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SEMANTICS AND THE FOUNDATIONS OF PROGRAM PROVING

J. W. DE BAKKER
Mathematical Centre & Free University
Amsterdam, The Netherlands

(INVITED PAPER)

A discussion is presented of some of the applications of mathematical (also called denotational) seman-

tics in the justification of a proof theory for program correctness.

Syntax and (denotational) seman-

tics of a simple example language are glven, together with a sketch of the associated proof theory which

is rather economic in the structure of its assertions.
assignment to a subscripted variable,

program proving:

The system is applied to three case studies in
weakest preconditions and the while statement,

and the parameter mechanisms of PASCAL. An appendix contains further details on the while statement.

. INTRODUCTION

We see as a major task for theoretical computer
science the development of a mathematical theory of
programming languages, aimed at a better understand-
ing of the fundamental notions in programming, and,
hopefully, resulting in an improved quality of their
applications. In our paper we will present a review
of some of the current issues in this area, with the
main emphasis on the interface between semanticg and
program correctness proofs.

Let us first briefly indicate in which sense we want
to take these terms. As usual in language theory, we
distinguish between problems of form and content,
the former corresponding to the study of syntar —
how to specify and analyse well~formed programs -
the latter leading us into the realm of semantics,
where we study ways of attributing meaning to pro-
grams.

Unfortunately, there is no agreement at all on what
constitutes a proper methodology for semantic speci-
fication. On the contrary, we find ourselves con-
fronted with an embarrasgingly rich choice of ap-
proaches, ranging from the simple view that a lan-
guage is best defined through its compiler, via in-

‘triguing applications of various form of modal logic,

to the use of sophisticated techniques rooted in cat-
egory theory or universal algebra.

.We find it advantageous to distinguish three main

trends in the field of semantic description of pro-
gramming languages, Two of these are what one might
call model-theoretic, in the sense that meaning is

attributed to programs by relating them to a model,

1.e,, some universe which is not the same as the
linguistic world of the program texts. Of course,

the same idea applies to natural languages:

A linguistic object - for example, the word "table'
which happens to consist of five letters - is as-
signed meaning through its correspondence to the
external world - where we might observe a table as
an object with four legs. For many years, the only
universe used in the specification of the meaning of
programs was that of a - real or ahstract - machine.
In this point of view, each program instruction de-
termines a state—transforming action of the machine,
and execution of a complete program leads to a se~
quence of states, starting from an initial state and,
normally, terminating in some final state. It has
become customary to refer to this as operational se-
mantica. Important examples of it are the definition

of PL/I with the so-called Vienna method, [19] and

the definition of ALGOL 68. [32] In recent years,
a second model~theoretic approach has gained in-
creasing acceptance, namely the method of mathemat—
teal (or denotational) semantics advocated by the
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Oxford school of Dana Scott and the late Christopher
Strachey .[29] (see also, e.g., [21,31]). The quali~-
fication '"mathematical'" 1is here not to be taken as
implying that the methods of operational semantics
would not necessarily satisfy mathematical standards.
Rather, it reflects the nature of the model used,
which is completely machine-independent and relies
solely on certain basic mathematical notions such

as sets, functions and operators. Since we will make
extensive use of these ideas in the technical devel~ -
opment below, we will not go into details now. The
third group of techniques used in the study of lan-
guages 1s proof-theoretic — as opposed to the
model-theoretic nature of the first two. As an
implicit way of assigning meaning to programs,

one proposes certain axioms and proof rules which
are used in the (formal) proofs of program proper-
ties. As an outstanding representative of this
approach we mention the inductive assertion method,
originally proposed by Floyd, [13] embedded in a
formal system by Hoare, [14] and reappearing in
somewhat modified form in Dijkstra's work on weakest
preconditions. [12]

In our opinion, care should be taken not to view
these three methodologies as competetive ones, but,
on the contrary, as complementary in that no single
one of them is appropriate for all possible applica-
tions. The remainder of our paper will be devoted to
an lllustration of how mathematical semantics can
help in clarifying proof theory. However, let us
emphasize that operational semantics has just as an
important role in that it is closest to the actual
problems of the compiler writer,

Let us now outline how the rest of the paper is or-
ganized. We first present a very simple language and
define its mathematical semantics. Next, we state
the sort of formal assertions one might be interested
to make on this language, and sketch the structure of
a possible proof theory for it. We then proceed with
three applications dealing with
—~ assigoment, in particular to subscripted varia-
bles |
- weakest preconditions and the while statement
- the parameter mechanisms call-by-value and
call-by-variable, as occurring in the language
PASCAL.

We hope to show what challenges are offered to mathe-
matical semantics by this sample of problems in the
area of program proving. Though the examples treated
are simple, we find that they are not always well~
understood. It has been our experlence that the
foundations of program proving are in danger of being
somewhat shaky, when established without the support
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of semantic justification.

(Related investigations of the connections between
semantics and proof theory have bcen reported for
example by Donahue, [11)] Ligler, [17,18] and Pratt.
[26] (Cf. also Milner [22].)

2. SYNTAX AND) SEMANTICS OF A SIMPLE LANGUAGE

Our example language has three kinds of constructs,
viz. statements, integer expressions, and boolean
expressions. As the starting point in the formation
of integer expressions we take the classes of Tn-
teger vartables Varn = {x,y,...} and of integer con-
stants Const = {m,n,...}. Using a syntactic defini-
tion formalism which should be self-explanatory, we
then introduce:

The class of statements S{af with elements §,...
qz'iﬁ.b.ﬁhﬁﬁ 8§ else §, fil

yi= ':=sl81 | 9
while b do S od

The class of integer expressions Iexp with elements
S,t,.‘-

g::= x|mls +52Li£ b then s, else s. fi

! l 2 =
The class of boolean expressions Bexp with elements
b’lii

¥

b:z= truelfalsqjsl=szljb|blnb

2

Meaning is attributed to the constructs of thig lan-
guage with respect to a state, i.e. , @ mapping from
variables to values. E.g., the meaning of the assign-
ment statement ¥:= X+| in a state where x has the
value O is a new state in which x now has the value

i {(and all other variables have maintained their old
values).

Let T = {u,v,...} be the set of integers (note that
in our programming language we use integer constants
in Const to denote these), and let I = Van - 1T be the
set of states, with elements o0,0',... . We now in-
troduce mappings M, V and T, defining the meaning of

the elements im Simt Iexp and Bexp, respectively,
all with respect to a given state:

M: Stat - (¢

paré L)

Ve Texp + (2 —— 1)
T: Bexp + (L— {T,F ).

These definitions should be read as follows: For each
statement S, M(S) yields a (partial) function from
states to states (thus, it is meaningful to write
M(8)(o) = o'). Similarly, for each s, V(s) yields a
function from states to integers (we can write
V(s)(a) = u), and T(b) yields a function from states
to the set consisting of the two truth-values T and

F (e.g., T(b)(o) = T might hold).

Before presenting the semantic definitions, we pre-
sent one further piece of notation: For g ¢ £,

x € Var and y € T, we define o{u/x) as a new state
given by: U{u/x}(x) y, and for each y # x:
clu/x}{y) = o(y).

This formalism enables us to give a succinct defini-
tion of the concepts in our simple language. For each
o -

M(x:=s5) (o) = o{V(s)(0)/x}
M(S,;Sz)(n) = M(sz)(M(sl)(c))

M(1if b then 8, else §, fi) (o) =

M(8,) (o) if T(b) (o) =

M(S,) (@) i T(B) (o) = ¥

‘I

M(while b do S od)(ag) = (this case is somewhat more
complex than the other ones,

and relegated to the Appendix)

V(x) (@) = o(x)
Vim) (o) =
U($l+52)(c)

u (the integer denoted by the constant m)
plus (V(s ) (a), V(sz)(o)) (where we as~

'sume knotm the meaning of
the mathematical function

plus: T x T » 1)

V(if b then s else s, fi) (o) =

{'ucs (@) if T(b) (o) =

V(s,) (o) if T(b)(g) =

T(true )Y(g) = T
T{false){(g) = F

T(sl=52)(ﬁ) = equal (U(s])(U),V(sz)(c)) (where we

assume known the meaning of
the mathematical function
equal: I »x T -+ {T,F})

- (F, if T(b)(a) = T
T( b)(a) = 1

T, if T(b) (o) =
T(b >b )(U) = (T(b Y () ﬂ*T(b Y(©)) (where we assume

r known the meaning of the

1

truth-values).

Fxamples. First we determine M(x:=x)(¢) as follows:
M(xi=x) (o) = o{V(x)(a)/x} = ol{o(x)/x} = ¢. (Below,
we shall use A as the abbreviation for the '"dummy
statement" x:=x.) Next, we evaluate
M(x:=2;y:=x+y) (o), where o satisfies o{y) = 1. We
obtain successively - neglecting for the moment the
distinction between integer constants and integers:

M(x:=23y:=x+y) (o) =

M(y:i=x+y) (M(x:=2)(0)) =

M(y:=x+y) (g{2/x}) =

o{2/x}plus (V(x)(o{2/x}),V(y)(a{2/x}))/y} =
o{2/xHplus(2,1)/y} =

o{2/x}{3/y}.

Once having acquired some familiarity with the no-
tation, the reader will easily convince himself that
the definitions indeed capture the usual meaning of
the concepts in our language. Of course, the defini-
tions become considerably more complex for more in-
teresting languages, but, still, the basic approach
remains essentially the same as the one described
here.

3. PROOF THEORY

Proofs about programs are usually concerned with
three types of program properties:
—~ correctness: Program S is correct 1f and only
1f 1t transforms input satisfying condition p
to output satisfying condition py, for suit-
ably chosen conditions PisP2:
~ termination: The computation specified by pro-
gram § terminates for all input satisfying a
suitable condition p.
~ equivalence: Programs S, and Sp determine the
same state transformation.

We shall outline a formal system in which these

properties can be formulated for our simple language,
together with a definition of the notion of justify-

ing the system using the semantics as given in sec-
tion 2,

The formulae of the system are either assertions or

logical operation '"=' between

Y

i

-
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equivalences. The class of assertions p,q,... 18 an

extension of the class of boolean expressions Bexp
of section 2:

pii= truelfalaelsl = Sﬁfﬁplplnpzls;plﬂx[p]

An equivalence 1is a construct of the form S, = 82.

We now extend the function T to assertions and equiv-

alences. Thus, 1its definition for the first five syn-

tactic clauses in the syntax for p is just as before,

and therefore is not repeated., Furthermore, we define,
for each g,

T(S;p) (o) =

T, if there exists ¢' such that o' = M(S) (o)
and T(p)(a') = T |

¥

.
P

F, otherwise.

\

T(Ex[pl) (o) =
fT, if there exists u such that T(p) (c{u/x}) = T

=
T(8,=8,) (o) '=
= ‘equaZ(M(Sl)(U),M(Sz)(ﬁ)) (here equal: T x I~ {T,F}).

F, otherwise.

(It should be noted that the p's are assertions

about programs, and not themselves programming con-
structs. E.g., a boolean procedure bp with the de-
claration {in ALGOL 60 notation) boolean procedure
bp; begin S; bp:= true end, will result in an in-—.
finite computation when called in a state o for which
S does not terminate, whereas T(S:;true){g) yields F.)

Next, we introduce the following abbreviations:

-7
PV Qq = (p) 2q
PACq El?(quﬁ)
P =g z (p>q)A(qop)

i1

iﬁ_p then q, else q, fi (pAql)V(_bhqz)

S + p | = (S;true) > (S;p)
{p}s{ql = p 2 (S~q)
(plsiql = p o (8;9)

(Below we apply the usual conventions on the priori-
ty of the logical operators  5A,V,>, =.)

Let us now see what we obtain from these definitions
in the last two cases: For each g

T({p}s{ql)(u) =

T, if, for all o', whenever T{(p)(o) = T
and ag' = M(8) (o), then T(g)(oc') = T

F, otherwise.

.

T(CplSCql) (o) =

‘r, if, whenever T(p)(c) = T, then there exisgts

o' such that o' = M(8) (o) and T(q)(c') = T

hhF, otherwise,

Thus, we encounter here the usual notions of partial
correctness (in the formulation of Hoare [14]) and
total correctness, see e.g., Manna. [20] Let us more-
over point out that the meaning of our construct S;p
(also appearing in Mirkowska & Salwicki [23]) is
nothing but Dijkstra's weakest precondition wp{S,p)
(provided that we restrict ourselves ~ as we do

here— to deterministic programs; the nondeterministic
case is investigated e.g. in De Bakker {6] and

De Roever [27]).

A formula is called valid if, for all o, T(p)(c) =T,
or T(Slmsz)(u) = T, respectively. Examples of valid

assertionsg are

Sifalse = false (3.1)
S;(pAq) = (S;p) A (S:q) (3.2)
S:(pvq) = (8;p) v (8:q) (3.3)

Using pls/x] to denote the result of replacing all
occurrences of x in p by s, we also have the validi-
ty of

(x:=s5);p = pls/x] (3.4)

provided that p contains no subexpresstons of
the form S;p'
(8,38,)5p = §,5(5,;p)

if b then 8, else S, fi;p = 1f b then 8 ;p
—_— 1 2 — e
else 82;p fi

(3.5)

(3.6)

Valid assertions expressing partial correctness are

{pls/x]} x:=35 {p} (3.7)
provided that p contains no subexpressions of
the form S;p'

{p} x:=s {3ylply/x] A x=sly/x]1]} (Floyd {131])(3.8)

{pAb}Sl{r}JN{pﬁjb}Sz{r}::{p} if b then S| else

S, £ (e | (3.9)
As examples of valid equivalences we mention
while b do 8§ od =
ii'b then S; while b do S od else A f1 (3.10)
if b then S] else sz_gi;s = (3.11)
if b then S];S else Sz;S fi

i
A deduction is a construct of the form W% , where

" and T, are formulae. In the formal proof theory,

it will serve as a means for deriving new theorems
from old ones (which are either axioms or previously
derived theorems). Therefore, we are interested in
the notion of a sound deduction: A deduction 1s
called sound if the validity of its premise ()
implies validity of its conclusion (mw5). Examples

of sound deductions are

[I?xj , provided that y does not oeccur free (3.12)
pLY mp.
{pis, {q} A {a}s, (]

{p}s, is,{r} (3.13)
- {pabl}s{p} |
{p} while b do S od {pA b} (3.14)
P34 > 5, 5179,

An example of an invalid assertion is:
(p2q) = ((S:p) » (S;q9)). An unsound deduction is the
following

{truelx:i=l;y:=2{x=1Ay=2}

{truely:=l;y:=2{y=iay=2} "

In a proof theory one - -selects certain valid formulae
as axioms, and sound deductions as proof rules. For
example, in Hoare's proof theory we encounter asser-
tion (3.7) as an axiom, and assertion (3.9) and de-
ductions (3.13) and (3.14) as proof rules, whereas
in Dijkstra's system we find (3.1-3.6)} and (3.15a).
One then hopes to be able to derive a class of in-
teresting program properties on the basis of these
axioms and rules. The development of a formal proof
theory is in particular motivated by two considera~-
tions:

- a judiclous selection of axioms and rules may

" lead to a system which is complete for a
certain class of properties ~ thus enablino
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the programmer in that case to base all his
proofs on the selected axioms and rules, with=-
out any appeal to facts outside the formal
theory. (E.g., Hoare's system is incomplete,
since the equivalence (3.10) is not derivable
in it (see {4]). Addition of (3.10) yields a
theory whieh fully characterizes the while
statement in the same sense as investigated in
a much more general setting in De Bakker &
Meertens., [(9]) Morcover, an appropriate choice

o of the axioms and rules may sometimes lead to
a natural (implicit) definition of the meaning
of the concepts concerned.

- Any system for computer verification of pro-
gram correctness has to rely on some formalized
proof theory which informs the computer as to
what are the legal inferences of the system.

4, APPLICATIONS AND EXTENSIONS

In this section we present three case studies which
jllustrate the interface between semantics and proof
theory. They are concerned with

~ assignment to a subscripted variable

-~ weakest preconditions and the while statement

- parameter mechanisms f[or procedures,
' In each case we hope to shed some light on a point
which, simple as it may be, seems to be not yet fully
understood in the 1iterature.

4,1 Assignment to a subscripted variable

Consider the assignment statement x:=1. Clearly,
{true}x:=1{x=1} is a desirable property of it, which
is easily seen to be both valid, and derivable by
Hoare's assignment axiom, Indeed, (x=1){1/x] reduces
to 1 = 1, which is equivalent with true. Now let us
assume that our language has been extended with sub-
scripted variables. We first of all have to give the
semantics of this extension. This is rather straight-
forward, and omitted here (see [8]). What to do, how-
ever, with the proof theory? First we try to treat

a subscripted variable als] in the same manner as a
simple variable, allowing us to derlve, e.g.,
{truelal2]:=1{al2]=1} (since true is equivalent with
(al23=1)[1/al(2]1). Similarly we would then obtain

{txuetafal2]]):=1{alaf2]1= 1}, (4.1)

(assuming that true is also equivalent with
(afa[2]] = 1) [1/alal21]]) but this formula can be
shown to be Znvalid in the following way: It is not
difficult to verify the validity of

{a[1]=2 A a[2]=2} alal2]]:=t {alal2]]= 2}, (4.2)

Since, obviously, al1]=2 A al2]=2 o true is valid,
from (4.1) we obtain

{al13=2 A a[2]1=2} alal2]]:=1 {alal2]]=1}

contradicting (4.2).

The solution to the invalidity of Hoare's axiom, when
carried over directly to the subscripted variable
case, is provided by refining the definition of sub-
stitution plt/v], where v now ranges over both simple
variables x and subscripted variables alsl]. By ob-
vious reductions such as

(pyop2)Le/v] = pyle/viapgLt/v], or

(s1=s)(t/v} (sl[t/v] =2 (sz[t/v]) we arrive at the
treatment of wlt/v], for v,w arbitrary variables, The
cases where w and/or v are simple variables are
rather straightforward and omitted here., [8] The
heart of the definition consists of

| | af.
~bls'1lt/als]]
‘als']lt/als]]

III 1il

bls'(t/als1]]  C(a # b)
if s '‘Ct/als]] = s
then t else afs'[t/a[s]]]fl.

-
1§ =nlit

It can be shown that (3.7), taken with the new sub-
stitution definition, is valid. (8]

Example. (alal2]11= 1)01/alal2]]] =

(if al2](1/alal2]]] =

= a[2] then | else alal2](1/alal2]]]] fi = 1).

By a few (omltted) simplifications, we " reduce this to:
if al2] = 2 then all] = 1 else true fi. Thus, we ob-—
tain as instance of (3.7):

{if a[2] = 2 then all1] = 1 else true £i}
alal2]] := 1{alal2]] = 1},

thus correcting (4.1).

4.2 Weakest preconditions and the while statement

Let us consider Theorem 4 of [12]. When stripped to

its essentials (the presence of nondeterminacy is 1ir-
relevant here), the theorem can be phrased in our ?a
notation in the following way: r

L

-

(4.3)

pAb>S;p
pf\(while b do S oditrue) » (while b do S 2§;(pxﬂb))

ir-

It will be shown that this is nothing but a weaker
version of (3.14) (this was first noted in [5]).

Assume (3.14) and the premise p A b o S;p. We show
that the conclusion of (4.3) is then derivable: Since
pAbo>S;p, clearly, also p A b A (8;3true) = §;p,
or, by simple propositional logic, p A b >

(S:true > S;p), i.e., p A b 2 (S»p), or, in the par-
tial correctness notation {pab}S{p}. Thus, the prem-
ise of (3.14) holds, and we infer the conclusion of
(3.14): {p} while b do S od {pr 7}, which, in the
same way, can be shown to be nothing but an abbrevia-
tion for the conclusion of (4.3). O

We here observe the advantages of an approéch in
which it is possible to formally compare notions such
as partial correctness and weakest precondltlons,
thus clarifying the relationship between the various
techniques.

4.3 Parameter mechanisms

By way of example we consider the parameter mecha-—

nisms of call-by-value and call-by-variable as occur-
ing in the programming language PASCAL (this subsec-
tion is based on [1,21).

"

dure variables P, together with the constructs of

procedure declaration and call, For the sake of sim- o

plifying the presentation here, we assume some re-
strictions: We have one procedure declaration

P « <val x, var y | §>, where to the right of o'
we find a construct whlch has a formal value para-
meter x, a formal variable parameter y, and body S.
A procedure call has the form P(t,v) with as actual
parameters the integer expression t {for the formal
x) and variable v (for the formal y).

We now outline how to provide a meaning to P(t,v) in
the non-recursive case (no occurrences of P in §).
For this purpose we first of all need the construct
of a block: begin new z;S end, where z is any simple
variable and S any statement. We assume that the
reader has an intuitive understanding of this con-
cept, and omit formal specification of its semantics
(and corresponding proof rule). For this we refer
for example to [1,2,15]. We also omit the precise
definition of .substitution in a statement, written
as S[v/x], apart from mentioning that the new z...
construct has the same variable binding effect as

Vz ... or f ... dz has elsewhere in mathematics.

Assuming these definitions, we introduce the follow-

- ing notation:

We extend the syntax as y
given in section 2 by introducing a class of proce- 7

e W - S e R AT

.

o

A Ty W ey Wy =
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d

313 o

<val x, var y | S> (t,z)

begin new u; u:=t;5[u/§][z[y] end
dt. T

<val x, var v | S§> (t,als])

A il

begin new u],uz;ul:=t;u T=S )

2
S[ul/x][a[uzl/y] end.

Writing B as shorthand for <val %, var y | S>>, we can
now give concise rules for meaning and proofs for a

procedure call P(t,v). Assume the declaration P « B.
Then, for all o,

M(P(t,v)) (o) = M(B(t,v)) (o)},

and in the proof theory we might incorporate, for
example

P(t,v) = B(t,v)
P(t,v);p = B(t,v);p,
Qr

{p} B(t,v) {q}

{p} P(t,v) {q}

depending on whether this proof theory favors equiv-
alences, weakest preconditions, or a partial correct-
ness appreach.

Various approaches in the literature (e.g., [15,16])
tend to confuse procedure calls with substitution.
Let us give an example of this: Comnsider the declara-
tion P| « <var yl,y2 | yl:=2;y2:=3> (with a slight
deviation from oux previous syntactic convention).
The treatment of procedure calls as proposed in [16]
would, through inappropriate use of substitution,
result in deductions such as

{true} yl:=2; y2:=3 {y1=2 A y2=3}

{true] Pl(z,z) {z=2 A 2=3}

and, rightly considering this undesirable, its au-
thors remedy this by forbidding calls as Py(z,z). We
find our definition advantageous, since there is no
contradiction in the inference

{true} «<var yl,y2 | yl:=2; y2:=3> (z,z) {2=3}

{true} Pl(z,z) {2=3}

because, by the B(t,v) definition, this reduces to
the sound deduction

{true} z:=2; z:=3 {z=3}

{true} Pl(z,z) {z=3}

Remark. Observe that from (3.12) we deduce that

{pls{ql}

: , provided that y does (4.4)
{ply/x]1}s8ly/xHqly/x]} not occur free in

PS5 or q

is a sound proof rule. However, this rule does not
allow the deduction

{true} yl:=2; y2:=3 {yl=2 A y2=3}

{true} =z:=2; =z:=3 { z=2 A z=3}

since the proviso of (4.4) 1is violated after substi-
tution of z for either vyl or y2.

5. CONCLUSIONS

We have illustrated the connections between semantics
and the foundations of program proving by an analysis
of a few basic programming concepts and a fragment
of the associated proof theory. We are convinced that
the development of firm foundations for program

proving has to rely heavily on a thorough study of
the semantics of the concepts concerned, together
with a careful application of it in the justification
of the proof theory. There i1s currently a vigorous
activity in this area, and our paper has touched only
on a modest selection of the work in progress. For
example, we have omitted all treatment of the inves-
tigations dealing with concepts such as recursion,
nondeterministic and parallel programming, or (ab-
stract) data types. Fecursiton is well-understood both
as to 1ts semantics, where the so-called least fixed
point characterization is used (described for example
in [4]), and as to its proof theory, which centers
around an 1lnduction rule due to Scott. [28] (It may
be of some interest to mention here that the dis-
covery of this rule formed part of the motivation for
Scott's recent Turing award,) Certain doubts shed on
the validity of the least fixed polnt apprcocach 1in the
presence of, for example the call-by-value parameter
mechanism, were clarified in our [7]. For parallel
programming, we have good hopes for the development
of appropriate semantics on the basis of the mathe-
matical constructions of Plotkin [25] and Smyth. [30]
We consider it an interesting challenge for future
work to justify the proof theory as proposed for ex-—
ample in Owickl & Gries [24) on the basis of these
semantics. As to the study of abstract data types, we
feel that it is as yet too early to single out any
definitive developments in this field.

By way of conclusioﬂ, let us recall the aims of a
mathematical theory of programming languages as
stated in the introduction, namely an improved in-
sight into the fundamental programming concepts, and
application of this in the methodology of program
design and verification. When we compare the present
situation with that of say ten years ago (cf. [3]),
we may well be proud of the achievements in semantics
during this period. Though still in a state of in-
tense development, there are now some major results
and techniques 1n semantics which are here to stay,
allowing the programmer a better understanding of
his most precious tool,

APPENDIX

In this appendix we give the semantics of the while
statement, and present a new type of assertion which
provides an alternative to the while b do § od;p con-
struct. |

Let us assume the usual partial ordering on the ele-

ments ¢,¢' in I ;g;§ L (b =« ¢' 1f, for all g, either

d(g) is undefined, or ¢${v) and ¢' (o) are both defined
and yield the same value). Let, for a chain

¢0,5 ¢] C ... C ¢i C vavy U 0 ¢i denote 1ts least

upper bound. We put

1=

M(while b do § od) = ,

rﬂ-
B 8

0 %

1

where, for each g,

¢0(U) = undefined

(3, (M(5)(0)), if T(b)(0) = T
¢i+1(g) = 4

o , if T(b) (o) = F.

Furthermore, let us extend the definition of the
class of assertions with the clause

p:i= ... | rep b;S per p

for which we define the function T in the following
manner: For each y,y' ¢ £ + {T,F}, we put vy ¢ y' if,
for each o, y{(o) = v'(g). Again, U?= y; denotes the
lub of the chain Yo €Y £ o0 & Yi-g vie o We now
put
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T(rep b3S per p) =.U, v,
where, for each o,
Yolo) =T
[(v;(M(8)(a)), if T(B) (o) = T
Ti+1(0) = ,
LT (p) (o) , if T(b)(s) = F.

On the basis of these definitions we can then show
the validity of assertions such as

while b do 5 od;p = rep b;S per p (A.1)
rep b3S per p = if b then S;rep b;S per p (A.2)
else p i :
and the soundness of a'deduction such as
q = if b then S;q else p fi
— (A.3)

rep b;S per p 2 q

(Observe that (A.1 = A,3) together yield a least-
fixed-point characterization of while b do S od;p.

Cf. De Bakker & De Roever, [10] p. 187.)
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