Offprint from “Archive for Rational Mechanics and Analysis’,
Volume 13, Number 2, 1963, P. 167—166

Springev-Verlag, Bevlin + Gottingen + Heidelberg

T'he Hilbert Problem for Generalized Functions

H. A. LAUWERIER

1. Introduction

We consider analytic functions g (w) in the complex w-plane with w=1u -|-iv.

If g(w) 1s holomorphic in the upper half plane v>0, this will be indicated by
writing g*(w). Similarly g~(w) denotes an analytic function which is holomorphic
in the lower half plane v<2 0. Thus gt and g~ are sectionally holomorphic functions.
The limits of g*(w) and g~(w) on the real axis are indicated by g*(#) and g~ (u).
Thus we have

gt(u) == lim g*(u +1iv),
(1.1) P

g (u) = Im g~ (u+41iw).

T pe— |

We shall consider the following problem. Let g(#) be some function of the real
variable #; then functions g*(w) and g~(w) are sought such that

(1.2) g {u) +- g (u) =g (u).

In many problems ol mathematical physics (¢f. MuskHELISHVILI [7]) a slightly
more difficult problem occurs, vz

(1.3) gr () +k(u) g (u)=g(u),

where £ (2) also 15 a given function on the real axis. The latter problem is usually
called the Hilbert problem. An extensive treatment of the latter problem is
given by MUSKHELISHVILI [2] and NoBLE [3]. It is shown that by factorization
of &(u), 1.e. by writing % (u) as

(1.4) k(u)=Fkt(u) (1),

the problem (1.3) may be reduced to the simpler problem (1.2). In fact, using
(1.4), we may write the relation (1.3) as

(1.5) o) b () g () = E8

which indeed 1s of the form (1.2). The factorization of &(x) is also a problem
of the form (1.2) since, at lcast formally, the relation (1.4} may be written as

(1.0) Ink*(u) +1Ink~(u)=Ink(u).

A rigorous treatment 1s given in MUSKHELISHVILI [2], but with the rather
drastic restriction to classes of Holder-continuous functions. In this paper we
shall consider the simpler problem (1.2), henceforth referred to as the Hilbert
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problem, and, more particularly, we shall consider what happens if g(u) 1s a
generalized function.

In order to restrict the class of solutions of (1.2) it 1s usually required that
) and g (w) be of finite degree at infinity., Then two particular solutions
of (1.2) diller by a polynomial only. Provided g(«) satisfies certain conditions
as regards integrability and behavior at infinity, the solution of (1.2) may be
obtained in the following way:

0
Floo) o g (1) , ey
gr(w) == zﬂ..‘[ S dt + P(w), Imw >0,
(1.7) —ea
{701} == 1 . .g(t) — P el
g (w) = 2:«'ri‘/ o di — Plw), Imw <0,
— o0

where P(w) is an arbitrary polynomial.
A second way ol solving (1.2) is as [ollows. Let g() be the I'T (Fourier
transform) of f(x)
89

(1.8) g(n) = [ ) (x) dix,

— 0
then (1.2) is solved by

0

00
(1.9) )= [ () dx,  g(w)= f c'"f (x)dx.
{ — N
Of course both methods are entirely equivalent for ordinary functions, In fact
y ec ;
substitution of
)

(1.10) f(x) = ] /vft"“"”"""g(wf) dat

—_ 00

in (1.9) and interchanging of the order of integrations immediately leads to (1.7).
IHere we may quote the classical result of TircHMARSH [4], who states that the
Hilbert problem can be solved in either way if g(u) € LP(— oo, co) with p=>1.
In that case the limits (1.1) should be taken in the sense of limits in the mean
or limits almost everywhere.

The following example,

(1.11) ot 11 i 1

9 |2t 2 nu-ki 2 -1’

can easily be treated by means of either (1.7) or (1.9) and 1s covered by TI1TCH-
MARsH's theorem., However, difficulties arise in the following case:

(1.12) gy =sgnu, g (w)= 1 w, g(w) = 1 -+ 1 In w

2 7T 1 2 A

with the usual interpretation of Inw at the negative real axis. Even simpler
cases which cannot be derived by the means given above are

(1.13) g(w) =Injul|, g*(w) =1ihw, g~ (w) =%1nw,

and

(1.14) g (1) =", gtw) =c'*, g (w)=0.
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In this paper it will be shown that by using the theory of generalized [unctions
or distributions the latter results may be obtained in a fully legitimate way from
(1.9). In order to prepare our way some fundamental notions of the theory of
distributions are briefly discussed in the following section in which we have
chosen the approach as given by GrL'FAND & SHILOV 6] in their most com-
mendable book. In the fourth section the notions of upper and lower regular
functions are introduced. The main results, which extend those of TITCHMARSH,
are given in the form of two theorems. In Section § we discuss the so-called
bisection of a distribution, 7.e. its separation into a part with a positive support
and a part with a negative support. By using the results of Sections 3 and
the generalized Hilbert problem can easily be solved, and this is in fact done in
Section 5. The technique is illustrated by a few typical examples. In the last
section some remarks are made on related topics such as Hilbert transform
and Wiener-Hopf factorization,

2, Theory of distributions in a nutshell

In this section some topics of the theory of distributions will be summarized.
We shall mainly follow the introduction to this theory as given by GEL'FAND &
SHILOV [§] in their book, which is highly recommended. It is sufficient to con-
sider distributions f(x) for real ¥ only.

A distribution or generalized function f(x) is defined as a linear continuous
functional (f, ) on a class of (real) testing functions K in which a suitable
topology is defined. Thus (f, @) satisfies the following conditions:

1o (b oa Pt aa@a) = (f, 1) + op (f, @) (linearity);

2. @, —q@ 1mplies (f, @,) > (f,®) (continuity).

The class I is the collection of all infinitely differentiable functions vanishing
outside some interval. Convergence in K to zero g, —0 means that all @, vanish
outside one and the same interval and that max |(p§f)(x)| —0 for 7 —o0 and for

X

each fixed 7. If f(x) is a locally integrable function, we simply have

(2.1) (1, 9)= [7(%) g (x)dx.

Distributions that are not of this form are called singular. A typical example
is DIRAC’s delta-function §(x), distributionally defined as

(2.2) (0, @) =@(0).

The distributions form the linear space K’, the conjugate of K. Convergence
in K’ is defined as follows:

[n—f means (f,, @)—(f, p) for all p€ K.
A distribution f has a derivative f* which is defined by
(2.3) (7' p)=—1(/, ¢).
The delta-function §(x) is the derivative of the unit-step function 9 (x)

f < 0,
(2.4) 19:(:;)?:{0 or ¥<0

1 for x20.
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On the other hand, f is called a primitive of f'. A distribution has a primitive
which is unigue apart from an additive constant. By using fundamental theorems
of RiEsz and Hann-Banacs it can be shown that every singular distribution
can be obtained from a locally integrable function by a finite number, say m,
of differentiations. The least number for which this is true is called the order

of the distribution. The example §=1' shows that d(x) is a singular distribution
of order one.

We shall now give a few important examples of regular and singular distri-
butions. In general there are two ways of constructing singular distributions;
either by means of repeated differentiation of a locally integrable function, or
by analytic continuation with respect to some complex parameter.

() The distribution %* is defined as follows. For Re A> —1 it is identified
with the function

(2.5) x* = x* for x>0, x? =0 for x<<0.

For other values of the complex parameter 4 it is defined by analytic continuation
of the functional (x4, ¢). In this way a distribution is obtained for all complex

values of A with the exception of A= —1, —2, —3, ... . This distribution satisfies
_ d A—1 ,
(2.6) = xd = A28, A0, —1,—2,....

In a similar way x* is defined by starting from
(2.7 ¥t =0 for x>0, x* = |x|* for ¥<C0.

)
(b) The distributions |x|* and |x|*sgnx are defined by

x
(2.8) | x|*=x2 + %%, |x|'sgnx=sx} —x.

(c) The distribution x™ (m =1, 2, 3, ...) can be derived from the distributions
defined above. However, an independent definition is obtained from the dif-
ferentiation rule

(2.9) x71 = {iﬂ In IA?I ,
and
(210) xu?u - 7’}’3__ 11 éit.‘ xu—?'”"l'l’ "M = 01 11 2; ‘o

(d) The distributions (x 410)* are defined as

(2.11) (¢ £10)* = lim (x4 iy)~

. A—> ;{:0

We have for A= —1, —2, —13, ...

(2.12) (2 +10)* = x* + e' 47 x?, (x —10)* = x* 4 7147 &2

4—-.’

and next for m=1,2,3, ...

(2.13) (% - io)mm =x "+ (— 1) (m?:l” ! oY (%) :
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By Fourier transformation of the testing functions ¢ € K a space Z of testing
functions v (#) is obtained according to

(2.14) p (1) ..—j}oei“‘qv(x) dzx.

The testing functions of Z are entire functions in the complex w-plane with
w=u-+1v. They have the characteristic property that for £2=0,1, 2, ...

(2.15) | wh w(w)] < 4, e™

where the constants 4, and the coefficient @ depend only on the testing function .
The Fourler transform of the distribution f€ K’ is defined as a functional
g on Z such that

(2.46) (g, v)=27(, 7).

For ordinary functions this is nothing else than the well known Parseval equality.
For distributions this is taken as a definition. The distributions g (#) form the
space Z', the conjugate of Z. Thus by (2.16) the (1 — 1) correspondence between
K and Z 1s carried over to K’ and Z’. If f(x) is a locally integrable function,
the Fourter transform g(«) can also be obtained as the distributional limit of

ordinary functions
it

(2.17) g(uy=lim [ "** f(x)dx.

H—>00 _*

We conclude this section with a condensed table of some important Fourler
transforms.

/(%) g (1)
(%) —iu g (u)
i 7 £ () g'(u)
1 27 (1)
d(x) 1
3 sgnx iju
(17 x)1 SgN %
9 (%) 7 8 ()
(i 72 #)1 46 (%) 29 (1)
xA-1 I'(A)(u+i0)2expy Ami
(¥x—i0)~2exp—FAmi 27 wh—1
(In x,)’ gwi+I"(1)—In(u-41 0)
(o x_)’ Lmi—I(1)4In(u—i0)
— g (sgnx In |x]) +17(1) 6(x) In | %]
a7 In (M—#:iO) %—:mi-f—?’(‘l)
U-10 w--10
—1 —% i ’
—iln & 11'1@(:4_1 5'0) e “: *-—+i 5(1)
In | x| — g (sgn u In |ul) +27x (1)

Table of generalized Fourier transiorms

Arch, Rational Mech. Anal,, Vol. 13 11
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3. Upper and lower regular functions

An analytic function g(w) of the complex variable w=w-+1iv is said to be
an upper regular function if it is regular in the half plane »> 0 and if there exists
a constant p such that in any half plane v=6>0 the following inequality is
satisfied:

(3-1) | (w)| < Cs(1-+|w])?,

where the constant C; may depend on 8. A lower regular function is defined
In a similar way with respect to the lower half plane v<0. The classes of upper
and lower regular functions will be denoted respectively by G* and G-.

Let g(u-+1iv)€G*. This function may be interpreted as a distribution with
the parameter v with respect to the testing space Z. It will be shown that by
taking the distributional limit v-— -0 a distribution is obtained which is the
Fourier transform of a distribution from K’ which vanishes for x< 0.

Before proving this theorem we first give an example. Let g(w)=iw1¢G*.
Then for v—+0 we obtain the distribution iu™ 47 §(») which is the FT of
the ordinary function 9 (x) € K".

The proof of the statement made above is as follows. We first assume that
p<<—1. Consider the integral [ exp(—iwx)g(w)dw taken around the rectangle
with corners at 4a-iv,, 4-a+iv, where 0<<v,<wv,. For a—-oco the contri-
butions of the vertical sides tend to zero, which shows that the absolutely con-
vergent integral

o

(3.2) e [ e ¥ o (utiv) du
- 00

does not depend on v and represents a function of %, say 2xf(x). From the
inequality (3.1) it follows that f(x)=0(e’¥) so that for x<<0 we must have
f(x)=0. The relation (3.2) means that g(u«--iv) is the Fourier transform in
the ordinary sense of the function e™"*f(x). The function f(x) may not have
a Fourler transform in the ordinary sense but it does have one in the distri-
butional sense. The latter distribution, belonging to Z’, will be called g(u).

We shall now show that g(u4iv)—>g(%). In fact using the definition (2.16),
we have for any testing function w(u) €2

(g +10),p(w) =27 (e f(x), p(2)) =27 (f (%), p (%)) =
= (g (u), p (u)).

If now p=—1, there 1s a positive integer # such that the theorem holds for
w™"g(w). Hence this function has a distributional limit 4 (). Then it is easily
seen that g(w) tends to the distributional limit g(u)=u"%(u). Since A(u)=
FTk(x) implies (—iu)"h(u)=FTE™ (x), it follows that the limit g (x) is the FT
of a distribution which vanishes for x<20 and which is the #'® derivative of an
ordinary function.

Again assuming p<C — 1, the inverse Fourier transform /(x) of g () is bounded
at -+ o0, since

(3-3) f{x)=0(exp ¢ x)
for all ¢>0.
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If on the other hand we start from a function 7(x) which vauishes for x< 0
and which is bounded as (3.3), then the FT of ¢—v* f (%) yields an upper regular-
function g(w) for which the theorem holds.

Similar arguments apply in the case of a lower regular function g(w) and
a function f(x) which vanishes for x> 0.

The results derived above may be stated in the form of the following theorems
which we give in the version for upper regular functions only.

Theorem 3.1. An wupper vegular function g(u-+1iv) has for v—--0 a distri-
buttomal limit g(u) €2 which is the Fourier transform of a distribution f(x)c K’
which vanishes for x<<0. Morcover f(x) has a continuous primitive of some ordey
which is bounded at + oo as O (exp ¢ x) for all £>0.

Theorem 3.2. Let F(x) be a continmous Junction which vanishes for x<2 0 and
which is bounded at —+ co as O (exp & x) for all e>>0. Then the Fourier transform
of any distributional derivative of I'(x) may be obtained as the distributional limi
of an upper vegular function.

4. Bisection of a distribution
In general there is no unique way of defining a separation of a given distri-
bution f(x) € K’ into a part with a positive support (0, o) and a part with a
negative support (— oo, 0). Examples where difficulties ocour are 0(x) and x.
However, if f(x) is a locally integrable function, we have the trivial splitting

0 for x> 0.
f(x) for x<<0.

f(x) for x>0,
0 for x <0,

I o =
This definition may be carried over without difficulty to a distribution which
1s regular at x==0, ¢.e. which is equivalent to a locally integrable function in
some neighborhood of x=0.

We consider next a distribution f(x) that is singular at x=0. However,
this singularity is of finite order, and there exists a primitive F(x) of f(x) such
that F™ (x)=f(x) and F (x) 1s regular at x=0. Let m be the least number for
which this is true, then we define

(4.2 Lo = () B, L) =(L)" ).

Since F(x) is not unique, this definition is likewise not unique. However since
two ™ primitives of f(x) differ by at most a polynomial of degree m — 1, the
bisection of f(x) is determined up to a polynomial in the first m —1 derivatives
of 0(x). Thus if f, and f_ form a particular bisection, the general bisection is
given by

(4-3)

(%) + aq 0(x) 4 ay 0’ (%) + - T By g g1 (%),
] (%) —ag8(x) —a, 6" (%) — - —a,,_, 6D (x),

where a,, a4y, ..., a,,_, are arbitrary constants. We note that although the bi-
section of f(x) is not unique the distributions x"f. (%) and %™/ (x) are uniquely
determined.

In Section 2 it is shown by (2.8) that |#|* and |x|*sgnx can be bisected in
some standard way provided A==—1, —2, .... In the exceptional cases we

11%
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may apply (4.3). Thus the general bisection of x™ 1s determined by

A -1 4 n
(4.4) Xy P Inx, +aod(x),
where @ is an arbitrary constant. The singular distribution (Inx,)" can easily
be shown to be determined by the functional
1

1

. X
0

We note that the product x 3" always gives 9 (x).

5. The generalized Hilbert problem

In this section we shall discuss the following generalization of the Hilbert
problem: to split a given distribution g(u)€Z’ into two parts g*(») and g~ (u)
which are the limits of upper and lower regular functions g*(w) and g~ (w), re-
spectively.

We know already that the solution of this problem is not unique and that
to any particular solution an arbitrary polynomial may be added. In this way
all solutions are obtained. If the problem has a solution, we know from Theorem
(3.1) that g (1) may be considered as the derivative of some order of a continuous
function which is bounded at infinity as O (exp ¢ |x]|) for all &> 0.

On the other hand Theorem (3.2) shows that the generalized Hilbert transform
can be solved for any distribution g (#) € Z" which can be derived from a continuous
primitive which is bounded at infinity in the way indicated above. The more
or less standard method of bisection described in the previous section leads to
a certain class of lowest-order solutions. In fact the Hilbert problem may be
solved as follows. First theinverse FT of g () is determined. This is a distribution
f(x) € K'. Bisection of this gives the two parts (4.3) with arbitrary constants.
Then the FT of these parts yield a class of solutions with # arbitrary constants

g“"(ﬁ’)) o f eiJ:1wf+(x) adx + Co —l—— CL W S + Gm.....lwm_l,

g“(w) mfei:cw]‘_(x) dx — Co— CLW — +or — Cpq wm-—l'

(5-1)

To these solutions higher polynomials may also be added, but then the order
at infinity of g*(w) and g~(w) will necessarily be increased.

In practice it is often easier to solve the Hilbert problem first for some deri-
vative of g(#). Then the solution for g(#) may be determined by integration.

In order to illustrate the technique a few examples will be given.
(a) g(u) =-explu.

This is the FT of §(x —1). Bisection gives f,(x)=38(x—1) and f_(x)=0. This
leads at once to the result (1.14).

(b) g (1) ==0(u).

This is the FT of (27)7. Bisection gives f,(¥)=(27) % (x) and [ (x)=(2 7)
9 (— x). Hence we obtain

-1 14
gw)=—LL1, ()=
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The corresponding Hilbert split is

1 1 -
.2 — e == D 7Y 1y
(5-2) U—10 U100 10 ()

(¢) g (u) =sgnu.

Since g'(u)==23(u), this problem may be reduced to the previous example. In
fact, by integration we find

1
—Inw + ¢y, g (w) = 11 Inw 4 ¢,,
' 7T

g, (w) = .

A

where ¢, and ¢, are constants. By letting w— -1 we see that ci4cp=1. Hence
a possible solution is obtained by taking ¢;==c,=4%. In this way the result (1.12)
15 obtained. The corresponding Hilbert split may be written as

(5.3) In(u -+10) —In(w —i0)=2m 19 (—u).

A direct treatment of this problem is slightly more complicated. The inverse
FT of sgnu is f(x)== (i mx)™*. Bisection gives f, ()= (i 7)™ (In %,)’. Hence g, (w)
becomes |

o) oo .
e / ei"” YInxdy = .-1-—" ¢?ln li at,

T . T 1 . (4

0 0

so that
1 I 1 ‘

w) = ... | e T 1 — 1IN W0/

() = (1) + Lri —Inwe),

which is an equivalent result.

(d) g(u)=In|ul.
We first consider the derivative »%. This is the FT of —1isgnx, bisection of
which gives f, (%)= — 119 (x) and f_ (x)=L1i9(— x). The FT is (2w)™! in both
cases. Integration at once gives the result (1.13). The corresponding Hilbert
split is |
(5.4) In(#-+10) +In(y —i0)=2In |u|. .

6. Miscellaneous

In this section are briefly discussed a {ew related topics which may be con-
sidered for further research. ¢

The Hilbert transform of an ordinary function g (u) is usually delined by

0o B

(6.1) h(v) =HT{g(u)} = A1 / glt+u)—glt—u) 4,

It g(u) 1s the I'T of the ordinary function f(x), we also have
b
(6.2) B(u)=FT{i f(x) sgn x} 1
The latter relation may be taken as the definition of the Hilbert transform of

a distribution g(#) €Z’. According to the notation of Section 4 we may write
def '

(6.3) A(u) = 1FT{f (%) —f (%)}

Arch. Rational Mech. Anal., Vol, 13 d 11a
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The latter definition is unique to within a polynomial the degree of which is
determined by the order of the distribution f(x) at x=0. As a consequence
of (0.3) we have the inversion [ormulae

(6.4) h(u)=HT{g ()}, g (w)=—HT{h(u)}.
E xamples.

(@) HT (1) = 0(n),

(D) HT (sgn#) = — f‘z In|#| - constant.

The discussion of the Hilbert problem (1.3) needs the factorization (1.4).
This may be carried out by means of (1.6). In some cases it is possible to extend
the meaning of the latter relation by admitting discontinuities in % (#). This
remark may be illustrated by considering the following example

(6.5) g*(u) +sgnu g (u) =g (u).

The factori}éatian (1.4) is formally solved by the Hilbert problem
(6.0) . Inkt(u)4+-Ink (u)=1md(—u).

This has the solution

(6.7)  Ink*(u)=21%In(u1-i0), Ink(uy=—%In(uw—10).

In fact we may take
(6.8) ket (w) =wh, k= (w) =w"},
so that (6.5) can be replaced by the simpler problem

grlu) | g (u) g (u)
(0-9) (u+i0)d ' (w—i0)t T (u4i0)h

The final remark we wish to make concerns the formal solution (1.7). It
would be worthwhile to give a direct meaning, without using Fourier transforms,
to the Cauchy integrals when g(#) is a distribution of some class.
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