w — 191 — $177) -+ k1(w)
valid in the strip ¢ —3dx < Im w<< g1 + 3n,

or

(4.11) g(w) = he(w) go(w — 12 -+ 327) + ka(20)

valid in the strip ga—4n<Im w<@s+ 4nx,
where the functions Aj;(w) and kj(w) are defined by

(4.12) hi(w) = sh(w —igy) [sh(w —ig; —iy;),
and

(4.13) Fkj(w) et exp {roch(w — 21@; +1po)} sh(w — 1p; +2y;5)[sh(w —2p; —1y;).
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From (4.10) and (4.11) there follows for the common strip

g2 —dm<_Im w< @1 + §x
that

(4.14)  ho(w) ga(w — s + $17) — hi(w) g1(w — ig1 — diz) = ky(w) — ka(w).

The solution of the functional equation (4.14) is the crucial point of
the method of this section. The problem (4.14) may be formulated as
representing a generalization of a Hilbert problem or a Wiener—Hopf
problem. 1t does represent a Hilbert problem on a line in the special

cases 1= — 37 and @z =1z. By transforming (4.14) from the w-plane into
the complex z-plane by means of z=shw we obtain with a similar notation
(4.15) he(2) g2(2) — h1(2) g1(2) = k(2)

valid for real z, where A;(z), ho(z) and k(z) are given functions and where
it 18 required that go(z) is holomorphic in the upper halfplane Im z > 0 and
g1(z) 18 holomorphic in the lower halfplane Im z<0. Hence (4.15)
represents a Hilbert problem on the real axis of the z-plane, the solution
of which involves the Wiener-Hopf factorisation of the quotient A;(2)/ka(z).

The more general problem (4.14) might be also interpreted in the
z-plane which 1s now a Riemannian plane with branch points at z= 4.
T'herefore (4.14) may be considered as a Wiener—-Hopf problem in a
Riemannian plane. Its solution involves the following factorisation. To
find functions Hj;(w), 7=:1, 2, which are free from poles and zeros In
the strip ¢;—sn<lm w<g@;+ 57, which are symmetric with respect to
1p; and which satisty

From the symmetry relations of the H;(ww) we may derive a set of
functional relations for H(w). We have by using (4.12)

Ho(ip;—w)  hj(ig;—w)  sh(w—1y;)°

(4.17) Ho(ips+w) _ hy(igs+w) _ sh(w+ iyy)

But these are exactly the functional relations of the funection H(w)
discussed in (I 5.20) and (1 5.22).
Therefore the function Ho(w) can be identified with the latter function

H(w).
Hence a factorisation (4.16) is obtained by taking
(4.18) Hj(w)= H(w)/hj(w).

As a verification of the fact that e.g. Hi(w) is free from poles and zeros
in the strip g1 —3im<Im w<qi+3in we note that the nearest zeros and
poles of Hji(w) are a zero i(p1+0) and a pole (g1+0+y2) on the upper
side and a zero i(pi—0) and a pole i(—¢@1—0—y2) on the lower side. It
may be remarked that at this point an essential use of the inequalities

(4.1) is made.
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By using the factorisation (4.16) the relation (4.14) can be brought
in the following form

(4.19) pa(w) —y1(w) =p(w),

where for =1 and j=2

(4.20) wi(w) = gs(w — i — esbim) | Hj(w)
and
(4.21) p(w) &= {Fy(w) — ka(w) Y/ H(w).

The unknown function w;(w) is holomorphic in the strip
p;—tn<Im w<g;+ 3x and symmetric with respect to ug;.

The problem (4.19), a simpler version of (4.14) may be interpreted in
the following way. Let w(w) be a given analytic function which is
holomorphic in a strip o1 <Im w<oxe with ag—oa1<zn. Then y(w) should
be split in two parts ywi(w) and ps(w) as indicated by (4.19) where y;(w)
is holomorphic and symmetric in the lower strip as—zm <Im w <«s and
wo(w) is holomorphic and symmetric in the upper strip «; <<Im w<x;+ 7
(see figure 1).

Pt ET
J’..
#"#JH
o=
2 L
/// o
_ Ll
P, "2
|
V&
o
-
\'\
o
"
\\
¢
g
L B
Fig. 1

The equation (4.19) holds in the strip ge—4dnm<Im w<g; + 37w. The
symmetry relations of the functions yj;(w) are explicitly

(4.22) Y1y +w) = (1@ — w).
Then 1t is easily seen that (4.19) is solved by
\ Y shv (wo — 2qy)
(4.23) Vi) = g5 | Y(00) St ot gy 20
L;

where L; and Lg are contours in the region of regularity of w(wy) with
Re wy running from —oco to +oc and where w is enclosed between
Lo and L; as shown in figure 2.
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We shall assume that contours L; can be found such that the integrals
defining y;(w) converge.
Substitution of the expressions (4.20) and (4.21) in (4.23) gives
gi(w — i — eshim) = Hy(w) 5— f kl(w%f{vff —

(4.24) Py
shy(wo — 1¢y)

" chy(wo — 2¢5) — chyv(w — i) dwo.

From (4.5), (4.10) and (4.24) for j=1 the following solution is obtained

27‘60(7‘: @, 7o, (?90) =

o0+ 16
= Ko Vr2 + ro2 — 2779 cos (@ — @o)) + % f e~ ThW=i9) Jo. (ap)dw +
(4.25) 00 +ic ) s
___1_’_... — rch(w —1@) 1(‘w0) - ks('wo) ]
T 477 J' © ? H(w)dw f T Hwg)
- 00 16 Ly
shv(wo — wl)

" ehv(wo — tg1) — chy(w — 1g1) dwo-
A similar expression may be obtained from (4.5), (4.11) and (4.24) for j=2.

In order to obtain an interpretation of (4.25) we consider the halfplane
case 1=0, pa=m and next y;=1ys=7y. Then 1t follows from (4.13) that

k1(w) = ka(w) so that (4.25) reduces to

278G (7, @, 7o, @o) = Kol V72 4 ro2 — 2719 cO8s (@ — o)) +

(4.26) 0o .
. %: J‘ sh (w -+ 2y)

“hw—5y) Pt reh(w— 1) + roch(w +1qo) }dw.

— OO 4 A€

A more detailed interpretation of this important special case will be
postponed to the following section but here we remark that with
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Re y <:c< mt + Re » the integral on the right-hand side of (4.26) converges
in the halfplane r cos (¢ — @) =179 cos (¢ + @o) or (x — p) cos ¢ -+ (¥ + Yo) sIn ¢ >0
(see figure 3). Hence it represents a kind of “oblique reflection™ of the
singularity (xo, o) with respect to the X axis

Y ? 0¥/
\ ,
| (%o 57Yo)
B
.4

Fig. 3

Therefore the right-hand side of (4.25) represents the Green’s function
as the sum of the elementary Green’s function Gy of the full plane, 1ts
“oblique reflection’ with respect to one side of the angle and a correction
term.

The expression (4.25) may be transformed in the following way. By
using (4.13) and the functional relations (4.17) we have

d’wo =

f k1(wo) — ka(wo) shv(wo — 2q@1)

H('wo) chy (wo — '2:991) — chy (w — ?:(}’31)
Iq

_ J‘ yexp roch(wo — 241 + o)  exp roch(wo — 2ip2 4+ 1@o) )
( H (— wo 4 2i¢1) H (— wo 4 2i¢2) )
Ly

Sh'v(’wo — ’?:(;01)

- chy(wo — 2¢1) — chv(w — 191) dwo '

If L1’ 1s the reflection of the path L; with respect to wo=1¢91 with Re wp
running from +oo to —oco and if L;” is the reflection with respect to

wo =1@y with Re wy running from —oo to -} oo then the latter expression
may be changed into

(4 27) J‘ exX roch (wo — ‘?:(po) sh ’V(wo —- ?:(pl) dwO -

H (w) chv(wo — 2¢1) — chv(w — 1¢3)
Ly + Ly"

The denominator chy(wo—1i¢;)—chy(w—1tp1) gives two poles wo=w and
wo = 211 —w lying between L;" and L;"”. There are no other poles in this
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strip. It the expression (4.27) is substituted in the third term on the
right-hand side of (4.25) the residues of the poles 1= 1w and wq= 201 — w

cancel the first and the second term on the right-hand side of (4.25).
Therefore we obtain the result

OO0 - 16
- - ) \ L V R ) A £ . Y ” " ;
N 2a0G(r, ¢, ro, @u) = v f exp y —reh(w )} H(w)dw
(4.28) - oo ic
. 17 N shy(wo - 1¢1)
exp {roch(wy —100)t H-1(wy) — e
f P {roch(wo —i@o)} H~1(wo) chv(woe — 21) — ehy (10— igy) Ao,

L
where the path L is of the form of 1 tig. 3.

The expression (4.28) is no longer restricted to values of 0, y; and 4
which satisfy the inequalities (4.1) but can easily be extended to all
0,11 and yo values.

By way of illustration we shall consider the special case y1=ys=0, g = 0
and gg2=0 with 0 arbitrary. Then H(w) == 1. If, moreover, v is an integer,
say v=m, the contour L may be transformed into the lines L;" and Ls”
for which we take Im w=+4=x | ¢p. Then the inner integral of (4.28)
equals the sum of the contributions from L;" and L;” and a number
of poles viz.

(4.29) Wo = —+w-i 2901, 1=0, 1, ..., m~— 1.

The contributions from L;" and L;” are equal and opposite in sign so
that finally

m—1 OO - 1

27G(r, ¢, 1o, o) = D> % [ exp {—rch(w--ip) | roch(wo—igy)} dw,

J == () - 0 + 1

or
2. " (f
- . ' (Ta ([’, fr(_)p Q')()) — (;0(?", q)j ’}”‘0’ (PO l Qj.?f 7)2_) __ﬁ{“
(4.30) )mz '~ jm

+Golr. p. ro. — ot 2jmjm)}.

This 1s 1n agreement with the result derived by a direct method in (I 3.5).

If vi=y2=0, =0 and g2=0 but » not necessarily an integer, from
(4.28) also the earlier result (I 3.6) can be derived. For Re wo> Re w
we have the expansion

oo
(4.31) shywo/(chywo — chrw) = emchyw e ™%
m =0

where eg=1 and &, =2 tor m=1.
A similar expansion holds of course for Re wy<<Re w. If (4.31) is
substituted in (4.28) we obtain at first after some elementary reductions

V . shvwo
— | exp {roch(wo —1ipp)} ———— dwp =
g DY) f P{ och(wo @0)} chvwy — ehvw 0
(4.32) L 00
')} .
—= Z emChmyw cos mygy - — | eXDP {Tochwo _..__.... mvwo} dwy,
m ==0 |
L+

where L+ is the right-hand part of L (cf. (1 5.25)).
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The right-hand side of (4.32) equals

(4.33) 20 > emchmyw cos myeo Iy, (ry).

m ==

Substitution of this expression in (4.28) gives at once the required result

(4.34) G(r, @, 70, ¢o)=0"1 > &, cos myp cos mrge Kms(r) Im.(70).

m = ()

This expansion onverges for 7> 7yp.
The same process can also be applied upon the general expression
(4.28). Then we obtain eventually

(4.35) G(r, @, 70, Po) =01 Z EmL ' m(r, @) F ™ (7o, ®o),

m =0

where (cf. (I 5.23)) Fu(r, ) 1s defined by

OC 1
(4.36) Fp(r,p)=4% [ exp {—rch(w—1i¢)chmy(w—1i9:) H(w) dw,

— 00 -1

and (cf. (I 5.24)) with o=sgn Re w

1
4711

(4.37) Fr(r, @) = J exp {rch(w —1p) — omy(w —1¢1)} H-1(w)dw

L
We note that Fp(r, ¢) and F,,*(r, ) both are solutions of the homogeneous
Helmholtz equation (4—1)F=0. However, F,(r, ¢) satisfies the same
boundary conditions as G but F,,*(r, ¢) satisfies the adjoint boundary
conditions with y; -> —y;. The expansion (4.35) obviously converges
for r>ro. In view of the symmetry relation (2.33) from (4.35) at once a

similar expansion valid for r <rp follows. It would be of interest to prove
(4.35) by some direct method.

5. Discussion of the results

In the case of a halfplane with ¢;=0, g2=0, y1=y2=7 the solution
of the G-problem is given by the expression (4.26). By this expression
not only G(r, ¢, 70, o) In the relevant halfplane is given but also its
continuation in the complementary halfplane. For simplicity we shall
assume that y 1s real and positive. It has been already noted in the previous
section that (4.26) holds in the halfplane (x— o) cos ¢+ (7 + o) sin ¢> 0.

Hence by varying the parameter ¢ the required continuation can be
obtained.

1f we define
o0 +1i¢
e h( :
(5.1) ) & = % f :h(z+2$; exp (—xchw + wyshw)dw,
— 00 -1¢

the solution of the G-problem can be written as

(5.

A

) G(CL', Y, Xo, yO)mGO(@'a Y, Xo, yO) T (275)_1 R(a:mxo, y+y0)
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If differentiation in the direction 4=+ y with respect to the X-axis is
symbolically written as D, the boundary condition at the X-axis viz.

2@ . WG | .
(5.3) COS y 5 — SIy — = 0 at y =0,

may be written in the form
(5.4) DG =0 at y=0.

Now it follows at once from (5.1) that

(5.5) R(z, y) =D, Ko(V 22 +42).

Hence R(x, y) can be interpreted as the contribution from a line of dipoles
which makes the angle —im+y with the X-axis. The dipoles itself are
making the reflected angle 4imw—9y with the X-axis. Therefore (5.2)
represents the sum of contributions from a logarithmic pole at (xo, %o)
and a dipole tail radiating from (xp, —yo) in the direction — }m-+y (see
figure 3). The dipole tail i1s equivalent to a line of normal dipoles plus a
simple pole at its end. Geometrically this is obvious. Analytically this
follows from the identity

(5.6) sh(w+1y)/sh(w—12y)=cos 2y +1 sin 2y cth (w—1y).
Substitution of (5.6) in (5.1) gives
o0 - ic
(5.7) R(x, y)=cos 2y Ko(V 22+ y2) + %t sin 2y [ cth (w—1ey)-
—_ 0 + 146

-exp (—xchw + wyshw) dw.

The first term on the right-hand side represents a simple pole of strength
cos 2y at the origin, the second term represents a tail of normal dipoles.
By crossing this tail a jump is made, the amount of which obviously 1s
determined by the pole w=1y of the integrand. Using polar coordinates
(r, @) we obtain

(5.8) R(r, —3n+y+4+0)—R(r, —3m+y—0)=msin 2y.

If y=0 the boundary condition at y =0 reduces to a simple Neumann
condition. In that case we may say that according to (5.7) the dipoles
annihilate each other and that only a single reflected pole at (x0, — o)
remains.

If y=1n the dipole tail contains only normal dipoles.

If y=4n we have a Dirichlet condition at y=0. Again there are no
dipoles and a single reflected pole of negative strength remains at
(x0, — o), OT, as we may say, there is a source at (zo, o) and a sink at
(o, — Yo0)-

A similar discussion applies to the general case the solution of which
is given by (4.28). For simplicity we shall assume that y; and y2 are real.

The poles of
(59) {Ch’)’(’LUOM Z(}Jl) -""Ch'l’(w-——i(pl)}mla
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termine the position ot the logarithmic pole
ro. go) and its repeated reflections with respect to the sides ¢ ¢; of

=E

sle. The geometric picture 1s of course a Riemannian plane in the
form of a spiral staircase,
By taking the residues we have formally

*, .

’ ﬁf’ﬂﬂ% Uy . %“ﬂg%
\ ™% b Ll

(H.11)
}f“’ﬁ@}

T m} ,M%h, }%J»ﬁ?

| ~ H(w . , Cy
( = > f 200 oy p{ - rch{w —ig)  roch(wg — i@g)drw.

We shall show that each term on the right-hand side of (5.11) may be
interpreted as the contribution from a bundle of dipole tails radiating
from a simple pole which is one of the repeated retlections of (ro. ¢).
In order to show this we may asx well take the simpler expressions

00 4 4
lef H(w)
S Hiw - 2mbi)

exp { rch(w - ip)ldiw,

exp { —rch(w —ip)ldw.

e vy e oy def g H (w)
{t.},}tg) Rm(?‘% é;” -2 | H{ EY - ‘?@fnfh ~i- (}?1%)

From the tunctional relations (4.17) it follows that

14%-#-

(5.14) H {w} ~ sh(w — 1@1 + vyy) sh(w — iy ~ ¥pa -+ 16)
e R, , . 50
-' 1 (w -+ 207) @) sh(w — gy — iy) sh(w — ip + iya + i6)

and

5 ]m MM _ sh(w — ) -+ iy1)
D15 H(--w+ 2ig))  sh(w — ig, - iy1)

Theretore in both cases (5.12) and (5.13) we obtain something like

OO 418

_, . sh(w — 1)
(5.186) } | 1] 55— exp{—rch(w —ig)} dw.
C roded sh(w ;) )
where the x; and f; easily follow from the relations (5.14) and (5.15).
Instead of giving general formulae, the f3; for the first few cases are given
below.

position ot pole A

Ro R @1 Qo 4f) @1t Y2 {) Q1 V1t 26 g1t Ve '3()
Ry wo + 20 @1 i Y2 10 ¢1— )1 - 20

2 W . LN

Ry 2¢1—qo | 20 @1+ ye -t 0

' d iy e gy — | Y | ) f,
R 21— go— 20 g - }!1 ' ¢1—y2—0 g1+ y1—20
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I'ne values of «; are determined by the same scheme with y; and 4,
replaced by —y1 and —ye.

It can easily be verified that constants C;,7=0,1,...,n, exist such that

(6.17) ﬁ E}YH% = (Y917 i ('; eth(w —105).
1=1 je=1

In fact we have

(5.18) Co=cos {D(x;— 1)}

and

(5.19) (' = T S0 Bm = 29)

i%m SJhel (ﬁm mﬁj) .

The identity (5.19) 1s obviously a generalization of (5.6) and its conse-
quences are therefore similar to those of the latter relation.

Hence R,*(r, ¢) may be interpreted as the sum of contributions from
a simple pole at the origin and a bundle of tails of normally directed
dipoles. The number and the direction of these tails is determined by
the scheme given above.

An illustration of the kind of reflections of the logarithmic pole (7o, ¢o)
with respect to the sides of the angle is given below in figure 46). We
have chosen the following numerical values 6=45° and y;=7ys=15°.

N\
N
6 =45°
x‘uxz 315'
R2
— e — P,
/
/

Fig. 4

8y The aﬁthor wishes to express his thanks to Dr. D. J. HOFSOMMER whq care-
fully checked the table of reflection angles and constructed the geometrical 1llu-

stration of figure 4.

PN ringdih T
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