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SOLUTIONS OF THE EQUATION OF HELMHOLTZ
IN AN ANGLE II11).
THE CASE OF A HALFPLANE
BY

H. A. LAUWERIER

(Communicated by Prof. A. vAN WIINGAARDEN at the meeting of October 29, 1960)

1. Introduction

This paper is the third of a set of papers in which the problem of
Green of the equation of Helmholtz in an angle with fairly general
boundary conditions is discussed. References to the previous papers will
be denoted by 1 etc. followed by the formula number.

In this paper the special case of a halfplane will be discussed. Although
a number of results can be obtained in an almost trivial way by special-
ization of the general results obtained in the preceding papers a direct
and independent treatment seems to be justified.

For a halfplane the problem of Green may be formulated in Cartesian
coordinates (cif. I introduction) in the following way

22 2 - -
(11) >0 (505 + 3 — 1) G, 9, @0, yo) = — 8(x —20) O(y — o),
Y
c . e . 0G . D@
(1.2) y=0, x>0 COS yl--:;;m Sin y1 5— = 0,
, N G . 0
(1.3) y =0, x<( CO8 yz 3 — SIN y2 3o = 0.

It will be assumed that for j=1 and j=2

I

It has been proved in 1 section 5 that the corresponding homogeneous
problem —the F-problem —has a solution which wvanishes at infinity
and is continuous for ¥ =0 only in the case Re y1> Re ys2. 1f on the other
hand Re y; = Re y2 there is a solution which is continuous for y =0 except
at the origin where it has a singularity of the kind r~1'+¢ where
r=Va2+9y2 and £>0 for Reyi<Rey: and a singularity of the kind
Inr for Re y1=Re ys. According to (I 5.11) and (1 5.10) this “‘best
possible’” solution takes in polar coordinates (r, ¢) the form

(1.5) F(x, y)= [ cos (rshu) é(u+ 1) du,
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where

(1.6) & () def e (W, 3,,:2)

?
e (w-—m1, Y1)

- "’i

— | Re y]

with e(z, y) defined by (I 4.5) with 6 =z, or explicitly tor

(1.7) e (z,7) 2= exp [!; J costz _ shyl clt]

shat shint

A number of properties of this auxiliary function have been collected
in I section 4 and a few more will be given in Appendix A at the end

of this paper.
The behaviour of the solution (1.5) at the origin is as follows (cf. 1 5.13)

g Re y1>Re y» F  continuous at r=0,
(1.8) . Re ylmRe V9 F=C Inr+ O(l),
(Re v1 << Re v F =Cr-ral7 - O(1),

where ' 1s some constant.
According to (I 5.23) the solution of the F-problem can also be written
in the form

o0 - i
(1.9) Fl,y)=% [ exp {—rch(w—igp)}H(w)dw
— 00 47t
where
(1.10) ) & = Hb(w— Jmi) + d(w + Lmi) }.

By using the relations (I 5.21) and (6.4) of the Appendix the solution
(1.9) can be brought in the following form, however, with a different
multiplicative constant

o0
— 1 e(w -+ 3mi, yo-—3r)
(1.11)  F(z, y)=14% f exp — (lrxshw +ychw) i o d shw.

An independent derivation of this result will be given in section 2.
The solution of the G-problem has been obtained in II sections 2 and 4.

Again making the specialization 0 =n we arrive at the following results.
It Re y1=Re yz there is a single function of Green which is regular in

y=0 with the exception of the logarithmic pole at (xo, 70). In polar

coordinates the solution can be written as (ef. II 2.26)

1.12) G(z, ¥, 0, Yo) = iiJmJ cos (rshu) sin (7o shu) H :

o Sh(b&()“l-lq_?o)
chuwo—+-1po) —ch(u -+ 1) du duo.

bo

It Re y1>Re y2 there is a function of Green which is regular in =0
with the exception of the logarithmic pole at (xo, o). The Green’s function
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can be made unique by requiring it to vanish at the origin. The latter
solution can be written as (cf. II 2.32)

"

1 ..
G(x, 1, Xo. — : . pu+1g)
(1.13) S (2, ¥, 2o, Yo) 271?;0! ___l sin (rshu) cos (roshuo) i i0)
( o shlutig) du duy.

ch(uo + ipo)—ch(u +ip)
On the other hand, by using the expression (II 4.28) a solution of the
G-problem may also be obtained in the form
: 00 - & 71
Oz, y, o, Yo) = gy f exp { — rch(w —ip) H(w)dw
(1.14) — 00 + i

f eXp {")"OCh(wo mic;?o)} H""l(‘wo) "““‘""EE}PL“” d’LUo,

chwo— chw
L

where L is the path of I fig. 3.

An independent derivation of (1.14) and similar results will be given
In section 3.

In section 4 we consider the problem (1.1) with the boundary condition
(1.2) and with =0 for y=0, x< 0. This is equivalent to taking ys = — in
and requiring that G=0 at the origin. However, an independent treatment
1S more appropriate.

In section 5 we consider the important subcase that G' vanishes at
the negative X -axis and that its normal derivative vanishes at the positive
X-axis. This case which 1s of interest in diffraction theory has been treated
in some detail. In a certain sense the solution of this problem may be
considered almost trivial since the free solutions of the F-problem can
be written down at once (cf. 5.4) whereas the Green’s function can be
constructed from the free solutions after the example of (I 3.6). In this
way the solution (5.5) is obtained. By following the treatment of the
more general case of section 4, however, the solution is obtained in a
different form (5.15) and (5.16). For the auxiliary function 6 which 1s
used here and which is discussed in Appendix B several expressions may
be derived. One of these is equivalent to the well-known integral of
Macdonald which he obtained in connection with Sommerfeld’s problem.

2. The F-problem

Following (II 4.5) a solution of the F-problem which vanishes at
infinity may be represented by '

(2.1) F(x, y)=1% jmexp — (izshw + ychw) f(w)dw.

- O

The boundary conditions (1.2) and (1.3) give

(2.2) [ e-teshw fy(w)d shw=0  for x>0,

(2.3) jme“"ixShw fo(w)d shw =0 for x <0,

- O



126

where for j=1 and j=2

(2.4) f1(w)chw == ch(w —iy;) f(w).

A sufficient condition for (2.2) is that f;(w) when considered in the z-plane
with z=shw is holomorphic in the lower halfplane Im 2 <0 and of order
O(z71) at infinity. Similarly f2(w) should be holomorphic in the upper
halfplane Im z>0.

It follows that fi(w) when considered as a function of w is holomorhic
in the lower strip —mr<Im w<0 and that it is symmetric with respect
to —3mi. Likewise fo(w) is holomorphic in the upper strip O <Im w<m
and symmetric with respect to 3.

By elimination of f(w) from the relations (2.4) a homogeneous Hilbert
problem is obtained on the real axis viz.

fa(w)y  fi(w)

-) —— e T e
(2:5) ot (w—iys) — oh(w—ipD) |

This problem has the formal solution

. Ch(t——l‘yl) dsht
(2'6) ](j (w mexp 257;1 f In Ch(tml'yg shi—shw’

where —a<Imw<O0 for =1 and O<Im w<n for 7=2. In order to
remove the apparent divergency of the right-hand side of (2.6) we put

def ch(t—iy1)
(2.7) Y= i

We note that for { — 4 oo we have @(f)=1+ O(sh—2). Then we may
construct the convergent solution

exp {i(y1—7ys2) sgn t}.

(2.8) f7(w) = {shaw} =77 exp {--—--iyj---- f In Qt) 23 cht dt }

2ml —shw

where {shw}*~%/" hag its cut along the negative real axis.
A simple calculation shows that for w — 0 and either Im w>0 or
Im w< O

(2.9)

J In Q) (¢) fShedr 22" Inshw+ O(1),

297:1 sht-—-—-shw 7T

so that for w — 0 the function f;(w) have a finite generally non-vanishing
limit.
Logarithmic differentiation of (2.8) for e.g. j=2 gives

d hw dt
(2.10) %ln fa(w) = 27:1 f (th(t —iyz) — th(t —iy1)j sﬁtfshw'

By using the following two well-known Fourier transforms

o0

(2.11) _chw f sin {u(%ﬁmw)}w_}"it)} du,

shi—shw shoru
— OQ



where 0<Im w<x, and

i 3 _ me~
(2.12) f elt th(t—1iy)dt = shi 7w’

where % is real and —ix<Re y <im,
the right-hand side of (2.10) can be reduced to

o0

: - —(37 + J— — (7T -
(2.13) 3 f S1n {u(%mww)}wxp{ % Zﬁz}w S:;ﬁ; (37 1wl du.

Using the definition (1.7) the latter expression can be written as

d e($m—w, 3 7+ y2)
(2.14) @0 e,k k)

Hence, apart from some multiplicative constant we have

e(% mi—w, % 7t + v2)
e(dmi—w, fw+91)’

(2.15) fo(w) =

and likewise

e(g 71+ w,—3% w4 y2)
e(gmi~+w, —fm+y1)

(2.16) f1(w) =

In the function defined by either side of the equality (2.5) is denoted
by K(w) it follows by using the functional relation (6.9) of Appendix A
that apart from some multiplicative constant

def e(% -+ w,—4%m+y2)
(2.17) R0 = e At

The general solution of the Hilbert problem (2.5) can now be written
down as

(2.18) fi(w)=ch (w—1iy;) K(w) shmw,
where m=0, 1, 2, ... .

Accordingly the #-problem has the general solution

(2.19) Fop(x, y)=4% | exp — (lzshw+ychw) K(w)sh™w dshw.

- 0

This solution is regular with the possible exception of the origin (0, 0).
It follows from (2.8) and (2.15) that for Re w — + oo

(2'20) K(W) == O{(Chw)(?’a“?x"ﬂ)/ﬂ}.
Hence for m=1 we have at the origin
(2'21) Fm(x, y) == O{?"""‘m"f‘('}’x-?’a)/ﬂ}.

This result also holds for m=0 and Rey;<Reys. However, if
Re y1>Re y2, Fo(x, y) has a finite limit at the origin and finally if
y1 =192 it is of logarithmic order at the origin.
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A more precise result can be obtained by using the lemma of Appendix A.
If e.g. m=0 and y;, y2 are real with y1 <ys we have tfrom (2.17), (6.10)
and (6.11) for Rew — 40

N P oy ©XP {(Ya—y1—n) w/n+$(y1+pe)i}t ¢y —w
(2.22) K(w) === mindyn LT 0E™)},

so that by using (6.17) and (6.18) with x=4(y1+y2) and B=(y2—y1)/n

5 o I ((y— )
(2.23) Fo (x?y)mm__Qﬂ(%ﬂyiz) ;z;/::_yl) (3r) = s =l .

-cos {y1(1 — (/7)) + ya(@/7) ; 4- constant + O(r?=F=rim),

A limit operation shows that for y1=yz2=1y
(2.24) Fo(x, y)= — (L +cos ») (cos ¥ In r+ ¢ sin yp) + constant + O(r In 7).

We note that for y;1=y2 in view of (6.9) the function K(w) reduces to

1+ cos
(2.25) K(w) mms

so that for yi=7»

ch w dw

(2.26) Fo(x, y)=%(1+cos y) f exp — (ixsh w4+ ych w) ho—i)"

Using the notation of (II 5.1) this may be written as

(2.27) Fo(z, y) = 1: — 7 {Ro(z, ) +Ko(st2+y2)},

so that Fy(x, y) can be interpreted as the result of a logarithmic pole

of strength cos y(1-+cos y) and a tail of normal dipoles starting at (0, 0)
and making the angle —im+4+9 with the positive X-axis.

3. The G-problem
Following (11 4.5) a solution of the (;-problem may be represented by

(3.1) 276G, y, o, yo) = KoV (x —20)2 + (y — %0)2) +
ﬂ +4 [ exp — (ix shw + ychw) g(w)dw.

The singular part on the right-hand side may be represented by (cf.
11 3.2)

3.2) Ko(Vm—molf+ 5o =} | exp — {i(z—zo) shw+ |y — yolchw)duw.

The boundary conditions give in a similar way as in the previous section
for j=1 and j=2

o0

(3.3) - | J‘ e~1zshw g, ()d sh w=0,

- 00
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where now

def . . .
(3.4) gj(w)chw = ch(w —1iy;)g(w) — ch(w+1iy;) exp (ixeshw — yochw).
Elimination of g(w) from the two relations (3.4) gives at the real axis

3.5) gelwichw  giwichw {ch(w+iy1) ch(w +- i,,g)}

ch (w-—1y2) ch (w—1y1) ch(w—1y;) o ch(w——iys)

-exp(1xoshw — yochw).
This 1s a non-homogeneous Hilbert problem which can be solved at once

by using the factorization in the previous section. If K(w) is defined by
(2.17) and f;(w) by (2.16) the relation (3.5) can be written as

@ ga(w)  gi(w) _
(3.6) fo(w)  fr(w) i(w).
where
def [ch(w+1y1)  ch(w+-1y2)| exp (ixoshw—yochw)
(3.7) M) | i)~ ehleies)] - R

The tunctions go(w), fa(w) and ge(w)/f2(w) are holomorphic in the upper
strip O0<Im w<=z and symmetric with respect to imi. The functions
g1(w), f1(w) and gi1(w)/f1(w) are holomorphic in the lower strip —zz<Im w< 0
and symmetric with respect to — imi. Then the problem (3.6) has the
obvious particular solution

. @

(3.8) g (w) = fi(w) " B (wo) chwodwy

2711 . shwo-—-—---shw ’
— 00

where —n<Im w<O0 for j=1 and O<Im w<axn for j=2.
Of course we need a single particular solution only since the homogeneous
problem has been solved already in the previous section.

Now 1t tollows trom (3.4) and (3.8) that the (G-problem has a particular
solution with |

OQ

h (wo)

- OO0

K(w)chw
271

dSh’w()
shwo—shw’

h(w-1y: - '
(3.9) g(w) = (E-}—l%z—:%% exp (1xgshw — yochw) -+

where either j=1 or 7=2 with an appropriate meaning of the integral
on the right-hand side. By using the well-known Plemel] formula we
have the alternate expression

} exp (1xoshw — yochw) T

oy 1 [eh(w-iy1) | ch(w+iys)
g g(w) =3 {ch(wmi}fl) K ch(w—1y32)

r g o0 :
(3.10) K(ohw [ 5. _chwodw
- omi ) 0} shwo—shw'
— 00

where the Cauchy integral takes its principal .value.
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4. A specral case

In this section the following important case will be considered. To
find the Green’s function which satisfies in the upper haliplane y >0 the

Helmholtz equation

(4.1) (505 + 33 — 1) G, ¥, 20, o) = — d(z —2a) 8y o),
and the boundary conditions

(4.2) y=0,x>0 cosy%—-g-m smy-b-g-mO

(4.3) y=0,x<0 G =0.

In order to simplify the discussion the non-essential assumption will
be made that y is real and that it is restricted to the interval

(4.4) — s <y < 37

The solution of the corresponding F-problem will be determined first.
As in section 2 we may put

(4.5) F(z,y)=14 [ exp —{iz sh w+y ch w}f (w)dw.

The boundary conditions give relations of the type (2.2) and (2.3) with
(4.6) fi(w)ch w=C ch (w—iy)f(w),

and

(4.7) fa(w) ch w== f (w),

where C is some constant and where fi(w) a,nd fo(w) have the same
properties as 1n section 2.

It follows now immediately from the functional relation (6.9) of
Appendix A that we may take

(4.8) § filw)=e(w+ 3ni1, $m—y)
( fz(w)ﬂe(’w*—%ﬂi, —---%—y';_.._y)

Hence the following explicit solution is obtained
(4.9) F(x, y)= % j' exp — {izshw+ychw}e (w— 4ni, — $m—y) chw dw.

The behaviour of F(x, y) at the origin follows easily by applying the
lemma of Appendix A.

It follows from (6.10) that for w — oo

(4.10)  e(w—3}mi, — 3 —p)chw = =L 13— W {1+0(e %)},
so that

(4.11) F(x,y)= M L)~ i+0/m cog {y+(%---(y/7:))¢} + O (ritwim),
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The solution ot the -problem can be represented again by the expression
(3.1). Then the boundary conditions lead to the conditions (3.3) where now

(4.12) S g1(w)chw £ ch(w —iy)g(w) —ch(w+iy) exp (izeshw —yochw).
( gz(w)chw .(..i“:"f g('w) + exp (ia:oshw . yochw).

Elimination of g(w) gives for real w the following non-homogeneous
Hilbert problem

(4.13) ch(w —1y)ga(w) — g1(w) = 2 cos y exp (ixoshw — yochw).

By making use of the functions fi(w) and fe(w) from (4.6) and (4.7) this
Hilbert problem can be reduced to the elementary form

g2(w)  gi(w) _ 2cosy
(4.14) Chw)  hw — fi)

exp (1xoshw — yochw),
the solution of which is of the form (3.8). Eventually we arrive at the result

(4.15)  2nG(x, y, xo, yo) = Ko(V (x —20)2 + (¥ — 40)2) +

+ % [ exp — (ixshw + ychw)g(w)dw
with o

(4.16) g(w)= %{M — 1} exp (1xoshw — yochw) +

ch (w—1iy)
o0
2cosy chw [ exp (1woshwo—1yochwo) - chwodwo

1
1+4cosy e(w—3mi, n+9) 2ni J e(wo+ & m, $1—7v) shwo—shw

— OQ

The behaviour of G at the origin can be derived from the lemma oj

Appendix A. However, it can easily be predicted, at least formally, by
substitution of

r* sin u(ww — @) + higher-order terms

in (4.1) and (4.2). It is easily seen that

(4.17) /'lm,um%-i—g;-,

so that for r — 0
(4.18) G =a r**t7" cos {y — (% + 35) tp} + higher-order terms,

The constant a can be determined by using the lemma of the Appendix
which involves the asymptotic behaviour of g(w) of (4.16).
Since we have for w — + oo

210 - __ — "
(419) glw) = L MW 27} P (o, yo, — ) {1+ O (e~®)},

where F(xg, yo, —y) is defined by (4.9) with y replaced by —1y, 1t follows
after some elementary reductions that

f. 2 vm u(dm—y) B
(420) a == ﬂr(3/2+‘)//75) F(x()sy(): y)
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or combining (4.18) and (4.20)
S G(x:yax():y())m

~ 2 u(Em—7y) 1 + (y/70) 1 —
2 - al'(3fa+y/m) (3r)+7™ cos {y — (3 + (y/n)) @} F (2o, Yo, — ¥) +
! 0(.7*3/2'1' ('}’/ﬂ)).

(4.21)

5. The subcase y=0

The problem of the previous section with y =0 deserves special attention
in view of its importance in connection with diffraction theory. The
problem is to find a Green’s function in the halfplane y>0 satisfying

(5.1) (4 —1) Q(x, y, xo, Yo) = — 0(x — X0) (¥ — Yo),
VG

(5.2) y=0 x>0 S——y—-mO,

(5.3) 1y =10 x <0 G =0.

The free solutions of the corresponding [F'-problem are in polar coor-
dinates apparently

(5.4) Kny(r) cos (n+5)p,  Lniy(r) cos (n+4)g

for n=0,1, ....
The Green’s function can be written down at once by using the trick

of (I 3.6) viz.

G = ;,% D Ln+y(r)Kniy(r0) cos (n+4)p cos (n+3$)po, 7 <ro,
(5.5) : .
6=~ > Kypty(r)Lnsy(ro) cos (n+ 3)@ cos (n -+ %) o, r > 7rp.

0

n

It may be left to the reader to verity that the solution of the F-problem

(4.9) for this case reduces to 2K,(r) cos 3.
Alternative expressions for the Green’s function may be obtained by
specialization of (4.15) and (4.16). However, we prefer the following

somewhat more direct approach.
Quoting the expression (3.1) we may put in polar coordinates

(5.6) QJZG(T, w, 7o, (po) == Ko(l/ 72 - ?"02 — 2?‘7‘0 COS (QO — 990)) ~+
+% [ exp {—ir sh(w—iplg(w)dw.
The relations (4.12) are here

(5.7) \ g1(w) = g(w) — exp {irosh(w +ipg)}

( chw go(w) = g(w) +exp {irosh(w -+igpg)}.
Hence the Hilbert problem for this particular case is

(5.8) chw gz(w) —g1(w) =2 exp {iresh(w —l—ﬁicpo)}.
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In view of the factorization
chw=2 chi(w— ini)chi(w + 3m)

this problem is easily solvable. We shall, however, not tollow the traditional
approach but we note that the solution of (5.8) may be written down at

once if one uses the auxiliary function

(5.9) yw(r, z) = erchz erfe(chiz V 2r).

This function has the translation property

(5.10) w(r, 24 2m1) + y(r, ) =2 erchz,

Hence a simple inspection shows that (5.8) 1s solved by
(5.11) g1(w) = — p(ro, w+ 37l + @o1) — w(ro, W -+ 371 — ol )
and

(5.12) chw g1(w) = y(ro, w— 371+ @o1) — (70, W 4 F71 — @ol).

The link between these two methods is given by the following formula
which is proved in Appendix B (cf. 7.4)

— 1 — rehn 1
(5.13) w(r,z) = o f e T2 du.
o0

where —x<lIm z<.
The Green’s function now follows from (5.6), (5.7) and either (5.11)

or (5.12). Taking e.g. (5.11) we obtain

(5.14) 27G(r, @, ro, @o) =KoV 72+ re®2 — 2rry cos (¢ — o)) +
+ Ko(Vr2+1re2 — 2rrocos (¢ + @o)) — 3 [ exp — {rch(w — i(p)}{zp(ro, w+1@g) +

- 1/)(7‘0, W — i(po)}dw,

which i1s most useful for 0= ¢ < in.
If we define for all values of y

(5.15) O(r, ro, v) =% | e-rehvy(ry, v+1iy)dv

the solution (5.14) and the alternative form obtained from (56.12) can
be written as

(5.16) 2ntG(r, @, 1o, Qo) = Ko(l/r2 + 12 — 2rro cos (@ — @o)) —0(r, ro, @ — @o) +

+ Ko(V 72 +1ro2 — 2rrg cos (@ + @) — 0(r, 70, @ + wo),
and
(5.17) 27G(r, @, 10, @o) = Ko(V72 +1r¢2 — 2rre cos (¢ —go)) — 0(r, 7o, @ — o) -

— Ko(V72+ 102 — 2rrg cos (¢ + @o)) + O(r, ro, @ + @o— 27).

In fact the translation property (5.10) leads by substitution in (5.15) to
(5. 18) 9(7‘, ro, ‘y) -t 0(7‘, 1o, V - 271:) = 21{0(1/?‘2 + 192 — 2779 COS )/).
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It is possible to express 6(r, 7o, ) in a variety of ways. We note that
substitution of (5.13) in (5.15) leads to a double integral which is symmetric
in 7 and 7. To the latter expression one is also led by solving (5.8) in the
ordinary way and straightforward substitution in (5.7) and (5.6). In
this way the discussion of the y-function may be avoided. In Appendix B
two simple expressions of § in the form of a single integral are derived.
We note in particular (7.6) and (7.10), the latter due originally to
Macdonald.

6. Appendix A
The following two integral expressions are frequently needed

(6.1) % f cigz;tdtmsecz for |Re z| < in,
and
(6.2) 3 s?lh;:rt dt = tg2 for |Re z| < .

These formulae may be derived from Krdélyi ef al. Tables 1 (1.9.1) and
(2.9.2) but they can also be proved independently by means of a simple
application of the calculus of residues.

We shall now consider the function e(z, ¥) as defined by (I 4.5) for
arbitrary 6. Before making the specialization 6 =xn a few general results
will be proved. With the following definition quoted above

, def 1——cos tz  shyt
(6.3) 1116 2,y m% mdt,

we have the functional relation

(6.4) ey +im) _

where cp 18 a constant.
The proof runs as follows. From (6.3) it follows that

d e(z,y+3dm) J‘ sin iz sh(y + } %) t—sin §(z 4- $7v1) shyt Tt —

dz In e(z -+ 37, v) 2 ~ sh6¢sh sh it

— 00

t(z
_ j i) gt ge(e i),

where at the final stage (6.2) has been used. Integration of the result
leads at once to (6.4).

By changing the sign of z we obtain from (6.4) the equivalent functional
relation

(6.5) e(z, ¥y + 37)

o(z—3mm, 7) = C( ch%v(z —+ lj/)
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Hence the functional relation (1 4.13) now appears to be an immediate
consequence of (6.4) and (6.5).
By applying (6.4) twice the following functional relation can be derived

(6.6) e(z— §m1, y -+ 37t)

o i) Ly
e T A i) c1{chv(z —1y) + cos v},

where the constant c; is given by c¢i=4co(v)co(y — 37).
Next we shall prove the special case

: __cos v (dm+7y)
(6.7) 6(7'61,)/) HW

By logarithmic differentiation of e(z1, ) with respect to » we obtain
by using (6.3) '

o0

d (chzt—1) chys shint chyt
gy inely)=—3 f —shorshim Y= T f —sner 9t

Application of (6.2) gives

71 e(mi, ) = — pitg Plhn+y)+ teh(dn—y)}

Integration of this result and noting that e(xi, 0)=1 gives the required
expression.

Substitution of z=3m in (6.6) gives in view of (6.7) an explicit ex-
pression for the constant c;. An elementary calculation shows that

1/c1 =1+ cos vy

so that (6.6) may be replaced by

(6.8) e(z—3m,y+3m)  chv(z—1y) 4 cosvm
' e(z 4 4mi, y—34m) 14 cosry '

We shall now make the specialization 6 =xn, v=1. Then this functional
relation reduces to (cf. I 4.14)

(6.9) e(z—4m, y+47)  ch(z—1yp)
N e(z+4mi,y—3in)  1l-cosy’

The asymptotic behaviour of e(z, y) with 6=xn for Re z — &+ oco may
be given by (cf. also I section 4)

(6.10) In e(z, y)= gln (e +e~%)+ In u(y) + O(e—IRezl),

where the constant term In u(y) is given by

Y

(6.11) uly)=exp—~ [ L3t gy,

vy / COoSU
0

with

(6.12) 2(1+sin y)u(y)u(r—y)=1, u(0) =1, u(3w)= u(xr) = %.
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The proof of (6.10) is as follows. From (6.3) 1t 1s obtained that

oo

nete= [ oL+ (B2 Y-
= ﬁln e(z, ) {— m(y)+ O(exp — |Rez|),
where
(6.13) m(y) =% f ' zshlg»m (Zﬁﬁiﬁ - ?';E) at.
Since e(z, w)=chz (cf. 1 4.11) we have
(6.14) u(y)= 2= gm),

It is obvious that m(0)=m(n)=0. Differentiation of (6.13) gives (by aid
of the calculus of residues)

o0
, B chyt 1 -
m (y) =13 f (sh{;:nt shat ntsh%nt) ab =
— 00
o0
____lJ‘ (eh%ntchyt ~ chyt 2 )dt"-
4 sh? 37 chint wtshint/
-~ 00
o0 o0 o0
- L 1 1 chyt B _}__ Il 1 N
T @ T Chytd sh 37t 4 ,[ ch%:n:tdt 27 ] tshint dt =
— X — () e OO

W i i
mﬂ’tgy $secy + n1n2,
so that

4

Y4 1 FTT—USIN U
0

We note that

! . ’ 1--—-Si1’lj/
m(w—y)=my)+ —o5
so that by integration
(6.16) m(z—vy)-+m(y)+1In (1+sin y)=0.

By using (6.14) the relations (6.11) and (6.12) follow at once from (6.15)
and (6.16).

Finally the following lemma will be proved

Lemma. Let g(w) be an analytic function of w which 1s regular on
the real axis, for which g(w)=g(—w) and which has the following asymp-
totic behaviour

(6.17) g(w)=exp (ix+ pw){l +O(e~»)}
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for Re w — + oo, where « and g are real and 0<f <1, then for r — 0

(6.18) 5 jmexp — (ix shw + y chw) g(w)dw =
- = I'(B8)(37r) P cos {x — (37 — @)} + constant + O(r1-7),

where x =7 cos @, y =1 sin ¢, with 0 <@ -<mx.

Proof. The left-hand side of (6.18) can be written as

Re J?o exp {—irsh(w—ip)} g(w)dw=Re e'* [ exp { —irsh(w—ip)+ fwldw +
0 0

+constant 4 O(r'1~?)=Re e* [ exp (— }ir e~ Pu)ul~du +id. =
0 ,.

= I'(B)Re e'* (3ire %) f =required expression.

7. Appendix B

The main object of this appendix is the prootf of some integral expres-
sions which are connected with a well-known result derived by Macdonald
in his discussion of Sommerfeld’s problem. We shall start with a few

useful auxiliary expressions.
For a>0 and 6>0 we have

(7.1) Ko(Va2+b2)=3% [ e~ achutishu gy
. N - b

(7.2) f Ko(Va2t? + b2)dit = nea ,

(7.3) 1 f e ot ch lydu = ]/-—-e“‘“

The result (7.1) is well-known and has already been used quite often on the
preceding pages. The result (7.2) can easily be derived from (7.1).
The result (7.3) can be obtained in a simple way by taking shiu as new
variable of integration. The following expression, however, is somewhat
more difficult to prove.

For a>0 and —nz<«x<m we have

00
(7.4) -2};; f e chg-(u--—-m) du =e***erfcl a(l + cos«).
— 00

It the left-hand side of (7.4) is denoted by f(a, x) then by the following
partial differentiation the inconvenient factor in the denomlnator can be
removed

o0
b
{emacoscxf(a 06 __,___j_:_l; f chu—l—cosm)ch% @L-}-IOC)du
-— 00
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Now taking advantage of the fact that only the even part of the inte-
grand adds to the result and by using (7.3) we obtain

0

1 4-cos cx)‘} e a(l -+ cos x)

{emacmxf(a KX) iiiii — ( —

Integrating this between @ and co we are immediately led to the required

result (7.4).
Now we consider the following double integral

Q___ 1 —achu —bch ___!‘______________
15 @by EL [ [eeewran L qudy,
—_—0 — 00

where aHO b>0 and A<y <.

ffffff

we oObtaln

1 —
6(a.b,y) = 5= f W f exp —{ach(z+y)+bch(x—y)dy =
1 ¢ I d
= o f Ko( l/(a—}—b)-?chzxm(amb)zshz:c) Ma

where use has been made of (7.1). Since 6(a, b, v) is an even function of
v we may also write

0(a.by) =7 [ Ko(V(a+b)2+4abshiz) 522 dar

If now the substitution shx =t cos 4y is made we find the following result

(7.6) 0(a,b,y) m-—i f Ko(V(a+b)2(2 +1) — c2t2) tz‘jfl,

where c2=a2+ b2— 2ab cos y.

It appears that in fact 6(a, b, y) only depends on the two parameter
groups s=a-+b and c¢. An alternative expression for 6 can easily be
obtained from (7.6) in the following way. 1f the right-hand side of (7.6)
is differentiated with respect to s again the denominator disappears viz.

(7.7) = = me----%"' (Vo2 + 1)—c*?) g
' “al) TVewin_ow

The right-hand side of this relation is elementary since it follows from
(7.2) by differentiation with respect to 52 that

(7.8)
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Theretore (7.7) reduces to
o0 s

[
L -
[ ]

08 Vg2 — 2

so that by integration it is finally obtained that

OO
-8
(7.9) Bla.b.y) = f 2 ds.
V82 — 2
a-+b

or in an equivalent form due originally to Macdonald

o0

(7.10) Ba, b, y)= [ e-cchw du
a-+b -

C
This rather elegant result may also be derived in the following more
direct way. Let a and b be sides of a triangle ABC and y the angle
at C. Let the remaining elements be «, 8 and c¢. Further let 2 be the

altitude from C and p, ¢ the projections of @ and & upon AB.
Then we have

where chwy= , Wo> 0.

p=acosfl, qg=bcosx, h=asinf=0sin x.

Now the expression (7.5) will be reduced in the following way. Imaginary
translation of v and v gives

oo OO

— 1 — jash(u — i) — ibsh(v — ix) 1
0((1:,6,}/) = dm f f e m du d?),
—_00 — 0O
which can be written as
o0 00
— 1 — h(chu -+ chv) — i(p shu - ¢ sho) 1
9(29aq,7l) = A f f e mdu dv.
—00 — OO

By differentiation with respect to 2 the denominator is removed viz.

00 o0
00 1 3 s
S__ —_ % f f e h(chu -+ chv) — i(p shu <4+ ¢ sho) Ch% (u-——-v)dudv

— o0 —0OQ

If now v and v are transformed back to their original value we obtain

o 00
be 1 — acnu — ochnv .
'S"ﬁw“'é"ﬁf f e~ am=tM chi(u—v+1i(x— B))dudv=
—= 1 -— achu’ — behw
— —g-cos}(x— ) [ e"*™chiudu [ e~ chivdy,
so that by using (7.3).
P_q _ _________OOS%(:“_,.,_,,,,ﬁ ) e —(a+¥)

dh Vab
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which by simple trigonometry may be changed into

(7.11) % _ _ sinatsinf o —win,
Oh 1/ (v -+ b)2—c2

The introduction of s=a-+b as new independent parameter together
with p and ¢ suggests itself. Since

08 : .

=7 = Sinx +sin g,
we obtain from (7.11)

00 e7F

% Voo

from which (7.10) immediately follows as shown above.
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