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General considerations concerning the hydrodynamical
problem of the motion of the North sea

by

D. van Dantzigq) and H.A, Lauwerier

1. Introduction

On February 1st 1953 the South-Western part of the Nether-
lands was stricken by a flood disaster unsurpassed in the memory
of this country. In order to design measuresg for preventing
simllar disasters in the future the government appointed a committee,
consisting of prominent engineers with Ir A.G., Maris as Chairman.
This go-called Delta-committee took several scientific institub—
iong as advisers, The Mathematical Centre was asked to analyse
the avallable statistical data on high tides in order to predict,
ag far as possible, the frequencies of extremely high fides.
During the investigations this task was extended by an econometric
study of the protection of the low areas against floods and also
by a hydrodynamic study of the influence of a storm on the levedl
of the sea,

D. van Dantzig was charged with the research on all theSeE
subjJects. He carried this out in cooperatlon with a number of
sclentific workers of the statistical department and +he applied
mathematics department of the Mathematical <centre.lhe present sgries
of papers under the common title "The North Sea problem’ centains
a number of results obtained at the latter department with
reference to the hydrodynamical prohlem.

Although Van Dantzlg himselfl wrote relatively little on this
subject and in his publications restricted himselfl mainly to re-
viewing the work of others, he knew to inspire his co-workers who
profited time and again from his constructive mind and critical
remarks. Already at the occasion of the International Congress
at Amsterdam of 1954 Van Dantzig (1) delivered an address which
made a strong impression on the audience and in which some aspects
of the statistical and hydrodynamical North Sea problems were
treated, Two years later (2) in a speech before the "Konlnkli jke
Nederlandse Akademie van Wetenschappen' he reviewed the work
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1) Deceased July 22nd 1959,



carried out at the applied mathematics department on the hydro-
dynamical problem., Further in 1958 (4) in an address on the
occasion of a meeting of the GAMM at Saarbriicken he gave a survey
of some recent results of the hydrodynamical problem. In the same
year (3) he published a paper in the Proceedings of the Kon.Ned,

Ak.v.Wet, containing his solution of a boundary value problem q)'
Already during the life of Van Dantzig it was planned o

publish the research carried out at the Mathematical Centre 1in
connection with the hydrodynamical problem in the form of a series
of papers. The present paper 1s the first of a set of probably

s1x papers written by the second author in memory of Van Dantzig.
In this series a broad survey of the hydrodynamical North Ses
problem 1s given, In it both old material contained in reports

of the Mathematical Centre and new results obtained after Van
Dantzig's death will be discussed. Part of the material of the
present paper is borrowed from Van Dantzig (1) (4) and Lauwerier
(1). For that reason Van Dantzilg may be considered as a posthumous
co-author although the gecond author is responsible for the con-
tents.

| An adequate mathematical treatment of the hydrodynamical
problem is only possible at the cost of a number of simplifications
the majority of which hardly affect the final result. In the first
place the hydrodynamical equations are simplified. The vertical
component of the velocity of the stream is neglected, the equations
are linearlzed, and the coefficient of Coriolis is assumed constant.
For the North Sea basin these simplifications are quite acceptable.
In the second place the form of the basin is replaced by a simple
mathematical model, This implies that the influence of irregular-
itles of the coast and of variations of the depth are neglected.
The North Sea can be convenilently represented by a rectangle which
Lls bounded on three sides by coasts and which borders on an in-
finitely deep ocean on the remaining side. This means that the
influence of e.g. the Channel is neglected. The grand total of all
simplif'ications cannot be neglected if it is required to know the
exact elevation at a given time at a gilven spot. But by ignoring
local circumstances they permit us to obtain a clear picture of

the overall motion and elevation of the surface,

1) A second solution of this boundary value problem has been given
in Lauwerier (3),
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= The rectangular model of the North Sea mentioned above suffers

from two disadvantages, In the first place the leak of the Chan-
- nel 1s neglected, In the second place the asgsumption of a uni-
form depth 13 rather drastic. In reality the depth increases
gradually in the direction of the ocean. However, in a subsequent
paper the stationary state of a sea with an exponentially in-
creasing depth under a non-uniform windfield will be discussed,
The mathematical difficulties would be considerably reduced if
the rotation of the earth were negligible. However, 1t has been
found Time and again that the rotation is an esgssential feature
of" the problem which cannot be left out of account.

Wwith the gsimplifications discussed above the problem can
be described by an elliptic partial differential equation with
obligue boundary conditions. This type of problem has not yet
been solved entirely. A number of partial results which are ob-
talned at the Mathematical Centre will be reported in this and
Tthe following napers,



* 2. The mathematical problen

The linearized equations of motion are 1)2)
. .
au,, Ay = - 3¢ A 2P, o aUZ
) . 0F 7, 2xX P oox Y
(2'/]) OV op oV
o 7 xy P oy P a7

Integration of these equations with respect to z gives

op
. i oY _ _ b a 4 _
2,2 ] Re)
L 2V . I G - -
\ 5T LU+ gh *-5-3—7- = 7 By | -F (VS Vb) v

The surface of the sea i1s subjected to a tractive force which

has the same direction as the velocity of the wind at sealevel
and which has an absolute value determined by the lollowing seml-
empirical law 3/

Ewnwtz 2

(2.3) \/Ué +'VS = K p, Vg,

2 where k is a dimensionless constant for which usually the value
k=0,0025 is taken,

- The fundamental assumption is made that the bottom friction is

cf. J.C, Schonfeld (1)
¢f. J. Proudman (1), ch.2.

proportional to the total stream +)
g 1
(2.4) ?‘Ub = AU , ?'Vb = NV,
where N is uniform and constant.
1f next we putr |
0P,
7 Vs P ox
(2.5) Ve ly _ DB 9Py
7P 's PO
N the equationsg of motion (2.2) can be written in the form 5)
“ 2. - , 275 -
(2.6) { (at FAJu - Qv o+ gh 22 =T
y D) ) of
(~5'E-+7\)V-|£lu+gh y--vf
To this we add the equation of continuity 0)
° 1) Cf, list of gymbols at the end of tThis paper,.
2) Cf, J, Proudman (2), 44,
3 Cf, J. Proudman (1), 135.
- Cf, J. Proudman (3) and W.F. Schalkwijk (1).
>,
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The system (2.6) and (2.7) 1s the starting-point for a great
number of 1Investigations, We note that the quantlties A, 2 and gh
are assumed to be uniform and constant. By a proper choice of the
unlits 1t can be attained that gh=1.

The sea will be represented by a domain D, 1ts boundary by
C, the coastal part of C by Cq, the oceanic part by CQ. The bound-
ary conditions express the fact that the normal component of the
total stream vanilshes along Cq and that the elevation is continuous
along 02, oince the invariable level of the ocean can be taken
as the zero level 1t can be assumed that [=0 along C,.

We 1magine that at a certain moment t=0 the sea is at rest,.
Then the system (2.6) and (2.7) will be subjected to a Laplace
transformation according to

— Q0

(2'8) T(X.?y}p) = d[ e“pt ‘j’(}{,y,t)dt,

and similarly for u,v and U,V,

The system (2.6) and (2.7) 1s transformed into

(

{ (p+A)u - 22V + 3% = U
(
G

|8
(2.9) I
p+mhr+-nu1+—§§==v
?gdﬂo) u I gy_: + :f..-.. 0
] 0K Y b= M

The same system is obtained i1f a solution of (2.6) and (2.7) is
sought in which the dependent variables contain the time in the
Form of an exponentlal factor exp pt only. Thilis is of importance
e.g. In the case of free and forced oscillatory motions.

Wl

By elimination of U and v from (2.9) and (2.10) the following
non-nomogeneous eguation of Helmholtz is obtailned

2 2
b 0 2.0 e
(2.11) (2 + 25 - k5)§ = F
ax 0y ’
- def ,20 @ 8V 2V
b= (a}{ +'§'§") + tg [ (""""“"""‘“"‘"):
(2.13) = def p(p+ﬁ}+£¥%ﬂp+ﬁJWT, Re k2 O,
and
(2.14) tg J et o (prn) T, -z <Re y £ 57T ,
The combinations UX+'Vy and mevy are often called the dlvergence

and the rotation of the windfileld respectively.
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The boundary conditions for Y become

(2.15) “= 0 along Cos
) a:j; / al:? — 1 4
(2.16) & + tgy =5 =1 along C s

with
, ~ re d_@f i m
(2.17) T U=t W o+ tgy W,

where wn and ws are respectively the normal component and the
tangential component of the wind-stress vector (U,V). We note that
the normal n 1s directed outwardly,

It T is known the components of the Total stream can be

derived from (2.9) ag follows

/ o . -
Koo y 2Y — -

(2.18) 4 _
LS f 29\ . (57 &
v (“‘g}“ 'a"’")‘ (V-tg f T)

From (2.11) and (2.,18) it follows that W and ¥V satisfy the follow-
ing non-homogeneous equations of Helmholtz

2y 1 a9 oV U o o
(2.19) (A-K7)0 = - D+A Y (SE ”'Sy) - p(Uttgy V)
and

e (ﬂv BUJ e
(2‘20) (A""K. )V = m -i-)ﬁ--}-(- '-5*:)-‘\5- e %M_S; -‘-T)(V-—-t%j/l ),




3. Green's theorem

The solution of the problem (2.11) with the boundary con-
ditions (2.15) and (2.16) can be facilitated by making use of
Green's theorem.

For simplicity we shall assume that the domain D is simply
connected and that its boundary is piecewise smooth. The points
(x,7), (Ko,yo) ete. will be denoted shortly as P,P_ etc. The
distance between P and Po will be indicated by f(quPg). We now
conslder two functions ¢ and w with continuous second derivatives
in D with the exception of at most a single point. We assume that
¢ has a logarithmic singularity in A of the kind u(Qm)mqlnj?(Pﬁﬁ)
and that yw has a similar singularity in B. Then we have

o 9 9w 9 - ) > .
jg('g‘:' “'a% + a;’f a;f/ + kK7 w)dndy = - ‘f\)f <p(/:,-s<, )1{/ dxdy +

(3.1) - f<p%%:dﬂ + ¢ (B).
G

In view of the symmetry of the left-hand side we obtaln the
equality

- 5
(3.2) V%A)wcﬁB)=@g{vwnﬂ0w--wmﬂ&)w}dmw-+
: 2f _ 2% gy,
kg{wan Csz} ot
After some elementary reductions it follows from (3.2) that

v (8) - p(e) = [[{v(a-r)e - go- @)y} axay 4

(3.3) +‘£ ww{%%-utg3’§% }ds ¥
L
]
0 , R i} ?d
mi£w{3%'+11wy3§}cks+-tg; l: =5 (¢ w)ds
,I S

P'rom (393) a number of interesting conclusions can be drawn
which will be listed below.

a If G(P,P,tgy) satisfies the Helmholtz equation

L ]

™y
(3.4) (A=1)G = O
the ocean condition
(3.5) G = 0O along (.,

-




the adjoint coast condition

oG

(3.6) =— ~ tg 3f3; = along C s
then
(3.7)  §(p H P,¥_)F(P)axdy - | G(P,p_)T(P)as.
g
Proof,
Put  ¢=G, A=P_ ; w=9Y , B absent.

b For the function of Green determined by (3.4), (3.%) and (3.6)

B

the following obligue symmetry relation holds

(3.8) 3P ,Po,te y) = G(E,,P.,-ta ).
Proofl,
Put ¢ =G(P,Fo, b8 ), A=Py;
wo=G(P, PLs-te Y) B=P,.

¢ If There is a function G which satisfies the Helmholtz eguation
(3.4) with a singularity at P and the ocean condition but not
neuegsarily the coast condition we obtain easily from (3,3)

(3.9)  F(r) = 2(p) 4«({ F(P) (2 - ta g 2)G(P,P,)ds,

1
where Z(PO) represents the right-hand side of (3.7) which is a
known function of Po
The equation (3.9) may be considered as a singular integral
eqgquation along the coast Cq,

d If there is a function G which satisiies the Laplace equation

Mardribt

(3.10) AG = O

with a singularity at PO and which satisfies both the ocean

condition (3.5) and the coast condition (3.6), we obtain in a
similar way

L

o ~y -
(3.11) ‘f(PO) = Z(PD) - 15 ” * (P)G(P}Po)dxdy.
D
This represents a two-~dimensional Fredholm equation. A solution of

(3,11) in the form Qf a Neumann serieg would lead to an expansion
of ? in powers of =
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It has been found possible to obtain the function of Green in
an explicit form for a few simple reglons which are bounded by at
most two straight lines. The relatively simple case of a half-plane
With a coast condition will be discussed in the following section.

The diffiicult case of an angle has been treated by Van Dantzig (4)
and Lauwerier (2), (3),

———
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I, solution of the problem of Green for a half-plane

TP T SRRy T o R

The function of Green GO in the full plane satisfying

2
(4,1) Qlwx,)G(xpijo,y =0

o)

and which for Re k¥ > O vanishes exponentially at infinity according
TO

i

—
(4.2) G = O(exp- e Vx“+y“),
where £ 1s an arbitrarily small positive quantity 1s given by

. ~y oy - 3 lel o =1
(4.3) GO(Kgyjﬁoij) et (dﬂﬂ | kwﬁuﬁ?)j

where

>

Il ~ lemv DL N2
(!. l.) F =z (xa, “D) ! (E] B/O) \

We note the integral representations

| 00
(4.5) G, = (Mﬁ)dq jﬂ exp-(Kkp cht)dt
(D
and
00
(4.,6) G = ()~ jﬁewqm—m{|ywyoloht+i(xnxo)sht} dt .
~ Q0

From (4.3) the solution of the following problem of Green can
be derived, To find a function of Green Q]aatisfying (4.7) in the
half'-plane y » O and the houndary condition

(4.7) b= O for vy = O,
By means of the well-known reflection princinle it follows that

~ o . f.J & f - - ’] T e ~ /l
(Lln8) uxl(}{.ﬁyﬁxoﬂj ) = ( l&.o(?ﬁ,f) - ("Tr) KO(K‘?H’)a

o - T‘S)

where

<li‘ﬂ9) *x \/(}:'ﬂj{o)ﬁj +- (‘y”{“FO)&.

It can easily be shown that

) 2 I .._?3
(4540) (cos™y ;;2 - sin¢[~3:g)G1 = for y=0,

for the left-hand side of (4.10) can be written in the form

WY 2 2
{COS CV("*‘“‘?’T ) LG =
X" E)yﬁ' E).:i?J
2 o 2
= (m“co&“J’w JL@)G = ()




in view orf (4,7).
Therelore the function G, defined by

(4.11) Gg(xjijojyo) = (8065’5%*+ Sin)fg%JGq(xﬁy,xo,yo)

satisfieg the boundary condition

o112 cos y<% - ain y- = () for v = O

( > ) ( ugfay 31 J’ax)GQ g . Y ;

The operator coaj’ﬁ%-“ Siﬂjfgl represents for real ) a directional
. FAN

derilvative,the dircction of which makes the angle me%ﬁ?with the
pogsltive X-axis,

The solution (4,14) can be interpreted ag being generated by a dipole
at (xojyg) in the direction ngm;m- and a dipole at the reflected

source (KO,_yQ) in the direction -y +,® (see figure 1).

p
4 ( A a7 V) 0 )

i

\ N
e

L.--"""f'

\ F
SN e T ffigure -

From the solution G, the function of Green G, which satisfies (4.1),
i

) 3
the boundary condition (4.12) and which has a logarithmic pole at
(Xogyo)j can easily be derived Ly integrating the dipole at (Ko,yo)

of G2 over the hall-line

A= X 4= 1 =y 008 | £ T <
X ho {'tE&H]K s VFY + Tcijg’y O <t <« 0

assuming that -jme y<im
Then the halfline of dipoles, which are lying head to tall, reduces
to a single pole at (Xoﬁfo). The ref'lected dipole is Iintegrated over
the half-l1line

x=x, b tslny , ¥y = -y -t ceosy , O<cteoo.

In that case, however, the dipocles do not annihilate each other and

there remains a line of dipoles as ghown in figure ¢
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igure ¢

This corresponds analytically with the formula &)

e - def | _
) («TB(“:yy“Osyo) = GO(KJyJ}iOEyO) T
9 - ¢ 7o
+ (cogghyﬁ + Sinaff%) uf GO(X,yﬁxo+t Siﬂj’jmyowt COB {)dtu
O

By using (4.3) and (4.6) this may be written in the form

Q0O

N | /] . ,] .
(4.14) G, (x,y,x ,y¥.) = K (ep) = g

ch(t+iy)
3 O C 27
Wee

ch(t-1y)

x) Thesc two expressions have been First given by H.A, Lauwcrier (1),
The above-given olegant derivation is due to G.W. Ve ltkamp.,




List of symbols

KoY s

Cartegian coordinates. The undisturbed surface of the
water 1s given by z=0 and the bhottom by z=h;
the time;
the components of the current at denth -z
the components of the total stream,
h h
u == f u,dz \% :lf v, dz;

0) ~ Q

the elevation of the water-gurface, The undisturbhed level

18 given by ¢ =0;
the atmospheric npressure:

the components of the force of friction by which the water
above the depth z acts on the water below that depth;

the components of the friction of the wind on the watep-

suriace;
the components of the friction of the water on the bottom;

the coefficient of the Coriolis force, £ =2 w sin v, where

a
w, 18 the veloclty of the rotation of the earth and ® the

geographic latitude;

a coefficient of friction:

the acceleration of the ecarth's gravity;

the denaity of the water, assumed uﬂifovm.(jﬂzﬂ.OET g/CmB)
the density of the air ( o = 0.00125 g/cmB);

the velocilty of the wind at scalevel;

¢ = Vgn;

the variable of the Laplace transformation;

)

defined by maxp(p+hJ"ql{(p+h)2+£f2}_9Ikem 203

defined by tg )= $-(p+¢0"43 -5T <Re ys 4T ,

J
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