
DECIDABILITY OF BISIMULATION EQUIVALENCE

FOR PROCESSES GENERATING CONTEXT-FREE LANGUAGES

J.C.M. Baeten
Computer Science Department, University of Amsterdam

J.A. Bergstra *
Computer Science Department, University of Amsterdam;
Department of Philosophy, State University of Utrecht

J,W. Klop *
Centre for Mathematics and Computer Science, Amsterdam

(*): Authors partially supported by ESPRIT project 432, Meteor.

Abst rac t . A context-free grammar (CFG) in Greibach Normal Form coincides, in another notation, with a
system of guarded recursion equations in Basic Process Algebra. Hence to each CFG a process can be
assigned as solution, which has as its set of finite traces the context-free language (CFL) determined by that
CFG. While the equality problem for CFL's is unsolvable, the equality problem for the processes
determined by CFG's turns out to be solvable. Here equality on processes is given by a model of process
graphs modulo bisimulation equivalence. The proof is given by displaying a periodic structure of the
process graphs determined by CFG's. As a corollary of the periodicity a short proof of the solvability of the
equivalence problem for simple context-free languages is given.

I n t r o d u c t i o n

The origin of the study of process semantics can be situated in the field of automata theory and
formal languages. Typically, the abstract view that is taken in this field leaves from a process only
its set of execution traces, the language determined by the process behaviour associated to some
abstract machine.While this abstraction from all but the execution traces is the right one for a vast
area of applications, Milner [Mi 1] observed in his seminal book that it precludes one from
modeling in a satisfactory way certain features, such as deadlock behaviour, which arise when
communication between abstract machines is considered. The same observation was made by
Hoare, who initially provided his CSP with a trace semantics [Ho] but later preferred a less
abstracting semantics - the so-called failure semantics [BHR]. In recent years much work has been
done and is going on to study such process semantics which do not go all the way to the abstraction
to trace sets or languages.

However, much less work has been done to explore the relationships between the 'classical'
and well-established theory of automata and formal languages and the more recent views on
processes. As one example of such an exploration we mention [BBKM], where the trace semantics
is called linear time semantics (LT) and the less abstract process semantics is called branching time
semantics (BT), For more work in the same direction, see [BMOZ] and [Me].

The present paper also addresses a question which arises from the comparison of LT and
BT. The problem is as follows. As is well-known, the equality problem for context-free languages
is unsolvable, meaning that it is undecidable whether two context free grammars have the same
(finite) trace semantics. With the availability of more discriminating process semantics, such as
Milner's bisimulation semantics or Hoare's failure semantics, it is natural to ask whether the
equality problem for context-free grammars is also unsolvable in such a finer semantics. In this
paper we only took at bisimulation semantics (the analogous question for failure semantics is very
intriguing however, and to us wide open). For the question to make sense, we have to transpose
the concept of a context-fi, ee grammar to the setting of 'process algebra' as we collectively call the
algebraic approaches to process semantics which are exemplified by the work of Milner [Mi 1,2]
and of Hoare [BHR]. This transposition is rather obvious: every context-free grammar can be
converted (while retaining the same trace semantics) to a context-free grammar in Greibach Normal
Form. And such a grammar in GNF is just another notation for what is known in process algebra

95

as a process specification by means of a system of guarded recursion equations. (An alternative
notation for a system of recursion equations can be obtained in 'bt-calculus', see [Mi 2] or [Me],)

So the question that we consider is:

Is the equality problem for context-free grammars in Greibach Normal Form, or, what is the same,
for process specifications by means of systems of guarded recursion equations in the signature of
Basic Process Algebra, solvable when 'equality' refers to bisimulation equivalence?

Here the word 'basic' in Basic Process Algebra (or BPA) indicates that only process operators +
and • are present and no parallel or other operators. (Roughly, these operators can be compared
with 'union' and 'concatenation', respectively, in trace semantics.)

Remarkably, the answer is affirmative, if we adopt the natural restriction to grammars
without useless symbols and useless productions. In hindsight this is not too surprising, since
processes under bisimulation semantics contain much more information than their abstractions, the
corresponding finite trace sets (the context-free languages). The proof of the decidability is based
upon the fact that the processes (under bisimulation semantics) which yield the context-free
languages as their trace sets, display a very periodical structure which can be made explicit in the
corresponding process graphs or transition diagrams. In Sections 7,8, we indicate how the method
of this paper may be profitable when considering certain problems in the theory of formal
languages: using the periodicity of the process graphs and the concept of bisimulation equivalence
may help in obtaining decidability for the equivalence problem of subclasses of deterministic
context-free languages.

The proof below employs in an essential way the supposition that the context-free grammar
has no useless symbols and productions, useless as regards generating the context-free language.
A more general question however would be the one without this assumption, that is the question:
Is bisimulation equivalence decidable for all guarded recursive process specifications in BPA? This
question is specific for process algebra and 'too general' to be of interest for the theory of formal
languages when only sets of finite traces are considered, but would be of interest when also
infinitary trace languages are considered.

Some of the easier proofs are omitted here; they can be found in the full version [BBK 2].

1. C o n t e x t - f r e e languages

For definitions and terminology concerning context-free grammars (CFG's) and context-free
languages (CFL's) we refer to [HU]. In this preliminary section we recall some basic facts that will
be used in the sequel. The following example fixes some notation:

1.1. EXAMPLE.0) (This is Example 4.3 in [HU].)
{S -~ aB, S -~ bA, A -~ a, A -~ aS, A -¢ bAA, B -+ b, B -~ bS, B --~ aBB} is the CFG with
variables S,A,B, terminals a,b and start symbol S. The corresponding CFL consists of all words
w ~ {a,b}* containing an equal non-zero number of a's and b's, as will be apparent from an
inspection of the process graph determined by this CFG, in the sequel (Example 5.2.4).
(ii) Henceforth we will write CFG's using the bar notation, in which the CFG of (i) looks like

S - + a B IbA
A - + a l aS IbAA
B --~ b [bS I aBB.

We will suppose that none of our CFL's contains the empty word ~; hence we may suppose
that no CFG contains an e-production, i.e. a production of the form A -+ e. (As is well-known,
this does not essentially restrict generality; cf. Theorem 4.3 in [HU].) A property of CFG's which
is often used in the sequel is given by the following definition.

1.2. DEFINITION. (i) A CFG in which every production is of the form A --~ a co, where A is a
variable, 'a' is a terminal, c~ is a possibly empty string of variables, is said to be in Greibach
Normal Form (GNF).
(ii) If moreover the length of a (in symbo!s) does not exceed 2, we will say that the CFG is in
restricted GNF. (In [Ha] the format of restricted GNF is called "2-standard form".) E.g. the CFG
in Example 1.1 is in restricted GNF.

96

It is well-known that every CFL (without e) can be generated by a CFG in GNF. We even
have:

1.3. THEOREM. Every CFL without e can be generated by a CFG in restricted GNF. D

2. B a s i c P r o c e s s A l g e b r a .

The axiom system Basic Process Algebra or BPA consists of the following axioms:

Basic Process Algebra Table 1

x + y = y + x A1
(x +y) + z = x + (y + z) A2
x + x = x A3
(x + y)'z = x'z + y'z A4
(x'y)'z = x'(y'z) A5

This axiom system is the core of a variety of more extensive process axiomatisations, including for
instance axioms for parallel operators on processes as in ACP, Algebra of Communicating
Processes (see [BK 1-3], [BBK 1], [BKO]). In this paper we will exclusively work in the setting
of BPA. The signature of BPA consists of a set A = {a,b,c } of constants, called atomic
actions, and the operators +, alternative composition, and ", sequential composition. (The atomic
actions will correspond with the terminal symbols from a CFG.) So, for instance, a'(b + c)'d
denotes the process whose first action is 'a' followed by a choice between b and c and concluding
with action d. Often the dot" will be suppressed. In fact, the previous process expression denotes
the same process as a(cd + bd), according to the axioms A1 and A4 of BPA. Note, however, that
BPA does not enable us to prove that a(cd + bd) = acd + abd. By a process we mean an element
of some algebra satisfying the axioms of BPA; the x,y,z in Table 1 vary over processes. Such an
algebra is a process algebra (for BPA), e.g. the initial algebra of BPA is one.

In this paper we will be concerned with one process algebra only, namely the graph model of
BPA consisting of finitely branching process graphs modulo bisimulation. All these concepts are
treated in extenso in [BK 2, BBK 1]; for the sake of completeness of the present paper we will give
a short exposition. Figure 1 (next page) contains two process graphs, g and h. Process graphs have
a root node (indicated by the small arrow ~) and have edges labelled with elements a,b,c from
the action alphabet A. The two process graphs g,h displayed in Figure 1 are in fact bisimilar, that
is: there exists a bisimulation between them. A bisimulation (from g to h) is a binary relation R with
the set of nodes of g, NODES(g), as domain and NODES(h) as codomain, such that the roots of
g,h are related and satisfying:

(i) if sRt and s ---~a s is an edge in g, then there is an edge t _ t in h such that s'Rt';
T • • , ~ 1 i (ii) if sRt and t--->a t is an edge m h, then there is an edges --->a s in g such that s'Rt'.

Indeed, a bisimulation between g,h in Figure 1 is obtained by relating the nodes which can
be joined by a horizontal line. (Incidentally, this bisimulation is unique.) We indicate the fact that
g,h are bisimilar thus: g -~ h. The notion of a bisimulation is originally due to Park [Pa].

Let G = { g,h,... } be the set of all finitely branching process graphs ('finitely branching'
means that a node has only finitely many outgoing edges). Operations + and- are defined on 13 as
follows:

- if gl,g e 13. then the product gl-g results from appending (a copy of) ga at each terminal node
(i.e. no~2e without successors; thls2has nothing to do with the termmaIs m a CFG) of gl, by
identifying the root of g2 with that terminal node;

- the sum g + g2 is the result of unwinding gl,g2 to gl ' resp. g2' in order to make the roots
• . 1 acychc (1.e. not lying on a cycle of steps) and, next, ider~tifying the roots. (For a more detailed

definition see [BK 2, BBK 1].)

97

Now it turns out that bisimilarity --- is not only an equivalence on O, but even a congruence
w.r.t, the operations just defined; and furthermore we have O / ~ ~ BPA, that is, the quotient
structure G / ~ is a process algebra for BPA. We will refer to G / "- as G, the graph model of
BPA.

Each process graph g ~ O determines a set tr(g) of completed traces, starting at the root and
continued as far as possible, that is: either terminating in an end node, or infinite. We will
henceforth drop the word 'completed'. For instance, g as in Figure t has finite traces: a, bca,

g: q~h h: a

c c

Figure 1 (a) (b)

bcbdaca, and also infinite traces such as bdbdbd We will refer to the set offinite traces of g as
ftr(g). Now one can prove:

2.1. PROPOSITION. Let g,h e G be bisimilar. Then tr(g) = tr(h), and hence ftr(g) = ftr(h). C3

A proof will not be given here; see e.g. [BB, BBK 1]. The proposition entails that we can assign
also to an element p of ~3 (a 'process') a trace set tr(p) and a finite trace set ftr(p).

For use in the sequel, we need the following notion: if s is a node of process graph g ~ G,
then (g)~ is the subgraph of g determined by s, that is the process graph with root s and having all
nodes of g which are accessible from s. The edges of (g)s are inherited from g.

3. Recursive definitions

The model G of section 2 has the pleasant property that every system of guarded recursion
equations has a unique solution in it. We will explain the syntax of such definitions (also called
specifications) in this section, and also point out the relation with CFG's.

3.1. DEFINITION. (i) A system ofrecursion equations (over BPA) is a pair (Xc~, E) where X 0 is
a recursion variable and E is a finite set of recursion equations {X i = si(X0,...-Xn) F i = 0 n}.
We indicate the tuple X0,...,X n by X. The si(X) are process expressions in the signature of BPA,
possibly containing occurrences of the recursion variables in X. The variable X 0 is the root
variable. Usually we will omit mentioning the root variable when presenting a system of recursion
equations, with the understanding that it is the first variable in the actual presentation.

(ii) Suppose that the right hand side of a recursion equation X i = si(X) is in normal form w.r.t.
applications from left to right of axiom A4 in Table 1, i.e. (x + y)z = xz + yz. Such a recursion
equation X.1 = s:(X), is guarded if every occurrence of X i (j = 1 n) in si(X) is preceded
('guarded') by an atom from the action alphabet; more precisely, every occurrence of Xj is in a
subexpression of the form a's' for some atom 'a' and expression s'. For instance,
equation X0 = .aX 1 Xo + X=2 "b'Xc(~21is+ not X)'b'Xv)guardedis ' guarded.as the first occurrence of X 2 is un guarded', but the recursion

If the-right hand si~e of"Xt = si(X) is not in normal form w.r.t, axiom A4, the recursion
equation is said to be guarded if it is so after bringing the right hand side into A4-normal form.

A system of guarded recursion equations is also called a guarded system.

98

(iii) An expression without visible brackets is one in which all +-operators precede, in the term
formation, the "-operators. E.g. aX 1 + X2.b.X 2 is without visible brackets, but
c(aX 1 + X2-b-X2) is not. A recursion equation is without visible brackets if its RHS is. Note that it
is nofposs~le t6 prove each expression in BPA equal to one without visible brackets.

(iv) If a system E of recursion equations is guarded and without visible brackets, each recursion
equation is of the form X: = Z,. a,.'c~,, where et,. is a possibly empty product of atoms and variables
(in case it is empty, ak-O~ k is ju" ~St~k).~Now if, ~noreover, c~ k is exclusively a product of variables,
E is said to be in Greibadh Normdl Form (GNF), analogous to the same definition for CFG's. If
each ~k in E has length not exceeding 2, E is in restricted GNF.

A well-known fact, for whose proof we refer to [BK 2, BBK 1], is:

3.2. PROPOSITION. A guarded system of recursion equations has a unique solution in ~. D

3.3. PROPOSITION. Each guarded system E of recursion equations over BPA can, without
altering the solution in G, be converted to a system E' in restricted GNF. 0

The proof is routine and omitted here.

3.4. EXAMPLE.(i) Let E be the guarded system consisting of the singie equation
X = a(X + b)XX. Then a conversion to GNF may yield {X = aYXX, Y = b + aYXX}.
(ii) Let E be the system in GNF {X = a + bXYX, Y = b + cYXY}. Then a conversion to restricted
GNF may yield
{ X = a + bUX, U = XY = aY + bUXY = aY + bUU, Y = b + cVY, V = YX = bX + cVV }.

Henceforth all our systems of recursion equations will be in restricted GNF. The reason to
prefer the GNF format of systems of recursion equations or CFG's is that it implies in process
algebra a well-understood theory of finding solutions. In principle it would also be possible to
consider CFG's in say Chomsky Normal Form or even general CFG's; then the corresponding
systems of recursion equations would in general be unguarded. Now, although such systems have
always a solution in ~3, these solutions are in general not unique for unguarded systems.
Nevertheless one can associate to a system of recursion equations, possibly unguarded, a certain
solution which has again the 'intended' CFL as finite trace set; but this is much less straightforward
than for the guarded case.

3.5. NOTATION. If E is a system of recursion equations, E t will denote the CFG obtained by
replacing %' by q', and '=' by '---K The start symbol of E t is the root variable of E.

3.6. THEOREM. Let E be in restricted GNF, with solution p ~ G. Then ftr(p) is just the CFL
generated by E t. D

4. N o r m e d p rocesses

We will now describe a simplification algorithm to be applied to a system E of recursion equations
in restricted GNF, yielding a system E' which does in general not have the same solution in the
graph model {3, but which has the same finite trace set, i.e. determines the same CP~L. The idea is
to remove parts of E that do not contribute to the generation of the finite traces; cf. the similar
procedure in [HU] to remove superfluous variables and productions from a CFG. The algorithm is
essentially the same as the one in [HU], but the presentation below, using an underlining
procedure, is more in line with our process algebra point of view.

4.1. DEFINITION. (i) A process graph g in G is perpetual if g has no finite (completed) traces. A
process p in ~ is perpetual if p is represented by a perpetual process graph.

(ii) The norm of a process graph g, written Igl, is the least number of steps it takes from the root to
reach a termination node, if g is not perpetual. (So Igl is the minimum length of a completed finite
trace of g.) If g is perpetual, g has no norm.

99

(iii) The norm of a node s in process graph g, written lsl, is the norm of the subgraph determined by
s (if this subgraph is not perpetual).

(iv) The norm of a process p is the norm of a representing process graph. A perpetual process has
no norm. (It is an easy exercise to prove that bisimulations respect norms; hence the norm of a
process is well-defined.)

(v) A process is normed if every subprocess has a norm.

4.2. PROPOSITION. Every CFL is the finite trace set of a normed process p, recursively defined
by means of a guarded system of recursion equations in restricted GNF.

PROOF. Let E be a system of equations as in the proposition defining p. We will underline in an
iterative procedure certain subexpressions in E, with the interpretation that an underlined
subexpression stands for a non-perpetual process. The procedure is as follows:
(1) Underline all atoms in E.
(2) Extend underlinings s + t or s + t, where s + t is a subexpression in E, to _s + t resp. s + t.

(3) If the RHS of a recursion equation in E is totally underlined, as in X i = s_s.(.X), then the LHS is
underlined: X i = sO[)
(4) If a variabre X i is underlined, then every occurrence of X i in E is underlined.
(5) Extend underhnings s.t to s.t .

(6) Iterate these steps until no further underlining is generated.
(7) Erase all summands which are not totally underlined, and all equations whose left hand side
consists of a variable which is not underlined.

Example : The system E = {X = aY + bXZ + cXX, Y = d + eYY, Z = aZ + bYZ} gets the
underlining { X = a Y + b X Z + c X X , Y = d + e YY, Z = a Z + b Y Z}.

Hence the bold-face parts of E are discarded, yielding the system {x = aY + cXX, Y = d + eYY}.
The remainder of the proof, to show that the resulting system indeed defines a normed

process, is left to the reader, rl

4.3. DEFINITION. Let E be a system of recursion equations which is invariant .under the
simplification procedure described in the proof of Proposition 4.2. Equivalently, E has a solution
which is normed. Then E is called normed.

We can now state the main problem of our paper. The bisimulation equivalence problem is
the problem to decide whether two systems of recursion equations determine the same process (in
(?).The question is now: Is the bisimulation equivalence problem for normed systems of recursion
equations solvable? In the remainder of this paper we show that this is indeed so, in remarkable
contrast with the well-known fact that the 'finite trace equivalence problem' for such normed
systems, or in other words, irredundant CFG's, is unsolvable. First we demonstrate in Section 5 a
periodicity phenomenon of processes which are normed and recursively definable in BPA, the
processes that can be said to be the underlying processes for the generation of CFL's.

5. P e r i o d i c i t y o f n o r m e d p r o c e s s e s

To each system E of recursion equations (henceforth always supposed to be normed and in
restricted GNF) we will assign a process graph g(E) which represents the process defined by E and
which displays the periodicity we are looking for. In order to describe g(E), we first define:

5.1. T h e u n i v e r s a l t r e e t(E). This is the tree having as nodes all the words w ~ X* =
{X- Xn}*, where X-, X are the variables used by E. The top node is the empty word, and • ' " ' .1 "". n wilt be called the termination node. The first level of t(E) is as in Figure 2(a); the other levels of
t(E) are inductively generated as follows: if w is a node of t(E), then its successors are as in Figure
2(b). It is important that the successors are Xiw rather than wX i.

100

Figure 2
(a) (b)

The tree t(E) will serve as the underlying node 'space' for the process graph g(E) determined
by E, which will be defined below in subsection 5.3. A node from this space, i.e. a word w ~ X*,
actually will denote the product of the (solutions for the) variables in w. E.g. if w = XYYXZ, then
w denotes the process X 'Y 'Y 'X 'Z where X is the solution for the variable X, etc.

5.1.1. DEFINITION. (i) Let w e X*. The translation T w is the mapping from X* t,o X* defined
by: T. (v) = vw, the concatenation of v followed by w. The inverse translation Tw-~is the partial
mappa"ng from X* to itself which removes the postfix w. A shift is an inverse translation followed
by a translation: TwTv -~. (So a shift replaces a postfix v by a postfix w.)

(ii) Let w ~ X*. The length of w, lth(w), is the number of symbols of w.

(iii) Let v,w e X*. The (genealogical) distance d(v,w) between v and w is the minimum number
of steps (edges) necessary to go from v to w in the tree t(E), where E has variables X.
Alternatively: let u be the maximal common postfix of v,w; let v = v'u and w = w'u; then d(v,w) =
lth(v') + lth(w'). E.g. d(XYXZXXYZ, ZYYXXYZ) = lth(XYXZ) + lth(ZYY) = 7. (The reason
for the term 'genealogical' will be clear in Section 5.2.)

(iv) Let v,w s X*. Then v,w are called far apart if d(v,w) > 3. (The number 3 is connected to the
restriction in 'restricted GNF', as will be clear later.) Furthermore, let X* D V,W. Then the sets
V,W are far apart if all pairs v ~ V, w e W are far apart.

(v) The sphere with centre w and radius r (a natural number), notation B(w,r), is the subset of X*
consisting of all v whose distance to w does not exceed r.

5.1.2.DEFINITION. (i) Let V = {V i I i ~ I} be a collection of subsets of X*. Suppose V contains
a subcollection W = {W: [j e J}, I D J, such that every V: (i e I) can be obtained by translation of
some Wj (j ~ J), i.e. V i J-- Tw(W j) for some w.Then W is ~alled a basis (w.r.t. translations) for V.

(ii) Let X* _~ V,W and suppose for some U and v,w we have: Tv(U) = V, Tw(U) = W. Then we
say that V,W are equivalent modulo translation, notation V =T W.

5.1.3. PROPOSITION. (i) =ris an equivalence relation.
(ii) If V -T W then V,W differ by a shift. [3

5.1.4. PROPOSITION. (i) Let B r be the collection of all spheres with a fixed radius r. Then B r
has a finite basis. (ii) B r is finitely partitioned by the translation equivalence.

PROOF. (i) It is not hard to check that the spheres B(w,r) with lth(w) < r form a basis.
(ii) Immediately from (i). 0

5.1.5. EXAMPLE. See Figure 3, where X = X,Y and where B(YX,1) is indicated. A basis for the
collection of all spheres with radius 1 is given by the three spheres B(e,1) = {e,X,Y}, B(X,1) =
{E,X,XX,YX} and B(Y,1) = {E,Y,XY,YY}.

5.1.6. DEFINITION. (i) If a subset V of X* is contained in some B(w,r), V is called r-bounded.
(ii) If V = {V i I i ~ I} is a collection of subsets of X*, and: 3r Vi Bw B(w,r) D_ V i, then the
elements of V i re uniformly bounded.

5.1.7. PROPOSITION. Let V be a uniformly bounded collection of subsets of X*. Then V i s
finitely partitioned by translation equivalence.

t0t

PROOF. Clear from the preceding proposition, since the number of subsets of B(w,r) is bounded
by a constant depending only from r,

Figure 3

5.1.8. PROPOSITION. Let W be a subset of X*, where X is the list of variables used by E,
such that:
(i) 3el,C 2 e N Vw e W c 1 < lth(w) < c 2,
(ii) W cannot be partitioned into W1,W 2 which are far apart.

Then W is contained in a sphere B(w,r) where r depends only from cl,e 2.

PROOF. It is not hard to check that for a pair of points in a set W as in the proposition, the distance
is in fact bounded by 2(c 2 - c 1) + 2.

This proposition says that if horizontal slices of thickness c 2 - c I are taken from the tree fiE),
and the slices of the tree are further divided into 'parts' that are far apart, then the collection of these
'parts' is uniformly bounded. See Figure 4, where X = X,Y and where the slices have thickness 1;
the 'parts' are contained by the indicated rectangles.

Figure 4

Before defining the process graph g(E), we make a simple observation about the relation of
the length and the norm function. Our assumption is that E is normed, i.e. all perpetual parts have
been pruned away as described in Proposition 4.2. That means that all subprocesses of the solution
of E,which are of the form w e X*, have a norm Iwl, the distance in steps to termination. It is easy
to determine the relationship between lth(w) and Iwl:

5.1.9. P R O P O S I T I O N . Let E be a normed system of recursion equations and 1.1 the
corresponding norm. Then:
(i) lwvl = lwt + Ivl,

(ii) wl = c 1 IXJ + + c IX t where c: (i = 1, ,n) is the number of occurrences of X: in w,
• 1 " ' " I t " FI " ' " l

(iii) the length function and the norm ~unction are linearly equivalent in this sense." for some
constants n 1 and n 2 we have for all w: Iw[< nl.lth(w) and lth(w) < n2.1wt. [3

102

5.2. The process graph g(E). According to the equations in E, we now fill in, in the obvious
manner, labeled edges in t(E). This will not give rise immediately to g(E), but first to an
intermediate graph g'(E) from which g(E) originates by leaving out inaccessible parts (inaccessible
from the root node, X]). For instance, i fE = {X = a + bYX, Y = c + dXY} then the upper part of
t(E) gets the edges, drawn bold-face in Figure 5(a):

Figure 5 (a) (b)

This basic figure (the bold-face part) corresponds just to the equations of E. But these equations
give also rise to the following equations, for every w ~ {X,Y}* (of course considered as a
product):

Xw = (a + bYX)w = aw + bYXw
Yw = (c + dXY)w = cw + dXYw,

These equations yield the edges in t(E) as in Figure 5(b). So, the graph we want originates by
reiterating the basic figure in Figure 5(a) wherever possible in t(E). The result is g'(E) as in Figure
6.

However, it is easily seen that large parts (the shaded rectangles in Figure 6) of the graph
g'(E) are inaccessible from the root X. After leaving these out we have g(E), which has a 'linear'
structure; it is the graph in Figure l(a), Section 2.

Figure 6

5.2.1. EXAMPLE. Let E be {X = a + bXY, Y = c + dYX}. Then g'(E) = g(E), i.e. g(E) uses all
nodes of the tree t(E), as one easily verifies.

Note that by the restriction in 'restricted GNF' the only possible arrows (edges) in g(E) are:
(i) from a node to itself,
(ii) from a node to its 'mother' (e.g. XX ~ a X in Figure 6),
(iii) from a node to a 'daughter' (e.g. XX "-)b YXX in Figure 6),
(iv) from a node to a 'sister',
(v) from a node to a 'niece'.
So, in all cases the nodes connected by an edge of g(E) have distance 0,1,2 or 3.

103

Henceforth we will present graphs g(E) such that the norms are "respected graphically", i.e.
a node with norm n will be positioned on level n.

Example: if E = {X = a + bU, U = cX + dZX, Y = c + dZ, Z = aY + bUY}. Then g(E) is as in
Figure 7.

Figure 7

0

1 a c

2

a d

3

4

5

Note that the graphs of Figure 6 (the unshaded 'linear' graph also appearing in Figure l(a),
Section 2) and Figure 7 (also in Figure l(b)) are bisimilar, as can be seen by relating all nodes on
the same level. This example of two bisimilar process graphs shows that our bisimulation
equivalence has nothing to do with the so-called "structural equivalence" or "strong equivalence" of
CFG's (see [Sa 2], p.287), an equivalence notion which also happens to be decidable. (See also
Problem 26 in Section 10.4 of [Ha].) Indeed, the "parenthesized versions" (see [Sa 2]) of both
CFG's yield different languages (e.g. the word (b(c)(a)) is in the first CFL but not in the second,
whereas (b(c(a))) is in the second but not in the first).

5.2.3. EXAMPLE. Let E be {X = a + bY + fXY, Y = cX + dZ, Z = gX + eXZ}. Then g(E) is
(see Figure 8):

Figure 8

2 ~ d ~i

4

5

5.2.4. EXAMPLE. Let E be {X = dY + bZ, Y = b + bX + dYY, Z = d + dX + bZZ}. This
example is the same as Example 1.1. The corresponding CFL consists of words with equal
numbers of b's and d's.

d b

b d

104

Figure 9

In advance to further developments, let us note here that the graphs g(E) as in the examples
above exhibit a striking regularity; while they are not trees (as there are cycles present), the process
graphs g(E) nevertheless have, from a more global point of view, a "tree-like" structure. For
instance, in the last example there are three 'fragments' of the process graph which are strung
together not only in tree-like fashion, but also in a regular way, as suggested in the following
figure.

Figure 10

5.3. Process graph fragments. To describe the periodicity of the process graphs g(E), we need the
notion of a fragment of a process graph.

5.3.1. DEFINITION. Let E be a system of recursion equations with variables X = {X 1 Xn}
and action alphabet A(E).
(i) A process graph fragment in the space t(E) consists of some subset N of nodes of X* together
with some edges w ---)o v (w,v e N) labeled by atoms in A(E). We use e~,~ to denote process

i t . • ~ i

graph fragments. Sometimes we omit the word process.

(ii) Two graph fragments in t(E) are disjoint if they have no nodes in common.

(iii) A graph fragment is connected if it cannot be partitioned into two disjoint graph fragments.
Equivalently: a graph fragment is connected if each pair of points in it is connected by a path

of consecutive edges, disregarding the direction of the edges.

(iv) If ot,13 are graph fragments, the union ~U~ is the graph fragment obtained by taking the union

105

of the respective nodes and edges.

(v) Translations T. of graph fragments and translation equivalence are defined as for node sets,
, W , .

wath the extra understanding that a translauon also respects labeled edges.

The following fact is obvious:

5.3.2. PROPOSITION. I f ~,o~' are graph fragments in g(E), and o~ w- T oC, then there are words
w,v such that a = Tv(Tw'l(a')). [1

5.3.3. PROPOSITION. Let c¢ be a connected graph fragment of a process graph g(E). Then the
node set of (x cannot be partitioned into two sets which are far apart.

PROOF. Follows immediately from the fact, observed in subsection 5.2, that only nodes with
distance 0,1,2 or 3 can be joined by an edge in the graph fragment, n

5.3.4. PROPOSITION. Let o~ be a graph fragment ofg(E) such that
(i) 3cj ,c 2 e N Vw e ~ c 1 _< Iwl _< e2, and
(ii) o~ ts connected.

Then ot is contained by a sphere B(w,r) where r only depends (in a computable way)from
Cl,C 2 and E.

PROOF. By Propositions 5.3.3 and 5.1.8. rq

5.3.5. PROPOSITION. Let (cq)is f be a collection of fragments of g(E). Let the ~i be uniformly
bounded. (i) Then the collectiori fs-finitely partitioned by translation equivalence. (ii) Moreover, the
number of elements of the partition can be computed from E.

PROOF. (i): at once from Proposition 5.1.7. Part (ii) is routine, rq

5.4. Regular decomposit ions. We are now arriving at the heart of the matter. First we will define
what is meant by a 'regular decomposition' (also called 'periodical decomposition').

5.4.1. DEFINITION. A regular node-labeled tree T is a tree T with a labeling of the nodes, such
that there are (modulo isomorphism of node-labeled trees) only finitely many subtrees.

Note: the labels can be any mathematical objects - in our case they will be complicated
objects, viz. translation equivalence classes of process graph fragments.

5.4.2. DEFINITION. A regular decomposition of the process graph g(E) is a tree "I" where each
node s is labelled with a process graph fragment c~ s such that

- each a s is afinite graph fragment in t(E),

- the union of all a s is g(E),

- for nodes s,t in "2, o~ s and s t are disjoint iff s,t are not connected by a single edge in T,

- the collection of a s (all nodes s in ~) is finitely partitioned by translation equivalence,

- if c~ 1 c~ k denote the finitely many equivalence classes in which the c~_ are partitioned, and each
label c¢ s is replaced by the label denoting its equxvalence class, the resulting node-labeled tree "2' as
regular.

5.4.3. EXAMPLE. Let "2' be the regular tree as in Figure 11. Then the actual tree "2 has the same
tree structure and as node labels: fragments ots which are translation equivalent in the way indicated

.~, by ~ .

106

Figure 11

The fo l lowing p ropos i t ion is essent ia l in the p roo f of the ex i s tence of a regular
decomposit ion.

5.4.4. PROPOSITION. Let c~ and ~' be fragments of g(E), which are translation equivalent. Let
s be a node in o~ which has a length not minimal in c~. Suppose s --~. t is an edge such that ct u

a fragment of g(E). Let s be the potnt m o~ corresponding (after the same shift {s "--~a t} is again ~ "
as from ot to c~) to s.

Then there is a t' and an edge s' --~a t' such that or' u { s' -'-~a t'} is also a fragment of g(E);
moreover, the two extended fragments are again translation equivalent by the same shift.

PROOF. See Figure 12.

g(E)

S t '

Figure 12

Since a ~-T 0~' there are w,v ~ X* such that c~' = Tv(Tw-l(00). So s = uw for some u s X* and s'
= uv. Since the length of s is not minimal in cq u is not empty. So s and s' start with the same
var iable; say s = X~u'w and s' = Xiu'v. In part icular, if s -+a t is a step ob ta ined f rom the
recursion equation J~i + au" + ... (i.e. from the displayed summand, where u" E X*),then t =
u"u'w, and we have the step s' = Xiu'v - -~ u"u'v = t'. So the step s' - -~ t' is at least in g (E) (the
graph where also inaccessible parts are pre~ent, see Section 5.2). It is aYso in g(E), because t' is an
accessible node. This is so as s' is accessible, being a node in or' which is in g(E). Therefore
a ' u {s' -e,, t '}is indeed a fragment of g(E), and clearly it is equivalent to ~ ~ {s ---~a t} by the
same shift ~vTw "1"

W e will now define the decomposit ion which will be proved to be regular in Theorem 5.4.6.

5.4.5. DEFINITION. Let g(E) be the process graph corresponding to E.
(i) g(E) wil l be divided in fragments called slices, numbered 0,1,2,3 Each slice has thickness
d; we will also call d the amplitude of the decomposition.

(ii) The n-th sl ice (n = 0,1,2,3,...) contains the nodes s of g(E) with n.d < lsl <__ (n+ l) .d and
moreover those nodes reachable by one step in g(E) from a node s with n.d < Isl < (n+l) .d.

Example: in Figure 13 slice 1 of thickness 2 is displayed of the process graph in Figure 8.

(iii) The nodes s in the n-th slice with Ist _< n.d are called the upper nodes of the n-th slice; the
nodes s with Isl >_ (n+l) .d are the bottom nodes of the n-th slice.

107

(iv) The n-th slice is now the fragment of g(E) obtained by taking the restriction of g(E) to the set
of nodes of the n-th slice. (In the example of Figure 13: the bold-face part.)

(v) The n-th slice is divided in maximal connected fragments. These fragments, of all slices,
together constitute the decomposition we want; we will say that the decomposition has amplitude d.

5

Figure 13

5.4.6. THEOREM. Let E be a normed system of recursion equations in restricted GNF, in the
signature of BPA, and let g(E) be the corresponding normed process graph. Then g(E) has a
regular decomposition; moreover, the amplitude d of the decomposition can be chosen arbitrarily
such that d >_ c(E) for some constant c(E) computable from E.

PROOF. Consider the decomposition with amplitude d as just defined.
(I). It is easy to see that the tree of fragments thus obtained is indeed a tree. To prove this, we must
show that a situation (e.g.) as in Figure 14 cannot happen.

Figure 14

The reason that such a 'confluence' is impossible is that the bottom points of 13 and y are too far
apart, when d is sufficiently large. (It is trivial to give an estimation, depending on E, how large: it
suffices to have the length of bottom points of a fragment at least 3 more than the length of top
points.) Going downwards from such bottom points only increases the distance - hence there is no
confluence possible.

(II) There are only finitely many labels (fragments) modulo translation equivalence. This follows
from Propositions 5.3.4, 5.3.5.

(III) Next, we must prove the regularity of the decomposition. So consider two nodes s,t in q"
occupied by c¢, oz. with
c~o -v- T c~,. Let ~ , "~. be the subtrees of T determined by s resp. t Further, let G~, G~ be the graph
fragments of g(t~) o~btamed by taking the unions of all the labels in x s resp. T t.

CLAIM: Go ~ G.. From the claim the regularity follows at once. The proof of the ctaim follows
- - - - . L . . .

by repeate~applicatlon of Proposmon 5.4.4.

108

In fact, the proof of Theorem 5.4.6 can also be applied on systems E which are not normed;
an inspection of the definitions and arguments shows that everything carries over if instead of the
norm l.I, the length lth is used (cf. Proposition 5.1.9). Thus we obtain

5.4.7. THEOREM. Let E be a system of recursion equations in BPA in restricted GNF. Then the
corresponding graph g(E) has a regular decomposition.

6. Decidability of bisimulation equivalence for normed processes

We can now harvest the fruits of our demonstration of the regular decomposition of normed
process graphs. The main idea of this section is that if there is a bisimulation between nonned
process graphs g(E1), g(E~), then there must also be a 'periodical' bisimulation, in view of the
periodicity of g(E1),-g(E2).-Moreover, the 'period' can be computed from E l, E 2 and this yields the
desired decidability. Firs~we need some preparations.

6.1. DEFINITION. Let g,h be process graphs and let R be a relation with the nodes of g as
domain and the nodes of h as codomain. A bisimulation error of R is
(i) a triple of nodes s,s' e g, t ~ h and an edge s -+a s' in g such that sRt and there is no edge
t --~a t' in h with s'Rt' (see Figure 15), or
(ii) s-imilar with g,h interchanged.

Figure 15

Clearly, R is a bisimulation iff R relates the roots of g,h and R contains no bisimulation
errors.

6.2. DEFINqTION. Let E l, E~be normed systems of recursion equations in restricted GNF.
(i) Let R be a bisimulauon~between g(E1), g(E2). Then the prefix up to n, or n-prefix, is the
restriction of R to the nodes of g,h whose level does not exceed n.

(ii) A partial bisimulation R between g(EL), g(E 2) up to level n is a relation R with domain: the
nodes of g(E 1) with level < n, and codomam: the nodes of g(E2) with level _< n, and such that R
relates the roots of g(E1), g(E 2) and contains no bisimulation errors.

(iii) Let g(E1), g(E2) be divided in slices of thickness d. Then a partial bisimulation between g(E1),
g(E2) up to slice k is a partial bisimulation up to level d.k,

6.2.1. REMARK. Note that if graphs g(El), g(E 7) are drawn according to the convention that
nodes with norm n are positioned on level n, all- connections (i.e. related pairs of nodes) in a
bisimulation between g(E1), g(E 2) are 'horizontal'.

6.3. DEFINITION. Let g(Et), g(E2) be as in 6.2(iii), and suppose that regular decompositions of
g(E1), g(E2) are given, with a common amplitude d. Let R be a partial bisimulation between g(El),
g(E2) up to slice k. We will define what it means for R to be d-sufficient (to extend R to a total
bisimulation between g(E1), g(E2)). (See Figure 16.)

Suppose, in the regular decomposition, that c~ is a fragment of slice k in g(Et), [3 one of slice
k in g(E2). The successor fragments of a are a 1 ~n and those of ~ are 131 [3 m for some n,m.
(Note that the top points of a i (i = 1 n) are also in slice k, and likewise for 13j (j = 1 m).

t09

Suppose furthermore that fragments c~,~3 are related by the partial bisimulation R, i.e. there is
a pair of nodes s ~ o~, t E [3 with sRt. Now suppose that at least one slice higher there are
translation equivalent copies o¢,[3' of c~,[3 (which then must have successors c~,', ,c~ ' and

B t I ° " n

~I [3rn, respecuvely, translatmn eqmvalent to their unpnmed versions), such that the
restriction of R to c~ x [3 coincides, modulo translation equivalence ~'T, with the restriction of R to
~' x [3'. (Of course -=T extends to pairs of nodes (s,t) coordinate-wise.)

If for each pair o~,[3 in the k-th slice such a copy 0c',[3' exists, then the partial bisimulation R
is called d-sufficient.

Figure 16

R

i slice k

6.4. Let a partial bisimulation R as in 6.3 be given, which is sufficient. Then the periodical
continuation of R is constructed as follows. Let a,[3 be as in 6.3. The partial bisimulation R is
extended to (0~ 1 ~ ... t j ~xn) x (~1 ~ --- u [3m) by copying the restriction of R to
(oc I' k9 ... u o~,'~ x (~1' ~ "" u [3,.£') This is'done for all pairs oc,[3 in slice k of g(E), g(E). It is
now easily chgcked tfiat ti~ result'is a partial bisimulation up to slice k+l , which again is su~Jflcient;
for, clearly the extended partial bisimulation does not contain a bisimulation error - if it did, the
bisimulation error was copied from an earlier slice, quod non.

The periodical continuation of the sufficient, partial bisimulation R is obtained as the limit of
this extension procedure. Clearly, it is a total bisimulation.

6.5. PROPOSITION, Let g(E1), g(E2) be as before, and let R be a bisimulation between them.
Then:
(i) each n-prefix of R is a partial bisimutation up to n,
(ii) R has a d-sufficient M-prefix for each M > N(E1,E2,d), where N(E1,E2,d) is some constant
computable from Et,E 2 and d.

PROOF. (i) is obvious. (ii): the proof follows by elementary finiteness considerations; there are
only finitely many possible relations (oc x {3) ~ R.

6.6. THEOREM. (i) Let EpE9 be normed systems of recursion equations (over BPA) in restricted
GNF. Then the bisimilarity-refation g(Et) -~ g(E2) is decidable.
(ii) Equality of recursively defined normed processes in the graph model G of BPA is decidable.

PROOF. (i) According to Theorem 5.4.6 the graphs g(E1),g(E2) have a regular decomposition,
with a common amplitude d. Now search through all (finitely many) relations between the nodes of
g(E 1),g(E) up to level N = ..N(E 1,E2,d)- If there is no such relation which, is a partial bisimulation
up to N, t~ere cannot be a baslmulatlon between g(E1),g(E2) , by Proposation 6.5(i). If there is such
a bisimulation, this is revealed by finding a d-sufficient pamal bisimulation up to N.
Part (ii) is a rephrasing of (i).

110

7. Simple context-free languages

In this section we derive, as an application of the method used in this paper, the well-known fact
that simple CFL's have a decidable equivalence problem.

7.1. DEFINITION. (i) A simple CFG is a CFG in GNF such that there is no pair of different
productions A --+ am, A -+ a[3. Equivalently, in the notation of systems of guarded recursion
equations in GNF: a system E is simple if it contains no recursion equation X: = ... + aw + av +...

. l

for different w,v e X*. (ii) A CFL is simple if it can be obtained from a simple CFG.

7.2. DEFINITION. A process graph g is deterministic if there is no node s e g having two
outgoing edges with the same label.

The following fact is obvious:

7.3. PROPOSITION. Let E be a simple system of recursion equations in restricted GNF. Then
g(E) is deterministic.

The reason for our interest in deterministic process graphs is that if they are normed, their
bisimulation equivalence problem coincides with the equality problem for their finite trace sets. The
proof of this fact, stated in the next proposition, is not trivial but also not difficult, and omitted in
the present paper. (The full proof is in [BBK 2].)

7.4. PROPOSITION. Let g,h be normed, deterministic process graphs. Then:

g ~- h ¢=~ ftr(g) = ftr(h). I3

As a corollary we have the following fact from [KH] (or see [Ha], Section 11.10):

7.5. THEOREM (Korenjak - Hopcroft 1966)
The equivalence problem for simple CFL's is decidable.

PROOF. Immediate from Theorem 6.6(i), Proposition 7.3 and Proposition 7.4. rq

8. C o n c l u d i n g r e m a r k s a n d ques t ions

We have shown that equality of the processes generating CFL's is decidable, in remarkable contrast
with the unsolvability of equality of CFL's. As equality of processes we mean here the equality
obtained by dividing out the well-known bisimulation equivalence in the domain of process graphs.
The proof of the decidability essentially uses the fact that the process graphs associated to CFG's in
(restricted) Greibach Normal Form possess a tree-like periodical structure, which in itself is
interesting. It should be noted that this periodicity holds for all process graphs g(E) with E a system
of guarded recursion equations in Basic Process Algebra. However, in order to prove decidability
of bisimulation equivalence for such graphs, we have adopted the restriction that they are normed;
i.e. there are no redundant parts as regards the generation of the finite trace set, a CFL. From the
point of view of CFG's and CFL's this is perfectly natural; but the general question for BPA
remains: Is bisimitarity of process graphs g(E) for all guarded recursive specifications E in BPA
decidable? Or, rephrased: Is equality of all recursiveIy defined processes in the graph model G of
BPA decidable? We conjecture that this is the case.

It is conceivable that the method of this paper may be useful to approach some problems in
the theory of formal languages. For instance, one can associate to push-down automata (PDA's) in
a similar manner a process; and again one can prove that the process graph g(M) obtained by the
description of the PDA M has a periodical decomposition as explained before. Now in the case of a
deterministic PDA or DPDA, we find that g(M) is a deterministic process graph (cf. g(E) for a
simple CFG, in Section 7). Just as for simple CFG's, the bisimilarity problem for such process
graphs is equivalent to the equality problem for the corresponding finite trace sets, i.e. deterministic
CFL's. Thus, in an attempt to settle the well-known equality problem for deterministic CFL's
obtained by DPDA M, one can study the equivalent bisimilarity question for the process graphs
g(M). The big problem here is the presence of final states and e-steps. Without these, decidability
can be proved by the method of this paper, and the result is that deterministic CFL's obtained via

111

acceptance by empty stack (rather than by final state) and such that the accepting DPDA has no
e-steps (or at least no stack-decreasing e-cycles) have a decidable equality problem. (We do not
know if this observation adds anything to the numerous partial decidability results regarding this
question.)

Several other interesting questions remain. We conclude this paper with one of them:

8.1. QUESTION. The problem of this paper can also be considered in the setting of readiness or
failure semantics instead of bisimulation semantics. (See [BKO] for an account of BPA with failure
semantics or readiness semantics.) As these semantics are intermediate between bisimulation
semantics and trace semantics, it is an interesting question whether decidability still holds. (We
have no intuition for an answer.)

References

[BB]

[BBK 1]

[BBK 2]

[BBKM]

O3HR]

~K 1]

[BK 21

[BK 3]

[BKO]

[BMOZ]

[Ha]
leo]

[HU]

[Mi 1]
[Mi 2]

[Pa]

[Sa 1]
[Sa 2]

J.C.M. Baeten, J.A, Bergstra, Global renaming operators in concrete process algebra, Report CS-R852t,
Centre for Mathematics and Computer Science, Amsterdam 1985.
J.C.M. Baeten, J.A. Bergstra, J.W. Klop, On the consistency of Koomen's Fair
Abstraction Rule, Report CS-R8511, Centre for Mathematics and Computer Science,
Amsterdam 1985. To appear in Theoret. Comput. Sci.
J.C.M, Baeten, J.A. Bergstra, J.W. Klop, Decidability of bisimulation equivalence for processes
generating context-free languages, Report CS-R8632, Centre for Mathematics and Computer Science,
Amsterdam 1986.
J.W. de Bakker, J.A. Bergstra, J.W. Klop, J.-J.Ch. Meyer, Linear time and branching
time semantics for recursion with merge, in: Proc. 10th ICALP, Barcelona (J. Dfaz,
Ed.), Springer LNCS 154, 39-51, 1983; expanded version: Theoret. Comput. Sci. 34
(1984) 135-156.
S.D. Brookes, C.A.R. Hoare, W. Roscoe, A Theory of Communicating Sequential
Processes, J. Assoc. Comput. Mach. 31, No.3, 560-599.
J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Inform.
and Control 60 (1984) 109-t37.
J.A. Bergstra, J.W. Klop, Algebra of communicating processes, in: J.W. de Bakker,
M. Hazewinkel, J.K. Lenstra, Eds., Proc. CWI Symp. Math. and Comp. Sci.,
North-Holland, Amsterdam t986.
J.A. Bergstra, J.W. Klop, The algebra of recursively defined processes and the algebra
of regular processes, in: Proc. lIth ICALP, Antwerpen (J. Paredaens, Ed.), Springer
LNCS 172, 82-94, 1984.
J.A. Bergstra, J.W. Klop, E.-R. Olderog, Readies and failures in the algebra of
communicating processes, Report CS-R8523, Centre for Mathematics and Computer
Science, Amsterdam 1985.
J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog, J.I. Zucker, Transition systems,
infinitary languages and the semantics of uniform concurrency, in: Proc. 17th ACM
STOC, Providence, R.L, 1985.
M.A. Harrison, Introduction to Formal Language Theory, Addison-Wesley 1978.
C.A.R. Hoare, A model for communicating sequential processes, in: "On the
Construction of Programs" (R,M. McKeag and A.M. McNaughton, Eds.), 229-243,
Cambridge Univ. Press, London/New York.
J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley 1979.
A.J. Korenjak, J.E. Hopcroft, Simple deterministic languages, Proc. of 7th Annual
Symposium on Switching and Automata Theory, Berkeley, 36-46, 1966.
J.-J:Ch. Meyer, Programming calculi based on fixed point transformations: semantics
and applications, Ph.D. Thesis, Free University, Amsterdam 1985.
R. Milner, A calculus of communicating systems, Springer LNCS 92, I980.
R. Milner, A complete inference system for a class of regular behaviours, J. Comput.
and Syst. Sci. 28, 439-466, 1984.
D. Park, Concurrency and automata on infinite sequences, in: P. Deussen, Ed., Proc.
5th GI Conf. on Theor. Comp. Sci., Springer LNCS 104 (1981).
A. Salomaa, Computation and automata, Cambridge University Press 1985.
A. Salomaa, Formal languages, Academic Press, N.Y., 1973.

