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STABILITY RESULTS FOR DISCRETE VOLTERRA EQUATIONS: 

NUMERICAL EXPERIMENTS 

P.J. van der Houwen and J.G. Blom 

Centre for Mathematics and Computer Science, Department of Numerical 
Mathematics, Amsterdam, the Netherlands. 

In this paper we formulate a local stability criterion for linear 

multistep discretizations of first- and second-kind Volterra integral equations 

with finitely decomposable kernel. In a large number of numerical experiments 
this criterion is tested. We did not find examples which behaved unstable 

while the stability criterion predicted stability. However, we found several 

examples which behaved stable while the stability criterion predicted in

stability. A possible explanation may be the fact that the stability criterion 
is independent of the decomposition of the kernel, that is, it holds for the 

most ill-conditioned decomposition and consequently it may be rather pessi
mistic. 

I. Introduction 

We consider Volterra equations of the form 

t 

By(t) = g0 (t) + J k(t,s,y(s))ds, t E I := [O,T] 

0 

where 8 is either 0 (first-kind equations) or 1 (second-kind equations). 

(I . l) 



167 

It is wel 1 known that applying direct quadrature methods to the fz'.1•st

kind equation may give unsatisfactory results (cf.LINZ [5,p.67]). An often 

applied remedy (cf. [l,p.898] and also [5]) consists of differentiating equa

tion (I. I) to obtain the (implicit) second-kind equation (assuming that g' and 

k exist) 
t 

t 

0 k(t,t,y(t)) + g0(t) + J kt(t,s,y(s))ds. (I. 2) 

0 

If the derivatives occurring in (1.2) cannot be evaluated analytically, g0 and 

kt may be replaced by a difference approximation [SJ. 

When we apply direct quadrature methods to the SH,ond-kin>.i equation 

(8=1 in (I.I)), we again may obtain poor results, particularly when ak/ay is 

large. As in the case of first-kind equations, let us differentiate the equa

tion to obtain the integro-differential equation 

By'(t) = k(t,t,y(t)) + Ft(t,t), e 

where we have introduced the so-called lag te"!'m 

s 

F ( t, s) : = g0 ( t) + J k ( t, x, y ( x) ) dx. 

0 

Again, the derivative F may be approximated by finite differences. 
t 

Let Fn(t) denote the numerical lag term approximating F(t,tn): 

(I. 3a) 

(I. 3b) 

(I. 4) 

where K is sufficiently large to obtain the required order of accuracy. Let 

{a.,b.}.~define a linear multistep method {p,o} for ODEs and let r(O define 
l l l'-v 

a K-step difference formula, i.e. 

K l K-i-q 
i=O di ~ ' q ? 0, (I. 5) 

where E is the forward shift operator; here, q is an integer which we should 

choose 0 (foT'UJaPd differences) if the kernel is only defined for s $ t, and 

which may be chosen such that T(~) defines a symmetpic difference formula if 

the kernel is defined for all (t,s). In this paper we will use foY'WaPd 
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differences. Approximating F (t,t) in (1.3) by the K-step difference formula 
t 

and applying the linear multistep method, we obtain the formula 

8p(E)y = hcr(E)k(t ,t ,y) + cr(E)t(E)F (t ), n n n n n n 
n ~ K, (I. 5) 

where t(E) only affects the index n of the argument t in F (t ). 
n n n 

The method {(1.4),(I.6)} will be called an indireat linear muZtistep 

(ILM) method [3]. Let p be the order of the lag term approximation, let the 

starting values be sufficiently accurate, and let k and g0 be sufficiently 

smooth. Then it can be proved that the ILM method is of order min{p,K} if 

9 = 0 with cr(~) a Schur polynomial, and of order min{p,K,p} if 9 = I with 

{p,cr} being of order p. 

It is the purpose of this paper to test the stability of the ILM 

method. In the particular case where g0 (t) = constant and k is the linear aon

voZution kernel 

k(t,s,y) [~ + n(t-s)]y 

the equation (I.3) reduces to the stability test equation investigated by 

BRUNNER and LAMBERT [2] and MATTHIJS [7]: 

t 

y'(t) = ~y(t) + n J y(s)ds; 

0 

(I. 7) 

(1.3') 

for 8 = I the ILM method then falls into the class of linear multistep methods 

studied by these authors so that their stability results apply. It was shown 

by MATTHIJS that for {p,~}-reducible lag term approximations, the application 

of a linear multistep method {p,cr} to (1.3') is stable if the characteristic 

polynomial 

( 1.8) 

is a Schur polynomial. 

In Section 2 we show that an analogous characteristic equation is ob

tained in the case of finitely deaomposable kernels, by associating a system 

of ODEs to (1.6) and by using standard arguments common in ODE theory. In 

Section 3, a more refined stability criterion is formulated; this result 
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characterizes the local stahility behaviour> of the ILM method. Finally, in 

Section 4, a large number of experiments are presented in order to test the 

practical value of local stability criteria. 

2. Finitely decomposable kernels 

If the kernel k(t,s,y) 1s finitely decomposable, it can be written 
in the form 

m 
k(t,s,y) 2 

µ=] 
g (t)f (s,y) 

µ )J 

+ _,.. 
=· <g(t),f(s,y)>, ( 2. I) 

where g and fare vectors with components g and f, µ = l(l)m, and where we µ µ 
have introduced the inner product<,> in order to simplify the subsequent 

formulas. 

Furthermore, we will assume that the lag term formula is (~,;)-r•e
ducible, that is the quadrature rule used is assumed to correspond to a linear 
multistep formula {p,cr} for ODEs. The weights of such rules satisfy the rela

tions [7,9] 

K if 0,1, .. ,n-K-I 
a. w .. 

l n-1, J (2.2) I 
i=O if n-K, .. ,n 

where {~.,b.} define {p,o} and where w . 
i l n,J 

0 for j > max{n,;-1). 

Theorem 2. I. Let k be finitely decomposable and let the lag term 

formula be (p,o)-reducible with p(l) = 0 and K = K. Then the ILM method is 

algebraically equivalent with the recurrence relations 

P (E);: 
n 

8p(E)yn 

ha(E) f(t ,y ) , 
n n 

n z 0, 

ho(E)k(t ,t ,y ) + o(E)T(E)g0 Ctn) 
n n n 

n ~ K, 

(2. 3a) 

( 2. 3b) 

where the starting values 0.' j 
J 

0, ... ,<-1 satisfy the starting condition 



F'.cr>, j 
J 
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0, ... ,K-J. (2.4) 

Proof. From the (p,o)-reducibility of the lag term formula it follows 

that 

p(E)F (t) 
n 

hcr(E)k(t,t ,y ), n 2 0. 
n n 

(2.5) 

Furthermore, it follows from (2.1) and (1.4) that 

F' c t l n 2 0, (2.6) 
n 

where 

u 
n 

n 
1· wn, o -+ ·= h L <- f(tf'y,f_). 

l=O 

From (2.5) and (2.6) it follows that 

<g(t) ,p(E)~ - h;(E)f(t ,y )> 
n n n 

0, n 2 0, 

from which (2.3a) is derived. 

Relation (2.3b) is obtained on substitution of (2.6) into the ILM 
formula (1.6). Finally, the starting conditions follow from (2.6). D 

2.1 Relation with ODEs 

For e = I, the recurrence relation (2.3) is recognized as a linear 
multistep discretization of the system of ODEs 

J~· ( t) 

l.y, c t l 

f ( t' y) 

I I -+ -+ k(t,t,y(t)) + h -r(E)go(t) + h <T(E)g(t),u(t)> 
( 2. 7) 

using different linear multistep methods {p,;} and {p,o} with integration 
step h. 

In SODERLIND [8], such linear multistep methods were called linear 
multistep compound (LMC) methods. The (linear) stability of LMC methods with 
respect to the test equation 
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;. ( t) + .... 
Jx, J constant matrix, x -+ T 

[u,y] (2 .8) 

is characterized by the roots of the characteristic equation 

det[P(i:;) - L(i,;)hJ] 0, (2.9) 

where 

0 

cr (t;) 

with Im denoting the mxm unit matrix. If (2.9) is a Schur polynomial then the 

LMC solution converges to 0 as tn + 00 • The system (2.7) suggests choosing for 

J the Jacobian matrix 

'ilf - - ) ay (t,y) 

ak - - -
ay c t, t, y) 

at some point (t,y). The eigenvalues of J are given by m-1 zero-eigenvalues 

and two eigenvalues satisfying the equation 

2 3k - - - -1 3k - - -
A - ay (t,t,y)A - h r(E) ay (t,t,y) 0, 

where T (E) only affects the first argument of 'ilk/'ily. It is now easily verified 

that (2.9) reduces to the equation 

p(t;)p(i:;) -h 'ilk (t,t,y)o(i,;)p(t;) - hr(E) 'ilk (t,t,y)o(t;);;(i:;) ay ay 0. (2. 10) 

Notice the resemblance with the characteristic polynomial (1.8). 

The equation (2.10) is independent of the decomposition of the kernel. 

* For instance, if k(t,s,y) is of the convolution type K (t-s)y, then the kernel 
* -I * * enters into (2. 10) only by the values of K (O) and h r(E)K (0) "'=' Kt(O). 

Hence, when a stability criterion is based on (2.10), we use only a very 

limited amount of information on the kernel. In the following section we will 
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derive a stability criterion that takes into account more information on the 

kernel. Moreover, the first-kind case (8=0) is included at the same time. 

3. A local stability criterion 

Let k(t,s,y) be of the linear form K(t,s)y with K(t,s) of separable 

form: K(t,s) = <g(t),f(s)>. Then we can write the recurrence relation (2.3) in 

the form 

where 

* K 

l. 
i=O 

B. (n) ~ . 
l n-i 

* K 

~ := [o(E)T(E)go(t ),OJT, 
n n-K 

B. (n) 
J_ 

:= (
ea.-b.hK(t .,t .) 

i l n-1 n-i 

-b. hf ( t . ) a.I 
1 m 1 n-1 

)· 
with the convention that a. = b. 0 for i > K and a. b. 0 for i > K. 

l 1 1 l 

( 3. I) 

In analogy to the linear stability analysis used in ODEs we will call 

the recurrence relation (3.1) ZocaZZy stable at t- if the recurrence relation 
n 

* K 

l 
i=O 

B.(n)~ . = 0, 
1 n-1 

n fixed 

is stable, that ls if its solutions converge. This leads to the condition 

* 
det[i~O Bi (n)~n-i] is a Schur poZynomiaZ. 

(3.2) 

(3.3) 

Analogous to the stability analysis in [4] the following theorem can 
be proved: 

Theorem 3.1. The recurrence relation (3.1) is locally stable at 

tn if the polynomial 



K 

8p(l;)p(1;) - hp(?;) I 
i=O 

is a Schur polynomial. D 
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K-i b.K(t_. ,t_ .)?; 
l. n-1 n-i. (3.4) 

In the actual application of this theorem one may consider the ap

proximation 

l K 
-h L doK(t-+ . 0 ,t- ,) FI:! K (t_ .,t_ .) 

.l=O -<- n K-1--<- n-J t n-1 n-J (3.5) 

which slightly simplifies the polynomial (3.4). 

In the particular case of convolution kernels where K(t,s) 

the polynomial (3.4) reduces to 

K*(t-s), 

- * - 2 6p(?;)p(?;) - hK (O)p(?;)o(?;)-h 
K K 

l. I (3.6) 
i=O j=O 

where we have used (3.5). Notice that (3.6) does not depend on n. 

We observe that the particular decomposition (2.1) of the kernel 

does not occur in (3.4). Thus, formally we can apply (3.4) to non-decomposable 

kernels as well, provided that K(t,s) is also defined for t < s. 

If O(h 3) terms in (3.6) are neglected, the characteristic polynomial 

reduces to 

(3.6') 

For 6 = l this polynomial is equivalent to (1.8); fore= 0 we obtain a poly

nomial of the form p(?;)+h(K*/K*)(O)o(?;), indicating that first-kind equations 
t 

require that -hK*/K* should lie in the stability region of the LM method 
t 

{p,o} (we recall that first-kind equations also require that a is a Schur 

polynomial, otherwise we have no convergence). 

Finally, it should be remarked that the considerations above refer 
-+ 

to the stability of the sequence of vectors {v }, whereas in actual computa
n 

tion we are only concerned with stability of the first components {yn} of 

f~ }. Consequently, these considerations might be conservative in practice. 
n 
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4. Numerical experiments 

In order to test the local stability result of the preceding Section 

we have integrated a large number of Volterra equations of convolution type. 

In each experiment we have computed: (i) the number of correct significant 

digits obtained at the end point T, i.e. the value of 

yN-y (T) 
sd := - logJ y(T) I , N := T/h, 

unless otherwise stated (ii) the value of smax = m~xlsj I, where sj are the 

zeros of the polynomial (3.4). smax serves as a pr~dictor of stability or 

instability. 

In the tables of results we use the notation AM -BD indicating that 
p q 

the lag term is based on a p-th order Adams-Moulton formula and the ILM for-

mula is based on a q-th order Backward Differentiation formula. 

In all experiments the starting values were derived from the exact 

solution. 

From our experiments we draw the following conclusions 

(i) The solutions of all second-kind equations behaved stably if [, '.". I. max 
(ii) The solutions of all first-kind equations behaved stably if ~max '.". I and 

if IK*(o) I is not small. 

(iii) ~max > I does not necessarily imply instability this may be explained 

~y observing that ~ > I indicates an unstable behaviour of {~ }, and max n 
not necessarily of {yn}. 

(iv) The ILM method yields poor results for first-kind equations with 

jK*(O) I small. 
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Table I. 8 = I: Results for second-kind equations obtained at T = 20 

Problem h :AM4-AM5 IAM4-BD4 BD4-AM5 IBD4-BD4 
I sd i'.;max sd ~ax sd smax sd ~max 

~ t 
2 -t 

I. o I I. g() e I I I 0 I 2. 3 1 .0 12 .3 1.02 3.4 2.9 I .0 

k ~(t-s) 2 exp(-(t-s))y 1 /20 3.3 1. 0 3.5 I. 01 5.7 4.0 1 .0 i.o I 
y J_ I 1-e - 3 / 2 t(cosnl3t)+/3 sinnl3t)] 

l 
2. g() ="2-2/(t+2) 1I10 1 3. 4 1.0413.4 I. 05 S.3 .98 

I 
5.4 I.OS 

k -2/(t-s+2) 2 .y 1 /20 4.5 1 .02 4 .S I.02 6.3 .99 6.3 1.03 

y 

3. go l+t-cos(t) 1I10 \ 3. 8 1.0013.8 I. 0 I 4.9 0.991 4.9 1.00 

k -cns(t-s)y 1 /20 5.0 1. 00 5 .o 1.00 6.5 1.00 6.S 1.00 

y = t 

4. t\) 2 t + 'l 1II0 13 .o .91 ,2.9 .90 2.8 .90 I 3.0 .91 

k (-2(t-s)-l)y I /20 2.8 .9S 3.9 .9S 2.7 .9S 3.3 .95 

4e 
-2t -t 

y -e 

5. " 1 - \ 12 c-rf(t1 I I I() l-.8 1 .111-· 7 1.09 -. 7 1. 12\ - .6 I. 11 
h() 

2 
k c•xp(-(t-s) )y I /20 1. 0 I .05 -I .0 I. 05 - .. 9 I .OS - . 9 1.05 

y 
") 

I 
6. go ~y( 1-t-) In( l+t) I I I() [ 4. 7 I. I I I 4.7 1.00 5. 9 I .561 S. 9 J.00 

•) 

+ {y t - I I 20 5. 7 1 .03 5. 7 1.00 7.0 I. 28 7 .0 J.00 

-()y+l)t+I 

k -y ln(l+t-s)y I I 1 () 1-48 2.951-3.7 1.1215.8 S.9S1-l.3 I • I 2 

v 1-t I /20 -23 I .86 -17 I. 16 -11 3.98 -19 I. 18 

y IU, IOUO 

7. :1 L+J-si n ( L )-kos ( L) 1/10 14. 7 .901 4.7 .90 I 4.8 . 9014 .8 .90 

k (-2(t-s)-'l)y I /20 s. 9 .9S 5. 9 .9S 5. 9 .95 6.0 .95 

v ,; in ( l) 

8. ~\) 
1/10 I 2. 2 I .051 2.2 1.0~ 4 .0 1.0S\ 4.0 1.05 

k 
-2 ( t-s) 

I I 20 3.3 I .CJ3 3.3 1.0 4.9 I .03 5 .0 l.O 3 
(• y 

2-v 
-t 

y 

9. go I I 10 
\ 3 I .901 

3.1 .901 
2.9 . 901 2. 9 • 90 

k -2v 
I-;; 1/20 4.3 • 95 4.4 .95 4. I • 95 4. I . 95 

y 

- I +2(• 
-- t 

y 
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Table I. (continued) e I: Results obtained at T= 20 

Problem h /Af.14 -AM5 lAM4-BD4 BD4-AM5 I BD4-BD4 

sd smax sd i',;max sd i:;max sd i',;rnax 

JO. g0 = cos (t) 1/10 12 .0 1.00 I l.6 
l.00 I .3 I.00 11 • 2 I .00 

k = -(t-s)cos(t-s).y 1/20 3.5 l.00 2.8 I.00 2.4 l.00 2.3 I.00 
2 

y = 3 cos(/3t)+l/3 

11. go = t 1/10 ,3.5 I .11 13.S l. I I 2.8 I. 11 12. 8 I. I I 

k = sin(t-s) .y 1/20 4.5 I .OS 4.S I.05 4.0 1.05 4.0 I .OS 
2 

y = t ( I +t /6) 

12. g0 = e t_2 sin(t) 1/10 12 .6 1.22, 2.3 I. 22 2.0 I. 23 11. 9 I .22 

k = 2 cos(t-s).y 1/20 3.8 I. I! 3 .5 l. I 0 3.2 I. I I 3. I 1.11 
t ? 

y=e(l+t-) 

13. g0 = sinht I I 10 i 3 .6 1 .00 , 3. 7 .99 3.6 1.00 13. 7 I .00 

k = -cosh(t-s).y I /20 4.8 1.00 4 .9 1.00 4.9 1.00 5.0 I .00 
/ -lt I y = 2 sinh( 5t/2)e 2 / 5 

14. 
' -t2 

1/10 g = l+h(l-e ) 
12.2 1.00 12.2 1.00 4.8 1.00 14. 4 1.00 0 

k = -y ( t-s) • 1/20 3.7 1.00 3. 7 1.00 5. I 1.00 S. I 1.00 
2 .exp(-(t-s) ) .y 

y I I 10 1-53 I .961 -8 1.14 -6 I. JO ) -6 1. 12 

y 10, 1000, 1900 1/20 -30 1.22 -22 I. 16 -18 l. 14 -2S I. 18 

3000, 7500, 12000 

14000 1/10 I -64 2. 221- .6 I.OS 2.8 .99 I .5 
1.03 

I /20 -73 1.57 -24 I. 18 -20 I. 15 -24 I. I 8 

1/10 1-69 2. 351 2.2 .98 -48 1.67 4.3 .95 

I /20 -98 !. 82 -21 l. 16 -16 1. 12 -20 !. I 5 

1/10 l-74 2.521 -49 1.80 -75 2.38 4.3 .79 

1/20 132 2.21 -5 1.05 s.o .96 -I 1.03 

1/101-76 2 .5 71 -57 1. 98 I -80 2.S5 4.3 .72 

1/20 -143 2.3S 3.6 . 9 7 -JOO I. 79 5. I .9S 

I/ 101-77 2.581 -59 2.031-82 2.60 4.3 .70 
1/20 -145 2.39 -34 1.21 -114 I .95 5. I . 92 
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Table I. (continued) 8 I: Results obtained at T = 20 

Problem h I Af.14-AMS I AM4-BD4 BD4-Af.15 I BD4-BD4 
sd i;max sd ;:;max sd sm,qx sd Grnax 

3/2 
15. go l-2E /3+t 1I10 \ 2. 7 .99 2.7 .95 7.0 I. 231 7 .0 .96 

3/2 
+2(t+E) /3 1 /20 3.0 .99 3.0 .97 7.5 I. 13 , 7.5 .97 

k -( I+/t-s+~)y 

y 1 I I 10 12 .4 1.0 I 2.4 .95 7.0 I. 291 7.0 .95 

E 10-2 • 10-6 1/20 2.5 l.00 2.5 .97 7.4 1.18 7.5 .98 

Table II. 8 0: Results for first-kind equations obtained at T 20 

Problem h AM4-BD4 BD4-Bo4 
sd l:max sd Smax 

16. acos(t)-sin(t)-ae at I I I 0 4.2 l.O I 3.9 1.00 go 
2 

a=! 
k = (a +!)cos (t-s) .y 1/20 5.5 1.00 5 .1 l.00 

at y = e 

a=-l * 1/10 3.5 1.0 I 2.9 1.00 

1/20 4.6 I.00 4.0 l.00 

17. go -sinh(at) * a=! 
I I 10 3.6 .90 3.8 .90 

k a exp(a(t-s)) .y 1/20 3.5 .95 2.5 .95 
-at 

y e 

a=-1 
I I I 0 5.4 I. I 0 3.7 I. I I 

1/20 7.2 I.OS 4.8 l.05 

18. 1-t-e 
-t I /10 3.3 .90 3.5 .90 go 

k ( l+t-s)y 1/20 3.4 • 95 3.2 .95 
-t 

y te 

19. go -a(l-cos(t))+!tsin(t)a=.9 I I 10 -21 1.05 -22 1.00 

k [a-cos (t-s) ]y 1/20 -20 1.0 I -21 I.00 

y sin(t) 

1 /10 4.2 .95 3.3 1.00 
a=!. 1 

1/20 s.s .99 4.9 1.00 
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20. I +at-cos ( t) 1I10 -.2 .40 1-.2 .63 go a=-. I 
k la-sin(t-s) ]y 1/20 -.2 .61 -.2 .61 

y 
a=-.O 11/ 10 -46 I. 73 

I 
.5 .so 

1 /20 -50 I. 34 .5 .5 7 

* In these cases, sd corresponds to absolute error 
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